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ABSTRACT OF THE DISSERTATION 

THE INTERACTIONS OF RELATIONSHIPS, INTEREST, AND SELF-EFFICACY 

IN UNDERGRADUATE PHYSICS 

by 

Remy Dou 

Florida International University, 2017 

Miami, Florida 

Professor Eric Brewe, Major Professor 

This collected papers dissertation explores students’ academic interactions in an 

active learning, introductory physics settings as they relate to the development of 

physics self-efficacy and interest. The motivation for this work extends from the 

national call to increase participation of students in the pursuit of science, 

technology, engineering, and mathematics (STEM) careers. Self-efficacy and 

interest are factors that play prominent roles in popular, evidence-based, career 

theories, including the Social cognitive career theory (SCCT) and the identity 

framework. Understanding how these constructs develop in light of the most 

pervasive characteristic of the active learning introductory physics classroom 

(i.e., peer-to-peer interactions) has implications on how students learn in a 

variety of introductory STEM classrooms and settings structured after 

constructivist and sociocultural learning theories.  

 I collected data related to students’ in-class interactions using the tools of 

social network analysis (SNA). Social network analysis has recently been shown 

to be an effective and useful way to examine the structure of student 
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relationships that develop in and out of STEM classrooms. This set of studies 

furthers the implementation of SNA as a tool to examine self-efficacy and interest 

formation in the active learning physics classroom. Here I represent a variety of 

statistical applications of SNA, including bootstrapped linear regression (Chapter 

2), structural equation modeling (Chapter 3), and hierarchical linear modeling for 

longitudinal analyses (Chapter 4). 

 Self-efficacy data were collected using the Sources of Self-Efficacy for 

Science Courses – Physics survey (SOSESC-P), and interest data were 

collected using the physics identity survey. Data for these studies came from the 

Modeling Instruction sections of Introductory Physics with Calculus offered at 

Florida International University in the fall of 2014 and 2015. Analyses support the 

idea that students’ perceptions of one another impact the development of their 

social network centrality, which in turn affects their self-efficacy building 

experiences and their overall self-efficacy. It was shown that unlike career 

theories that emphasize causal relationships between the development of self-

efficacy and the subsequent growth of student interest, in this context student 

interest takes precedence before the development of student self-efficacy. This 

outcome also has various implications for career theories. 
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PREFACE 

  The implementation of active learning environments across science, 

technology, engineering, and mathematics (STEM) fields has garnered attention 

from education researchers across the country. Their work has revealed with 

strong significance the advantage of active learning strategies over traditional, 

lecture-based pedagogies (Freeman et al., 2014). Active learning STEM courses 

yield positive outcomes in students’ conceptual understanding and exam scores. 

These benefits have been posited as part of the solution to our country’s 

shortage of STEM majors and professionals (National Research Council [NRC], 

2010). The shortage of STEM professionals is particularly pertinent to the field of 

physics where fewer women, African Americans, and Hispanics graduate than 

what is commensurate with their population sizes (NRC, 2013). Yet, much of the 

research in STEM education centers on academic performance (e.g., exam 

scores, course grades, concept inventory evaluations), which explains only a 

portion of the variance in career decision-making around STEM. Constructs, like 

self-efficacy and interest, have been shown to be robust and highly predictive in 

the formation of students’ career pathways (Hazari, Sonnert, Sadler, & 

Shanahan, 2010; Lent, Brown, & Hackett, 1994). 

  In the chapters below I describe my dissertation research, which aims to 

increase our understanding of student self-efficacy and interest formation in 

active learning introductory physics courses taught using the Modeling Instruction 

(MI) curriculum. Active learning courses by definition place more emphasis on 

peer-to-peer interactions than do traditional pedagogies (e.g., lecture-based 
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teaching). The prevalence of these interactions leads to the formation of larger 

and more intricate social networks than those found in lecture-based courses 

(Brewe, Kramer, & O’Brien, 2010). Specifically, the work presented here is part of 

an examination of how in-class student networks, quantified using social network 

analysis (SNA), relate to undergraduate students’ physics self-efficacy and 

interest formation in light of demographic characteristics, such as gender and 

race/ethnicity, as well as major.  

  Employing a “collected papers” dissertation format, I describe three 

connected studies and their outcomes:  

Chapter 2 - an examination of the change in student self-efficacy 

and the sources of self-efficacy, and the utility of centrality (i.e., 

position in a social network) to predict the variance in these 

changes;  

Chapter 3 - an examination of student centrality and its contribution 

to the development of physics self-efficacy and interest using 

structural equation modeling; and  

Chapter 4 - a longitudinal exploration of student centrality 

development.  

Chapter 1 sets up an introduction and short description of each study, and 

Chapter 5 showcases points of overlap between the studies, as well as the 

implications these have on teaching practices and career theories. Dissemination 

of this work will contribute to our understanding of how academic interactions in 

active learning courses shape the factors that promote student retention and 
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persistence in STEM. Ultimately, I will use the products of this dissertation and 

expertise acquired to promote positive changes in local and federal policy related 

to STEM education. 
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CHAPTER 1  

INTRODUCTION 

1.1. Advancing the Current State of Knowledge in the Field  

 For the United States, the rate of students seeking and completing STEM 

degrees lags behind that which would keep this nation competitive in the global 

economy; the trend strongly resonates in the context of our growing minority 

populations (National Research Council [NRC], 2010; President’s Council of 

Advisors on Science and Technology [PCAST], 2010). As a result, the 

implementation of active learning STEM courses has garnered attention from 

education researchers across the country. Specifically in the arena of physics 

education, a variety of active learning approaches have led to the reformation of 

introductory physics courses in colleges and universities. These include 

Investigative Science Learning Environments (ISLE), Student-Centered Activities 

for Large Enrollment University Physics (SCALE-UP), Workshop Physics, 

Tutorials in Introductory Physics, and Modeling Instruction (MI) among others. To 

various degrees, they have exhibited positive impacts on student learning 

(Brewe, 2010; Etkina & Van Heuvelen, 2007; Finkelstein & Pollock, 2005; Laws, 

1997; Robert et al., 2000). Yet, success in physics education, particularly in the 

realm of career persistence, involves more than just improving learning gains; it 

requires exploring changes in affective constructs that complement academic 

performance (NRC, 2012, 2013; PCAST, 2010). 

Affective constructs, such as self-efficacy, identity, and interest, are often 

positively correlated with student outcomes such as academic performance 
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(NRC, 2012; Schunk, 2012). Yet, more relevant to career research, these 

constructs play major roles in students’ decision-making process when choosing 

a profession (Bandura, Barbaranelli, Caprara, & Pastorelli, 2001; Hazari, 

Sonnert, Sadler, & Shanahan, 2010; Lent, Brown, & Hackett, 1994; Wang, 2013). 

The constructs’ predictive power holds true across global cultures, postulating 

that self-concepts and personal values matter more in determining whether 

students foresee themselves in science careers than do performance outcomes 

(Kjaernsli & Lie, 2011). Considering the dearth of individuals from 

underrepresented communities pursuing physical science degrees in comparison 

to other STEM majors, attention should be paid to these often-overlooked factors 

(NRC, 2011; National Science Board [NSB], 2014). While focusing on the impact 

of active learning curricula on academic performance provides valuable support 

in favor of these types of pedagogies, their possible effect on affective constructs 

may help researchers better understand why students persist (or do not persist) 

in a major. 

1.2. Self-Efficacy in Career Decision-Making: Overview 

Of the constructs related to both performance attainment and career 

choice, self-efficacy plays a unique, well-tested, and meaningfully influential role 

(Bandura et al., 2001; Dou & Gibbs, 2013; Hill, Corbett, & Rose, 2010; Larkin, 

Lent, & Brown, 1986; Lent at al., 1994; NRC, 2012; Wang, 2013; Zeldin, Britner, 

& Pajares, 2008; Zeldin & Pajares, 2000). Even while controlling for prior 

academic attainment, aptitude, and career interest, self-efficacy continues to 

significantly predict career choices (Lent, Brown, & Larkin, 1987; Lent, Lopez, & 
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Bieschke, 1993). When comparing self-efficacy to career-choice theories that link 

students to a vocation depending on their personalities, self-efficacy has greater 

predictive power for career-choice than personality-based theories (Brown, Lent, 

& Larkin, 1989). Students with high self-efficacy regarding tasks related to a field 

of study will more likely develop interests in, set goals toward, and make positive 

decisions about careers in that field (Lent et al., 1994); indeed, other factors play 

a similar role, but few hold the predictive power that self-efficacy does (Larkin et 

al., 1986; Pajares & Urdan, 2006). 

Bandura (1997) describes self-efficacy as the beliefs individuals have 

about their capability to complete domain-specific tasks and the outcomes they 

believe may result from their efforts. He proposed four types of experiences (i.e., 

sources) contribute to a person’s self-efficacy beliefs: mastery experiences, 

vicarious learning, verbal persuasion, and physiological states (Bandura, 1977). 

Students’ self-efficacy on physics related tasks is influenced by (a) students’ past 

performance on similar tasks (i.e., mastery experiences), (b) observations of 

peers to whom they relate succeeding or failing at those tasks (i.e., vicarious 

learning), (c) direct encouragement or discouragement from peers, instructors, 

and others (i.e., verbal/social persuasion), and (d) the emotional and 

physiological states of each student at the moment one assesses their self-

efficacy or when students think about completing the task in question (i.e., 

physiological states). Anxiety, depression, or excitations are examples of 

physiological states that can contribute to students’ self-efficacy. 
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1.2.1. Undergraduate Physics Self-Efficacy  

Research studies have reported correlations between self-efficacy and 

final grade in introductory physics courses, as well as the likelihood of passing 

the class (Brewe et al., 2010; Fencl & Scheel, 2005; Lynch, 2010). The same can 

be said about other introductory courses in STEM fields, including chemistry, 

biology, and computer science (Askar & Davenport, 2009; Larose, Ratelle, Guay, 

Senecal, & Harvey, 2006; Smist 1993). Not only does physics self-efficacy 

impact academic performance, but it has also been shown to have a direct 

correlation with student affect, like motivation in physics courses (Lynch, 2010).   

Gender trends have also been reported, some of which are seen not only 

in self-efficacy as a whole, but also in the sources of self-efficacy. A study of 281 

first-year college students who belonged to the same physics cohort revealed 

that female students reported lower self-efficacy beliefs than their male 

counterparts (Lindstrom & Sharma, 2011). Moreover, in this same study, male 

students who had not taken any high school physics courses had higher self-

efficacy than all other groups of students, indicating a gendered overconfidence. 

Larose et al. (2006) performed a longitudinal study where females who 

experienced increases in their self-efficacy during and after high school were 

more likely to report stability in their STEM-related vocational choices. This 

stability applied even after controlling for high school achievement and 

socioeconomic status. On the other hand, a decline in self-efficacy had the 

opposite effect for female students and no effect on male students. In general, 

men report mastery experiences as the basis for their persistence and ongoing 
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achievement (Zeldin, Britner, & Pajares, 2008). Women in similar contexts, as 

noted earlier, seem to rely on vicarious learning and verbal persuasion 

experiences as part of the foundation of their professional success (Zeldin & 

Pajares, 2000).  

Previous studies on MI have explicitly explored students’ self-efficacy 

(Sawtelle et al., 2012; Sawtelle, Brewe, & Kramer, 2012). A study by Sawtelle et 

al. (2012) showed that respondents taking one of several 30-student MI courses 

at a public research university, regardless of gender, did not exhibit a statistically 

significant change in overall self-efficacy. When disaggregated by the sources of 

self-efficacy, the results did reveal an increase for women on the VP subscale. 

On the other hand, the same study revealed that both male and female students 

in lecture-based introductory physics courses exhibited a drop in self-efficacy. 

The drop was observed across all four sources of self-efficacy. These findings 

align somewhat with findings by Fencl and Scheel (2004) who showed that 

Calculus-based Physics I courses that employ a mixture of reformed pedagogical 

approaches, in particular student collaborations, have a stronger positive impact 

on students’ self-efficacy than traditionally taught courses. The positive effect is 

enhanced for physics majors. Another study by Sawtelle, Brewe, and Kramer 

(2012) employed logistic regression analysis to show that mastery experiences 

predict the rate at which male students pass or fail introductory physics, while 

female students’ success depends more on vicarious learning than the other 

sources of self-efficacy. 
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  1.2.2. Self-Efficacy and Interest in Career Decision-Making 

  The relationship between interest and self-efficacy has been thoroughly 

examined in a variety of settings (Bandura, 1993, 1997; Schunk, 2012). More 

importantly, both of these constructs have been shown to predict career decision-

making behavior more so than academic achievement (Bandura, 2001). 

Prominent career theories confirm this. Lent et al.’s (1994) Social cognitive 

career theory (SCCT) focuses on the mediating role that self-efficacy and 

vocational outcome expectations play between learning experiences and interest. 

The SCCT posits that learning experiences contribute to changes in students’ 

self-efficacy and vocational outcome expectations, which in turn, influence 

students’ interests, eventually having effect on students’ goals and goal 

accomplishments. Taking a more identity-based approach, Hazari et al. (2010) 

have made the case that “performance competence,” a construct that shares 

similarities with self-efficacy, influence students’ interest in a particular field, 

which can then contribute to students’ identification with that field. This field-

specific identity has been shown to predict career choices of physicists and 

engineers (Hazari et al., 2010; Cass, Hazari, Cribbs, Sadler, & Sonnert, 2011).  

  1.2.3. Academic Social Interactions and Self-Efficacy Development 

Although individuals regulate their self-efficacy internally (Schunk, 2012), 

some of the experiences that contribute to self-efficacy development result from 

social behavior. Development of efficacy beliefs, to an extent, relies on social 

interactions in social settings, both of which are the hallmark of various reformed 

physics curricula. The basis for this begins with how theory defines vicarious 
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learning and verbal persuasion—two of the four established sources of self-

efficacy. Vicarious learning and verbal persuasion experiences imply 

environments where social interactions exist. 

Vicarious learning (VL) requires that an individual in question observes 

another person succeeding or failing at a given task. For this to occur, two or 

more persons must find themselves in the same space, within reasonable 

distance to observe one another’s performance. While one may argue that this 

need not occur in physical proximity (e.g., watching videos of someone 

performing the task), the bulk of formal education environments primarily allow 

for in-person vicarious learning experiences1.  

The presence of peers does more than create VL opportunities, it also 

nurtures threatening or affirming contexts that result in changes to students’ 

overall self-efficacy. These contexts hold particular sway in circumstances where 

individuals rate their performance by comparing their progress to that of those 

around them. In the case where a person observes others surpassing his or her 

performance, that individual has a higher likelihood of feeling less confident 

about his or her ability to perform the task at hand (Bandura, 1993). Educational 

settings often place students in situations where they find themselves explicitly or 

implicitly ranked among their peers according to their academic success. The 

ranking need not occur publicly or blatantly, but may be perceived by students 

nevertheless (e.g., a teacher drawing smiley faces on just a subset of graded 

exams). 

																																																								
1 The context of online education may limit such experiences and render this statement less valid. 
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Social interactions are also required in circumstances where individuals 

receive verbal feedback on performance, which may strengthen or undermine 

their self-efficacy. In general, classroom structures provide a forum for these 

kinds of verbal persuasion (VP) experiences to take place. Students often 

receive verbal recognition about their progress from teachers, peers, and on 

occasion, administrators. On a similar note, the type of emphasis placed on 

these performance evaluation matters (Schunk, 1983). Feedback that 

accentuates shortcoming contributes more to the breakdown of efficacy beliefs 

than feedback that focuses on amount of progress (Dweck, 1975).  

  Some studies reveal that the socially oriented sources of self-efficacy (i.e., 

VL and VP) play a more significant role in the development and sustaining of the 

efficacy beliefs of women who work in STEM professions (Hill, Corbett, & St. 

Rose, 2010). For example, Zeldin and Pajares (2000) interviewed 15 women 

working in STEM fields where underrepresentation of women persists, which 

included engineering and computer science. The researchers asked them about 

their self-beliefs and career history, specifically probing for information about their 

mathematics efficacy beliefs because of the highly mathematical nature of their 

professions. The participants reported experiences in line with VL and VP as 

playing a critical role in their career decision-making process and their 

persistence in their respective fields. These VL and VP experiences often 

included the presence of role models and encouragement from teachers. 
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1.3. Context 

  1.3.1. Florida International University 

  The three studies presented here took place at Florida International 

University (FIU). Florida International University is Miami's public, urban research 

university, which boasts a unique population. The institution educates over 

56,000 students, making it one of the largest public universities in the country. 

Over 60% of FIU’s students identify themselves as “Hispanic,” while 13% identify 

themselves as “Black,” another 12% as “White,” and 13% as “Other” (State 

University System of Florida, 2014). FIU is classified as a Hispanic Serving 

Institution (HSI), offering critically important services to the members of its 

community, who are primarily Hispanic. Considering recent national calls for a 

greater number of STEM majors, many of which include an emphasis on 

recruiting from underrepresented groups (NRC, 2011; PCAST, 2010), it is 

relevant that no other university awards more STEM bachelor’s degrees to 

underrepresented minorities than FIU (Office of Governmental Relations, 2014). 

  1.3.2. Modeling Instruction Introductory Physics  

Of the existing, reformed instructional approaches directed at introductory 

university physics curricula (with Calculus), the current research focuses on 

Modeling Instruction (MI), which differs significantly from the more common, 

lecture-based introductory-course format. The MI introductory physics courses 

(referred to as “MI” from here on out) tend to support low student-instructor 

ratios, short or non-existent lectures, high numbers of solicited student-student 

and student-instructor interactions, and classroom settings designed to promote 
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small group formation and collaborative learning. Students explore physical 

phenomena and solve classroom assignments in small groups, use various 

representations to summarize their conclusions on a white board, and come 

together during a “Board Meeting” to share and evaluate group solutions. Board 

Meetings—a characteristic feature of MI—reflect the highly social nature of 

learning that takes place (Brewe, 2008). 

  The originators of MI developed the approach to promote student 

engagement for the purpose of mediating the construction of physics knowledge 

(Hestenes, 1987). The curriculum highlights the dialectical process where 

individuals reconcile their naïve ideas with concepts presented in the curriculum, 

which in this case occurs via experimentation and argumentation—the latter 

better described as social exchanges of ideas. Further development of MI by 

Desbien (2002), as well as Brewe (2008), cemented the inherently social nature 

of knowledge construction espoused by this physics teaching method. Grouping 

students, encouraging them to develop physics models together, and then having 

them relate group results to a larger classroom setting provides participants with 

opportunities to create knowledge and shared meanings/interpretations via 

verbal exchanges. This relationship between the building of knowledge and 

discussion is summarized in a common motto of the MI process: learning and 

social interactions are not mutually exclusive (Bruun and Brewe, 2013). 

Additionally, learning occurs within a physics context. Students in this active 

learning environment employ a variety of physics-relevant tools, including 

language, to develop representations of physics concepts.  
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1.4. Chapter Descriptions: Overview of Three Studies 

  1.4.1. Chapter 2: Examining Changes in Students’ Physics Self-

Efficacy Through a Social Networks Lens2 

Key Research Questions 

1. Do students in MI courses experience statistically significant changes in 
physics self-efficacy as measured by pre- and post- scores on a self-
efficacy in physics instrument (i.e., Sources of Self-Efficacy in Science 
Courses – Physics)? 

 
2. Do students in the MI course experience statistically significant changes in 

physics self-efficacy scores when disaggregated by the four sources of 
self-efficacy?  

 
3. How are social interactions as measured by student network centrality in 

the MI classroom associated with changes in students’ self-efficacy? 
 

4. Do other variables historically associated with student success in physics, 
such as gender, major, and race/ethnicity, contribute to the variance in 
students’ post- self-efficacy scores when controlling for pre- scores?  

 
 

 My first study aimed to more carefully examine both changes in students’ 

self-efficacy in a larger MI course, as well as tested the belief that the prevalent 

social interactions that occur in these courses have a notable relationship with 

self-efficacy development. The approach did not compare MI to lecture-based 

sections, but rather offered a more introspective look at the affective outcomes of 

MI as an active learning curriculum. Using self-efficacy theory as a guide, I 

suggested that individual students come into class with certain internal 

expectations about their performance in the MI course. These expectations may 
																																																								
2	This study was published in Physics Education Research—Physical Review. While I performed 
the preponderance of the work, the following co-authors of the published study provided much 
input: my major professor, Eric Brewe, a committee member, Laird Kramer, the course instructor, 
Geoff Potvin, an FIU postdoc, Justyna P. Zwolak, and an FIU graduate student, Eric Williams.	
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differ according to each source of self-efficacy. For example, a student may have 

high expectation of receiving praise from others (i.e., VP) but lower expectations 

of learning from peers (i.e., VL). Classroom experiences will influence students’ 

expectations along the four sources of self-efficacy (see Figure 1). I paid 

particular attention to VP and VL because the social nature of the MI curriculum 

led me to hypothesize heightened prevalence for these events. I expected these 

types of experiences influence overall student self-efficacy at the end of the 

semester.   

 

Figure 1. Model of Self-Efficacy Development in Active-Learning Environments. 

Given the increases of student conceptual understanding in MI courses, 

the social nature of self-efficacy development, and the highly interactive structure 

of MI courses, I hypothesized that students would exhibit a positive shift in their 

efficacy beliefs related to physics and the MI classroom even when controlling for 

variables associated with self-efficacy development. Furthermore, I used 

students’ in-class social networks as a proximal measure of types and 
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abundance of potential VL and VP-related experiences that may play a role in 

mediating self- efficacy shifts. 

I examined data collected from MI Introductory Physics I with Calculus 

courses taught in large-capacity classrooms. Participant demographic data were 

collected form the university system, which records a variety of variables, 

including student-reported gender and ethnicity at the time of matriculation. Pre- 

and post- student self-efficacy and sources of self-efficacy scores was measured 

using the 33-item, Sources of Self-Efficacy in Science Courses - Physics 

(SOSESC-P) survey. I chose this survey for a variety of reasons, including its 

specific designation for physics classroom settings given that self-efficacy 

measures require task-relevant items in order to align with the construct’s 

definition (Pajares, 1997). The survey has been shown to correlate well with the 

Self-Efficacy for Academic Milestones Strength scale—a positively recognized 

and validated instrument (Pajares, 1997). Some of the statements on the survey 

include the following: “I am capable of receiving good grades on assignments in 

this class” (mastery experience) and “I will get positive feedback about my ability 

to recall physics ideas” (verbal persuasion). Students use a 5-point Likert scale to 

express agreement or disagreement with these. The use of the SOSESC-P also 

supported continuity with past studies performed at FIU that employed the same 

instrument. 

To measure relevant social interactions I administered a social network 

survey during the first week of class and subsequently approximately once a 

month until the end of the semester for a total of 5 administrations. The 
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development of this short survey took place under the guidance of the PER 

group at FIU, building off a previously used survey (Brewe, Kramer, and 

Sawtelle, 2012). Of the open-ended questions appearing on this survey, only the 

first was relevant to this study: “Name the individual(s) (first and last name) you 

had a meaningful classroom interaction with today, even if you were not the main 

person speaking or contributing. (You may include names of students outside of 

the group you usually work with).” The survey provided a note to participants 

stating, “classroom interaction includes but is not limited to people you worked 

with to solve physics problems and people that you watched or listened to while 

solving physics problems.” Blank space was also provided so that participants 

could list as few or as many individuals they wish to. The latest version of the 

survey also presented participants with an alphabetical list of classmates in order 

to facilitate identification. Responses to this survey were used to calculate 

student centrality (i.e., relational position in a classroom social network). 

