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Highlights 

- A new protocol for fast separation and quantification of JH III from biological samples using 

liquid chromatography coupled to electrospray tandem mass spectrometry is described.  

- the proposed protocol improves existing methodologies by combining a limited number of sample 

preparation steps with fast LC-MS/MS detection, providing a 8 pg/mL (0.32 pg on column) limit 

of detection (15-fold gain in sensitivit) with high inter and intraday reproducibility.  

- A detailed description of the JH III fragmentation pathway is provided for the first time, based on 

isolation of the molecular ion and their intermediate fragments using in-source MS/MS, MS/MS
n
 

and FT-ICR MS/MS measurements. 

- The performance of the LC-MS/MS protocol is comparable to previously described JH III 

quantitation protocol based on fluorescence detection, with the added advantage that 

quantification is independent of the availability of fluorescent tags that are often unavailable or 

show quite diverse responses on a batch-to-batch basis.  

- The JH III workflow was evaluated as a function of developmental changes, sugar feeding and 

farnesoic acid stimulation in mosquitoes.  

 

*Highlights (for review)



*Graphical Abstract (for review)
Click here to download high resolution image
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ABSTRACT 12 

In the present work, a new protocol for fast separation and quantification of JH III from 13 

biological samples using liquid chromatography coupled to electrospray tandem mass 14 

spectrometry is described. In particular, the proposed protocol improves existing methodologies 15 

by combining a limited number of sample preparation steps with fast LC-MS/MS detection, 16 

providing lower limits of detection and demonstrated matrix effect control, together with high 17 

inter and intraday reproducibility. A limit of detection of 8 pg/mL (0.32 pg on column) was 18 

achieved, representing a 15-fold gain in sensitivity with respect to previous LC-MS based 19 

protocols. The performance of the LC-MS/MS protocol is comparable to previously described 20 

JH III quantitation protocol based on fluorescence detection, with the added advantage that 21 

quantification is independent of the availability of fluorescent tags that are often unavailable or 22 

show quite diverse responses on a batch-to-batch basis. Additionally, a detailed description of 23 

the JH III fragmentation pathway is provided for the first time, based on isolation of the 24 
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molecular ion and their intermediate fragments using in-source MS/MS, MS/MS
n
 and FT-ICR 25 

MS/MS measurements. The JH III workflow was evaluated as a function of developmental 26 

changes, sugar feeding and farnesoic acid stimulation in mosquitoes and can be applied to the 27 

detection of other juvenile hormones.  28 

Keywords: Juvenile hormone III, Liquid chromatography, MRM, quantification, 29 

extraction.  30 

INTRODUCTION 31 

Juvenile hormones (JHs) are synthesized by the corpora allata (CA) and play key roles in 32 

many processes in insect development and reproduction, including inhibition of metamorphosis, 33 

caste determination and differentiation, stimulation of flight and migration, stimulation of 34 

reproduction, regulation of diapause, stress resistance, and aging[1-6]. Several JHs have been 35 

identified and characterized in insects, with JH III being the most widespread[7-9, 6]. A common 36 

structural feature for all JHs is the presence of an epoxide group near one end and a methyl ester 37 

on the other. JH titers in small insects are often in the femtomole to picomole range, which 38 

makes it challenging to detect by most typical analytical techniques[10-14].  39 

The most widely used analytical methods for identification and detection of JHs include 40 

nuclear magnetic resonance (NMR), infrared spectroscopy (IR), and gas chromatography (GC)–41 

mass spectrometry (MS) [14-19]. During GC-MS, fragment ions from the electron or chemical 42 

ionization process are typically used to identify the JH molecules; however, this analysis 43 

typically requires lengthy preparation steps[20, 19, 21-23]. More recently, several studies have 44 

shown the advantages of a number of additional techniques for the identification and 45 

quantification of JHs, such as direct analysis in real time-MS (DART-MS), high performance 46 

liquid chromatography-MS/MS (HPLC- MS/MS), HPLC with fluorescence detection (HPLC-47 

FD) and ultra-performance liquid chromatography-MS (UPLC-MS)[18, 24-32]. A variety of 48 

ionization sources have been utilized prior to the MS analysis, such as electrospray ionization 49 

(ESI), atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization 50 

(APPI) and atmospheric pressure thermospray ionization (APTSI); allowing the detection of the 51 

