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ABSTRACT

Previous attempts to derive the depth-dependent expression of the radiation stress have led to a debate

concerning (i) the applicability of the Mellor approach to a sloping bottom, (ii) the introduction of the delta

function at the mean sea surface in the later papers byMellor, and (iii) a wave-induced pressure term derived

in several recent studies. The authors use an equation system in vertically Lagrangian and horizontally

Eulerian (VL) coordinates suitable for a concise treatment of the surface boundary and obtain an expression

for the depth-dependent radiation stress that is consistent with the vertically integrated expression given by

Longuet–Higgins and Stewart. Concerning (i)–(iii) above, the difficulty of handling a sloping bottom disap-

pears when wave-averaged momentum equations in the VL coordinates are written for the development of

(not the Lagrangian mean velocity but) the Eulerian mean velocity. There is also no delta function at the sea

surface in the expression for the depth-dependent radiation stress. The connection between the wave-induced

pressure term in the recent studies and the depth-dependent radiation stress term is easily shown by rewriting

the pressure-based form stress term in the thickness-weighted-meanmomentum equations as a velocity-based

term that contains the time derivative of the pseudomomentum in the VL framework.

1. Introduction

The radiation stress term of Longuet-Higgins and

Stewart (1964, hereafter LHS64) andMellor (2003, 2005)

can be regarded as the sum of the (horizontal) Reynolds

stress term and the negative of the form stress term. The

former represents the residual effect of momentum ad-

vection, and the latter represents the residual effect of

pressure perturbations. Both terms are clear in the

depth-integrated framework of LHS64 and have long

been used in the community to describe the residual ef-

fect of surface waves on circulation in the upper ocean.

However there is confusion concerning the analytical

expression for the depth-dependent form stress term

(while the analytical expression of the depth-dependent

Reynolds stress term is clear). The depth-dependent

form stress term of Mellor (2003, 2005) has a continuous

vertical profile that, according to Ardhuin et al. (2008a),

is valid as long as the bottom is flat. However the ex-

pression for the depth-dependent form stress term has

been changed inMellor (2008, 2011a,b) to include aDirac

delta function at the sea surface.

Bennis and Ardhuin (2011, hereafter BA11) criticized

the delta function of Mellor (2008, 2011a,b) and sug-

gested using wave-averaged momentum equations de-

rived from the three-dimensional Lagrangian mean

framework of Andrews and McIntyre (1978, hereafter

AM78) with a wave-induced pressure term derived by

Ardhuin et al. (2008b, hereafter ARB08) and given by

Eq. (39) on page 45 of their paper. An advantage of the

equation system of ARB08 and BA11 is that it is ap-

plicable to circulation over a sloping bottom. However,

neither ARB08 nor BA11 have shown how to rederive

an equivalent to their equation system including the

wave-induced pressure term (as well as the vortex force

term) by taking the average of the equations written

in the coordinate system used by Mellor (2003, 2005).
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Therefore, in the community, there remains uncertainty

concerning (i) the inapplicability of Mellor (2003, 2005)

to a sloping bottom, (ii) the delta function of Mellor

(2008, 2011a,b), and (iii) existing difficulty to see con-

sistency between momentum equations that have been

wave-averaged in the three-dimensional Lagrangian

coordinates, on the one hand, and in the coordinates of

Mellor on the other. Points (i)–(iii) are the subject of

this study.

Generalizing the results of Mellor (2003, 2005) and

Broström et al. (2008), Aiki and Greatbatch (2012, here-

after AG12) have developed depth-dependent equations

for surface gravity waves and circulation in a vertically

Lagrangian and horizontally Eulerian (VL) coordinate

system. This framework, based on a thickness-weighted-

mean (TWM) approach, allows for a concise treatment

of the thin viscous boundary layer at the sea surface, the

incompressibility condition for circulation, and the en-

ergy interactions betweenwaves and circulation. Recently

Aiki and Greatbatch (2012, manuscript submitted to

J. Phys. Oceanogr., hereafter AGVF) have developed an

exact recipe to derive the Craik and Leibovich (1976,

hereafter CL76)momentum equations by taking thewave

average of equations written in the VL coordinates. The

present manuscript is partly based on the recipe of AGVF

but, rather than focus on the vortex force, we focus instead

on the depth-dependent version of the radiation stress in

LHS64.