Several analyses were run and models tested on the data collected from 

these surveys. Pre- and post- scores on the SOSESC-P as a whole and on each 

of its four subsections were compared using dependent samples t-tests with 

alpha threshold adjustments according to Bonferroni correction methods in order 

to avoid Type I error. Similarly, independent sample t-tests were used to 

compare male students’ mean scores on the SOSESC-P, both pre- and post-, to 

female students’ pre- and post- scores. Multiple imputation procedures were 

implemented prior to these analyses to account for missing data.  



	 18 

Bootstrapped linear regressions3 tested the ability of students’ network 

centrality measures to predict students’ post-SOSESC-P scores while controlling 

for pre- scores. Similar analyses tested whether these centrality measures are 

predictive of students’ post- scores on subsections of the SOSESC-P. I tested 

three separate centrality measures: inDegree, outDegree, and PageRank. I 

chose to examine these three measures of centrality primarily because they limit 

the analysis of the relationship between self-efficacy and social interactions to 

students who had direct interactions with one another. They also follow with the 

uses and recommendations of past research (Brewe, Kramer, and Sawtelle, 

2012; Forsman, Moll, and Linder, 2014; Grunspan, Wiggins, and Goodreau, 

2014; Thomas, 2000), and they are generally understood by researchers outside 

the field of social network analysis (SNA). 

  1.4.2. Chapter 3: The Development of Interest, Self-Efficacy, and 

Student Networks in Undergraduate Physics Courses4 

Key Research Questions 

1. Do classroom interactions as measured by social network centrality 
directly influence students’ physics interest in MI courses? 

 
2. Do classroom interactions as measured by social network centrality 

indirectly influence students’ physics interest via their physics self-efficacy 
in MI courses? 

 

																																																								
3 Social networks often fail to meet assumptions of independence. For this reason measures of 
centrality can result in non-normal distributions. Bootstrapped linear regressions do not require 
assumptions about the distribution, hence my use of this technique to account for any 
dependency in data retrieved from the social network. 
 
4	This study is under review for publication in the Journal of Research in Science Teaching. Like 
the previous study, while I performed the majority of the work, the paper includes co-authors who 
provided meaningful input: Eric Brewe, Zahra Hazari, Justyna P. Zwolak, and Geoff Potvin.		
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3. Do reciprocal relationships exist between physics self-efficacy and physics 

interest in an active-learning introductory physics course? 
 
 Building off the previous study, this paper was designed to situate the 

contribution of centrality in the larger context of self-efficacy and interest 

formation. As these two constructs have been shown to play a major role in 

persons’ career decision-making process (Hazari et al., 2010; Lent et al., 1994), I 

sought to illuminate how the quantity and quality of peer-to-peer interactions 

prominent in active learning curricula influence their change. I drew data for this 

analysis from the same surveys administered and described in the previous 

section (i.e., 1.4.1.). The SOSESC-P provided information about students’ pre- 

and post- self-efficacy as a whole and the sources of self-efficacy. The social 

network survey provided information on student centrality. 

Students’ interest in physics and physics related content at the beginning 

and end of the class was collected using the Physics Identity Development (PID) 

survey (Potvin and Hazari, 2013). This questionnaire captures a series of 

variables related to students’ sense of identity as a physics person, their 

performance competence, their general science interest, and their physics 

interest. I was only concerned with students’ responses to the question about 

interest in specific topics related to physics (i.e., mechanics, optics/waves, 

electromagnetism, relativity/modern physics, history and people in physics, 

current topics in physics). Indication of interest was demarcated on a seven-point 

anchored Likert scale ranging from “No Interest” to “Very Interested”. 
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I tested two major models (i.e., A and B) using structural equation 

modeling (SEM). The models tested centrality measures’ contribution to physics 

self-efficacy and physics interest. Specifically they examined whether we can 

know with some degree of certainty that the contribution of centrality to physics 

interest occurs directly, is mediated by self-efficacy, both, or none of the above. 

Both Model A and B take a somewhat longitudinal approach to examining 

directionality between these constructs with model A highlighting the influence of 

self-efficacy on interest formation, and model B the reverse (see Chapter 3). 

Previously, I tested preliminary mediated models using pilot data as precursors to 

the final SEM models (see Figure 2 & 3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Cross-sectional Mediated Model of Self-Efficacy, Interest, and 
Centrality. This mediated model served as a pilot for a cross-sectional 
examination of the relationship between PageRank, self-efficacy, and 
interest. PageRank is a particular measure of students’ position in a 
classroom social network. Here we find that PageRank contributes to the 
change in students’ physics interest indirectly via the change in students’ 
self-efficacy. 
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 Although the complexity of Models A and B are not quite captured in the 

mediated models depicted above, these served as blueprints for the final SEM 

models, which offered a greater degree of rigor and robustness with regard to 

outcomes. Two of the variables included in these figures were tested as latent 

variables resulting from student responses to two surveys (i.e., SOSESC-P, PID). 

After factor analysis, the majority of the items on the SOSESC-P were included, 

while only the six items on the PID relevant to this paper were included. The 

centrality variable (i.e., PageRank) was not treated as a latent variable.  

Figure 3. Longitudinal Mediated Model of Self-Efficacy, Interest, and 
Centrality. This mediated model served as a pilot for a longitudinal 
examination of the relationship between PageRank, self-efficacy, 
and interest.  Note how both mediated models above indicate that 
PageRank centrality likely plays an indirect role in physics interest 
formation via physics self-efficacy. 
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1.4.3. Chapter 4: Development of Student Centrality in a Highly 

Interactive Introductory Physics Classroom 

Key Research Questions 

1. Does student centrality as measured by inDegree and outDegree exhibit 
linear growth over time? 

 
2. Does student centrality exhibit quadratic growth over time? 

 
3. Does student gender play a significant role in students’ centrality and its 

development over time? 
 
 

 After establishing how centrality relates to student self-efficacy and 

interest in physics, this study focused more on the development of student 

centrality itself. A recent comparison of introductory physics students at FIU by 

Dou and Brewe (2014) revealed a stark contrast between the academic social 

networks formed by students in Modeling Instruction courses, versus students in 

lecture-based courses. Figure 4 captures this dichotomy. The MI students (i.e., 

yellow nodes) formed tight classroom-related networks with multiple connections 

to peers. Students in the lecture-based sections (i.e., blue nodes) tended to work 

on their own or with one other partner. Furthermore, although both groups 

reported working with people outside of the student community (e.g., family 

members, coworkers) to learn physics, MI students reported a greater number of 

these kinds of interactions. 
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Despite its contributions, the study did not describe the development of 

student networks in MI, rather capturing its final configuration at the end of a 

semester-long course. Pilot data from the Fall 2014 MI course showed that the 

social dynamics of the classroom are not static (see Figure 5 – 8). They change 

over each survey administration despite the relative consistency of the curriculum 

and pedagogical environment. By taking a longitudinal approach that focuses on 

students in MI classrooms, I sought to understand the development of classroom 

networks according to the type of interactions (i.e., centrality) they carry out.  

 

	

	

	

MI	students 

Lecture	students 

Non-Student 

Figure 4. Contrasting 
Academic Interactions 
Between Students in 
Physics Courses. The 
network diagram to the left 
depicts the abundance of 
classroom related 
interactions that MI 
students in the fall of 2009 
reported having with the 
purpose of learning 
physics. Node size 
represents students’ 
PageRank centrality. 
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(Cultural Capital) 

 

How students’ behavior alters over the course of a semester when 

seeking out peers or how students’ centrality changes reveals subtle nuances 

about when students in large active learning physics courses (approx. 70-person) 

interact with one another and in what ways. I interpreted these results in light of 

past studies (i.e., Chapter 2 and 3) that aimed to identify links between network 

Figure 5. Sociogram of students in the 
Fall 2014 MI course from the first survey 
administration. Node size and figures 
repre-sent PageRank. 

Figure 6. Sociogram of students in the 
Fall 2014 MI course from the second 
survey administration. 

Figure 7. Sociogram of students in the 
Fall 2014 MI course from the third survey 
administration. 

Figure 8. Sociogram of students in the 
Fall 2014 MI course from the fourth 
survey administration. 
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measures and physics self-efficacy, as well as physics interest. The progress of 

student interactions in the class aligned with past work that suggests that the 

“quality” of the individuals with whom an interaction takes place may matter more 

than the quantity of such engagements (Siciliano, 2016). 

In order to answer these research questions, I ran several longitudinal 

growth models using HLM 6—a program designed specifically for running 

hierarchical models5. In my models, student-level data formed my level-2 

variables (e.g., gender), and student centrality at the time of each survey 

administration was nested within student data as a level-1 variable. Unconditional 

models with only student centrality as an outcome allowed me to get a baseline 

reading of lower and higher level variance. One general model tested inDegree 

as an outcome, and another tested outDegree as an outcome. Additional models 

included “time” as a predictor of linear and quadratic trends for each respective 

outcome variable. I reported on the models that offer the best fit for each 

outcome variable.  

1.5. Data Sources 

 Pilot data collection efforts began as far back as the fall semester of 2013 

through the efforts of the Physics Education Research (PER) group at FIU. 

Under the guidance of my major professor and committee, I included these data 

along with additional data collected later particularly during the Fall 2014 and Fall 

2015 semesters.  

																																																								
5 Given that repeated measures data, as exists in cases where multiple data points are collected 
from the same individuals, fail to meet assumptions of independence, I must use techniques, like 
hierarchical linear modeling that account for both between and within student variance. 
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1.6. Brief Dissemination Plan for This Research Including Potential 

Scholarly Journals to Publish the Research   

  Several conferences and scholarly journals stand out as likely avenues 

through which to disseminate this research. The PER community, as a whole, 

would strongly resonate with this kind of research and therefore they would value 

publications and presentations in spaces relevant to their community. In 

particular, the Physical Review – Physics Education Research open-access 

journal housed within the American Physical Society bears tremendous weight in 

the field. Here I submitted and published my first study (i.e., Chapter 2, see 

Footnote 2), introducing the connection between centrality and self-efficacy to a 

community familiar with self-efficacy studies (Dou et al., 2016). Relatedly, 

presentations and conference proceedings from the annual Physics Education 

Research Conference (PERC) have and would facilitate the spread of my work to 

this target audience. Other aspects of my research, such as establishing the 

place of centrality in broader career-related frameworks (i.e., Chapter 3), may 

find a larger audience in far-reaching science education research outlets, such as 

the Journal for Research in Science Teaching (JRST). The community of 

researchers that participate in this meeting and journal has tremendous interest 

in science education research, and often overlaps with the community of 

researchers that participate in PERC. The study described in Chapter 3 is 

currently under review by JRST reviewers (Dou, Brewe, Potvin, Zwolak, and 

Hazari, Under review). Last but not least, the study highlighted in Chapter 4 will 

be submitted to the International Journal of Science Education. 
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Finally, my personal experience in STEM education policy at the local and 

federal levels prepares me to disseminate my work beyond academic outlets. 

These additional outlets may include working with science and education 

organizations, as well as governmental agencies/institutions and STEM 

education NGOs, to promote directed social integration of students seeking to 

enter STEM fields. Dissemination of the results at FIU will lead to the success of 

its diverse students pursuing STEM degrees, while impact at other institutions 

around the country will also be pursued through dissemination within the policy-

making community. 

1.7. Tying the Threads 

  The collection of these studies is at its heart an exploration of the social 

interactions that take place in active learning courses. While I focus on the 

environment created by the MI curriculum, these works set the stage for an 

exploration of active learning pedagogies that has yet to take place in earnest. 

Given the momentous spread of these kinds of teaching strategies—a 

proliferation that will likely not slow down—education researchers must keep an 

open eye for unseen factors resulting from an increase in classroom interactions. 

Understanding these may help to further our goals of maximizing the motivation 

of students from all backgrounds to pursue STEM fields. 

  More specifically, I hope to forge a strong link between social network 

analysis and self-efficacy theory (i.e., Chapter 2). By extending this to interest 

(i.e., Chapter 3), I further situate the advantages of examining classroom 

interactions as factors that contribute to highly influential career decision-making 
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constructs. If these links exist, then understanding how student centrality 

develops (i.e., Chapter 4) may offer clues that will help curriculum writers 

maximize positive outcomes in students’ self-efficacy and domain interests. 

Finally, in light of the population at FIU, I hope these three studies will unravel 

some of the nuanced social experiences of students from underrepresented 

communities in physics that may contribute to their affective development. 

1.8. A Few Words About My Personal Motivation 

  Ultimately, I hope the expertise I have developed will create a stronger 

platform on which I may continue contributing to STEM education research, as 

well as STEM education policy at the local, state, and federal levels. My prior 

experience at the National Science Foundation, serving as an Einstein Fellow, 

solidified in me a conviction that leaders and practitioners whose ideas are 

grounded in research can make a positive impact on the state of our nation’s 

education system. I envision my work, in collaboration with the work of other 

experts and policy-makers, influencing students’ motivational attributes related to 

STEM career pursuit. This may occur through changes in instruction, policy, and 

institutional culture. With research-supported guidance, programs and 

interventions can be designed to promote factors that influence retention and 

persistence in STEM, particularly for underrepresented populations. I have 

valuable experience as a member of a minority group6, the necessary science 

background, motivation, and understanding of STEM education policy to make 

significant, long-term contributions toward this objective.  

																																																								
6 I identify as Hispanic. 
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  Along these lines, I hope my efforts also result in opportunities to 

contribute to research and education through faculty appointments. Helping to 

develop and work with teams of STEM education researchers, as well as 

teaching courses related to methodology and STEM pedagogy, will fulfill in me a 

desire to make an impact on the communities of practice I belong to. My 

background in policy and policy-making broadens my horizons to include the 

pursuit of administrative roles at the higher education level where small changes 

have the capacity of producing large effects. Administrative and faculty positions 

also bear the potential of opening doors to contribute to STEM education 

policymaking on a larger scale (i.e., state and federal).  
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CHAPTER 2  
BEYOND PERFORMANCE METRICS: EXAMINING A DROP IN STUDENTS’ 

PHYSICS SELF-EFFICACY THROUGH A SOCIAL NETWORK LENS 
 

2.1. Abstract 
 
The Modeling Instruction (MI) approach to introductory physics manifests 

significant increases in student conceptual understanding and attitudes toward 

physics. In light of these findings, we investigated changes in student self-

efficacy while considering the construct’s contribution to the career-decision 

making process. Students in the Fall 2014 and 2015 MI courses at Florida 

International University exhibited a decrease on each of the sources of self-

efficacy and overall self-efficacy (N = 147) as measured by the Sources of Self-

Efficacy in Science Courses – Physics (SOSESC-P) survey. This held true 

regardless of student gender or ethnic group. Given the highly interactive nature 

of the MI course and the drops observed on the SOSESC-P, we chose to further 

explore students’ changes in self-efficacy as a function of three centrality 

measures (i.e., relational positions in the classroom social network): inDegree, 

outDegree, and PageRank. We collected social network data by periodically 

asking students to list the names of peers with whom they had meaningful 

interactions. While controlling for PRE- scores on the SOSESC-P, bootstrapped 

linear regressions revealed POST self-efficacy scores to be predicted by 

PageRank centrality. When disaggregated by the sources of self-efficacy, 

PageRank centrality was shown to be directly related to students’ sense of 

mastery experiences. InDegree was associated with verbal persuasion 

experiences, and outDegree with both verbal persuasion and vicarious learning 
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experiences. We posit that analysis of social networks in active learning 

classrooms helps to reveal nuances in self-efficacy development. 

2.2. Introduction 
 
For years, academic and political leaders have signaled the need to 

strengthen the science, technology, engineering, and mathematics (STEM) 

education enterprise. The STEM disciplines have significant impact on economic 

growth and national security, as well as improve quality of life (National Research 

Council [NRC], 2007, 2010). For the United States, the rate of students seeking 

and completing STEM careers lags behind that which would keep this nation 

competitive in the global economy (President's Council of Advisors on Science 

and Technology, 2010). While much attention has been placed on improving 

student academic performance in STEM, content knowledge alone does not 

produce STEM professionals; deciding to attain a STEM career is a complex 

process involving interconnected motivational and behavioral factors, such as 

self-efficacy, outcome expectations, and social interactions (Lent, Brown, and 

Hackett, 1994; Tinto, 1997).  

Various behavioral, contextual, and individual factors influence students’ 

career decision-making processes and decisions to persist in STEM careers. 

These factors include learning experiences, interests, perceived barriers to 

career attainment, ethnicity, gender, self-efficacy, and outcome expectations—to 

name a few (Lent et al., 1994). Of these, self-efficacy deserves particular 

attention, because of its primary role in predicting STEM career persistence 

(Bandura, 2001). 
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College-level introductory science courses also play a unique role in the 

careers of STEM majors. Regardless of the STEM degree sought, colleges and 

universities across the nation require that students complete introductory courses 

in the fields of biology, chemistry, and physics. These courses often act as 

gatekeepers that keep certain students from persisting through the STEM career 

continuum (Crisp, Nora, and Taggart, 2009). Researchers, educational leaders, 

and politicians considering how to resolve the issues of low number of STEM 

majors and underrepresentation of certain groups in STEM careers should 

consider the function and structure of college-level introductory science courses.  

2.3. Reforming Introductory Physics 

Physics majors, in particular, come to a crossroads in their careers during 

their freshman or sophomore years when they take their first introductory physics 

course and its accompanying lab. At Florida International University (FIU), the 

traditional lecture version of this course, which most students register for, has an 

approximately 56% passing rate. This means that over 40% of students taking 

introductory physics fail the first time they take the course. The psychological 

impact that failing a fundamental course has on a students seeking a degree can 

dissuade those students from continuing through the major, and may cause them 

to drop out altogether. Additionally, while professors generally want their students 

to learn, many of them have very little pedagogical training that would equip them 

to teach students who do not typically succeed in a large-classroom, lecture-

based environment. Fortunately, various universities across the country have 

taken on the challenge of developing reformed physics courses. 
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2.3.1. Modeling Instruction 

Although many reformed instructional approaches for teaching 

introductory university physics exist (e.g., ISLE, Workshop Physics, Tutorials, 

SCALE-UP), our research focuses on Modeling Instruction (MI), which differs 

from typical physics, lecture-based courses. Lecture has been and continues to 

be the most common strategy for teaching physics. The salient characteristics of 

lecture courses include high student-teacher ratios, a propensity for instructors to 

lecture, few solicited student-student or student-lecturer interactions, and theater-

style classroom settings. By contrast, MI Physics courses tend to have lower 

student-teacher ratios, shorter lectures, a higher number of solicited student-

student and student-teacher interactions, and classroom settings designed to 

promote small group formation and collaborative learning (Halloun and Hestenes, 

1987).  

Studies have shown that MI has led to increased student understanding in 

physics and improved attitudes toward physics (Brewe et al., 2010, Brewe, 

Traxler, De La Garza, and Kramer, 2013). Results documented in Brewe et al. 

(2010) showed that students in MI courses have a 6.73 times greater odds-of-

success than their counterparts in lecture sections. In addition to successfully 

passing, students in MI courses have greater pre-post gains on the Force 

Concept Inventory than students in traditional, lecture-based courses. The 

researchers observed these learning advantages for both women and men, 

though they note that the presence of a “gender gap” remains. Moreover, MI 

courses, unlike other successful, reformed physics approaches, positively shift 
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student attitudes toward physics even when examined across varied instructors 

(Avg. effect size: Cohen’s d = .45)—a feat accomplished by no other study 

known to the authors (Brewe et al. 2013). 

2.4. Self-Efficacy and MI 

Bandura (1977) describes self-efficacy as a person’s beliefs about their 

ability to succeed on a particular task. In other words, when faced with a 

particular problem to solve or assignment to accomplish, individuals make self-

assessments about how successful they will be at solving said problem or 

completing said assignment. While somewhat akin to confidence and other 

expectancy constructs, self-efficacy differs in that the construct fluctuates 

according to both task and context (Pajares, 1997). For example, an individual 

may have one set of efficacy beliefs about her ability to solve a math problem, 

while holding a different set of beliefs about her ability to operate a voltmeter. 

Furthermore, the same individual may exhibit different self-efficacy beliefs about 

the same task according to the context in which she is being evaluated (e.g., 

performing to an audience versus performing in private; Bandura, 1993).  

Of the four sources of self-efficacy—mastery experiences, vicarious 

learning, verbal persuasion, and physiological mechanisms—two exist primarily 

in social settings: vicarious learning (VL) and verbal persuasion (VP). VL 

experiences occur when a person makes personal comparisons while observing 

the success or failure of someone whom that person perceives as similar. VP 

experiences involve receiving feedback from other individuals (Chen and Usher, 

2013). By definition, these behavioral constructs require social interactions.  
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Previous studies on MI have explicitly explored students’ self-efficacy 

(Sawtelle, Brewe, Kramer, 2012; Sawtelle et al. 2012). A study by Sawtelle et al. 

(2010) revealed that respondents taking one of several 30-student capacity MI 

courses at a public research university, regardless of gender, did not exhibit a 

significant change in overall self-efficacy. When disaggregated by gender, the 

results did reveal a significant increase for women on the verbal persuasion 

subscale of the survey. On the other hand, the same study revealed that both 

male and female students in lecture-based introductory physics courses 

exhibited a significant drop in self-efficacy. This drop held true even when 

disaggregating the results of students’ scores by the four sources of self-efficacy. 

2.5. Social Network Analysis 

Not only are we interested in understanding how student self-efficacy 

changes over the course of a semester of MI Introductory Physics I with Calculus 

(referred to as MI from here on out), we want to understand whether student 

interactions are associated with self-efficacy development, given the hyper-

interactive context of MI and the inherently social nature of the VL and VP self-

efficacy sources. To understand the relationship between students’ classroom 

interactions and self-efficacy development, we must find a way to measure these 

variables. Several instruments exist that measure student self-efficacy and its 

sources in a variety of settings. On the other hand, social interactions can be 

difficult to capture given their complex, interrelated characteristics of social 

network data. In order to achieve reliable metrics of students’ social behavior, we 

turn to the field of social network analysis (SNA). 
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Although the employment of SNA in sociology has been taking place since 

the 1930’s (Scott, 1988), its use in education research has experienced a 

growing popularity in recent years (Brewe, Kramer, and Sawtelle, 2012; Bruun 

and Brewe, 2013; Forsman, Moll, and Linder, 2014; Grunspan, Wiggins, and 

Goodreau, 2014; Thomas, 2000). Discipline-based education researchers have 

explicitly encouraged the use of SNA to understand the social networks formed 

during learning (Grunspan et al., 2014). Even more specific to the field of physics 

education research (PER), Bruun and Brewe (2013) have suggested that 

increased application of SNA will better help the field understand student 

cognition. Many of the above-cited papers may serve as primers to education 

researchers desiring to further their comprehension of SNA terminology and 

implementation. Grunspan et al. (2013) present a concise introduction targeted at 

science education researchers.   