JH III molecular ion in the protonated and sodiated forms[33]. While some studies showed the 52 
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advantages of using the sodiated species for quantification in single ion monitoring mode (SIM), 53 

only the protonated species allowed for multiple reaction monitoring (MRM)[25]. 54 

In the present work, we describe an extraction protocol followed by an HPLC-ESI-55 

MS/MS analysis that increased sensitivity and reproducibility, while reducing the analysis time 56 

for JH III detection in mosquito samples. The features of the method proposed are compared 57 

with previously established MS- and FD-based methods. Additionally, a detailed description of 58 

the fragmentation behavior of JH III [M+H]
+
 molecular ion is described for the first time. 59 

MATERIALS AND METHODS 60 

Materials and reagents 61 

Certified standard solutions for JH III and its deuterated analog (JH III-D3) were 62 

obtained from Toronto Research Chemicals (Toronto, Canada). Sodium chloride, potassium 63 

chloride, hydrochloric acid, sodium hydroxide, ammonium acetate, ammonium formate and 64 

ammonium hydroxide salts were analytical grade or better (Fisher Scientific, Pittsburgh, PA). 65 

Water, methanol, hexane and acetonitrile were all Optima grade or better (Fisher Scientific). 66 

Chromatographic mobile phases (0.1% formic acid in water, and 0.1% formic acid in 67 

acetonitrile) of Optima LC-MS grade were also purchased from Fisher Scientific, and used as 68 

received. Tissue culture media Gibco M-199, silanized LC vials and silanized LC vials with 69 

fused 250 µL inserts were also purchased from Fisher Scientific. The tuning mix calibration 70 

standard (G24221A) was obtained from Agilent Technologies (Santa Clara, CA). 71 

Sample preparation and storage 72 

Biological samples were prepared following the protocol described in Figure 1. Briefly, 73 

preparations were of intact corpora allata-corpora cardiaca (CA-CC) complexes connected to 74 

the brain and head capsule, and are denoted as BR-CA-CC complexes. BR-CA-CC were 75 

dissected in a drop of mosquito saline-buffer  containing 138 mM NaCl, 8.4 mM KCl, 4 mM 76 

CaCl2, 12 mM NaH2PO4 and 42.5 mM sucrose[34]. After dissection, the BR-CA-CC complexes 77 

were incubated in 150 µL of tissue culture media M-199, containing 2% Ficoll 400 and 50 µM 78 

methionine. Incubations of BR-CA-CC complexes were carried out in a humid chamber in 79 

silanized 2 mL vials for 4 h in the dark at 32°C, and under continuous gentle agitation. After 80 
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incubation, 10 µL of 6.25 ppb JH III-D3 in acetonitrile were added to each sample, followed by 81 

600 µL of Hexane. Samples were vortexed for 1 minute, and spun for 5 minutes at 4
o
C and 2000 82 

g. The organic phase was transferred to a new silanized vial and dried under nitrogen flow. Dried 83 

extracts were re-suspended in 100 µl of acetonitrile, vortexed 1 minute, transferred to a new 84 

silanized vial with a fused 250 µL insert and stored at -20
o
C. 85 

Mass Spectrometry Analysis 86 

The mass spectrometry analyses were carried out in-house using HPLC-MS/MS. Briefly, 87 

sample injections (40 µL) and LC separations were performed by a Prominence LC-20AD Ultra-88 

Fast Liquid Chromatograph (Shimadzu, Kyoto, Japan), equipped with a Dionex Acclaim 120 89 

C18 Column (250x2.1 mm, 5 µm) obtained from Thermo Scientific (Sunnyvale, CA). Column 90 

temperature was kept at 40°C. A 15 minutes binary gradient program between 0.1% formic acid 91 

dissolved in water (mobile phase A) and 0.1% formic acid dissolved in acetonitrile (mobile 92 

phase B) was run according to the following timetable: hold 5% B for 0.5 min; ramp to 98% B in 93 

7.5 min; hold 98% B for 3 min; return to 5% B in 0.5 min; hold 5% B for 3.5 min. Flow rate was 94 

constant at 0.8 mL/min. Detection was performed by a QTRAP® 5500 triple quadrupole mass 95 

spectrometer (AB Sciex, Ontario, Canada) equipped with a Turbo V™ ion source. The mass 96 

spectrometer was operated under ESI positive mode ionization with multiple reaction monitoring 97 