In brief, social network analysts endeavor to quantify the role of particular 

individuals in a network and the characteristics of a network and its evolution 

(Scott and Carrington, 2011). Our study focuses on measuring the “centrality” of 

actors (i.e., students) in our network. Centrality can be calculated from students’ 

interactions in a variety of ways. For example, the most basic form of centrality is 

“degree” centrality, which simply refers to the number of people with whom a 

person in a network interacts (Bruun and Brewe, 2013). Other measures in the 

centrality family include inDegree, outDegree, PageRank, Closeness, and 

Betweenness. These may be calculated using the same student interaction 

information. 
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2.6. Purpose 

Although some studies performed with students participating in MI take a 

first step toward our understanding of self-efficacy development in these kinds of 

active learning environments, missing from the analyses are careful controls for 

other variables associated with self-efficacy, such as student ethnicity, as well as 

a more focused approach to understanding the role played by the MI curriculum’s 

most prominent feature: social interactions. Considering additional limitations, 

such as potential selection bias introduced by the use of online surveys and the 

amount of unincorporated missing data, the propositions of the referenced 

studies in MI warrant further exploration. Our investigation will allow us to 

examine the above. We hypothesize that the classroom structure of an MI course 

fosters interactions that are congruent with VL and VP experiences such that 

they influence student self-efficacy (see Figure 9). Specifically, we sought to 

address the following research questions: 

1) Do students in the MI course experience statistically significant changes 

in physics self-efficacy as measured by pre- and post- scores on a self-

efficacy in physics instrument (i.e., Sources of Self-Efficacy in Science 

Courses – Physics)? 

2) Do students in the MI course experience statistically significant changes 

in physics self-efficacy scores when disaggregated by the four sources of 

self-efficacy?  

3) How are social interactions as measured by student network centrality 

in the MI classroom associated with changes in students’ self-efficacy? 
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4) Do other variables historically associated with student success in 

physics, such as gender, major, and ethnicity, contribute to the variance in 

students’ post-self-efficacy scores when controlling for pre- scores? 

 
 

Figure 9. Model of Self-Efficacy Development in Active-Learning Environments: our model 
of self-efficacy development in active learning environments accounts for students’ initial 
self-efficacy and its subsequent development as a result of classroom experiences. In 
alignment with theory, some of the development arises from learning experiences not 
directly related to social interaction (i.e., mastery experiences; Bandura, 1997). In addition, 
we postulate that the social nature of many active learning environments have the 
capability of generating opportunities for students to receive verbal feedback or perceive 
others with whom they relate as successful or unsuccessful on physics tasks (i.e., verbal 
persuasion and vicarious learning experiences). Thus we posit a link between certain 
types of classroom interactions and self-efficacy development. 
 

2.7. Methods 

 2.7.1. Student Data 

Students regardless of major or academic year have the option of self-

selecting into one of the MI sections offered each semester or the lecture-based 

sections of Introductory Physics I with Calculus. The MI course incorporates the 

lab credit. It is worth noting that student familiarity with the MI approach varies. 

For example, students registered in the Fall 2015 MI courses responded 
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differently to being asked about their expectations for the class. Of the 44 survey 

respondents, 9% expected a curriculum only slightly different than lecture, 32% 

expected a much more interactive and hands-on experience, while a similar 

number expected no differences from a traditional, lecture-based course. 

Remaining students either had no expectations or did not respond. Nevertheless, 

students acknowledge when they enroll that the MI course will count for both 

course and laboratory credit. On the other hand, students in a lecture section 

usually register concurrently for a respective laboratory course, but are not 

required to do so. MI courses for the semesters included in this study (i.e., Fall 

2014, Fall 2015) hosted approximately 70 students at a time. Lecture sections at 

FIU usually have enrollments that range from 120 to nearly 400 students, though 

some offer much lower class size limits. In the Fall of 2014 only one section of MI 

was offered, limiting students’ scheduling flexibility, but this particular section was 

the first designed to serve more than 70 students—over twice the number of 

students previously attempted—in a technology-saturated classroom specifically 

designed for active learning. Prior iterations of the course limited enrollment 

capacity at 30. Two sections of the large-capacity MI course were offered during 

the Fall 2015 term—one taught by the same experienced instructor who taught 

the Fall 2014 course and another taught by a postdoc. In order to accommodate 

the larger number of students, two graduate teaching assistants and three 

experienced Learning Assistants (i.e., undergraduate students) helped to 

facilitate instruction during courses in both terms. Only data from classes taught 



	 45 

by the same primary instructor were used in this study in order to minimize 

confounding variables introduced by having data from different instructors. 

We obtained student demographic data from FIU’s database, which keeps 

a record of student responses to questions answered at the time they apply to 

the university. The classes were composed of four prominent ethnic groups into 

which students identified: Asian, White, Hispanic, and Black. The majority of 

students enrolled in both classes identified themselves as Hispanic (47 women 

and 58 men), while eight identified themselves as Asian (three women and five 

men), 13 as White (five women and eight men), and 11 students as Black (two 

women and nine men). Four students identified as other or more than one race. 

The race and gender of the remaining six students in our data set were not 

available. In terms of majors represented in the courses, these included 

Engineering, Chemistry, Pre-Med, and English. No student in either MI course 

that was included in this study had declared Physics as a major at the beginning 

of the semester, though we should note that students who declared dual majors 

were categorized under a larger umbrella (i.e., DUALFIU), which may include 

Physics majors.  

2.7.2. Social Network Data 

Since we could not directly measure when a student happens to have a 

meaningful VP or VL experience, we adopted an indirect approach that quantifies 

the number and types of social interactions students have using SNA. We also 

did this to test the model that the quantity and quality of certain kinds of 

interactions correlates with changes in students’ self-efficacy and sources of self-



	 46 

efficacy. To measure relevant social interactions we administered a social 

network survey on the last day of the first week of class and subsequently once a 

month until the end of the semester for a total of 5 administrations. The 

development of this short survey took place under the guidance of the PER 

group at FIU, building off a previously used survey (Brewe et al., 2012). Of the 

open-ended questions appearing on this survey, only the first is relevant to this 

study:  “Name the individual(s) (first and last name) you had a meaningful 

classroom interaction with today, even if you were not the main person speaking 

or contributing. (You may include names of students outside of the group you 

usually work with).” We provided a note to participants stating, “classroom 

interaction includes but is not limited to people you worked with to solve physics 

problems and people that you watched or listened to while solving physics 

problems.” Blank space was provided so that participants could list as few or as 

many individuals they wished to. We carefully analyzed responses in order to 

identify the students listed. When 100% certainty or agreement could not be 

established as to the identity of a written name, a unique code was created for 

that specific report. This occurred five times when students with common first 

names were reported sans last name. To avoid this issue in the Fall 2015 course, 

we attached a numbered roster of students to the survey. 

We collected student network data in order to calculate three specific 

measures of directed centrality: inDegree, outDegree, and PageRank. InDegree 

centrality measures direct incoming interactions (i.e., the number of times a 

student is listed by peers) and outDegree measures direct outgoing interactions 
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and in some cases can be thought of as a measure of one’s sociability (i.e., the 

number of peers listed by a student). PageRank takes a more sophisticated 

approach to measuring the “importance” of a student or actor in a network. The 

measure captures direct incoming interactions while taking into account the 

social connectedness of nodes leading to a student. In other words, PageRank 

offers a measure of weight to being named directly by a student who is often 

named by others. The PageRank algorithm establishes a node’s importance 

using the number of links to the node, but also each node can then redistribute 

that importance by its number of outgoing links. Developed by Brin and Page 

(1998) for the Google search engine algorithm, the measure has been compared 

to calculating the probability of a random walker on a directed network to arrive at 

a particular node (Fortunato and Flammini, 2007).  

We chose to examine these three measures of centrality (i.e., inDegree, 

outDegree, PageRank) primarily because they limit our analysis of the 

relationship between self-efficacy and social interactions to students who had 

direct interactions with one another. They also follow with the uses and 

recommendations of past research (Brewe et al., 2012; Forsman et al., 2014; 

Grunspan et al., 2014; Thomas, 2000), and they are generally understood by 

researchers outside the field of SNA. Moreover, by examining whether each of 

these three centrality measures contributes to changes in students’ self-efficacy, 

we may get a clearer picture of the kinds of interactions that matter for student 

self-efficacy formation in MI courses. 
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 2.7.3. Physics Self-Efficacy Data 

Self-efficacy surveys were administered in-class on the first day of each 

semester (i.e., pre-) and once during the last week of the semester (i.e., post-). 

We had an overall 92% response rate on the pre- based on a total of 147 

students who registered for Fall 2014 and Fall 2015 MI courses. Our post- 

administrations yielded an 80% response rate. We employed the 33-item 

Sources of Self-Efficacy in Science Courses - Physics (SOSESC-P) survey to 

gauge the sources of self-efficacy and to get a measure of overall student self-

efficacy. We chose this survey for a variety of reasons, including its specific 

designation for physics classroom settings given that self-efficacy measures 

require task-relevant items in order to align with the construct’s definition 

(Pajares, 1997). The SOSESC-P was designed so that responses to statements 

can be disaggregated by each of the four sources of self-efficacy.  

We achieved an overall reliability alpha coefficient of .94 on the SOSESC-

P, and reliability coefficients of .73 for verbal persuasion (7 items), .76 for 

vicarious learning (7 items), .84 for physiological mechanisms (9 items), and .86 

for mastery experiences (10 items) subscales. These values align with past 

research led by the instrument’s developers (Fencl and Scheel, 2005). In that 

same study the survey was shown to correlate well with the Self-Efficacy for 

Academic Milestones Strength scale—a positively recognized and validated 

instrument. Some of the statements on the survey included the following: “I am 

capable of receiving good grades on assignments in this class” (mastery 

experience) and “I will get positive feedback about my ability to recall physics 
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ideas” (verbal persuasion). Students used a five-point Likert scale to express 

agreement or disagreement with these. Overall scores in our study ranged from 

79 to 165. The use of the SOSESC-P also supported continuity with past studies 

performed at FIU that employed the same instrument. 

Though the SOSESC-P was designed for the purpose of measuring 

overall self-efficacy and the sources of self-efficacy, prominent researchers in the 

field warn about potential issues caused by combining two or more sources of 

self-efficacy (Usher and Pajares, 2008). These argue that combining items 

specific to each source increases ambiguity about what exactly is being 

measured and that students’ context, including gender and ethnicity, may shift 

the combination of sources that contribute to students’ actual self-efficacy. We 

present this as a limitation of our study and for that reason we report on analyses 

of each source of self-efficacy separately, in addition to students’ total score on 

the SOSESC-P, which we interpret as a proxy for student self-efficacy. We do so 

on the grounds that we found significant change on all four sources of self-

efficacy and criteria established by past studies (Fencl and Scheel, 2004, 2005; 

Sawtelle, Brewe, and Kramer, 2011, 2012; Sawtelle et al., 2010). 

2.8. Results 

2.8.1. Diagnosing Changes in Self-Efficacy 

Prior to performing t-tests we imputed student responses to the SOSESC-P in 

order to preserve the structure of our data, which reduces the rate of Type I error 

by better accounting for nonresponses than would simply removing those cases 

from the analysis (Rubin, 1996). Multiple imputation is a Monte Carlo technique 
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that replaces missing values using a likelihood function that assumes missing 

data is missing at random (MAR) and not because of reporting bias not captured 

by other variables (Schafer, 1999).  For that reason we included responses to 

pre- and post-SOSESC-P surveys, student GPA at the start of the course, 

gender, and centrality measures when estimating values for the missing data. 

Given that we had no more than a 20% nonresponse rate on the SOSESC-P we 

ran five imputations (m = 5) as suggested by the literature using the Amelia II 

package (Honaker, King, and Blackwell, 2011) in R (R Core Team, 2015). We 

ran the same analyses on all five data sets and pooled the results according to 

Rubin (Rubin, 1987; Schafer and Graham, 2002). Since imputed values were 

generated for missing cases, the resulting N (i.e., N = 147) included all unique 

participants enrolled in the fall courses during the first week of the semester.  

We performed a dependent samples t-test to compare the mean total 

scores of the pre-SOSESC-P responses (Mpre = 135.36, SD = 13.86) to those of 

the post- (Mpost = 129.11, SD = 17.23). The outcome revealed a statistically 

significant drop in physics-related self-efficacy from the beginning of the 

semester to the end of the semester [t(146) = -4.75, p < .001] with a small to 

medium effect size (Cohen’s d = .40). In order to further explore the breakdown 

of students’ sources of self-efficacy, we disaggregated responses on the 

SOSESC-P according to the following sources of self-efficacy: mastery 

experiences (ME), VL (i.e., vicarious learning), VP (i.e., verbal persuasion), and 

physiological states (PS). Dependent sample t-tests on each of these 

subsections showed a statistically significant drop in students’ sources of self-
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efficacy on every portion of the survey even when setting our threshold alpha at 

0.0125 in order to apply a Bonferroni correction to diminish Type I error (see 

Table 1). 

CHANGES IN SOURCES OF SELF-EFFICACY 
SCORES: 

Dependent Samples Comparisons of SOSESC-P 
Shifts 

(POST-PRE; N = 147) 

 
Total 
Score ME VL PS VP 

PRE- 135.36  40.87 29.74 34.76 30.11 
SD 13.86 4.71 3.30 4.82 2.85 

POST 129.11 38.54 28.1 33.28 28.9 
SD 17.23 6.05 4.05 6.44 3.51 

Diff. in 
Mean -6.25*** -2.33*** -1.64*** -1.48*** -1.21*** 

t-value -4.75 -5.21 -4.68 -3.28 -3.81 
Cohen's d 0.40 0.43 0.39 0.27 0.32 
*** p <  .001 

 
Table 1. Changes in the Sources of Self-Efficacy Scores: although students in MI courses 
typically show conceptual and attitudinal gains, these results suggest that students in MI 
experience a statistically significant drop in physics self-efficacy. This drop also shows up 
significantly on all subsections of the SOSESC-P. 

 
 2.8.2. Measuring Social Interactions 
 

We combined students’ responses to the social network survey across the 

first four administrations. We did this with the goal of preserving uniformity of 

data collection. We planned for five survey administrations with the requirement 

that they take place during a typical MI class in which student-groups work 

together on collaborative activities. Student interactions were primarily student 

generated and participants worked on physics related tasks. We achieved this 

setting across the first four data collections from both semesters in question, 

which had response rates of over 75%. Final exam scheduling altered the 

intended environment for the fifth administration both in the fall of 2014 and in the 
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fall of 2015. Still, we pursued collection of data from the last survey, which were 

given during optional final exam review classes where students who chose to 

attend were not encouraged to participate in active learning physics related 

inquiry. This is relevant since social context affects students’ interactions, and the 

student network may reflect this. The uncharacteristic environment of this setting 

yielded less than 50% response rates and altered the resulting student network. 

In order to maintain fidelity of implementation, data from these surveys were not 

admitted into the final results, though analysis revealed nearly identical outcomes 

when included. 

From the responses to the network survey question we constructed 

directed edge lists indicating the source of the interaction (i.e., student 

responding to the survey) and each target listed on the survey (i.e., student name 

written in response to the question). The edge lists from the first four collections 

were combined and every interaction given a value of “1”. Repeated interactions 

with the same targets were given a weight of +1 for each additional time the 

targets were listed on other administrations of the same survey question (see 

Figure 10 for an example of the Fall 2014 network structure). After combining 

data from both semesters, students’ total inDegree (M = 14.1, SD = 6.04), 

outDegree (M = 18.2, SD = 10.4), and directed PageRank (M = 1.19e-2, SD = 

2.56e-3) were calculated in R using the igraph package (Csárdi and Nepusz, 

2006).  InDegree was calculated by adding up the number of times a student was 

listed on question one of the four network surveys. OutDegree was calculated by 

adding up the number of individuals each particular student listed on question 
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one of all four surveys, including instructors. Directed PageRank was calculated 

in igraph from incoming and outgoing links using the algorithm developed by Brin 

and Page (1998) and represented by equation 1: 

  (1) 

 
where p is the PageRank of node i, j represents a node in the network linked to i, 

p(j) and kout(j) are the PageRank and outDegree of node j, respectively, and q is 

a damping factor commonly set at 0.15 as precedent in the literature (Csárdi and 

Nepusz, 2006; Fortunato and Flammini, 2007). 

 

 

 

 

 
 

 
 
 
Figure 10. Combined student network in the MI course for Fall 2014: drawn using the 
Force Atlas algorithm on Gephia. Sphere size represents PageRank centrality and edge 
thickness represents weight of tie. Instructors have been removed. 
aM. Bastian, S. Heymann, and M. Jacomy, in Proc. Third Int. ICWSM Conf. (San Jose, CA, 
2009), pp. 361–362. 
 

2.8.3. Bootstrapped Linear Regressions 

We tested four linear regression models that aimed to predict total post-

self-efficacy scores while controlling for pre- scores. Because network data often 

fails to meet the assumption of independence, measures of centrality often result 

in non-normal distributions. Bootstrapped linear regressions do not require 

assumptions about the distribution; therefore we used this technique in order to 

		
p(i)= q

n
+(1−q) p( j)

kout( j)j: j→i
∑ 		i =1,2,...,n
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account for any dependency in data retrieved from the social network (Fox, 

2015). Bootstrapping is a Monte Carlo approach that applies a random 

resampling of the existing data set to calculate a set of regression coefficients on 

that sample. We did so over 1000 iterations on each our dataset and created a 

distribution of coefficients by which to compare the values in our data 

(Brownstone and Valleta, 2001). 95% confidence intervals (CI) for our 

parameters were calculated using the Bias-Corrected and Accelerated method 

developed by Efron (1987), which better addresses bias and skewness while 

producing narrower intervals. These analyses were run on each of our 

imputations with nearly identical results, which were then pooled. Although, in 

general, all four models predicted the dependent variable, the models revealed 

that PageRank was the only statistically significant predictor beside the control 

variable. Regression coefficients for inDegree and outDegree had confidence 

intervals that included zero. PageRank explained an additional 3.7% of the 

variance in students’ post self-efficacy scores (see Table 2). Because of potential 

collinearity between the centrality measures, we tested these variables using 

separate models. The correlation between PageRank and inDegree was 0.46 (p 

< .001), between PageRank and outDegree was 0.24 (p < .01), and between 

inDegree and outDegree was 0.76 (p < .001). Again, because centrality 

measures typically fail to meet the assumption of normality required by traditional 

statistical tests, the above correlations were calculated using a permutation test 

for correlation, which also employs a Monte Carlo method.  
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2.8.4. Examining Other Relevant Variables 

In order to gauge whether changes in students’ self-efficacy scores were related 

to the presence of other variables associated with student performance, we 

undertook several additional analyses. Two separate student’s independent 

samples t-tests were run to determine whether or not a difference exists between 

female and male students’ pre- and post- scores on the SOSESC-P. The 

analysis revealed that no statistically significant gender difference existed at the 

start of the MI courses or at the end. The same held true when examining the 

disaggregated sources of self-efficacy. Furthermore, a multiple linear regression 

model was examined to determine the ability of ethnicity and major, along with 

gender, to predict the variance in student self-efficacy scores at the end of the 

course when controlling for pre- scores. The results showed that the model was 

statistically significant (p < .001), but the only variable that contributed to the 

model’s significance was pre- score. Neither ethnicity nor declared major 

contributed to the variance in students’ post-self-efficacy scores, though to be 

sure, the low number of representatives from certain ethnic groups (e.g., Black) 

and majors (e.g., English) limited the power of our model and our ability to make 

strong claims about the effect of ethnicity and major. Given that gender 

differences were not seen on pre- or post-self-efficacy scores, we did not expect 

this variable to be significant. 
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Table 2. Models Using Network Variables Predicting Post Self-Efficacy Scores. InDegree and PageRank centralities capture a 
measure of recognition, but PageRank weighs that recognition according to the popularity of peers interacting with the student. 
Here we show that only PageRank predicts overall self-efficacy scores. Note standardized regression coefficients (i.e., β) appear in 
parentheses. 

Model-level	statistics	

F-statistic	 F(1,	111)	=	42.34	 F(2,	110)	=	25.04	 F(2,	110)	=	22.58	 F(2,	110)	=	22.76	

R-square	 0.276	 0.313	 0.291	 0.293	

95%	CI	for	R-square		 (0.114,	0.445)	 (0.159,	0.472)	 (0.122,	0.453)	 (0.128,	0.451)	

	
Regression	Coefficients	

Predictors	 Model	1	 Model	2	 Model	3	 Model	4	

PRE-	SOSESC-P	
0.65	(β1	=	.52)	

	CI[0.41,	.0.88];	SE=0.12	
0.65	(β1	=	.52)		

CI[0.42,	0.88];	SE=0.12	
0.64	(β1	=	.51)	

CI[0.40,	0.87];	SE=0.12	
0.63	(β1	=	.51)	

CI[0.38,	0.85];	SE=0.12	

PageRank	 	
1380	(β2	=	.21)	

CI[279,	2539];	SE=586	 	 	

inDegree	 	 	
0.37	(β2	=	.13)	

CI[-0.13,	0.80];	SE=0.24	 	

outDegree	 	 	 	
0.22	(β2	=	.13)	

CI[-0.05,	0.47];	SE=0.13	
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Bootstrapped analyses revealed no difference between the mean 

outDegree nor PageRank of female and male students. Nevertheless, male 

students on average had slightly higher inDegrees than did female students 

[t(121.9) = -2.13, p < .05, Cohen’s d = 0.37] (see Table 3).  

Table 3. Gender-based comparisons of network centrality. InDegree and PageRank 
centralities do not differ significantly by gender. On the other hand, female students report 
more peers (i.e., outDegree) in response to the network survey question examined. 

  inDegree outDegree PageRank 
Mean 

Differences 
(Female – Male) 

-2.13* -0.63 0 

t-statistic -2.14 -0.49 0.74 

Cohen's d 0.37 0.09 0.13 

* p <  .05 
 
2.9. Discussion 

Our examination of an active learning, introductory physics course format 

revealed that regardless of gender, major, and ethnicity, students had on 

average lower beliefs about their ability to successfully complete physics related 

tasks at the end of the semester than they did at the beginning. This negative 

change was seen across the self-efficacy survey as a whole and when 

disaggregated by the four accepted sources of self-efficacy. Students report a 

decrease in the kinds of experiences that theoretically contribute to positive self-

efficacy formation. This contrasts with a previous study in smaller classrooms 

using the same MI curriculum that showed no change in overall student self-

efficacy and an increase along the verbal persuasion scale (Sawtelle et al., 

2010). We suggest as a possibility that these differences may exist for several 

reasons, including class size and data structure (e.g., handling of missing data). 
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Moreover, we set our alpha levels at much steeper thresholds in order to combat 

Type I error—a correction this prior study did not apply. However the drop we 

found is relatively small compared to the range of the self-efficacy scale and the 

variance in student responses. The drop may simply reflect a correction of 

students’ overconfidence (Lindstrom and Sharma, 2011). 

In light of past research on student academic outcomes in MI, what captures 

our interest is that students experienced a decrease as opposed to an increase 

in all the sources of self-efficacy. In fact, we hypothesized increases both on self-

efficacy as a whole and on each of the four-sources. The decrease found was 

approximately 73% as large as decreases seen in past studies with students in 

lecture courses (Sawtelle et al. 2010). These contrary results point to the need 

for further exploration of this topic, in particular with regard to factors that mediate 

these shifts. We should also note that our students started at higher levels than 

previously reported studies using the SOSESC-P (Fencl and Scheel, 2004; 

Sawtelle et al., 2010).  While a variety of variables may have contributed to this 

latter attribute, any justification would merely be speculative. 

Given the inherently social aspects of self-efficacy development in addition 

to the emphasis on discourse-based learning in the MI curriculum, we tested 

whether students’ social behavior predicted self-efficacy shifts. We aver that a 

relationship exists between at least one kind of interaction, as captured by 

student PageRank centrality, and changes in students’ overall efficacy beliefs. 

We found that the number of times a student is listed by popular peers makes a 

difference (see PageRank in Table 2). That is to say that being named by a 
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student whom others report having a high number of interactions with positively 

predicts increases in overall self-efficacy. In short, a one standard deviation 

increase in student PageRank results in a .21 standard deviation increase in 

post-self-efficacy after controlling for pre- scores (see Table 2). On the other 

hand, we did not find that the number of peers a student has a meaningful 

interaction with (i.e., outDegree) nor the number of times a students is 

recognized by his or her peers as having contributed to a meaningful interaction 

(i.e., inDegree) affect changes on the self-efficacy scale as a whole.  

With regard to the sources of self-efficacy, PageRank also positively 

predicted mastery experience scores. This deserves some unpacking, as this 

source of self-efficacy is not typically associated with social interactions, but often 

plays a primary role in self-efficacy formation, especially for men (Zeldin, Britner, 

and Pajares, 2008). Moreover, both the number of incoming and outgoing 

interactions positively predicted verbal persuasion scores, while only outgoing 

interactions positively predicted vicarious learning scores. None of the 

interactions examined had a statistically significant association with students’ 

physiological state. 

  These results align with our model of self-efficacy development in active 

learning environments (see Figure 9), but also expand on it. They support our 

belief that specific kinds of social academic experiences, as quantified using 

centrality measures, partially predict students’ post measures on the inherently 

social sources of self-efficacy. Yet, the analyses also support expansion of the 

model as centrality was found to have an even stronger relationship with ME, 
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which we did not consider as a source of self-efficacy related to social networks. 

In other words a student exhibiting a drop because of having poor results on a 

mastery experience (e.g., exam) did not necessarily strike us as an experience 

directly related to the student’s network of peers. Nevertheless, indirectly, it may 

be possible that access to a support group in the class may provide students with 

capital that leads to improved performance as implied by previous studies on 

teacher networks and capital theory (Bourdieu, 1983; Siciliano, 2016).  

Although our linear models only explain a relatively small portion of 

additional variance, they forge a valuable link between SNA and the sources of 

self-efficacy. As expected, an increase in the number of times peers interact with 

a particular student increases the chances this student has positive verbal 

persuasion experiences. The specific items on the SOSESC-P suggest that the 

student is receiving encouragement about his or her physics ability. This aligns 

with the fact that others are reporting having salient academic interactions with 

this student. The same occurs with regard to a student’s outDegree, but this kind 

of outgoing interaction—in the sense that it represents how often students reach 

out to peers—is also positively related with vicarious learning experiences. Since 

vicarious learning experiences theoretically indicate situations where one learns 

from watching someone with whom one relates, it is possible that these 

individuals are the ones students seek out. Although the data in this particular 

study does not allow us to make a definitive conclusion in that regard, it certainly 

offers some value to an examination of the kinds of individuals different students 

reach out to. This is further supported by the observed relationship between 
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PageRank and mastery experiences. PageRank does more than simply tally the 

number of social interactions (i.e., outgoing or incoming), but also captures with 

whom the interaction occurs. Interactions coming from popular individuals as 

defined by their inDegree positively predict a students’ sense that they can learn 

and get good grades in physics. Because students did not know each other’s 

inDegree, we can infer that students recognize, in some capacity, who these 

popular individuals may be and have a perception about their academic 

popularity. A highly social setting may catalyze these peer-to-peer judgments. 

Active learning environments, such as MI, create the kind of social space 

that allows students the flexibility to interact in different ways with different people 

(Sawtelle et al., 2012). Though no relationship was found between gender and 

self-efficacy, female and male students differ in the kinds of interactions they 

experience. Male students in this class are the subjects of others’ meaningful 

interactions more so than female students. While we did not intend to focus on 

gender differences, we do present these results as evidence that certain students 

experience the social aspects of this type of environment differently. In our case, 

major and ethnicity did not contribute to these differences, but that may have 

been a result of our relatively low sample size in certain subgroups. The value of 

having examined several measures of centrality is justified in our ability to 

conclude that the types of interactions students experience and with whom they 

have these interactions matters with regard to self-efficacy formation. The 

characteristic of PageRank as a measure of the kinds of people whom students 

interact with may also help to explain why PageRank is a slightly better predictor 
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of overall self-efficacy than inDegree or outDegree. Additionally, we know from 

past studies that mastery experiences, a source we found associated with 

PageRank, often plays a greater role in self-efficacy formation in physics courses 

than other sources (Sawtelle, Brewe, and Kramer, 2012; Zeldin et al., 2008). 

Our surprising results encourage us to think about ways to mitigate effects 

of the social structure of MI on students’ efficacy beliefs and vice versa. This 

might manifest itself through the purposeful stimulation of interactions between 

certain groups of students. Altering how students participate in the social aspects 

of a classroom in a way that gives all an equitable chance then becomes, in part, 

an issue of how students recognize the value of their peers. We suspect that the 

highly social nature of this learning approach exposes students to academic 

judgment from peers and can initiate introspective evaluation, specifically while 

students solve problems in groups and when they present solutions to the larger 

classroom. The increased number of interaction events may provide students 

with more opportunities to generate perceptions about their peers’ ability to 

contribute to a physics-related task and, in turn, influence whom they work with 

or whom they list when asked to recall meaningful academic interactions. These 

perceptions can drive changes in interactions. Although in this example we have 

suggested that these changes may relate to academic perceptions, they may 

also relate to students’ ability to communicate effectively, helpfulness, or even 

friendliness.  

We faced certain limitations worth noting. No student in the Fall 2014 and 

2015 course had declared physics as a sole major. Physics majors may be less 
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susceptible to changes in self-efficacy via peer-recognition because of their 

strong physics identity relative to those pursuing other STEM fields (Hazari, 

Sonnert, Sadler, and Shanahan, 2010). The absence of physics majors in these 

MI courses might also point to a possibly unidentified source of self-selection 

bias. Furthermore, the MI classrooms in question were among the first at FIU to 

host that many students at once. The novelty of implementing this curriculum 

with more students in a brand new classroom may have led to unrecognized 

shortcomings. Further investigation should take place to more clearly understand 

how these factors relate to our study. 

Knowing the powerful role that introductory physics courses play on career 

persistence and the underrepresentation of certain groups of students (NRC, 

2013), we are pressed to search for ways to ensure that students complete the 

semester feeling more confident in their ability to perform physics tasks rather 

than less confident—regardless of the gradient. Though we report a somewhat 

minor 3.79% overall drop in students’ physics self-efficacy, this is an average 

measure. Individually, students ranged from a 29% decrease from pre- score to a 

46% increase from pre- score. This variance offers a living example of how 

students in the course can exhibit contrary, affective outcomes. Our study 

showed that part of what accounted for these differences are the kinds of 

interactions students had. Similar learning environments, particularly those that 

focus on active learning mediated by student interactions, may exhibit parallel 

outcomes. Our holistic approach to student learning motivates us to explore ways 

to improve MI and interactive learning approaches in the introductory classroom 
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such that the maximal number of students leave not just academically prepared, 

but also affectively equipped to persist in physics careers. Our study aims to 

highlight the value of examining these facets of student outcomes in these 

environments, specifically self-efficacy development and course-related social 

interactions. It is not enough to simply say that students are learning more. This 

is especially true in the realm of career decision-making where self-efficacy plays 

a central role even for STEM related professions, partially explaining the 

underrepresentation of certain groups in these fields (Rittmayer and Beier, 2009). 

Bandura (1993) explains:  

…the stronger people’s belief in their efficacy, the more career options 

they consider possible, the greater the interest they show in them, the 

better they prepare themselves educationally for different occupations, 

and the greater their staying power and success in difficult occupational 

pursuits. 

Our exploration of this matter reflects our commitment to not only help our 

students better understand physics, but also motivate some to join the physics 

community. This requires that we focus on more than just content matter.  
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CHAPTER 3  
THE RISKS WE TAKE: UNDERSTANDING THE DEVELOPMENT OF INTEREST, 

SELF-EFFICACY, AND STUDENT NETWORKS IN REFORMED UNDERGRADUATE 
PHYSICS COURSES 

 
3.1. Abstract 

 The proliferation of active learning curricula in undergraduate introductory 

STEM courses follows from research and policy that affirms their vantage over 

traditional pedagogies with regard to students’ academic outcomes. In the 

physics domain, of the variety of reformed undergraduate introductory courses 

that exist, Modeling Instruction (MI) serves as an example of an active learning, 

student-centered curriculum grounded in a sociocultural framework and has been 

shown to improve student attitudes and conceptual understanding. Student 

interactions play a salient role in the MI classroom. The impact of student 

interactions on the central constructs of preeminent career theories such as the 

Social cognitive career theory (SCCT) and the identity framework has not been 

thoroughly explored. Here we describe a study of the change in students’ physics 

self-efficacy and physics interest, and the effect that academic relationships had 

on their development. Our7 examination of three large capacity MI courses that 

took place in the fall of 2014 and fall of 2015 (N = 221) revealed a decrease in 

both students’ physics self-efficacy and interest with small to medium effect 

sizes. Using the tools of network analysis to quantify student interaction, we 

tested three structural equation models, which showed that student interactions 

as measured by PageRank centrality have small, but positive contributions to 

																																																								
7	See Footnote 4 in Chapter 1 for authorship information. 
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self-efficacy development, but none to interest development, achieving moderate 

measures of fit. Surprisingly, we also found that participants’ physics interest 

predicted the development of their physics self-efficacy and not the other way 

around, as had been suggested by SCCT and identity framework. This work 

suggests more nuanced applications of SCCT and identity framework in the 

context of reformed STEM curricula and has implications on how active learning 

settings influence constructs related to career decision-making.  

Keywords: physics, self-efficacy, interest, career, social network analysis, 

classroom interactions 

3.2. Introduction 

         The nationally recognized need to increase the number of students 

majoring in science, technology, engineering, and mathematics (STEM) fields 

behoove researchers to examine the processes that lead to higher retention and 

persistence of undergraduate STEM majors (National Academies of Sciences, 

2016). The contribution of domain-specific self-efficacy and interest to STEM 

recruitment has been well examined (Bandura, 1993, 1997; Schunk, 2012). In 

particular, these constructs have been shown to predict career choice behavior 

better than do academic achievement or personality-based theories (Bandura, 

Barbaranelli, Caprara, and Pastorelli, 2001; Kjærnsli and Lie, 2011; Lent, Brown, 

and Larkin, 1987). Two prominent career theories affirm the contribution of self-

efficacy and interest. Lent, Brown, and Hackett’s (1994) Social cognitive career 

theory (SCCT) supports the mediating role that self-efficacy and vocational 

outcome expectations play between learning experiences and interest. In turn 
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student interest can have an effect on students’ goals and goal 

accomplishments, such as completing a STEM major. Using an identity-based 

approach, Hazari, Sonnert, Sadler, and Shanahan (2010) have made the case 

that “performance/competence,” a construct that shares some similarities with 

self-efficacy, influences students’ interests in a particular field, which can then 

contribute to how students identify with that field. The field-specific identity 

framework has been shown to predict career choices of physicists and engineers 

(Hazari et al., 2010; Godwin, Potvin, Hazari, and Lock, 2016). 

         Given our current national focus on implementing student-centered, 

interactive learning curricula, their impact on career shaping constructs like self-

efficacy and interest deserves attention (President’s Council of Advisors on 

Science and Technology, 2010; National Academy of Sciences, 2016). Bandura 

(1993) defined self-efficacy as students’ beliefs about their ability to complete 

particular tasks. He posits an inherent relationship between the development of 

this construct and social interactions, specifically citing the role of vicarious 

learning and verbal persuasion experiences (Pajares, 1997). These kinds of 

experiences where students learn from watching their peers fail or succeed at 

specific tasks (i.e., vicarious learning) or where they receive encouragement or 

discouragement from others about their abilities (i.e., verbal persuasion) often 

exist in greater abundance where active learning pedagogies characterize the 

teaching format (Sawtelle, Brewe, Goertzen, and Kramer, 2012; Fencl and 

Scheel, 2005). The relationship between self-efficacy and interactions motivates 

our examination of relationships in active learning physics courses. 
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3.3. Overlaps in Career Theories: SCCT and Identity 

The overlaps between SCCT and the identity framework point to the 

predictive value of both self-efficacy and interest with regard to career related 

behaviors. Both models share direct paths from self-efficacy to interest. Both also 

establish direct paths from self-efficacy to the constructs that mediate career 

attainments (i.e., choice goals in SCCT model and identity in the identity 

framework), as well as indirect paths mediated by interest. Although differences 

exist between the two models, the similarities support our focus on self-efficacy 

and interest along these well-established pathways. 

 Extending Bandura’s (1989) social cognitive theory, Lent et al. (1994) 

developed SCCT as a comprehensive model of vocational choice. Their work 

has received much attention, finding verification in part through research in 

various science related contexts (e.g., Dickinson, 2007; Lent, Lopez, Lopez, and 

Sheu, 2008; Navarro, Flores, and Worthington, 2008; Smith and Fouad, 1999). 

Meta-analyses, too, have exhibited generally high levels of model agreement 

with SCCT (Brown et al., 2008; Sheu et al., 2010). The model posits that learning 

experiences mitigated by person-inputs (e.g., gender, race/ethnicity) directly 

contribute to individuals’ domain-specific self-efficacy and outcome expectations. 

The latter two in turn predict their interests, goals, and relevant behavior. These 

then contribute to performance attainments (e.g., GPA, career persistence), 

looping back around to learning experiences (see Figure 11). The social 

cognitive career theory has been corroborated with various populations, including 
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young children, college students, and adults, as well as people from various 

minority groups (Nauta, Kahn, Angell, and Cantarelli, 2002).  

Figure 11. Model of SCCT adapted from Lent et al. (2003).  

 The identity framework of vocational choice developed by Hazari et al. 

(2010) makes the case for three latent constructs as predictors of students’ 

domain-specific identity (e.g., physics identity). These constructs include 

performance/competence, interest, and recognition, such that 

performance/competence beliefs contribute to interest in a field and sense of 

recognition from members who participate in that field. Interest and recognition 

predict individuals’ sense of identity in a particular domain (see Figure 12). 

Grounded in the work of Shanahan (2007, 2008), Hazari et al. (2010) have 

presented identity as a construct related to how a person sees himself or herself. 

For example, individuals who see themselves as physics people have high 

physics identity. Physics identity turns out to have meaningful implications for 

career choice (Godwin et al., 2016; Hazari et al., 2010). 



	 74 

 

Figure 12. Model of the identity framework adapted from Godwin et al. (2016). 

 As alluded to earlier the link between SCCT and the identity framework 

exists in the overlap between two preeminent constructs pertaining to these 

models: interest and self-efficacy. Hazari et al.’s (2010) identity framework draws 

directly from SCCT in their inclusion of interest as part of the structure of their 

model, and makes parallels between performance/competence and self-efficacy. 

The authors define performance/competence as students’ beliefs about both their 

ability to understand physics concepts and perform physics related tasks. The 

latter portion aligns closely with well-established definitions of self-efficacy 

(Bandura, 1997; Usher and Pajares, 2008). In practice, these constructs may or 

may not measure the same things. Although Godwin et al. (2016) have 

recognized the similarities, they state explicitly that performance/competence 

beliefs are somewhat more coarse grained than the “task-scale” behaviors 

typically targeted by measures of self-efficacy. Yet, it is worth noting that the 

literature on measurement of students’ self-efficacy supports the use of items 
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that lie on a continuum of tasks ranging from very specific to general (Lent and 

Brown, 2006; Usher and Pajares, 2008), further affirming the similarities between 

the constructs. 

 These two approaches to understanding the mechanisms that lead to 

career choice do differ on a variety of other points. The “output” and “input” 

variables accounted for by these models, not including self-efficacy and interest, 

mark the  most obvious contrast between the identity framework and SCCT. For 

example, the identity-based model considers identity as the primary predictor of 

career choice, while SCCT places the onus on choice goals--the career-related 

goals of the individual--as the predictor of performance attainment, which is 

mediated by choice actions. These two outcomes (i.e., career choice and choice 

goals) are similar, but differ in nuanced ways. Career choice, as measured by 

Godwin et al. (2016) and Hazari et al. (2010), generally refers to students’ self-

reported likelihood to pursue a particular career path (e.g., chemical engineering, 

bioengineering, physics). Choice goals, as defined by Lent et al. (1994), may 

include long-term goals, such as pursuing a degree in a specific field, but also 

refer to short-term goals that might lead to achieving long-term goals (e.g., 

passing Introduction to Physics I with an “A”). Another obvious difference 

between SCCT and Hazari et al.’s (2010) identity framework is the incorporation 

of several additional input variables in Lent et al.’s (1994) work. These include 

vocational outcome expectations, learning experiences, person-inputs, 

background contextual affordances, and contextual influences on choice 

behavior. This encompassing approach more explicitly integrates factors 
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influencing career choice, such as gender, which both Hazari et al. (2010) and 

Godwin et al. (2016) have given attention to and taken into account in their 

analyses, though not explicitly as a part of their model.  

3.4. Self-Efficacy and Interest 

Preeminent in the models described above, self-efficacy and interest have 

exhibited a practical usefulness in predicting student outcomes that matter to 

science education researchers--in particular physics education researchers--

including increased student grades and desire to pursue physics careers. The 

positive relationship between students’ physics self-efficacy and course grade 

has been found in a variety of contexts, from private institutions in New England 

to public universities in South Florida (Lynch, 2010; Sawtelle, Brewe, and 

Kramer, 2012). The same can be observed in academic settings outside of the 

United States (e.g., Lindstrøm and Sharma, 2011). As a related point, physics 

interest has been shown to correlate with student retention. For example, Sadler, 

Sonnert, Hazari, and Tai (2012) analyzed data from a national random sample of 

students from 34 different higher education institutions and found that those who 

reported higher physics interest in high school were more likely to persist in their 

intent to pursue a STEM career by the time they enrolled in college. 

Research has established a consistent relationship between self-efficacy 

and physics interest in a myriad of contexts with participants from various ethnic 

backgrounds (Bieschke, Bishop, and Garcia, 1996; Lenox and Subich, 1994; 

Lopez, Lent, Brown, and Gore, 1997; Tang, Fouad, and Smith, 1999). Despite 

this positive correlation--typically ranging from .2 to .7--the constructs are 
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different, both conceptually and in practice where each distinctly explains some 

of the variance in career choice (Donnay and Borgen, 1999; Smith and Fouad, 

1999). In terms of the cause-and-effect relationship between self-efficacy and 

interest, research describes some reciprocity between the two where self-efficacy 

contributes to interest development, but interest may lead to engaging in a novel 

activity, which can result in experiences that lead to self-efficacy formation 

(Bandura, 1997; Lent et al., 1994; Nauta et al., 2002). Still, as pointed out by 

Nauta et al. (2002), the visual model representations and language used by 

career development researchers tend to emphasize a causal directionality 

leading from self-efficacy to interest (e.g., Bandura, 2001; Godwin et al., 2016; 

Lent et al., 2008; Sheu et al., 2010; Smith and Fouad, 1999).  

3.5. Self-Efficacy in the Active learning Physics Classroom 

 The specific classroom elements that contribute to changes in student 

self-efficacy have not been fully understood. Previous studies have shown that 

the nature of the physics classroom matters when it comes to self-efficacy 

formation. Physics instructors that employ alternative teaching strategies (e.g., 

discussion, inquiry-lab exercises, conceptual problem assignments) instead of 

traditional strategies (e.g., lecture, directed lab exercises, demonstrations) will 

likely find students who report higher scores on a survey of self-efficacy and its 

sources (Fencl and Scheel, 2005).  In fact, Fencl and Scheel (2004) found that 

when comparing all the teaching strategies they examined, collaborative learning 

had the highest correlation with end-of-semester physics self-efficacy. 
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With regard to the development of self-efficacy, Sawtelle et al. (2010) 

showed that students taking introductory physics courses at a large Hispanic 

Serving Institution reported having lower self-efficacy at the end of the semester 

when compared to the start of term if the instructor had used traditional, lecture-

based teaching methods. Students whose instructors implemented Modeling 

Instruction--an active learning introductory physics curriculum--did not report any 

significant changes in their self-efficacy from pre to post, which is commendable 

given the often-seen drop in physics self-efficacy found in introductory courses 

that results from students adjusting their overconfidence (Boekaerts and 

Rozendaal, 2010; Mann and Golubski, 2013; Multon, Brown, and Lent, 1991; 

Pajares and Kranzler, 1995). This beneficial interaction between pedagogy and 

self-efficacy may have some limitations. For example, Sawtelle et al. (2010) saw 

no change in student self-efficacy in Modeling Instruction courses that had a 

capacity of 30 students. In larger sections implementing the same curriculum, 

students’ self-efficacy decreased over the course of the semester, albeit not as 

much as the self-efficacy of those in lecture-based sections (Dou et al., 2016). 

3.5.1. The Modeling Instruction Curriculum 

         The progression of physics education research has led to the 

development of curricula, particularly in introductory courses, that shy away from 

lecture-based teaching styles (e.g., Etkina and Van Heuvelen, 2001; Finklestein 

and Pollock, 2005). Of these, Modeling Instruction (MI) has been examined at 

both the high school and undergraduate level and exhibited various positive 

results (Hestenes, 1987; Brewe, 2008). Research into MI has shown that college 
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students taking Introductory Physics with Calculus not only pass at greater rates 

than students taking the equivalent lecture-based courses, but also score higher 

on well-established concept inventories (Brewe et al., 2010b). This outcome 

aligns with the strong consensus that active learning strategies, even when 

broadly defined, help students achieve higher scores on exams and concept 

inventories (Freeman et al., 2014). Yet, these positive academic outcomes stand 

contrary to decreases in student self-efficacy exhibited by students in classrooms 

of 70+ peers, as described in Dou et al. (2016). In Dou et al., the overall 

decrease in self-efficacy was observed regardless of student gender or ethnicity, 

and suggests the presence of structures generated by this active learning 

curricula that may negatively impact the factors that motivate students to pursue 

careers in STEM. These structures may include, among many, students’ social 

interactions in the classroom as those who received attention from academically 

popular peers (i.e., perceived by others as meaningful academic resources) were 

more likely to see increases in their individual self-efficacy scores. In other 

words, both the kinds of classroom interactions that took place, as well as the 

type of persons with whom those interactions took place in terms of academic 

influence, were associated with students’ self-efficacy development. 

         For context, MI Introductory Physics I with Calculus courses (referred to 

as MI from here on out) follow patterns expected of curricula designed with a 

sociocultural, interactive framework in mind. Created by Hestenes (1987) and 

further developed for college-level introductory physics by Desbien (2002) and 

Brewe (2008), the most salient characteristic of the curriculum is the application 
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of student discourse as a tool for knowledge construction, particularly around a 

few, key disciplinary concepts. Students work in small and large groups on 

carefully designed, inquiry-based activities meant to stimulate discussion that 

leads to learning. As a result, students can often be seen initiating conversations 

with their tablemates or collaborating with peers at other parts of the room in 

order to reach consensus.  