(MRM) of two transitions per compound. MRM detection and electrospray source parameters 98 

were optimized by infusing 1 mg/L solutions of each compound in 0.1% formic acid in 99 

acetonitrile. Source parameters were: curtain gas = 10 psi; spray Voltage = 5000 V; temperature 100 

400°C; ion source gas 1= 40 psi; ion source gas 2= 50 psi; entrance potential = 7.0 V. MRM 101 

transitions parameters are listed in Table 1.  102 

JH III and JH III-D3 chemical structures and purities were confirmed by MS/MS and 103 

accurate mass measurements using Fourier transform ion cyclotron resonance-MS (nanoESI-FT-104 

ICR MS). In-source fragmentation and MS/MS
n
 capabilities in the QTRAP® 5500 triple 105 

quadrupole mass spectrometer (AB Sciex, Ontario, Canada) were used to determine the 106 

fragmentation pathways of JH III and JH III-D3 (see Table 1 and 2). nanoESI FT-ICR MS/MS 107 

experiments were performed in positive ion mode in a 7T Solarix FT-ICR MS spectrometer 108 

(Bruker Daltonics, Inc., Billerica, MA). Ion transmission was optimized for high sensitivity for 109 

JH III and its fragments in the m/z 100−300 range. Ions were accumulated in the collision cell (2 110 
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MHz, 1000 Vpp) for 4s. FT-ICR MS spectra were acquired over 200-time domain acquisitions at 111 

2 Mword (1 s transient). FT-ICR signals were processed using a half-sine apodization followed 112 

by Fast-Fourier transform and broadband phase correction (absorption spectra using absorption 113 

mode processing, AMP), resulting in a 2-fold increase in mass resolution. 114 

RESULTS AND DISCUSSION 115 

The main aim of this study was to develop a protocol for fast and accurate measurement 116 

of JH III from biological samples using mass spectrometry. In particular, our efforts were 117 

focused on: 1) minimizing the number of steps during sample preparation prior to the MS 118 

analysis, 2) developing a fast LC-MS/MS protocol, 3) improving sample storage protocols, 4) 119 

evaluate inter and intraday analysis variation, 5) refining the interpretation of the JH III MS/MS 120 

fragmentation pathway, 6) enhancing limits of detection while reducing matrix effects, and 7) 121 

comparing the performance with a previously utilized JH III quantitation protocol based on 122 

fluorescence detection[30].  123 

Mass Spectrometry Analysis 124 

JH III can be typically detected in the protonated and sodiated forms (e.g., m/z = 267 125 

[M+H]
+
 and m/z= 289 [M+Na]

+
), depending on the spraying and solvent conditions[24]. Since 126 

the fragmentation of the sodiated molecular ion [M+Na]
+ 

does not produce diagnostic fragment 127 

ions, previous studies have preferred LC-MS for JH identification and quantitation, with the 128 

caveat that quantification accuracy may be compromised by potential interferences due to the 129 

complex nature of the biological sample[28, 29]. Alternatively, the fragmentation of the 130 

protonated form m/z = 267 [M+H]
+
 provides a variety of signature fragmentation pathways that 131 

can be used to identify the JH III structure (Figure 2 top). The [M+H]
+
 molecular ion can 132 

undergo fragmentation via collision induced activation using in-source MS/MS and the MS/MS
n
 133 

linear trap region of the LC-QQQ (see Table 2). Inspection of the in-source and MS/MS
n
 data 134 

permitted the construction of the JH III [M+H]
+
 fragmentation pathway (Figure 3). Upon 135 

collision induced activation, the JH III [M+H]
+
 main fragmentation pathways lead to the 136 

observation of m/z = 235 [M+H-CH3OH]
+
 and m/z= 249 [M+H-H2O]

+ 
ions, corresponding to the 137 

loss of one methanol group and one water molecule, respectively. Further activation of m/z= 235 138 

and 249 generates m/z = 217 [M+H-CH3OH-H2O]
+
 and m/z = 207 [M+H-CH3OH-CO]

+
, 139 
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corresponding to the combined loss of one methanol group and water, and to the loss of a CO 140 

group, respectively. In contrast to previous reports[25], our data support the generation of m/z = 141 

217 as a product of 267->235->217 and 267->249->217. The activation of m/z= 217 produces 142 

m/z= 189 [M+H-CH3OH-H2O-CO]
+
, which further fragments into m/z = 147 [M+H-CH3OH-143 

H2O-CO-CH3CH=CH2]
+
. Complementary analysis using nESI-FT-ICR MS/MS supports the 144 

above proposed mechanism. The nESI-FT-ICR MS/MS showed the fragmentation of [M+H]
+ 145 

(m/z= 267.195461, C16H27O3) into [M+H-H2O]
+
 (m/z= 249.18492, C16H25O2), [M+H-CH3OH]

+ 146 

(m/z= 235.16929, C16H23O2), [M+H-CH3OH-H2O]
+
 (m/z= 217.158786, C15H21O), [M+H-147 

CH3OH-CO]
+ 

(m/z= 207.174417, C14H23O), [M+H-CH3OH-H2O-CO]
+ 

(m/z= 189.163858, 148 

C14H21) and [M+H-CH3OH-H2O-CO-CH3CH=CH2]
+ 

(m/z= 147.116827, C11H15) with sub-ppm 149 

mass accuracy (see Table 2). Previous studies utilizing chemical ionization ion trap mass 150 

spectrometry, performed the quantification based on the summed intensities of six diagnostic 151 

ions (m/z= 235, 217, 189, 147, 125, and 111)[19]. Although this approach is also feasible in the 152 

case of LC-QQQ instruments, using a lower number of MRM transitions allows the monitoring 153 

of a higher number of points across the LC peak relative to the aforementioned MRM strategies 154 

and therefore provides higher sensitivity. The selection of the transitions to perform the JH III 155 

quantification was based on their relative abundance. That is, the most abundant fragmentation 156 

transitions utilized were 267->235 (primary) and 267-> 147 (secondary). Previous reports have 157 

also utilized 267-> 235 as a primary and 267-> 217 as secondary MRM transitions for LC-158 

MS/MS analysis[25, 27]. 159 

 The heavy isotopomer JH III-D3 was utilized as an internal standard to normalize all 160 

sample preparation, extraction and analysis steps in order to accurately quantify the amount of 161 

JH III hormone produced by the BR-CA-CC complexes. The JH III-D3 molecular ion was 162 

observed in the protonated form [D+H]
+
, and the stoichiometry was confirmed utilizing nESI-163 

FT-ICR MS (m/z = 270.21420) with sub-ppm accuracy.  The fragmentation of the JH III-D3 164 

[D+H]
+
 molecular ion showed multiple similarities to JH III [M+H]

+
 (Figure 2). That is, the loss 165 

of the deuterated methanol group led to the observation of m/z= 235 [M+H-CD3OH]
+
; further 166 

activation showed the same fragmentation pattern as the JH III [M+H]
+
 molecular ion. 167 

 A plausible mechanistic sequence for the generation of JH III fragment ions is shown in 168 

Figure 3 and in the supplementary materials. Briefly, it is proposed that opening of the oxirane to 169 

form a tertiary alcohol and an alkene would facilitate the elimination of water (perhaps, via a 6-170 
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electron cyclic transition state) leading to the formation of m/z = 249 [M+H-H2O]
+
 from m/z = 171 

267 [M+H]
+
 and m/z = 217 [M+H-CH3OH-CO]

+
 from m/z = 235 [M+H-CH3OH ]

+
. Similarly, 172 

elimination of methanol accounts for the formation of both m/z = 235 [M+H-CH3OH]
+
 from m/z 173 

= 267 [M+H]
+
 and m/z = 217 [M+H-CH3OH-CO]

+
 from m/z = 249 [M+H-H2O]

+
. The loss of 174 

methanol is confirmed by the aforementioned isotopic labeling study with JH III-D3. In each 175 

case, the exclusion of the methanol generates a molecular ion in which the positive charge will 176 

reside on the C≡O oxygen. The subsequent loss of CO from m/z = 217 [M+H-CH3OH-CO]
+ 

to 177 

form m/z = 189 observed by the nESI-FT-ICR MS/MS analysis is unlikely to occur on the basis 178 

of direct cleavage from an sp
2
carbon. Thus, it is proposed that a rearrangement of the C-2 double 179 

bond occurs, allowing the CO to leave with the generation of a resonance-stabilized allylic 180 

carbocation that has the potential to undergo a Wagner-Meerwein hydride shift to form an even 181 