Brewe, Kramer, and O’Brien (2010a) showed that students in MI courses 

see increased opportunities to engage with peers on academic content than do 

students in lecture-based sections of the course. The authors calculated the 

number of connections made between students in lecture-based and MI 

introductory physics courses by asking them at the beginning and end of the 

semester who they worked with to learn physics. Students in MI reported ten 

times the number of interactions. Moreover, by the end of the course, all MI 

students reported interacting with at least one other person in class, while a great 

majority of those in lecture-based courses still reported no peer-to-peer 

interactions. The authors made the case that both the physical layout of the MI 

classroom (i.e., open space with moveable furniture) and the instructional design 

of the curriculum help to facilitate socialization in the context of physics learning. 

Qualitative analyses of student participation in MI courses revealed the 

existence of self-efficacy experience opportunities (SEOs)--occurrences aligned 

with one of the four sources of self-efficacy (i.e., mastery experiences, vicarious 

learning, verbal persuasion, physiological states) that have the potential to 

impact its development (Sawtelle et al., 2012). For example, while trying to 
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complete a position versus time graph two students discuss the importance of 

having a reference point; mutual agreement on what the reference point is in this 

particular problem can potentially serve as a mastery experience, and therefore, 

an SEO. The authors do not directly attribute the abundant presence of these 

types of experiences to MI as a whole, but rather to the model-eliciting group 

activities that are part of the curriculum. 

3.6. The Role of Student Interactions in Physics Self-Efficacy Formation in 

MI Classrooms 

 The connection between peer collaborations and self-efficacy 

development stands not only on classroom evidence, but also well-established 

theory. Bandura’s (1993) descriptions of his four sources of self-efficacy posit 

some dependence on socially active environments.While “mastery experiences” 

can occur in isolation when students find themselves failing or succeeding at a 

task, by definition, “vicarious learning” experiences require the presence of 

others with whom students relate. A vicarious learning experience can occur 

when students observe their peers succeeding or failing at a specific task. If 

students associate themselves with those peers, they may expect the same 

results from their own efforts. “Verbal persuasion” experiences not only require 

the presence of others, but direct interactions. Explicit encouragement or 

discouragement from peers or instructors can lead students to form beliefs about 

their abilities that shape their self-efficacy. While interacting with others is not a 

requirement of mastery experiences or “physiological states” (e.g., anxiety, 
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excitation, depression, hunger), vicarious learning and verbal persuasion 

experiences exist primarily in social settings. 

 Given the sociocultural learning framework of the MI curriculum, both 

peer-to-peer and peer-to-instructor interactions occur on a frequent basis. 

Whether in small groups working on model building activities or sharing progress 

in larger group meetings ranging from 20 to 30 students, a variety of 

opportunities to experience a vicarious learning or verbal persuasion events 

exist. As students interact with one another, they sit or stand in close proximity, 

capable of watching their peers succeed or fail in the tasks at hand (i.e., vicarious 

learning). They also engage in verbal exchanges with each other or with 

instructors that sometimes result in encouragement or discouragement (i.e., 

verbal persuasion). The increased opportunities to have these experiences 

suggests, in theory, that MI fosters an environment where students’ physics self-

efficacy may develop.  

Studies in MI in particular have attributed value to the examination of 

student-student interactions in the physics classroom (Zwolak, Dou, Williams, 

and Brewe, 2017). Quantifying student interactions using the tools of social 

network analysis (SNA), Dou et al. (2016) found a correlation between students’ 

academic popularity as measured by various classroom network measures and 

improved self-efficacy development. Similarly, classroom network measures, 

such as PageRank centrality (see “In-class Social Network Data”), have exhibited 

positive relationships with gains on the Force-Motion Concept Evaluation 

(FMCE)—a well-established introductory physics concept inventory (Thorton et 
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al., 2998; Williams, Brewe, Zwolak, and Dou, 2015). This, too, aligns with past 

studies showing better student understanding when constructing knowledge in 

group settings (Alexopoulou and Driver, 1996; Stump, Hilpert, Husman, Chung, 

and Kim, 2011). Though this may be somewhat oversimplified, in general, 

students who report a greater number of academic interactions in the active 

learning MI classroom have a greater chance of understanding content matter 

and feeling more confident about their ability to perform physics tasks.  

3.7. Social Network Analysis 

Recent interest in network analysis as a tool used by STEM education 

researchers has highlighted the value of its implementation as it relates to 

understanding student interactions. The examination of relationships through 

social network analysis (SNA) has revealed complexity in the social and 

academic networks of physics students, changes in study-group networks and 

their relationship with biology exam performance, and how students from varying 

STEM majors participate in informal student networks (Brewe, Kramer, and 

Sawtelle, 2012; Forsman, Moll, and Linder, 2014; Grunspan, Wiggins, and 

Goodreau, 2014). Developed by sociologists in the 1930s, SNA allows 

researchers to quantify interactions between people and examine hidden 

relational structures found in their relationships (Scott, 1988). Member of a 

network are often referred to as “nodes” and the relational links between them as 

“ties.”  

The web of interactions between participants can be used to calculate 

network-level and node-level measures. Whole network measures include 
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characteristics like density (i.e., number of ties divided by total possible number 

of ties), diameter (i.e., largest relationship distance between two participants), 

and the number of sub-communities found in the network. In our case, we are 

particularly interested in node-level measures, specifically “centrality.” Centrality 

is a term used in network analysis that refers to a specific node’s relational 

position in a network and can come in many forms (Scott and Carrington, 2011). 

For example, in the case of a classroom network, directed degree centrality 

quantifies the total number of incoming and outgoing interactions experienced by 

a particular student, while PageRank centrality ranks students according to the 

popularity of the peers with whom they interact using an algorithm initially 

developed by Brin and Page (1998) for the Google search engine. The current 

study builds on our use of these tools in undergraduate physics contexts. 

3.8. Purpose 

Our study seeks to further situate the contribution of students’ classroom 

interactions in the larger context of physics self-efficacy and physics interest 

development. Both SCCT and the identity framework posit that self-efficacy and 

interest directly and indirectly influence the constructs antecedent to STEM 

career choice, yet the role of classroom interactions in the evolution of these two 

former constructs is only partially understood (Dou et al., 2016; Hazari et al., 

2010; Lent et al., 1994). SNA allows us to quantify classroom interactions using 

measures of centrality--students’ position in a social network. By testing various 

model pathways between these variables (i.e., centrality, self-efficacy, interest) 

we can further understand the directional influence of physics related student 
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interactions. Given the literature, we expect that even when students’ interest 

and self-efficacy at the beginning of the course are accounted for, student 

centrality will have an indirect effect on post physics interest mediated by post 

physics self-efficacy. Given the reciprocal connection between self-efficacy and 

interest, we also tested models with varying paths between these two variables 

with the goal of answering the following research questions (see Figure 13): 

1.             Do classroom interactions as measured by social network 

centrality directly influence students’ physics interest in MI 

courses? 

2.             Do classroom interactions as measured by social network 

centrality indirectly influence students’ physics interest via their 

physics self-efficacy in MI courses? 

3.  Do reciprocal relationships exist between physics self-efficacy 

and physics interest in an active learning introductory physics 

course? 
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Figure 13. General Model of Interactions of Self-Efficacy, Interest, & Centrality. 
 

3.9. Design 

3.9.1. Data 

         Data for this study came from three MI courses taught in the fall 2014 and 

fall 2015 semesters at a large Hispanic Serving Institution (HSI) in South Florida. 

While the majority of students at this institution register for traditional sections of 

Introductory Physics I with Calculus taught in auditorium-style settings, a few 

sections of MI become available to all students, permitting their schedule and 

requisites complement the course. Students sign up on a first-come-first-served 

basis. For nearly a decade this institution has offered a few 30-student capacity 

sections each semester. In 2014 new state-of-the-art science classrooms 

became available each with a capacity of approximately 80 students. Only one 

section of MI was offered in the new classroom in fall 2014 and in fall 2015 two 

sections were offered. The same instructor who taught in fall 2014 also taught in 

fall 2015. An additional instructor taught the second MI section offered in fall 
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2015. Both instructors had experience with reformed teaching strategies geared 

at introductory physics students and both received support from faculty in the 

physics department, as well as from Teaching Assistants and Learning 

Assistants, in the implementation of the MI curriculum.  

Participating students from these three sections (N = 221) primarily 

identified as Hispanic (i.e., 71%) and most remaining students reported being 

Asian, White, or Black (see Table 4). The majority of these students were male 

(i.e., 56%), while 43% identified as female. Demographic and/or gender 

information for six students was not available. Of the 35 majors represented in 

these courses, only about 1% of students had elected to pursue a bachelor’s 

degree in physics at the time they took the course. The majors with greatest 

representation included Biology (i.e., 24%), Mechanical Engineering (i.e., 12%), 

and Computer Science (i.e., 10%). Almost all of the remaining students were 

pursuing majors in a STEM domain. At this institution, introductory physics is a 

requisite for most STEM degrees. 
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Table 4. Participant Characteristics. 

Demographics 

Gender Female = 43% 

  Male = 56% 

    

Ethnicity Asian = 6.3% 

(population Black = 10% 

greater than 1%) Hispanic = 71% 

  Two or more = 1.4% 

    

Majors          Biology, BS = 24% 

(representation Biomedical Eng., BS = 7.2% 

greater than 1%) Chemistry, BA = 5.0% 

  Chemistry, BS = 3.2% 

  Civil Eng., BS = 4.5% 

  Computer Eng., BS = 4.5% 

  Computer Science, BS = 10% 

  Dual Enrollment, high school = 3.6% 

  Dual Major = 2.7% 

  Electrical Eng., BS = 2.7% 

  Environmental Eng., BS = 1.4% 

  Experimental Psych. = 3.6% 

  Mechanical Eng., BS = 12% 

  Psychology, BA = 2.7% 
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3.9.2. In-class Social Network Data 

 We collected student interaction information by surveying students five 

times throughout a course, asking them to respond to the following query: 

“Please choose from the presented list people from your physics class that you 

had a meaningful interaction with in class this week, even if you were not the 

main person speaking or contributing. You may include names of students 

outside of the group you usually work with.” Beneath the prompt, students were 

provided with blank space divided into three columns where they could indicate 

both who they worked with, as well as how often they worked with each person 

(see Supplementary Materials). Students were also asked about the individuals 

they worked with on physics-related material outside of class. For the purpose of 

this study we did not address students’ out-of-class interactions. After the fall 

2014 semester, we began providing students with randomly ordered lists of their 

peers’ and instructors’ names for the sake of efficiency and to avoid name 

confusion.  

Student responses to each survey were used to generate edgelists, which 

contain interaction information about the student responding to the survey (i.e., 

source) and the students listed as responses to the social network queries (i.e., 

targets). We then used the resulting student interaction matrix to calculate 

student centrality using the igraph package in R (Csárdi and Nepusz, 2006; R 

Core Team, 2015). For this study we concentrated on students’ PageRank 

centrality for two primary reasons: (a) PageRank not only incorporates the 

number of incoming and outgoing interactions students experience, but also the 
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kinds of peers with whom they interact in terms of academic popularity, and (b) 

PageRank centrality, unlike degree centrality, has been shown to be predictive of 

students’ overall self-efficacy development (Dou et al., 2016). 

3.9.3. Physics Self-Efficacy Instrument 

Both at the beginning and end of the MI course, students completed the 

Sources of Self-Efficacy in Science Courses – Physics (SOSESC-P) survey. This 

33-item survey measures the sources of self-efficacy (i.e., mastery experiences, 

vicarious learning, verbal persuasion, physiological mechanisms) and acts as a 

proxy for students’ overall self-efficacy (Fencl and Scheel, 2005; Sawtelle et al., 

2012). We selected this survey because of its introductory physics context 

specificity--a characteristic of effective self-efficacy surveys (Pajares, 1997) and 

to maintain research continuity with previous studies in active learning 

introductory courses. Students indicated how much they agreed with a variety of 

self-efficacy related statements using a 5-point Likert scale. Statements included 

the following: “I will have difficulty with the exams/quizzes in this class” and “I will 

get positive feedback about my ability to recall physics ideas.” We achieved an 

alpha reliability coefficient of .93 for the instrument.  

3.9.4. Physics Interest 

Students’ interest in physics and physics related content at the beginning 

and end of the class was measured using the Physics Identity Development 

(PID) survey (Potvin and Hazari, 2013). This questionnaire captures a series of 

variables related to students’ sense of identity as a physics person, their 

performance competence, their general science interest, and their physics 
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interest. In the current study, we were only concerned with students’ responses 

to questions about interest in specific topics related to physics (i.e., mechanics, 

optics/waves, electromagnetism, relativity/modern physics, history and people in 

physics, current topics in physics). Indication of interest was demarcated on a 7-

point anchored Likert scale ranging from “No Interest” to “Very Interested”. We 

achieved an alpha coefficient of reliability of .88 on the subset of interest items as 

a whole. Confirmatory factor analysis affirmed the use of the aggregate. 

 

Table 5. Summary of student responses to surveys. 

Variables 

Centrality PageRank, (M = 0.0119, SD = 
0.00226) 

    

Self-efficacy pre SOSESC-P, (M = 134 , SD = 14.1) 

  post SOSESC-P, (M = 129, SD = 17.4)   

   

Interest pre PID, (M = 25.6 , SD = 6.89) 

  post PID, (M = 23.3, SD = 8.25) 
    

 

3.10. Analysis and Results 

 In general, we administered social network surveys on the last day of 

class for selected weeks. Weeks were chosen ahead of time and were 

distributed throughout the semester. Five network data collection events took 

place: one at the beginning of the semester, one at the end, and three in 
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between. We also strove to ensure that data collection happened on weeks when 

students participated in active learning activities that required both large and 

small group cooperation and discourse. We achieved this setting for the first four 

data collection events each term. Nevertheless, on at least one occasion the last 

survey collection of the semester took place on a week dedicated to final exam 

review and student participation in inquiry activities was not solicited. Response 

rates exhibit this contrast, coming in at greater than 75% percent for survey 

administrations during the first four weeks of a semester and at less than 50% on 

the last survey given in the fall 2014 semester. Given the sensitivity of networks 

to context, responses from the fifth survey administered that semester were 

dropped, and subsequently those were also dropped for all other courses in 

order to maintain homogeneity of the network data and avoid inflated network 

measures of students in fall 2015. We should note, however, that even after 

performing separate analyses of fall 2014 data and fall 2015 data the outcomes 

agree with the results of the combined semesters’ analyses presented in this 

paper.   

To generate an overall measure of student interactions we compiled 

responses across the first four social network surveys administered during each 

course by pooling the edgelists. We focused on capturing occurrence of 

interactions with peers for each week data were collected, ignoring the frequency 

of interactions per week students reported for each peer listed. Duplicate 

interactions between the same two individuals across the semester were 

weighed according to the number of occurrences. For example, if student A 



	 93 

named student B as someone with whom he or she had a meaningful interaction 

with during the first week of the semester, that edge (i.e., link between two 

nodes) is given a weight of one. If student A named student B on one or more 

surveys administered later in the semester, the tie between A and B received a 

weight of plus one for each instance. We selected this approach in order to 

capture the overall structure and strength of students’ networks across the 

semester. 

The final pooled edgelist was used to calculate participants’ PageRank 

centrality. PageRank centrality has been shown to be a valuable measure in the 

prediction of students’ physics performance, self-efficacy, and participation in a 

physics learning center (Brewe et al., 2012; Bruun and Brewe, 2013; Dou et al., 

2016). PageRank has often been characterized as the probability of a random 

walker on a network to arrive at a particular node (Fortunato and Flammini, 

2007). It is a function of the number of incoming edges such that edges from 

popular nodes increases a given node’s PageRank. This standardized network 

measure is represented in the following equation: 

		
p(i)= q

n
+(1−q) p( j)

kout( j)j: j→i
∑   i = 1, 2, … n 

Here p(i) stands for the PageRank of node i, n is the number of nodes in the 

network, p(j) represents the PageRank of node j and kout its outDegree (i.e., 

number of outgoing interactions). We set the damping factor q to 0.15 as 

suggested in previous literature (Csárdi and Nepusz, 2006; Fortunato and 
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Flammini, 2007). After calculating PageRank we removed instructors from the 

final network in order to focus on peer interactions. 

3.10.1. t-Tests and Factor Analyses  

Prior to proceeding with our model tests we performed dependent 

samples t-tests to determine whether student self-efficacy and interest changed 

throughout the semester. Mean self-efficacy scores decreased significantly by 

4.42 points from pre to post, indicating that students (N = 171, after pairwise 

deletion) reported having lower physics self-efficacy at the end of the course than 

they did at the beginning [t(170) = 3.83, p < .001, Cohen’s d = 0.29]. This 

represents a 5% drop based on the overall range of student scores (i.e., 78 - 

165). Similarly, students’ physics interest decreased significantly by 2.34 points 

or 6.5% of the scale [t(169) = 4.98, p < .001, Cohen’s d = 0.38]. We should note 

that even after performing single imputation techniques to account for missing 

data, we achieved similar results with larger effect sizes for both constructs (i.e., 

Cohen’s d = 0.35 and Cohen’s d = 0.43, respectively).  

We first examined our measurement model using confirmatory factor 

analyses (CFA) to test how well our survey items measured the latent variables 

(i.e., physics self-efficacy and interest). After imputing our data in order to 

account for missingness, single factor loadings for physics self-efficacy items on 

the SOSESC-P ranged from 0.41 to 0.85 when we removed eight items that fell 

below a 0.40 cutoff (Stevens, 1992). All of the items on our physics interest 

survey fell within an acceptable single factor loading range of 0.46 to 0.88. 

Allowing covariances among the constructs yielded a moderate fit for the 



	 95 

measurement model (χ2 = 4687.3, df = 1823, χ2/df = 2.57, RMSEA = 0.084, 

SRMR = 0.082, CFI = 0.64).  

3.10.2. Structural Equation Modeling 

 Our use of structural equation modeling (SEM) was predicated by its 

handling of multiple dependent variables and robustness of its incorporation of 

latent variables (Harlow, 2014). SEM can be generally described as a two-part 

process, which begins with a CFA of the latent variables (i.e., variables that 

cannot be directly observed). This analysis tests for the hypothesized number of 

latent factors measured by a set of items. In our study, we measured two latent 

variables (i.e., physics self-efficacy and interest) using two different instruments. 

Although our self-efficacy instrument included 25 items and our interest 

instrument 9 items, each was hypothesized to measure a single construct. The 

analysis of our CFA described in the previous section confirmed our hypotheses. 

The second part of SEM allows researchers to test complex, multipath 

relationships between constructs where a plurality of both dependent and 

independent variables exist. Specific patterns of predictions can be tested that 

better take into account both prediction and measurement error.  

         We tested our primary model (i.e., model A) with paths running directly 

from PageRank centrality to both post physics self-efficacy (i.e., at the end of the 

course) and post physics interest, as well as a path from post physics self-

efficacy to post physics interest (see Figure 14). In this model we also controlled 

for students’ physics self-efficacy and physics interest at the beginning of the 

course (i.e., pre). The path leading from PageRank directly to post physics self-
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efficacy was significant (B = 114.3, β = 0.21, p < .001), as well as the path from 

post physics self-efficacy to post physics interest (B = .32, β = 0.27, p < .001). 

The path from PageRank to post physics interest was not significant. This model 

had moderately acceptable fit measures (χ2 = 4779.6, df = 1885, χ2/df = 2.54, 

RMSEA = 0.083, SRMR = 0.085, CFI = 0.64), which suggests possibly some 

weak relationships between some of our variables. 

 
Figure 14. Results of SEM analyses - Model A: showing standardized path coefficients and 

significance (*** p < 0.001).  
 

 Because of the reciprocal relationship sometimes exhibited between self-

efficacy and interest, we tested a model similar to model A, reversing the path 

from post physics self-efficacy to post physics interest (i.e., model B). This 

model, too, revealed significant paths from PageRank centrality to post physics 

self-efficacy (B = 106.4, β = 0.18, p < .001) and from post physics interest to post 

physics self-efficacy (B = 0.33, β = 0.34, p < .001). Models A and B shared nearly 

identical fit measures (χ2 = 4768.18, df = 1885, χ2/df = 2.53, RMSEA = 0.083, 
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SRMR = 0.082, CFI = 0.64), which makes the directionality of the relationship 

between self-efficacy and interest more difficult to determine in this case.  

 In order to better understand the interaction between physics self-efficacy 

and interest we ran a third model (i.e., model C), taking advantage of the 

longitudinal nature of our data to determine whether students’ self-efficacy 

contributes to their interest or vice versa. In trying to illuminate this directionality 

we included paths from students’ physics self-efficacy at the beginning of the 

course to their physics interest at the end of the course. Similarly, we included 

paths from pre physics interest to post physics self-efficacy. No direct path was 

included between post physics self-efficacy and post physics interest, allowing 

these variables to covary. The remaining paths mirrored those of models A and B 

(see Figure 15). Paths common to models A and B exhibited similar significance. 

The path from students’ physics self-efficacy at the start of the course to their 

physics interest at the end of the course was not significant, while the path from 

pre physics interest to post physics self-efficacy was (B = 0.25, β = 0.20, p = 

0.01). The model also yielded moderately acceptable fit measures (χ2 = 4767.4, 

df = 1883, χ2/df = 2.53, RMSEA = 0.083, SRMR = 0.082, CFI = 0.64). The results 

given by the test of this model indicate that students’ interest in course content 

likely contributes to their self-efficacy development and not the other way around 

as we hypothesized.  
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Figure 15. Results of SEM analyses - Model C: showing standardized path coefficients and 
significance (* p < 0.05, ** p < 0.01, *** p < 0.001).  

 Given the models’ similarities in fit measures and Akaike information 

criterion (AIC) values, we chose to compare them using log likelihood ratio tests. 

The additional parameters in model C explain significantly more of the variance 

in our data than model A where we include a path from post physics self-efficacy 

to post physics interest [χ2(2) = 12.2, p < 0.01]. Yet, model C was not a 

significantly better model than model B, further supporting a latent variable 

directionality going from post physics interest to post physics self-efficacy. This is 

further supported by model B’s slightly lower AIC value when compared to model 

A’s (i.e., 31269 and 31281, respectively) . All three models (i.e., A, B, and C, 

respectively) explained significantly more variance than similar models without 

the PageRank centrality variable [χ2(2) = 2073.6, p < 0.001; χ2(2) = 2085.0, p < 

0.001; χ2(4) = 2085.8, p < 0.001].  
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3.11. Discussion 

         The results of our analyses offer different starting points for interpretation. 

The most straightforward of these involve the outcomes of our dependent 

samples t-tests that indicated a decrease in both students’ physics self-efficacy 

and physics interest. The documented benefit of active learning curricula with 

regard to student learning, particularly MI, stands seemingly contrary to these 

drops. While on the one hand, past research shows this curriculum helps 

students develop a better understanding of physics content than those in lecture 

sections (Brewe et al., 2010), participants in this study left the class feeling less 

confident about their ability to complete physics-related tasks and less interested 

in physics subjects. We might attribute this development directly to the MI 

curriculum, but it could also result from a re-calibration of students’ perspectives. 

This latter explanation aligns with research indicating a kind of over-confidence 

or unrealistic expectations that incoming students in introductory courses hold 

(Boekaerts and Rozendaal, 2010; Lindstrøm and Sharma, 2011). Whether or not 

the decreases we observed explain an adjustment in students’ task-specific 

confidence and expectations, they do appear smaller than decreases found in 

lecture-based introductory physics courses (Fencl and Scheel, 2004; Sawtelle et 

al., 2010).  