more stable allylic carbocation in which the positive charge is delocalized over an entire 7-182 

carbon conjugated triene array. Whether the rearrangement and elimination are separate steps or 183 

a concerted process is not clear. Further rearrangement of this system allows the elimination of 184 

propene as a neutral fragment generating m/z = 147 [M+H-CH3OH-H2O-CO-CH3CH=CH2]
+
 as 185 

an even more delocalized allylic carbocation in which the positive charge can be delocalized 186 

over the entire 9-carbon tetraene unit. The loss of CO from m/z = 235 [M+H-CH3OH]
+
 to 187 

generate m/z = 207 [M+H- CH3OH-CO]
+
 is proposed to occur via a similar initial rearrangement 188 

of the C-2 double bond. The resultant allylic carbocation will also be resonance stabilized. It is 189 

unclear whether the loss of CO occurs on the oxirane or the rearranged oxirane or both. 190 

HPLC-MS/MS method validation 191 

The HPLC-MS/MS workflow was developed using standards and biological samples, 192 

with the extraction protocol described in Figure 1. The HPLC consisted of a short 15 minutes run 193 

with JH III eluting at around 8.2 minutes (Figure 4). As expected, JH III and its heavy analog JH 194 

III-D3 co-eluted, and their detection was based on monitoring the 267->235 and 270->235 as 195 

primary and 267->147 and 270->147 as secondary transitions.  Notice that the primary MS/MS 196 

channel is 4-5 fold more abundant that the secondary channel. Comparison between the standard 197 

and the biological samples showed no changes on retention time, as well as on the ratio between 198 

transitions, allowing the use of these parameters for analyte confirmation purposes.  199 
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The effect of analyte extraction was evaluated by comparing the instrument response of 200 

analyte to internal standard ratio (JH III/ JH III-D3), for pure- and media-extracted standards 201 

over a wide concentration range (Figure 5a). An extraction recovery of near 55% was routinely 202 

observed regardless of the analyte concentration. No improvements were observed by 203 

performing a double extraction with hexane (Figure 5b). The reduced sensitivity caused by the 204 

extraction efficiency is evidenced in the reduced slope on the linear response of the instrument as 205 

a function of analyte concentration (Figure 5c), justifying the use of JH III-D3 to normalize this 206 

step.  207 

The HPLC-MS/MS method limit of detection (LOD), defined as 3 times the background 208 

analytical response, was determined experimentally to be 8 pg/mL (0.32 pg on column) by 209 

spiking increasing quantities of JH III in ACN (at 5, 10, 20, 100, 250 and 1000 pg/mL in 210 

triplicates, n=18), and calculating the uncertainty on the intercept of the obtained curve. A LOD 211 

of 19 pg/mL (0.76 pg on column) was obtained by spiking the analyte into M-199 medium and 212 

submitting the prepared solutions to the complete extraction protocol; this higher LOD is a 213 

consequence of a reduced signal after extraction. However, the obtained protocol LOD is 214 

approximately 10 times lower than previous LC-MS based methodologies for the detection of JH 215 

III in hemolymph (LOD = of 4 -5 pg on column[29, 27, 31]). 216 

Inter and intra-day reproducibility was evaluated by extracting and analyzing spiked M-217 

199 media with 500 pg/mL of JH III. The protocol was halted at the drying step (Figure 1) and 218 

the extracted standards were stored dry for 0 (reference, n=32), 1, 4, 5 and 7 days (n=5 each). 219 

There were no significant differences between the measurements in terms of peak areas or 220 

recovery (Figure 6a), which suggested that the analyte extracted from spiked media could be 221 

stored dry for at least 7 days. Most intra-day variability occurred between one standard deviation 222 

from the pooled mean of all measurements. A relative standard deviation (RSD) of 10% or lower 223 

was obtained for each analysis day, while an RSD of 16% was obtained in the complete dataset. 224 

 Analysis of JH III from biological samples 225 

In order to evaluate the applicability of this analysis protocol, JH III synthesized in vitro 226 

by mosquito BR-CA-CC complexes under different developmental and physiological conditions 227 

were analyzed. Samples were prepared following the protocol previously described (Figure 1). 228 

Calibration curves were obtained by plotting the peak area ratio of JH III to JH III-D3 as a 229 
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function of the analyte concentration. Linearity was observed over a wide concentration range 230 

(R
2
 > 0.999; 5 to 2500 pg/mL, 0.2 pg to 100 pg on column). The concentration of JH III-D3 was 231 

constant in biological samples and calibration solutions (625 pg/mL). Calibration standards were 232 

analyzed in duplicate at the beginning and at the end of each analytical sequence, with 233 

calibration verification performed every 12 runs by injecting 250 pg/mL of JH III in acetonitrile 234 

buffer, allowing a 15% deviation. A control blank (non-extracted) was analyzed with every 235 

batch, consistently displaying the absence of JH III signal. The analysis sequence also included 236 

carryover tests by verifying the absence of a JH III signal upon injecting the control blank after 237 

the highest calibration standard, as well as after every calibration verification standard. 238 

In each LC-QQQ analysis batch, duplicates of a negative control and two concentrations 239 

of positive controls (50 pg/mL and 500 pg/mL) were extracted according to Figure 1 and 240 

measured, with deviations of 15% or lower consistently observed. JH III compound 241 

identifications were considered positive when a signal-to-noise ratio larger than 3 were present in 242 

both the quantification and confirmation MRM transitions, with a difference of less than 0.05 243 

min in retention time relative to that of the JH III-D3. The results of the analysis of over 1500 244 

samples revealed that the confirmation ratios for internal standards and biological samples were 245 

constantly within two standard deviations (Figure 5d).  246 

In order to investigate the effect of sample storage on analyte signal, 10 biological 247 

samples were split after hexane extraction and the resulting extract aliquots were dried under 248 

nitrogen. One of the dried aliquots was stored at 4°C and the second was reconstituted in 249 

acetonitrile for immediate analysis. Five of the stored aliquots were reconstituted and analyzed 250 

after 5 days, while the remaining samples were analyzed after 30 days of storage. There were no 251 

significant differences in terms of recovery relative to the initial measured concentration (Figure 252 

6b) as a function of storage time, suggesting that dried biological samples can be correctly 253 

quantified after a month of dry storage. Previous work has shown that JH III is stable for up to 254 

one month and up to six 6 months in methanol if stored at 4°C and -18°C, respectively[25]. 255 

Similar stabilities were detected when JH III was stored in hexane and acetonitrile. However, the 256 

possibility to store dry samples largely facilitates the handling and shipping for inter-laboratory 257 

comparisons and complementary measurements.  258 

 Further validation of the JH III quantitation protocol was attained by analyzing JH III 259 

synthesis by BR-CA-CC adult female mosquito preparations in vitro as a function of 260 
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developmental changes, sugar feeding and farnesoic acid stimulation. The results of these 261 

experiments were compared with previous studies using HPLC-FD[35-37]. The comparison of 262 

the MS and the FD results showed good agreement for all the cases, considered reinforcing the 263 

value of the new developed protocol to assess JH III levels in mosquitoes (Figure 7). The new 264 

LC-MS/MS protocol showed similar high sensitivity, accuracy and reproducibility compared to 265 

the previously reported HPLC-FD[30], with the advantage of having selective MS detection that 266 

enables absolute quantification by using a heavy analog as an internal standard. The HPLC-FD 267 

protocol, while also sensitive, depends on commercially made tags that are often unavailable, 268 

require derivatization steps and show quite diverse responses on a batch-to-batch basis. On the 269 

contrary, this LC-MS/MS protocol includes a straightforward extraction protocol followed by a 270 

sensitive and reproducible HPLC-ESI-MS/MS analysis for absolute JH III detection in mosquito 271 

samples.  272 

CONCLUSIONS 273 

An analytical workflow for fast, ultra-trace quantitation of JH III from biological samples was 274 

developed. The fragmentation pathway of JH III [M+H]+ molecular ion was studied, and a 275 

mechanistic model is proposed. A HPLC-MS/MS workflow based on MRM using 267-> 235 276 

and 267 -> 147 was optimized for quantitative analysis, with higher sensitivity and a reduced 277 

number of sample preparation steps. A better analytical performance of the proposed protocol 278 

was demonstrated in terms of reproducibility, sensitivity and routine applicability, with higher 279 

sensitivity than previous LC-MS applications for the detection of JH III and with similar 280 

sensitivity to spectrofluorometric methods without the need of lengthy derivatization steps. 281 