As educators our concern here is not so much that students’ self-efficacy 

and interest did not increase overall, though that would have been a welcome 

outcome, but rather that a significant drop took place. The value that the identity 

framework and SCCT place on student self-efficacy and interest as career-choice 
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indicators motivated us to consider which aspects of our curriculum or context 

might contribute to the shifts seen in these constructs. Because of the particular 

emphasis that MI places on student interactions, and the relationship between 

interactions and self-efficacy development, in particular, we examined how 

student networks relate to affective development. Our structural equation 

modeling tested a variety of connections between physics self-efficacy, physics 

interest, and PageRank centrality, which we used as a proxy for student 

interactions. We discovered that students’ PageRank centrality significantly 

predicted students’ self-efficacy at the end of the course even when controlling 

for their self-efficacy at the beginning of the course. That is to say, how students 

interacted with one another in this active learning environment predicted their 

self-efficacy development regardless of where they scored on the self-efficacy 

survey at the beginning of the course. This association posits a direct link 

between classroom relationships and the confidence students develop regarding 

the successful completion of physics tasks. We should note that the strength of 

this link where, in general, a one standard deviation increase (or decrease) in a 

student’s Pagerank would correspond to a 0.21 standard deviation change in a 

student’s post physics self-efficacy.  

         Although centrality in the classroom network did not directly predict 

physics interest at the end of the course, we wanted to test whether a mediated 

relationship exists between these two variables via self-efficacy. We based this 

hypothesis on our theoretical framework and prior research indicating a 

directional link from self-efficacy to interest. Models with pathways going in both 
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directions yielded nearly equal fit measures (i.e., model A: post self-efficacy ! 

post interest; model B: post interest ! post self-efficacy), which hindered our 

ability to recognize self-efficacy as a mediator of students’ interest. Nevertheless, 

our test of model C helped to untangle how these variables influenced one 

another. The acceptable fit of model C confirmed that students’ incoming interest 

predicted their outgoing self-efficacy (and not the other way around). Still, that 

link only speaks to the relationship between the constructs on a longitudinal scale 

(i.e., pre to post) rather than a cross-sectional perspective (i.e., post versus post). 

To further unpack what these models might be suggesting, we compared models 

A and B to model C using log likelihood ratio tests. Here we found that our more 

complex model (i.e., C) outperformed model A in which we defined a path from 

post self-efficacy to post interest. Yet, model C did not outperform model B in 

which we defined a path from post interest to post self-efficacy (see Figure 16). 

The combination of this evidence points toward the conclusion that students’ 

interest development in this course played an important role in their self-efficacy 

development (i.e., Interest ! Self-efficacy)—not vice versa.  

 
 
 
 
 
 
 
 
 
 

Figure 16. Comparison of Three Models.  
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In light of research grounded in the SSCT and the identity framework, this 

unexpected outcome at the very least suggests that those performing research in 

the context of reformed teaching environments consider this alternative pathway. 

Our findings also imply that students who come into the course with high interest 

in physics stand poised for success with regard to affective learning. The models 

do not favor students who come in with low interest. In fact, students as a whole 

experienced a general decrease in physics interest, which may only further 

contribute to their decrease in physics self-efficacy. The development of physics 

interest is unaffected by interacting with academically popular peers (i.e., 

PageRank centrality). This seems counterintuitive when considering that these 

relationships help students develop improved physics self-efficacy. Despite some 

students’ higher outlook regarding their abilities, interest remained unaffected, 

and for students who foster beneficial academic relationships, the benefit on self-

efficacy is relatively small. 

         From a theoretical perspective, both Bandura (1997) and Lent et al. (1994) 

proposed that interest may play an important role in self-efficacy development 

during events where participants find themselves in novel situations or 

environments. When participants find themselves in new circumstances, interest 

helps to drive engagement in unfamiliar tasks. The successful or unsuccessful 

completion of those tasks, as well as the encouragement or emotions 

experienced during the tasks, could then shape participants’ self-efficacy. With 

regard to our study, we know that students who participate in reformed or active 

learning courses, particularly in introductory physics, may experience a sense of 
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discomfort or unfamiliarity, which can vary according to classroom grading 

practices, instructor, and instructional norms (Turpen and Finkelstein, 2010; 

Villasenor and Etkina, 2006). Anecdotal and student interview data also suggests 

student discomfort exists in MI courses and is the topic of ongoing research. 

Interview data supports the idea that a subset of students may experience 

anxiety as they adjust to the new mode of learning. In this context, it is possible 

that interest in physics as a subject helps to maintain (or hinder) student 

engagement in tasks that lead to self-efficacy development. The requirement for 

students who have elected a STEM major like biology, pre med, or chemistry, to 

take physics strengthens the likelihood that students majoring in other subjects 

have relatively less interest in physics (Hazari et al, 2010). Introductory physics 

courses often represent students’ first sustained exposure to physics content, 

particularly for those who did not take physics in high school. This paints a bleak 

picture for those entering MI, especially when we take into account that only 1% 

of our participants had declared physics as their major.   

Carlone (2004) also offers a plausible mechanism for the decrease we 

saw in student physics self-efficacy and perhaps even interest. Her study of a 

reformed-based high school physics classroom showed that participants who had 

“good-student identities” as defined by their ability to listen, memorize, and 

reproduce knowledge resisted the active learning curriculum, especially when 

their perceived recognition as good students or their class grade appeared to be 

in jeopardy. In essence, their not knowing the rules-of-the-game in the unfamiliar 

environment increased their discomfort and affected their participation. Students 
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who were more interested in the subject matter, had learning oriented mindsets, 

and/or were less concerned about preserving good-student identities expressed 

more positive attitudes. Though Carlone (2004) limited her study to female, high 

school students, a similar mechanism may be at work in the MI classroom. 

Because STEM courses are typically characterized by lecture-based pedagogies, 

STEM majors with good student identities have learned to succeed in these 

settings. When placed in environments where the rules for success are different 

and where activities require students to do more than just memorize and retain 

facts, MI participants may experience discomfort and/or develop negative 

attitudes that affect their participation. This, in combination with low initial interest 

in physics as a field, particularly for non-physics majors, could explain the lack of 

increase in self-efficacy, which depends largely on engaged participation in tasks 

and interest. Though the current design of our study cannot confirm this 

explanation, as described by Carlone (2004), current and future studies might 

lend credence to that scenario.  

Despite the content learning that takes place, participants in our study 

faced the risk of decreased interest and self-efficacy in the subject matter. It may 

be tempting then to compare these declines in self-efficacy and interest to those 

found in lecture courses as a way to justify the continued use of active learning 

curricula. This approach redirects attention that can be placed on finding ways to 

improve the impact of active learning classrooms on affective constructs. For that 

reason we chose to focus on the MI course alone, though we were aware of past 

studies that have compared decreases in physics self-efficacy and found drops 



	 105 

ranging from approximately zero percent in small class settings to 75% in large 

class settings of those seen in lecture-based sections (Dou et al., 2016; Sawtelle 

et al., 2012). Regardless, the breadth of the decrease in self-efficacy and interest 

is consequential as it relates to the recruitment of students to physics careers 

and STEM careers in general where we see large groups of students dropping 

out or switching majors (National Research Council, 2013). 

We initially set out to better understand the role of classroom interactions 

in active learning courses. Indeed, both the number of interactions that students 

have, as well as the kinds of people students interact with, matters to self-

efficacy development in the subject area. We showed that interactions in this 

active learning environment, as quantified by PageRank centrality, helped to 

shape students’ self-efficacy, thus situating students’ network positioning in the 

larger framework of career theory research. Though the contribution to self-

efficacy is small, all of our models outperformed models without our centrality 

variable. Notwithstanding this meaningful advancement in our understanding, our 

model testing highlights shortcomings experienced by some students of reformed 

curricula, particularly curricula that may share similar characteristics with MI, 

active learning, collaborative environments. According to the results of our study, 

lower interest at the start of the MI course resulted in lower interest at the end of 

the course and, in turn, lower self-efficacy. It is not surprising then that the 

affective benefits of the course are biased towards those who begin with high 

physics interest.  
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While we have focused on the environment created by the MI curriculum, 

this work prepares the stage for a deeper exploration of active learning 

pedagogies that should take place. Given the momentous spread of active 

learning teaching strategies—a proliferation that will likely not slow down—

education researchers may want to keep an open eye for changes in factors that 

motivate students to pursue careers in the field, identify the aspects of the 

curriculum or instruction that contributes to those changes, and develop 

interventions or strategies to mitigate negative effects. The extent to which our 

research achieves these goals is limited by our design. While we saw decreases 

in self-efficacy and interest, confirmed pathways related to the development of 

those constructs, and situated classroom social networks as part of those 

pathways, we cannot directly attribute our outcomes to any particular aspect of 

the MI curriculum (e.g., small group activities, class discussions, model building, 

group assessments). Moreover, the context of our study is not easily replicated, 

occurring in an HSI where great cultural diversity exists even within groups who 

identify as Hispanic. This university further differs from others across the nation 

in size—among the largest in the country—and in additional student 

characteristics, including a large population of commuters (i.e., approximately 

90%), first and second generation migrants, and high numbers of students with 

either part-time or full-time jobs. These qualities inspire caution in the 

generalizations we make about our results. MI, too, as an active learning 

introductory physics curriculum, differs in some ways from others implemented 

elsewhere. Yet, our examination of these data across three different courses, two 
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different instructors, and two separate academic years make us confident about 

the existence of these effects in our local community. The work of others 

referenced in this paper, who have shown the broad applicability and effects of 

self-efficacy, interest, and active learning pedagogies across a variety of cultures 

and contexts, suggests to us that the likelihood of finding similar results in other 

university settings is not small. We hope to continue this work, looking 

specifically for the mechanisms driving these effects and developing 

interventions to ensure that the depth of our students’ physics knowledge 

continues to grow in such a way that they finish the course feeling more confident 

and interested in the subject matter regardless of their starting point.    
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CHAPTER 4  
LONGITUDINAL ANALYSIS OF STUDENTS’ SOCIAL POSITIONING IN AN 

ACTIVE LEARNING INTRODUCTORY PHYSICS CLASSROOM 
 

4.1. Abstract 
 

 Undergraduate introductory STEM courses sit at a critical point in the 

career trajectory of STEM majors. They often provide the first significant 

academic hurdle students face. Success in these courses has been shown to 

predict academic performance and persistence in STEM fields, as well as the 

switching over to a STEM major by those previously pursuing non-STEM 

careers. Moreover, in commuter schools, these classrooms present a critical 

interface between the institution and the students for the fostering or hindering of 

social integration. This kind of social integration into the fabric of an academic 

institution is critical for the success of STEM majors, in particular those from 

Hispanic backgrounds. Recently, social network analysis (SNA) has been used 

as a tool to measure and examine social integration in introductory physics 

classrooms, but a true longitudinal perspective of the development of students’ 

integration in this context has yet to be presented. Here we present the results of 

our research on the development of students’ inDegree and outDegree centrality 

(i.e., incoming and outgoing interactions) in an active learning introductory 

physics course at a Hispanic Serving Institution (HSI). We found that students 

invest in relationships with peers beyond those in their immediate work groups, 

and present these findings from the perspective of social and cultural capital 

theory. Hierarchical linear modeling (HLM) also revealed that students’ centrality 

increases rapidly during the first half of the course and decreases during the 
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second half. These findings align well with our capital framework. Given our 

discussion of the limitations of this study, this work sets a precedent in physics 

education research for longitudinal approaches to the development of student 

centrality. 

4.2. Introduction 
 

Due to an increase in the adoption of active learning pedagogy, some 

fields of science, technology, engineering and mathematics (STEM) education 

research have recently experienced a renewed surge of interest regarding the 

development of student social networks in classroom environments (Bruun and 

Brewe, 2013; Brewe, Kramer, and Sawtelle, 2012; Grunspan, Wiggins, and 

Goodreau, 2014). Active learning courses often present students with 

environments that nurture peer-to-peer and peer-to-instructor relationships, 

which lead to the natural development of social networks. Physics education 

researchers, in particular, have gone as far as to employ social network analysis 

(SNA) to test a variety of models that use students’ positions in their networks to 

predict course grade, Force Concept Inventory scores, self-efficacy, and even 

participation in informal learning communities (Brewe et al., 2010; Brewe, 

Kramer, and Sawtelle, 2012; Dou and Brewe, 2014; Sawtelle et al., 2010). Yet, 

much of this type of research lacks an authentic longitudinal perspective on how 

students’ network centrality (i.e., position in a social network) changes over time. 

Understanding the mechanisms of how social integration evolves over time in the 

classroom has various implications for student persistence in STEM careers. 
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4.3. Social Network Development as a Factor of Classroom Success 

Current theories of persistence and retention of college students 

emphasize the importance of student integration in the fabric of a university, even 

calling out social network analysis explicitly as a potentially useful tool for 

understanding this aspect of student behavior (Tinto, 1997).  Similarly, Nora’s 

(2003) Model of Student Engagement describes a series of factors that 

contribute to undergraduate students’ degree attainment. Included in this model 

are factors related to the social integration of students. These consist of mentee-

mentor relationships with faculty, participation in out-of-class social 

organizations, informal peer learning, and in-class interactions with peers and 

instructors. The latter may be particularly important for student degree attainment 

when they take place in “gatekeeper,” introductory courses. Crisp, Nora, and 

Taggart (2009) showed that both switching from a non-STEM major to a STEM 

major, as well as completing a STEM degree, were predicted by student 

enrollment in Biology I or higher and Algebra I or higher, so long as these 

courses were not taken in the first college semester. While this research does not 

specifically call out interactions that take place in the classroom, it does point to 

the introductory courses taken by STEM majors as crucial points in the progress 

of their STEM careers. Compounding the role these classes play, Tinto (1997) 

stresses the importance of the classroom environment, citing studies that link 

student persistence with the connections they make with peers and faculty. His 

own examination of classrooms as learning communities highlights the function 

of the classroom as a facilitator of the link between social and academic 
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networks, which predict student persistence. This is especially salient for 

students in largely commuter schools where the primary interface between 

students and the university occurs in classes. 

SNA is quantitatively poised to capture the complex relational structures 

formed by classroom interactions. With its roots in sociology, dating as far back 

as the 1930s, SNA has recently received renewed attention particularly in the 

social sciences, including science education research circles (Borgatti, Mehra, 

Brass, and Labianca, 2009; Scott, 1998). For example, Bruun and Brewe (2013) 

implemented SNA to show how introductory physics students’ network metrics 

predict their final grades in future classes when controlling for scores on concept 

inventories. In the field of biology, Grunspan et al. (2014) present a primer for the 

use of SNA by biology education researchers, showcasing the various network 

features of student study groups pertaining to an introductory biology course. 

Their research showed not only that the study group networks changed over 

time, in a descriptive sense, but also that the positioning of students in each 

study group network correlated with their performance on the relevant exam.  

4.4. Centrality and Social Capital 

The language of SNA shifts somewhat depending on the community of 

practice, but the basic aspects remain the same (Scott and Carrington, 2011). In 

short, network analysts examine the structure of ties (i.e., relationships) between 

actors (i.e., participants) in predefined networks. This may result in network-level 

metrics or actor-level metrics. Network-level metrics include a variety of 

characteristics that apply to the network as a whole (e.g., density, diameter, size 
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of giant component). Actor-level metrics typically refer to the social positioning of 

participants in the network, which can be referred to as an actor’s centrality. 

Various centrality measures exist that capture the nuanced relationships present 

in networks. The simplest metrics include inDegree and outDegree centralities, 

which represent the number of incoming and outgoing ties, respectively, leading 

to or from a particular actor. A myriad of additional algorithms exist that measure 

everything from how much an actor brokers relationships between groups of 

actors to the popularity of actors as factors of the popularity of those with whom 

they associate. In this study we focus on inDegree and outDegree centralities 

since they are the foundation for how all other centralities are calculated.  

 A foundational assumption of our operating philosophy is that the nature of 

ties developed by actors in student networks may offer certain advantages to 

particular students. We have seen this relationship in the context of active 

learning, undergraduate introductory physics courses. Dou et al. (2016) found a 

relationship between student centrality and physics self-efficacy development. 

Students with high outDegree centrality were more likely to experience positive 

changes in both the verbal persuasion and vicarious learning sources of self-

efficacy, while those with high PageRank centrality were more likely to see 

positive changes in their overall self-efficacy. Zwolak, Dou, Williams, and Brewe 

(2017) showed that introductory Physics I students with high inDegree and 

outDegree centrality persisted in taking introductory Physics II the following 

semester, regardless of the grade they received in the class. This link between 

persistence in a course sequence as a factor of students’ social positioning had 
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not been previously examined. Zwolak et al.’s (2017) study, such as Dou et al.’s 

(2016), took place in an active learning context. These works and some of those 

referenced earlier lend credence to our operating philosophy that the structure of 

social relationships between students matter with regard to their performance, 

persistence, and beliefs. Moreover, this association between student networks 

and classroom outcomes may be particularly salient in active learning 

environments where students are more likely to interact with one another. In 

some cases, the number of peer-to-peer interactions that take place in active 

learning classrooms differs drastically from traditional, lecture-based courses 

(Brewe, Kramer, and O’Brien, 2010). 

 In other contexts, social capital has been identified as the mechanism that 

drives disparate success among individuals along differences in their 

relationships as quantified by SNA. For example, Abbassi, Wigand, and Hossain 

(2014) calculated a variety of centrality measures based on ties defined by co-

authorship on papers published on “information science” between 2001 and 2010 

(N = 4579 publications). These measures included degree centrality (i.e., 

inDegree plus outDegree), weighted degree centrality, which gives more weight 

to having multiple co-authorships with the same people. They also calculated two 

proposed measures—power diversity index (PDI) and power-tie-diversity-index 

(PTDI). The PDI takes into account ties between authors and co-authors who are 

highly valued as measured by a citation-count index (i.e., h-index). PTDI does 

the same, but assigns greater weight to multiple collaborations between authors 

and co-authors with high h-indices. Degree centrality and weighted degree 
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centrality exhibited highly significant correlations with citation count—0.22 and 

0.23, respectively. PDI and PTDI correlated more so with authors’ citation 

count—0.45 and 0.44, respectively. Based on these results, Abbasi et al. (2014) 

argued that not only do authors’ social networks correlate with their overall 

citation count, but when taking into account the value of the individuals the 

authors are connected to, a stronger association with citation count exists. They 

propose that being connected to co-authors with strong h-indices provide greater 

social capital to individual authors. This added value helped to explain the closer 

association with citation-count than simply having a large number of co-authors.  

 The results of Siciliano’s (2016) study align with those of Abbasi et al. 

(2014), which also suggests that the value of the peers one associates with could 

grant actors certain advantages (i.e., social capital). Abbasi et al. (2014) 

surveyed teachers in an urban school district in Midwestern United States. The 

424 teachers who responded provided information about their collaboration with 

peers on lesson plan development and implementation. The surveys also 

included items related to teacher self-efficacy, demographics, and evaluation of 

peer attributes. The outcomes of this research support a weak link between 

teachers’ peer network and their self-efficacy, but a stronger link when taking into 

account the attributes of peers in their network, which included knowledge and 

willingness to help.  

 While the work of examining students’ in-class social networks remains 

largely unexplored, Siciliano (2016) and Abassi et al. (2014) have made a strong 

argument in favor of success as a result of both the number of ties in academic 
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networks and the quality of those ties. It stands to reason then that similar 

mechanisms exist in classrooms, particularly those where student-student 

interactions dominate the social context. The promotion of active learning 

pedagogies in STEM by national reports and meta-analyses has increased the 

occurrence of interactive settings across K-12 and higher education institutions 

(Freeman et al., 2014; National Research Council [NRC], 2012, 2013, 2014). In 

fact, we have seen changes to the national K-12 science standards that 

encourage educational agencies and educators to create environments where 

students actively learn through peer collaboration and discourse (NGSS Lead 

States, 2013). Undergraduate physics education researchers have seen similar 

growth in curricula and pedagogies that solicit academic social discourse (NRC, 

2013). Our implementation of and research on one of these approaches—

Modeling Instruction for introductory physics—prompts our current analysis of 

students’ in-class social networks. 

4.5. Modeling Instruction in Context 

For the past 10 years, Florida International University’s (FIU) Physics 

Department, in conjunction with the Department of Teaching and Learning, has 

honed a course curriculum called Modeling Instruction (MI). MI introductory 

physics courses showcase high levels of solicited student-student interactions, 

minimizing the role of the instructor, and take a sociocultural, constructive 

approach to learning (Brewe et al., 2010). This studio-format course combines 

the “lecture” and “lab” sections into a single class where students spend most of 

their time examining natural phenomena via experimentation and developing 
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scientific models from their observations. Model development occurs through 

small group consensus (i.e., approximately three students) and model refinement 

takes place in larger group meetings (i.e., approximately 20 students). This 

learning format lends itself to the creation of social networks within the class as 

students interact in small groups, across small groups, and in the larger group 

setting.  

At the focal point of the MI curriculum lies the belief that learning and 

social interactions are interdependent (Bruun and Brewe, 2013; Vygotsky, 1986). 

This guiding philosophy stems from the sociocultural framework that grounded 

this curriculum’s development (Brewe, 2008; Desbien, 2002). Sociocultural 

learning theory implies two major classroom manifestations: (a) soliciting 

students’ prior knowledge and experiences and (b) constructing new knowledge 

by building on prior knowledge. Language plays a major role in facilitating these 

two products of a sociocultural learning environment (Schunk, 2012). We 

therefore expect social interactions to prevail in the MI setting. A study comparing 

the academically related classroom interactions of students in an MI introductory 

physics course (N = 30) and students in an equivalent lecture-based course (N = 

80) reported two major findings. One, when surveyed at the beginning and end of 

the semester, students in the MI course reported a significant increase in their 

number of classroom interactions, while those in the lecture-based course 

showed no change. Second, the density of the MI and the lecture course 

networks were significantly different at both pre and post data collection points, 

such that students in the MI course reported many more interactions than those 
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in the lecture-based course even after taking into account the number of students 

in the two courses. In fact, of the 30 MI participants, all reported at least one 

interaction on the post network survey, while only 15 out of the 80 lecture course 

participants interacted with at least one other peer (Brewe, Kramer, and O’Brien, 

2010).  

Research shows that students taking MI outperform their peers in 

equivalent lecture-based sections of the course on attitudinal assessments and 

conceptual understanding (Brewe, Kramer, and O’Brien, 2009; Brewe et al., 

2010). Students pass at greater rates, exhibit positive attitudes toward the 

material, and have deeper understanding of the content. On the other hand, 

studies have also shown that students’ physics self-efficacy—their expectations 

to successfully complete physics related tasks—and physics interest in these 

courses drops (Dou et al., 2016; Dou, Brewe, Potvin, Zwolak, and Hazari, Under 

review). These constructs (i.e., self-efficacy and interest) deserve close attention 

due to their central role in students’ career choice development (Fouad and 

Smith, 1996; Lent, Brown, and Hackett, 1994; Bandura, Barbaranelli, Caprara, 

and Pastorelli, 2001). Changes in student self-efficacy are often correlated with 

interactions that take place in learning settings (Bandura, 1993). The 

development of physics self-efficacy in MI courses has been linked to both the 

number and kinds of interactions that students experience in the classroom (Dou 

et al., 2016).  
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4.6. Examining Students’ Centrality Development 

 While a few studies exist that link particular student outcomes, such as 

academic performance and self-efficacy, to the social networks found in active 

learning science classrooms (e.g., Bruun and Brewe, 2013; Dou et al., 2016; 

Grunspan et al., 2014), longitudinal explorations of how students’ position in 

these networks develops over time have yet to take place. This is especially true 

for undergraduate physics courses. Approaching this aim, Traxler (2015) 

examined changes in the number of student communities that existed within 

several first-semester introductory physics courses. She surveyed student 

interactions at the beginning and end of the course (i.e., pre and post), using 

responses to calculate whether students belonged to particular subgroups (i.e., 

communities) within the classroom. Surprisingly she found that students in 

courses dominated by traditional teaching strategies belonged to a variety of 

subgroups at the beginning of the course, suggesting that some students come 

into these courses having previously established connections with peers. Over 

time the number of subgroups, as well as the network density of lecture courses 

decreased, while those of the active learning courses remained the same, which 

indicated an increased amount of coherence in student connections in the lecture 

courses, but not in the active learning courses. This outcome stood diametrically 

opposed to the researcher’s belief that the number of communities in active 

learning courses would decrease as student subgroups join and expand due to 

increased interactions, but this seemed to take place more so in the lecture-

based courses. 