Results showed that the storage protocol allows for quantification of samples with at least one 282 

month of dry storage. Further developments of the proposed workflow can be used to the 283 

analysis of other juvenile hormones. 284 
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SUPPORTING INFORMATION 289 

The proposed mechanisms of fragmentations are outlined in the supplementary material. Figure 290 

S1. Tentative fragmentation pathway of m/z 267 to m/z 235 and m/z 217.  Figure S2. Tentative 291 

fragmentation pathway of m/z 235 to m/z 207. Figure S3. Tentative fragmentation pathway of 292 

m/z 217 to m/z 189. 293 

FIGURE CAPTIONS 294 

Figure 1. Protocol for extraction and analysis of JH III synthesized in vitro by mosquito BR-CA-295 

CC preparations. BR-CA-CC: brain corpora allata-corpora cardiaca. ACN: acetonitrile. 296 

Figure 2. MS/MS fragmentation spectra for JH III [M+H]
+
 and JH III-D3 [D+H]

+
. 297 

Figure 3. Fragmentation scheme for JH III [M+H]
+
 and JH III-D3 [D+H]

+
 proposed based on 298 

isolation of the molecular ion and fragment ions using in- source MS/MS, MS/MS
n
 and FT-ICR 299 

MS/MS. 300 

Figure 4. Typical ion extracted chromatogram for JH III from a biological sample (top) and from 301 

a standard solution (bottom) using the 267-> 235 (primary) and the 267->147 (confirmation) 302 

MRM transitions. In the inset, the corresponding chromatograms for JH III-D3 are shown.  303 

Figure 5. Response curves as a function of the JH III concentration in the sample. A) Analyte to 304 

internal standard ratio (JH III/ JH III-D3) for non-extracted and extracted samples; b) extraction 305 

recovery for single and double extraction; c) method response for non-extracted and extracted 306 

samples; and d) confirmation ratio for internal standards and biological samples. 307 

Figure 6. Intra- and inter-day effects of sample storage on analyte signal responses from 308 

standards and biological extracts as a function of storage time. a) Comparisons of peak areas of 309 

JH III and JH III-D3 after samples were dried and stored at 4°C. b and c) Comparison of analyte 310 

recovery (expressed as %) as a function of storage time when standards (JH III) (b) or biological 311 

samples (c) were analyzed. 312 

Figure 7. Comparison of FD and MS methods to quantify JH III synthesis as a function of: A) 313 

Developmental changes. Synthesis was evaluated from BR-CA-CC preparations dissected from 314 
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pupae and adult female mosquitoes at different hours before and after adult eclosion. FD values 315 

are from reference[35]. B) Effect of sugar feeding. MS: Newly eclosed adult females were fed 316 

for 4 days on 3% or 20% sucrose. FD values are from reference[37]. C) MS: BR-CA-CC 317 

preparations were dissected from 4 day-old adult female mosquitoes and stimulated with 40µM 318 

farnesoic acid (FA). FD values are from reference[36]. 319 
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Table 1. Common MRM parameters utilized for JH III and JH III-D3 detection on the QTRAP® 

5500 triple quadrupole mass spectrometer.  

Compound DP
1 

(V) Q1 (Da) CE
2
 (V) Q3 (Da) CXP3 (V) 

JH III 46   267 
11 235 30 

19 147 16 

JH III-D3 46   270 
11 235 28 

17 147 6 

  
 1
 Declustering Potential; 

2
 Collision Energy; 

3
 Collision cell exit potential.  

  

Table



Table 2. Typical fragment ion and dissociation pathways observed using in-source MS/MS, 

MS/MS
n
 and FT-ICR MS/MS for JH III [M+H]

+
 molecular ion. 

 Parent m/z Fragment m/z 

In-source 

MS/MS 

267 
249, 235, 217, 

189, 147 

249 217, 189, 147 

235 217, 189, 147 

217 189, 147 

189 147 

   

MS/MS
n
 

267 -> 235 217, 207, 189 

267 -> 249 217, 189, 147 

267 -> 217 189, 147 

267 -> 189 147 

   

FT-ICR MS/MS 

267.195461 

C16H27O3 

249.18492 

C16H25O2 

 
235.169298 

C15H23O2 

 
217.158786 

C15H21O 

 
207.174417 

C14H23O 

 
189.163858 

C14H21 

 
147.116827 

C11H15 
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