	 126 

 Yang, Nainabasti, Brookes, and Brewe (2014) collected longitudinal data 

regarding physics’ students’ informal interactions (i.e., course-related interactions 

that took place outside of class), but took a cross-sectional approach to analysis. 

After collecting data about students’ out-of-class interactions each week, they 

compiled all the interactions into a single matrix by adding up interactions across 

all surveys. If student A reported interacting with students B and C during week 

one, but only reported interacting with student C during week two, then student 

A’s cumulative network would reflect one interaction with student B and two with 

student C. By doing so, Yang et al. (2014) were able to determine that students 

in active learning physics courses develop many more ties with peers outside of 

class than students in lecture-based courses. While the advantage of this 

approach lies in offering a holistic and summative picture of student networks, it 

does so by flattening out the temporal dimension and thus eliminating nuances 

about the development of student networks.  

  Understanding how student networks develop in the classroom may hold 

the key to discovering the components that facilitate classroom integration in the 

sciences. These components may vary across contexts, and therefore the 

network development may vary as well. For example, students in lecture-based 

courses who are not encouraged to interact with one another may interact with 

other students haphazardly or at random based of whom they sit next to in class 

or whom they happen to have known in other contexts. On the other hand, 

students in active learning courses designed to foster critical thinking around 

team-based projects have more opportunities to engage with peers and may 
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form networks differently. This particular setting intrigues us due to the recent 

attention on and growth in active learning curricula. Active learning approaches 

grounded in sociocultural learning theories, such as MI, posit success in learning 

as a factor of relational interactions. If so, we could imagine knowledge gained in 

the classroom as a form of cultural capital, which is transmitted socially 

(Bourdieu, 1986). Bourdieu (1986) describes the transmission of cultural capital 

as being facilitated by social capital. If so, students in these courses would find 

themselves searching for the right peer-to-peer relationships that support the 

kind of learning success they seek (i.e., purposely building social capital).  

 To understand the mechanisms of social integration in the active learning 

science classroom a true longitudinal approach must be undertaken. We believe 

this should go further than what has been previously done, such that both the 

design and the analysis account for the temporal dimension. This would include 

multiple waves of data collection beyond just pre- and post-, so as to better grasp 

the nuances of what occurs throughout the course. This kind of data collection 

should be met with a complementary longitudinal statistical analysis that rather 

than compress the temporal dimension, takes advantage of the variance that 

exists over time. Such an approach would also provide precedence for future 

longitudinal analyses of social networks in active learning science courses. 

4.7. Purpose 

 The purpose of this study is to examine the development of students’ 

social positioning in an active learning physics classroom. This study examined 

two particular variables as they relate to social network growth: student centrality 
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and gender. With regard to centrality, we have focused on student inDegree and 

outDegree because they represent the fundamental unit of measurement 

between actors in a network. Taking a longitudinal approach to analysis, we used 

hierarchical linear modeling (HLM) to gauge whether linear and/or quadratic 

patterns of centrality development exist over time. Significant linear growth would 

allow us to state whether students’ social behavior increases or decreases 

throughout the course of the semester, while significant quadratic growth would 

help to tease out potential nuances that may otherwise remain unseen. 

HLM also allows us to test whether other factors are associated with 

growth. In this case, we examine the effect of gender on social network 

development. Physics fields, in particular, suffer from evident 

underrepresentation of women (Hazari et al., 2013; Dabney & Tai, 2013). This 

characteristic often manifests itself at the undergraduate level in the form of 

gender gaps found in student concept inventories (Brewe et al., 2010). Known 

and unknown aspects of physics career pathways contribute to this unfair 

striation (McCullough, 2004). Examining whether gender plays a role in the 

students’ social development in introductory courses may help bring attention to 

the role of interactions as a possible contributor to gender-based differences in 

certain student outcomes.  

 Specifically, we sought to answer the following research questions: 

1. Does student centrality as measured by inDegree and 

outDegree exhibit linear growth over time? 

2. Does student centrality exhibit quadratic growth over time? 
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3. Does student gender play a significant role in students’ 

centrality and its development over time? 

4.8. Methods 

Data were collected during the Fall 2014 and Fall 2015 semesters at 

FIU—a large Hispanic Serving Institution (HSI) in southern Florida. FIU is an 

urban, R1 “Highest Research Activity” institution. Over 90% of students enrolled 

at FIU commute to school. For the semesters in question, one section of MI 

Introductory Physics I with Calculus (hereto referred as MI) was offered the first 

year (i.e., Fall 2014) and two in the second, such that an additional professor was 

brought on to teach the second course in Fall 2015. Only the data collected from 

classes taught by the same professor were included in this study in order to 

control for possible instructor effects (N = 147). Students voluntarily registered for 

MI at their own discretion. It is worth noting that the typical Introductory Physics I 

course offered at FIU requires a separate laboratory credit, which students may 

enroll in at the time they take the lecture course or subsequently. MI incorporates 

the lab credit. While students understand this when enrolling, they come in with 

varying expectations about the nature of the curriculum, ranging from traditional 

lecture-based teaching to hands-on, interactive learning (Dou et al., 2016). 

4.8.1. Classroom Context 

Demographic information was retrieved from the university system, 

including gender and ethnicity, which reflects what students report when applying 

to the institution. Combined, 40% of the students enrolled in the MI courses 

identified as “male” and 56% as “female” when first applying to the university. Six 
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students did not provide gender information. The majority of students also 

reported their ethnicity as Hispanic (i.e., 71%), 9% as White, 7% as Black, and 

5% as Asian, confirming a predominantly Hispanic population. The remaining 

students pertained to two or more races, or chose not to answer this question. 

Gender distributions within students’ ethnic or racial group mirrored those of the 

general classroom population. When interpreting our results we took into account 

that of the 31 student majors represented, no student in either course had 

chosen physics as a major at the time this data were collected. Most students 

pursued STEM majors (e.g., civil engineering, chemistry, computer science) with 

the majority of the student population pursuing bachelor degrees in biology (i.e., 

18%).  

Students were directed to work in groups nearly everyday. The classroom 

was designed to facilitate physically active group work. Rather than desks affixed 

to the ground, students sat around tables placed throughout the large room. Both 

the tables and the chairs could freely move by means of wheels. Six students 

split into two groups of three sat around each table. Each group of three worked 

on activities together, though oftentimes groups at the same table exchanged 

ideas. Students were also allowed to move about the entire room in search of 

peer or instructor input. Initial student group formation took place haphazardly 

with most students joining groups based on who sat at their table during the first 

week of class. The instructor switched student groups three times throughout the 

semester to allow for fresh exchanges of ideas and facilitate student network 

formation. 
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At the end of small group activities, the class was split into three large 

groups of 20 to 25 students where summaries were shared and discussions took 

place. Student groups presented their conclusions using diagrams and other 

representations on portable white boards. Each of these larger group discussions 

was facilitated by either the instructor or a Teaching Assistant (TA). Two TAs 

were assigned to the class in Fall 2014 and one in Fall 2015. The TAs were 

graduate students in the department of physics familiar with reformed teaching 

approaches. In addition to the TAs, three undergraduate Learning Assistants 

(LAs) walked around the room to offer help when needed. LAs were required to 

have previously passed Introductory Physics I with Calculus with at least a “B” 

grade, and attended orientation and training seminars throughout the course in 

support of their educational role.  

4.8.2. Social Network Survey 

Five times (i.e., for five waves) throughout each semester students were 

given a pencil and paper survey that asked, “Please choose from the presented 

list people from your physics class that you had a meaningful interaction with in 

class this week, even if you were not the main person speaking or contributing.”  

Written instructions further encouraged the inclusion of peers not part of 

students’ assigned group when appropriate. To help students with identification, 

the survey included a randomized list of the names of every classmate and 

instructor. This list was generated in response to student difficulty when trying to 

remember their peers’ names during the Fall 2014 semester. For that reason 

only students in the Fall 2015 semester received this list. Although the overall 
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number of peers reported in response to the survey question did increase from 

Fall 2014 to Fall 2015, the major characteristics of the network as a whole were 

very similar. This included overall size, density, and outDegree centralization 

(Zwolak et al., 2017). 

Each administration occurred toward the end of a small group (i.e., three 

students), experimental activity designed to solicit the construction of physical 

science concepts through discourse. The only exception was the last 

administration of the Fall 2014 semester, which occurred during an optional 

exam review session. This led to an atypical response rate of 43%; all other 

administrations exhibited response rates ranging from 78% to 97%. In order to 

retain conformity of learning context and to avoid introducing confounding 

variables we dropped the last survey administration that took place each 

semester from the analysis.  

4.8.3. Calculating inDegree and outDegree 

Every time a particular student was named by one of his or her peers on 

the social network survey, that student received an inDegree of plus one on a 

given survey administration. For example, in a classroom of six students, 1 – 6, if 

students 1, 2, 3, and 5 mention having a meaningful interaction with student 6, 

then student 6 receives an inDegree of four (see Figure 17). A student’s 

outDegree was calculated simply by adding up the number of peers he or she 

reported having a meaningful interaction with. So as illustrated in this example, 

because student 6 reports having a meaningful interaction with students 1 and 4, 

then student 6 is given an outDegree of two. Note that in this example student 6 
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does not mention having had a meaningful interaction with students 2, 3, and 5, 

though they reported student 6 on their survey.  

 

Figure 17. Example Network to Illustrate 
InDegree and OutDegree. Each circled 
number is referred to as an actor. 
Incoming arrows indicate inDegree and 
outgoing arrows outDegree. Arrows are 
typically referred to as ties or edges. 

In a bound social network where the inDegree and outDegree of every 

actor is known, these two centrality measures are equal across the whole 

network. For every outDegree coming from a “source” actor in the network, there 

is a corresponding inDegree for the “target” actor. Figure 17 helps to illustrate 

this. For example, actor number 5 has an outDegree of two. Each of those ties 

grants actor 4 and 6 with an inDegree of one for a total of two. If the same 

applies to every actor, then the overall network outDegree adds up to the sum of 

the overall network inDegree. This fact is worth mentioning, as our analysis will 

exclude instructors from final calculations of inDegree given that instructors did 

not fill out surveys and therefore would not contribute to students’ inDegree. 

Instructors named by each student will count toward their outDegree calculations, 

but instructors will be removed from the final analyses; the development of 
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instructor centrality is not the focus of this study. We expect the final student 

network to have a higher average outDegree than inDegree. For example, the 

network in Figure 17 has a total inDegree and outDegree of 12, but if we 

consider node 6 as an instructor, we would calculate the network as having a 

total outDegree of 10 and an inDegree of six. 

4.8.4. Using HLM in Longitudinal Data Analysis 

 Standard linear regressions, and other common statistical tools, rely on 

the assumption that data is independently observed. In social science, for 

example, data meets this assumption when a participant’s response to a survey 

question does not depend on the response of any other participant. Longitudinal 

data, by definition, fails to meet this assumption, as an individual’s response on a 

survey item will typically relate in some way to previous responses by that 

individual on the same survey item taken at an earlier date. Not accounting for 

this correlation between individuals’ multiple responses to the same query over 

time could result in compressed standard errors that will ultimately yield 

inaccurate significant results (i.e., Type I error; Hox, 2002).  

 HLM addresses the dependence in longitudinal data by taking into 

account both between person variation (i.e., differences in responses from one 

individual to the next on an item) and within person variation (i.e., differences in 

responses from the same individual on the same item over time). In multilevel 

analyses, like HLM, longitudinal data is treated as multilevel data where 

individuals’ responses to a particular item are nested within the individual. Here, 

we categorize student-level variables, such as gender, as level-2 variables (i.e., 
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between student level variables), and their responses to the same items over 

time as level-1 variables (i.e., within student level variables). Modeling data in 

this way offers a variety of advantages, including robust accounting for either 

fixed or variable temporal spacing of survey administration, growth curves that 

vary according to different participants’ responses, and analyses that better 

handle missing data, particularly when using maximum likelihood estimation 

(Hox, 2002).  

4.9. Description of Models 

We ran several longitudinal growth models using HLM 6 software 

(Raudenbush, Bryk, & Congdon, 2004). Two unconditional models with only 

student centrality as outcomes allowed us to get a baseline reading of lower and 

higher level variance. Model A tested inDegree as an outcome and Model B 

tested outDegree as an outcome. Additional iterations of these models included 

“time” as a predictor of linear and quadratic trends for each respective outcome 

variable. Students’ gender was included as a level-2 predictor. We report on the 

unconditional and final models for each outcome variable.  

We time centered at wave one in order to capture intercepts indicating 

students’ average inDegree and outDegree after the first week of the course. 

Significant time trends indicated whether linear or quadratic growth patterns 

existed with regard to students’ in-class interactions. The inclusion of gender as a 

level-2 predictor revealed whether or not this variable had an effect on student 

centrality at the beginning of the course and on its change over time.  
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4.10. Results 

The unconditional Model A, positing inDegree as the outcome variable, 

identified a grand mean estimate for student inDegree of 3.80 [SE = 0.11, t(140) 

= 33.4, p < .001]. Students were named by their peers approximately four times 

per survey when averaging out data from all collection waves. This analysis also 

indicated a significant amount of level-2 (i.e., student level) variance [σ2 = 1.29, 

X2(140) = 478.6, p < .001], showing us a 95% interval range of 1.57 to 6.03 

student degree across all four collection waves. We used the level-2 and level-1 

variance to calculate an intraclass correlation (ICC) of .39, revealing that 39% of 

the variance in inDegree can be explained at the between student level, and 61% 

at the within student level.  

We found that students had an inDegree of 3.78 on average at the 

beginning of the course [SE = 0.15, t(139) = 25.4, p < .001]. Student gender 

showed no significant relationship with the intercept or growth trends at the α = 

0.05 level, but was meaningfully close (p-value = 0.054). Student inDegree 

centrality did not exhibit a significant linear trend, nevertheless a significant and 

negative quadratic trend was present [Estimate = -0.13, SE = 0.06, t(526) = -

2.16, p < .05]. The population of students exhibited a rapid growth in centrality 

during the first half of the course and then a decrease during the second half 

(see Figure 18).  
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Figure 18. Pattern of quadratic growth of inDegree centrality: showcasing a rapid 

increase during the first half of the course followed by a rapid decrease. 

 Despite these significant results, this more complex model only explained 

about 1% of the level-2 variance identified in the unconditional model [i.e., 

σ2
explained =  (σ2

uncond. - σ2
model)/ σ2

uncond.]. Similarly, the model only explained about 

1% of the level-1 variance identified. This was not surprising, considering that 

gender was not a significant predictor of variance. The ICC continued to indicate 

that 39% of the residual variance in student inDegree remained at the between 

student level, suggesting that other variables beside gender may help to explain 

some of the variance in student inDegree.  

Analyses of Model B addressed outDegree as the outcome variable. The 

grand mean estimate for overall student outDegree across all data collection 

events was 4.94 [SE = 0.22, t(135) = 22.7, p < .001]. Given a significant level-2 

variance component [σ2 = 5.09, X2(135) = 634.5, p < .001], we calculated an ICC 

for this unconditional model of .55, indicating that 49% of the variance in our 

outcome variable can be explained by between student differences and the 

remaining variance by within student differences. We calculated a 95% interval 

range for student outDegree of 0.52 to 9.36. 
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We tested several interim models employing gender and growth as 

predictors of outDegree. Similar to the inDegree model, we found that gender 

does not significantly predict changes in outDegree over time. Students had an 

average outDegree during the first data collection of 4.74 [SE = 0.20, t(134) = 

23.5, p < .001]. Student outDegree exhibited a significant and positive linear 

trend [Estimate = 0.61, SE = 0.29, t(511) = 2.073, p < .05]. The data revealed a 

negative quadratic trend, which suggested that students’ outDegree rapidly 

increased over time during the first half of the course and rapidly decreased 

during the second half of the course [Estimate = -0.20, SE = 0.10, t(511) = -2.13, 

p < .05; see Figure 19]. We calculated an ICC of .50 based on the significant 

level-2 variance [σ2 = 5.14, X2(134) = 637.6, p < .001]. Like the unconditional 

model, this indicates that about 50% of the residual variance in outDegree can be 

explained by between student level variables and the remaining 50% by within 

student level variables. 

 

Figure 19. Pattern of quadratic growth of outDegree centrality: showcasing a rapid 
increase during the first half of the course followed by a rapid decrease.		
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4.11. Conclusion 
 

As befits the use of hierarchical linear modeling, our results offer various 

levels of interpretation. At one level these analyses support the conclusion that 

differences exist in the direction of student interactions that take place in the 

active learning physics classroom. To expand, we found that on average a 

student reported having more meaningful interactions overall (i.e., 4.94) than she 

or he is the subject of (i.e., 3.80). As mentioned earlier, in a closed network 

where all actors and ties are known, the number of incoming and outgoing 

interactions should equal the same number. We would expect these two values, 

even after maximum likelihood estimation, to resemble one another. The 

difference we found exists because of the way we calculated these centrality 

measures. Because students named instructors on surveys and because 

instructors were removed as targets on the final edge list used for calculation, it 

makes sense that additional points of outDegree exist that do not correspond 

with additional points of inDegree. In other words, the missing inDegree value 

represents outgoing interactions occurring with instructors (i.e., professor, TAs, 

LAs). The disparity illuminates student behavior worth examining: only about 

one-fifth of all “meaningful academic interactions” reported by students included 

an instructor.  

This outcome reflects the student-centric nature of the MI classroom. Most 

reported interactions took place with other students, as opposed to instructors. 

This aligns with the goals and intentions of the MI curriculum, which aims for 

student learning to increase through peer-to-peer discourse. This does not 
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necessarily mean that the instructor fails to play a meaningful role. While 

responding to the survey, a student has a much larger pool of peers than 

instructors to name. When considering the ratio of students to instructors 

(approx. 18:1), if one out of every five meaningful interactions takes place 

between a student and an instructor, then we can support the idea that students 

value their interactions with instructors more than they do with peers.  

With that said, the results also point to different primary sources for the 

variances found in inDegree and outDegree. Unlike outDegree scores, InDegree 

scores do not reside directly in a particular student’s control, but rather in the 

perception of that student’s peers. It is therefore worth noting that more of the 

inDegree variance can be explained by between student differences than within 

student differences. That is to say that the perception of a student by his or her 

peers over time dominates changes in that particular student’s inDegree over 

time. A variety of plausible factors could contribute to this (e.g., the perception of 

a student’s popularity, helpfulness, academic mastery). When taking into account 

our research design and self-reported nature of the SNA survey, we expect to 

conclude that the inDegree of students in our study depended more on peers’ 

perception than on characteristics inherent to the students themselves (e.g., 

gender). That is not to say that these factors do not play major roles in 

contributing to students’ centrality, but the analyses indicated that their effect is 

likely indirect through the mediation of peers’ perceptions.  

Variance in outDegree, on the other hand, was found to be about the 

same at the between and within student level. How often students interacted with 
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peers or reported having meaningful academic interactions with peers could be 

explained by characteristics of the students, as well as changes in students’ 

behavior over time. We should take note that we only examined one between 

student level variable—gender. In our case, gender was not a significant 

predictor of inDegree and outDegree, nor of their longitudinal development. 

Identifying as either male or female did not contribute differentially to students’ 

academic interactions. Yet, we should also take note of the borderline 

significance of student gender on linear growth of inDegree centrality, suggesting 

that female students may be reported less often than their male counterparts as 

someone with whom peers have meaningful academic interactions. 

 The results of our HLM models indicate that both of these centrality 

measures (i.e., inDegree and outDegree) exhibit significant negative quadratic 

growth patterns. Thus the number of interactions reported (and received) 

increase rapidly throughout the first half of the semester and decrease during the 

second half of the semester. We, therefore, see a complex pattern of interactions 

taking place in this active learning, introductory physics course—the rate of 

outgoing and incoming interactions changes from positive to negative as the 

semester progresses. Bruun and Bearden (2014) found a strikingly similar 

pattern of student social behavior using a different set of analyses in introductory 

physics courses at the University of Copenhagen.  

When thinking about plausible mechanisms that may drive the rates of 

interactions among students, one possibility lies in the curriculum itself, soliciting 

different kinds and types of interactions. The consistency of the MI curriculum 
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with regard to patterns of activities and assignments belies the changes in 

patterns of reported interactions. The curriculum itself does not change 

significantly such that more interactions are required or solicited at the beginning 

of the semester than at the end or vice versa. Instead the collaborative “level” of 

the activities remains the same: activities happen in groups of three, which then 

report out to a larger group of approximately 20 students. Therefore it is unlikely 

that curriculum is the driver of behavior change. We also note that the grand 

average inDegree and outDegree are greater than two (i.e., 3.83 and 4.98, 

respectively), which indicate that students are part of meaningful academic 

interactions that include students outside of the two other members in their 

designated groups. This finding suggests that students find value in interactions 

that extend beyond those that take place with their immediate group members, 

and the MI environment presents several opportunities, both structured and 

unstructured, for these additional interactions to take place.  

Possible explanations for the presence of this behavior may be found in 

cultural and social capital theory (Bordieu, 1986), which supposes that 

interactions with individuals in class may result from a search to increase capital 

with which to accomplish a goal or sets of goals. In the classroom setting, we can 

reasonably assume that the goals of most students include understanding the 

material and/or successfully completing the course. Increases in peer 

interactions beyond those in students’ immediate, three-person group may reflect 

their seeking of cultural capital to aid in accomplishing classroom related tasks 

that help them achieve their goals. By design, in a constructivist learning 
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environment, cultural capital (i.e., the information needed to achieve goals) 

reside with peers, hence students’ need to make social connections with others 

in order to gain access to this capital. The early growth of academic interactions 

supports the idea that students seek to increase their capital. Students, indeed, 

report interacting with an increasing number of peers during the first half of the 

course. This is not a reflection of simply meeting new people as a result of 

changes in group assignments; regardless of who students are assigned to work 

with, the groups always have two members, and therefore, if their meaningful 

interactions occur only in this small group setting, then their inDegree and 

outDegree should remain at just two at most, regardless of the identity of those 

two individuals. But this is not what occurs. Students are interacting with others 

beyond those in their small groups, and the number of those meaningful 

interactions continues to increase throughout the course. These interactions 

require time and attention that might detract from students’ immediate goals 

(e.g., successfully completing an activity worksheet), but because they occur and 

because students find them meaningful and academic, we could reasonably 

assume that students value the capital gained from those interactions and 

therefore the investment of their time and attention is aligned with and supports 

the accomplishment of their goals.  

We must also consider that although students report interacting more as 

the course progresses, the rate of this increase changes after the first half of the 

course. We believe this could reflect a certain contentment students achieve with 

their social capital where they have acquired that which helps them achieve their 
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goals and/or they no longer see the investment they have to make to build capital 

as worthwhile. This decreasing rate of interactions seen during the second half of 

the course may also be related to students perceiving a kind of social saturation 

in terms of the number of people in the class they believe can help them achieve 

their goals. Toward the end of the semester students have had a chance to 

interact with many, if not all of their peers, and form perceptions of who they want 

to interact with for academic purposes. Having gotten a sense of who is in their 

class, however shallow a process, they may limit their search for capital to those 

they believe would help them most. This aligns with social network analysis that 

indicates that in certain social and educational settings, the quality8 of ties 

matters more than the quantity (Siciliano, 2016). In short, we find that students 

made important connections with peers primarily during the first half of this active 

learning introductory physics course—more so than during the second half of the 

course. Thus, interventions aimed at helping students forge connections with 

resourceful peers should target this critical time period.  

While we find informative trends in the patterns of interactions between 

students, much of the variance in student responses is left to be explained. 

Despite the findings of growth, the unexplained variance our models reflects the 

inability of the gender variable to predict variance in student centrality over time. 

This confirms what we have seen in past research on MI environments and the 

relationship of gender with social network metrics (Dou et al., 2016; Williams, 
																																																								

8 We should point out that this quality, which students enact in their interpretation of the 
phrase “meaningful academic interaction,” is expressed exclusively from the point-of-view of the 
student. 
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Brewe, Zwolak, & Dou, 2015; Zwolak et al., 2017). Future studies should 

examine other factors, such as student progress in a course, which may serve as 

better predictors of social behavior, given that these could point to highly 

resourced individuals.  

Nevertheless, the purpose of this study was not to determine whether 

particular variables predict variance in the development of centrality, but rather 

we sought to execute a preliminary step, which was to determine whether 

development in social behavior takes place over time in a relatively large active 

learning science course. The insight gained from analysis of students’ academic 

social networks will hopefully lead to better understandings of how the classroom 

interface helps them integrate with the social fabric of a university, a factor 

particularly important for student persistence (Nora, 2003; Tinto, 1997). This is 

especially true at HSIs like FIU and in introductory, gatekeeper courses, which 

are crucial requirements for STEM majors and often mark students’ first foray 

into their career (Crisp, Nora, & Taggart, 2009). 

The current study represents not only an example of the value that comes 

from using the tools of social network analysis to examine various outcomes that 

result from interactions in active learning courses, but also one of the first 

longitudinal examinations of social development in an introductory physics 

classroom using the tools of SNA. Disseminating and incorporating these 

techniques and others, such as latent growth modeling, will help move the field 

forward, especially in an era when more educators are adopting the call to foster 

interactive learning environments. This could one day lead to generating social 
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interventions that take place during or prior to a course with a purpose to help 

students maximize both their academic and affective outcomes as a result of the 

social framework set in place by the instructor and the curriculum.  
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CHAPTER 5  
CONCLUSIONS 

 
5.1. Summary   

 During my first year as a graduate student I extended past results of the 

work done by the physics education research (PER) group at FIU to show that 

despite significant differences in students’ peer-to-peer connections, both 

students in lecture-based and active learning physics courses exhibited positive 

associations between their network centrality and their physics self-efficacy (Dou 

& Brewe, 2014). Here commenced my examination of academic interactions that 

take place in active learning physics courses, and equally important, my 

understanding of social network analysis (SNA) as a tool to unravel some of the 

unknowns that exist surrounding peer-to-peer discourse.  

 The studies presented in this dissertation represent further advancements 

in our use of SNA in PER. While the techniques may not be new to social 

network analysts, they are relatively new to education researchers, particularly 

physics education researchers. Three major statistical applications involving SNA 

are present in my work: (a) linear regressions, (b) structural equation modeling, 

and (c) hierarchical linear modeling. Each of these presented challenging 

methodological obstacles, and forced me to think deeply about the interpretation 

of the outcomes resulting from the application of SNA. It was important to 

understand what network measures, like PageRank, mean in a real-world sense; 

oftentimes I could turn to social network analysts outside of PER to answer these 

questions, but in some cases I designed unique approaches.  
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Given my application of SNA, this dissertation provides a new perspective 

about student participation in the MI introductory physics classroom. Most salient 

across the three papers is the prominent role of recognition9 from other 

students—that is to say the perspectives and judgments peers develop toward 

one another. This finding became evident in a variety of ways: (a) the predictive 

value of PageRank centrality, (b) the rise and fall in the growth rate of student 

centrality over the course of a semester, (c) the great amount of variance in 

student inDegree centrality explained by the perception of any particular 

student’s peers, and (d) analyses showing that students’ inDegree at the end of 

the first semester do not correlate with their inDegree at the start of the second.  

 To explain the main idea highlighted in the previous paragraph we must 

keep in mind the predictive power of centrality with regard to student self-

efficacy. Overall self-efficacy was not predicted by student inDegree or 

outDegree. In other words, the number of interactions reported by students (i.e., 

outDegree) and the number of times students were reported by peers did not 

improve their confidence in their ability to perform physics related tasks. On the 

other hand, students who had higher PageRank centrality were more likely to 

have greater overall self-efficacy at the end of the course, even when controlling 

for their self-efficacy at the start of the course. A student’s PageRank does not 

increase by reporting more peers, but rather by being reported by peers, and not 

just any set of peers, but popular peers as defined by the peers’ inDegree. When 

																																																								
9 Here I use recognition as the internal judgments people make about the abilities or 
resourcefulness of those around them, and not necessarily a judgment about the community 
belongingness or identity of those people. 



	 152 

a student interacts with peers that others find as meaningful resources, 

particularly when those resourceful peers recognize that student as someone 

they had meaningful interactions with, both the student’s perception of his or her 

content mastery and his or her overall self-efficacy was more likely to be higher 

at the end of the semester (see Chapter 2). It may be that mastering content 

and/or having high self-efficacy makes one more likely to be the subject of 

someone’s meaningful interaction, or vice versa (this research does not answer 

that question), but getting that attention from others, especially academically 

popular others, was shown to be positively associated with students’ perceptions 

of their personal abilities. But to get that attention in the first place required being 

perceived by those academically popular peers as someone who contributed to a 

meaningful interaction.  

I found that MI students did not interact with just the peers in their 

immediate small group, but reached out to others outside of that group (see 

Chapter 4). The studies also showed students went about selectively 

participating in interactions in purposeful ways, since we find that the rate of 

those interactions is not stable but increases and decreases despite the stability 

of the curriculum and the learning environment (see Chapter 4). If interaction rate 

was random at any given moment (i.e., not purposeful) then we would see no 

particular patterns of growth over the course of a semester. The agency that 

students have in the classroom to initiate or be a part of these interactions 

implies that they are thinking about whom they are interacting with. This requires 

students making judgments about their peers that likely include a perception of 
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their academic fortitude, especially in light of the phrasing of the survey question 

(i.e., “choose from the presented list people from your physics class that you had 

a meaningful interaction with”).  

In support of the idea that students’ centrality is a factor of the perceptions 

their peers have of them, we can turn to some of the outcomes of the 

unconditional HLM models (see Chapter 4). Specifically, the results showed that 

the variance in student inDegree over time resides primarily (though not 

exclusively) on student-level factors. This highlights the uneven distribution of 

inDegree among students in the classroom. This uneven distribution is a result of 

the perception of the peers that surround students. The reason for this resides in 

the nature of inDegree as a passive metric—an actor or node is dependent on 

the behavior of others for their inDegree. On the other hand, the variance in 

outDegree lies primarily at the student-level, which makes sense given that this 

active metric depends primarily on the behavior of the student. Recent studies in 

the MI environment supports this, showing that a student’s outDegree at the end 

of semester one predicts their outDegree at the beginning of semester two if the 

student continues with the MI course sequence (Zwolak, Dou, Williams, & Brewe, 

2017). This aligns with outDegree being a metric more closely related with the 

student. A student’s inDegree at the end of semester one does not predict that 

student’s inDegree at the start of semester two, which aligns with inDegree being 

a metric more dependent on the perception of others10 than on the student.   

																																																								
10	We could reasonably assume that students at the beginning of a course have not had enough 
time interacting with one another to make judgments about or develop perceptions of their peers.  
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 In summary, the value of centrality as predicting self-efficacy is only 

available to those students whose peers recognize as valuable resources. The 

environment generated by MI fosters these kinds of judgments by requiring 

students to present results of work to one another in both small group and large 

group settings. The exchanges between students before class, after class, and 

those unrelated to academic content likely serve as additional sources that 

contribute to the formation of these judgments. To be clear, these are judgments 

and perceptions formed by peers that may not necessarily align with pragmatic 

standards. The peer perceived as being an academic resource does not 

necessarily need to have a passing grade in the class if she or he can create that 

perception in other ways. 

 I should note that in the case of physics interest, PageRank centrality 

offers no direct value (see Chapter 3). The development of physics interest over 

the course of the MI curriculum relies heavily on students’ physics interest at the 

start of the semester. Students with already high physics interest will leave with 

high physics interest; the opposite is also true. This interest does not correlate 

with students’ overall PageRank centrality. So, the academic perception that 

students have of their peers may only matter with regard to specific outcomes, 

like self-efficacy. Using this lens, it is worth examining additional outcomes. For 

example, student persistence as defined by passing MI semester one and 

enrolling in MI semester two is positively predicted by inDegree and outDegree 

centrality, as well as “closeness” centrality (Zwolak et al., 2017). Varying 
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measures of centrality that encompass different kinds of social interactions may 

differentially predict student outcomes.  

5.2. Future Directions in Active Learning Frameworks: Learning as Capital 

 Early studies examining the MI introductory physics course used 

“participationist” frameworks to interpret student behavior and outcomes (e.g., 

Brewe et al., 2010; Brewe, Kramer, & O’Brien, 2010), but the works collected in 

this dissertation point to the need for either a different or expanded framework. 

The participationist framework worked well in that it aligned with constructivist 

views of learning—the same views that supported the development of MI (Brewe, 

2008; Desbien, 2002). Participationists view people’s attitudes about learning as 

fitting within one of two conceptual models referred to as the “acquisition 

metaphor” and the “participation metaphor” (Sfard, 1998). The acquisition 

metaphor encompasses traditional pedagogies of learning that view knowledge 

as an object that the “knowledge-holder” transfers to recipients as one might 

transfer a gift to a friend. In this scenario, persons acquire knowledge passively 

through reading or listening. On the other hand, adherers of the participationist 

view believe that learning occurs when learners actively participate in authentic 

practices11 that generate knowledge. This often requires interacting with others. 

Learning then results as an outcome of these interactions, and encompasses not 

simply the data or bits of information about a particular subject, but also skills in 

and even dispositions toward a subject matter. This framework has helped us 

																																																								
11	It is worth noting that participationists present their framework as a contrast to lecture-based 
conceptions of learning. 	
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interpret the findings in this dissertation, relating social integration (i.e., centrality) 

to learning. Yet, this framework fails to capture the cost and value of participation 

from the perspective of the students, as well as the barriers to participation that 

exist in the physical and social environment outside of the students’ jurisdiction. 

 Student participation in active learning environments comes at a cost. 

Carlone’s (2004) examination of high school physics students showed that 

students who held strong beliefs about being perceived as “good students” 

resisted interactive learning pedagogies. Their discomfort and unfamiliarity with 

the teaching approaches made them apprehensive, unsure about their ability to 

maintain their good student identity in an unfamiliar context. Their behavior 

reflected that. Similar outcomes have been measured in reformed, 

undergraduate physics courses (Turpen & Finkelstein, 2010). The examinations 

of students in MI described in this document insinuate that the cost may be more 

extensive than just discomfort. Students leave feeling less confident in their 

physics skills than they felt when they started the semester (see Chapter 2). 

They also end the semester less interested in physics overall (see Chapter 3). 

Both anecdotal and student interview data affirm some students’ discomfort with 

the classroom structure, citing participation in large-group meetings and group 

examinations as anxiety inducing experiences. The participationist framework 

falls short of taking into account these costs that students perceive—consciously 

or unconsciously. Some may want to participate, but do not want to pay the price 

(e.g., exposing the vulnerabilities of their good student identity to peers, having 

experiences that make them feel less confident). Others may not recognize the 
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advantages of participation (e.g., deeper understanding of the content; Brewe et 

al., 2010), while others may simply not know how to develop advantageous 

social networks. These scenarios are neither complete nor exhaustive, but point 

to the need for a more comprehensive framework that will help researchers make 

better sense of student participation in active learning courses. 

 To help bridge this gap, I suggest incorporating the capital theories 

described by Bourdieu (1986), in particular those of social and cultural capital. 

Bourdieu describes social capital as a person’s ability to mobilize their social 

network to accomplish particular goals. This requires both a broad, expansive 

network, but also one whose members have their own forms of capital to help 

any particular member achieve their ends. Cultural capital takes on many forms 

and includes the norms, mannerisms, and dispositions of certain social networks 

that allow one access to those networks. This type of capital also includes 

objects such as books, instruments, pictures, and other material that grant the 

holder an advantage over others in a particular context.  

Both social and cultural capitals play a role in the MI classroom (see 

Chapter 4). Because learning is specifically structured so that it occurs primarily 

through interactions with peers rather than the instructor, then students who have 

access to larger social networks of peers (i.e., social capital), as well as those 

whose network of peers includes those who have mastered the norms and 

mental dispositions required to succeed in the course (i.e., cultural capital), stand 

at an advantage over those that do not. These advantages help to waylay the 

costs of participation, and maximize its benefits. While more work needs to be 
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done to better integrate these principles of capital theory into our understanding 

of student participation in active learning courses, some of it has already begun 

(e.g., Abassi et al., 2014; Siciliano, 2106).  

5.3. Directions for Future Work  

 Future studies of active learning curricula should further explore the costs 

of student participation. One line of research could include deepening our 

understanding of both the specific contexts that trigger student anxiety and 

discomfort and the types of students more prone to experience anxiety. For 

example, Carlone’s (2004) work showed that students with growth mindsets were 

more resilient to changes in the classroom structure and had more positive 

dispositions toward reformed styles of learning. Recognizing the kinds of 

students more prone to experience anxiety and resist the curriculum could help 

researchers find methods to mitigate those emotions and behavior. This might 

include something as simple as letting students know what they might experience 

prior to the start of the course, or better framing the role of error-making as the 

context for learning rather than self-valuing. Similarly, illuminating the structures 

in MI and other active learning courses that cause anxiety would help 

researchers develop interventions or alternate designs of those activities that 

would alleviate any negative effects. Other research directions could include 

testing interventions related to the social structure of the classroom—a kind of 

social engineering. If we can better help students develop the social capital 

needed to succeed, we may facilitate participation and positive outcomes. This 

might involve developing student assessments that aid professors in assigning 
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members to different student groups, or creating online tutorials that promote 

particular norms surrounding classroom socialization.   

5.4. Implications of This Research For the Teaching Enterprise 

The active learning environment encompasses the bulk of 

recommendations made by experts for the advancement of STEM education at 

both the K-12 and undergraduate levels (NRC, 2012, 2013). Yet, not all active 

learning is created equal. Its characteristics play out differently across settings 

and contexts. For example, a rural middle school in Utah may find its students 

building aluminum foil boats to better understand the principles of buoyancy, 

while a high school classroom in Florida might spend part of a month combing 

through spectrograms for a citizen science project on gravitational waves. The 

same applies at the university setting. A physics faculty member may ask 

freshmen to collaborate with neighbors to solve clicker questions, while a biology 

instructor encourages participation in peer-led learning groups. What these 

activities have in common, regardless of the grade level, activity, or subject area, 

is the involvement of students doing something with peers for the purpose of 

learning. Active learning cannot be defined by a set of curricular structures; it is a 

philosophy, a mindset, a completely different attitude about how people learn—

an attitude that places the onus for learning on the learners, as opposed to the 

teacher. The participationists put it this way: 

…learning a subject is now conceived of as a process of becoming a 

member of a certain community. This entails, above all, the ability to 

communicate in the language of this community and act according to its 
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particular norms. The norms themselves are to be negotiated in the 

process of consolidating the community. While the learners are 

newcomers and potential reformers of the practice, the teachers are the 

preservers of its continuity. From a lone entrepreneur, the learner turns 

into an integral part of a team. (Sfard, 1998, p. 6) 

With this approach to learning in mind, a whole new set of issues arises. 

Rather than having to worry about keeping a lecture interesting so students 

remain awake, or remembering to repeat facts several times to help students 

memorize them, teachers must now keep in mind the stumbling blocks of active 

learning. The work represented in this document highlights some. Teachers 

should understand that participation in active learning requires students to make 

themselves vulnerable to the judgments of others, as well as requires them to 

seek out resourceful individuals that could help them make progress in the 

course. Those who struggle with those activities will find themselves struggling to 

learn, potentially feeling less confident in their abilities, and losing interest in the 

subject matter.  

Teachers can battle these costs. As the facilitators of learning, as well as 

the shepherds of cultural capital, setting the norms by which success gets 

measured, educators could alleviate the anxiety or social pressures that come 

with participating in active learning. They can help students preempt the negative 

feelings they may experience; they can encourage students to welcome and 

initiate interactions in a non-threatening manner; they can define the rules of the 

classroom, which include how success will measured. What I believe is of great 
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consequence, teachers can set the assessments by which students judge their 

progress and the progress of their peers. Assessments should align with the 

goals and intent of the curriculum. If assessment is about learning and not about 

memorizing facts within a certain period of time, then students should be allowed 

to resubmit work for reevaluation, for example. This will encourage students to 

take more social and academic risks that can lead to meaningful learning (Gee, 

2003).  

So much about the costs and benefits of active learning requires deeper 

understanding through additional research, but in short, educators should keep in 

mind that no approach exists without pitfalls. Active learning is not a panacea. 

The students themselves bring personalities and experiences that contribute to 

the learning environment in ways that teachers could not plan for. Indeed, the 

factors that make a great learning experience extend beyond simply offering 

students active learning activities.  

5.5. Final Remarks: Focusing on Active Learning Environments 

 When presenting at conferences, getting feedback from reviewers, or 

speaking to other science education researchers about my work, I often get 

asked the same question: how do your results look compared to students in 

lecture-based physics classrooms? The reasons why people ask me this 

question hearken back to decades of school tradition and learning research. For 

a long time now education researchers have fought a battle against the popular 

behaviorist pedagogies of the past, promoting repetition, reinforcement, 

punishment, and recall through rote memorization (Schunk, 2012; Skinner, 
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1950). Of course, other, more experiential learning strategies existed and were 

made popular by people like John Dewey and his proponents, but the Industrial 

Revolution and the culture of mass production that took hold of developed 

countries in the early 20th century found its way into our schools (National 

Research Council [NRC], 2000). We believed that students were made up of raw 

materials, which given the right set of stimuli could produce armies of educated 

young people. And what better way to create this army of knowledgeable 

individuals than by pouring knowledge directly into their minds? Lecture-based 

teaching soon beat out the competition as the most efficient tool to transfer 

information from the minds of the experts to the students. We could pack 

auditoriums full of hundreds of students at a time, tell them all we want them to 

know, and they will leave knowing those things. Unfortunately, that did not play 

out well for most students. 

 The latter half of the 20th century exponentially expanded our 

understanding of the mind. Piaget, Vygotsky, Bruner, Papert, and a myriad of 

other learning researchers made tremendous headway, revealing the intricacies 

of cognitive development. Yet, by this time, the machine of education had made 

a practically indelible mark. The fight against the behavioral tradition of education 

and the pragmatism of lecture—not to mention its cheap cost and low amount of 

effort required on the part of the expert—would not be easily won. Fortunately, 

for those of us in the United States entrenched in science, Russia beat our 

country to space with the launch of Sputnik. This put our nation on alert, pushing 

us to get the “best” children through careers in science, math, and engineering. 
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With the advent of the National Defense Education Act of 1958, federal funding 

found its way into the hands of science education researchers, while at the same 

time psychologists were figuring out how people learn. Through a long, slow 

process, these events led some in our country to recognize that if we want to 

remain economically and technologically competitive as a nation, we cannot just 

push the “best” students into engineering and science careers; we need to 

prepare “all” students, and inspire as many as possible to pursue these fields. To 

do so would require moving beyond the traditional methods we used in 

classrooms, and offer students authentic, sociocultural, context-situated, active 

learning experiences (National Commission on Excellence in Education, 1983; 

NRC, 2000, 2010, 2011, 2012, 2013; PCAST, 2010). 

 Loosening the historical grip of the lecture-based teaching culture required 

researchers to compare active learning strategies to lecture-based approaches. 

Time and time again, active learning, even when broadly defined, beat out 

lecture-based learning on a myriad of outcomes. To list these studies would be 

futile, as there are literally hundreds, but many of them are referenced in the 

National Research Council reports cited here. For me, what put the final nail in 

the coffin, particularly in the realm of science, technology, engineering, and 

mathematics (STEM) education was Freeman et al.’s (2014) paper, which 

appeared in the Proceedings of the National Academy of Sciences. This meta-

analysis of 225 studies clearly demonstrated that students taught using active 

learning strategies (e.g., group problem-solving, tutorials, clicker questions, 

studio course designs) outperformed students in equivalent lecture-based 
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courses on concept inventories and exams. The authors concluded with a 

provocative remark: 

If the experiments analyzed here had been conducted as randomized 

controlled trials of medical interventions, they may have been stopped for 

benefit—meaning that enrolling patients in the control condition might be 

discontinued because the treatment being tested was clearly more 

beneficial. (p. 8413) 

 Around the time of the publication of Freeman et al.’s (2014) paper, I was 

halfway through my first year of graduate school and solidifying my dissertation 

research direction. I made a conscious decision then to study the active learning 

environment sans any comparisons to lecture. In my mind, comparing active 

learning to lecture was akin to comparing the benefits of being vaccinated over 

not being vaccinated. There was no need for me to restate what hundreds of 

others had already made clear. Instead, it became my goal to further examine 

active learning in and of itself, which brings us back to the earlier question. I 

never purposed to compare the Modeling Instruction (MI) physics curriculum to 

lectured-based instruction. As mentioned in Chapter 4, some may be tempted to 

do this, especially in light of some of the less than positive findings, such as 

students’ drop in physics interest and self-efficacy (see Chapters 2 & 3). Some 

may even suggest I should say something like, “Even though students are less 

interested in physics at the end of this active learning course, they are much less 

interested in physics at the end of a lecture-based course.” But this mentality 

keeps us in the past. Of course active learning courses have tremendous 
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advantages over traditional courses. What we need to do now is explore these 

new methods of teaching and learning, find their strengths and weaknesses, and 

continually improve them by helping educators, administrators, and policymakers 

adopt new mindsets about how people learn.  

 The three studies in this dissertation contribute to our advancements in 

science course development by exposing the social curriculum of classroom. 

Indeed, active learning environments tend to foster students interactions. The 

interactions are often structured in a way that will help students learn, and while 

research does show that students’ academic performance increases as a result 

of these pedagogies, other outcomes may suffer (e.g., self-efficacy). In light of 

the findings in this volume, educators and administrators should think more 

purposefully about the social environment generated by these more progressive 

pedagogies and its effects on students (i.e., the social curriculum). We should not 

take for granted the norms students set with regard to their interactions, but 

rather scaffold these so as to maximize positive outcomes for all.  
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