The plan of the paper is as follows. The governing

equations are explained in section 2. Then a discussion

follows in section 3 concerning the different scalings of

the wave-averaged equations that apply in different

studies. We note that the depth-integrated radiation

stress of LHS64 has been written as the product of first-

order waves in terms of a perturbation expansion and,

thus, should be compared with the wave-induced pres-

sure term in ARB08 (i.e., the wave setup/setdown term)

rather than the vortex force. Our approach is comple-

mentary to that in Smith (2006) and Lane et al. (2007,

section 4) who made comparisons between different

versions of the depth-integrated momentum equations

applicable to an inner shelf zone. Then, from section 4

onward, we focus on the scaling appropriate to LHS64

and develop the depth-dependent radiation stress term in

the VL framework. We show that the wave-averaged

momentum equations become applicable to a sloping

bottom when written for the development of the Eulerian

mean velocity rather than the Lagrangian mean velocity,

a result that is a reexplanation of Ardhuin et al. (2008a)

using the TWM theory. In section 5 we link our results to

those of other studies, in particular LHS64, Smith (2006),

ARB08, and the papers by Mellor. Finally, section 6

provides a summary and brief discussion. Overall, the

present manuscript and AGVF, taken together, illustrate

the consistency between momentum equations that have

been wave averaged in the three-dimensional Lagrangian

coordinates on the one hand and in the VL coordinates

on the other.

2. Governing equations

We consider incompressible inviscid water of con-

stant, uniform density in a nonrotating frame. We use

the equations of AG12, which are briefly explained for

convenience in appendix A of the present manuscript.

It should be noted that the equations have been non-

dimensionalized (see appendix A). The nondimension-

alization is not essential but serves to simplify the

mathematics.

a. Thickness-weighted-mean momentum equations

The incompressible condition and the momentum

equations in the VL coordinates, (x, y, z, t), of AG12 are

(zcz)t1$ � (zczV)1(zczw*)z5 0, (1a)

(›t 1V � $1w*›z)z
c 5w , (1b)

(›t 1V � $1w*›z)V52$(p1h)1 pzc$z
c , (1c)

(›t 1V � $1w*›z)w52pzc , (1d)

where zc 5 zc(x, y, z, t) is the instantaneous height of

fluid particles in the standard Eulerian–Cartesian co-

ordinates. The vertical coordinate z is a low-pass fil-

tered height coordinate (see appendix A) and zcz is

the thickness.1 The horizontal coordinates x and y

are the same as the Eulerian–Cartesian coordinates.

The quantity V is the horizontal velocity vector, w is

the vertical component of velocity, w* represents water

flux through the surfaces of fixed z, $ [ (›x, ›y) is the

lateral gradient operator along the surfaces of fixed z,

and $z 5 0 is understood. The quantity p is the sum of

the oceanic nonhydrostatic and atmospheric pressure,

and h is the instantaneous sea surface height. Throughout

this paper, we shall assume p 5 0 at the surface, corre-

sponding to assuming uniform atmospheric pressure at

the surface. Table 1 presents a list of the symbols used in

the text.

The momentum equations (1c)–(1d) can be written in

a flux-divergence form as

1 The vertical coordinate z in the present study corresponds

roughly to z in Mellor (2003), § in his later studies, and Z in

Broström et al. (2008).
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(zczV)t1$ � (zczVV)1(zczw*V)z52zcz$(p1h)1pz$z
c,

(2a)

(zczw)t1$ � (zczVw)1 (zczw*w)z52pz . (2b)

Low-pass temporal filtering each of (1a), (2a), and (2b)

yields thickness-weighted-mean (TWM) equations for

incompressibility and the horizontal and vertical com-

ponents of momentum,

$ � V̂1wz*
b5 0, (3a)

V̂t 1$ � (V̂V̂)1 (w*b V̂)z1RSV 52$(p1h)1FSV ,

(3b)

ŵt 1$ � (V̂ŵ)1 (w*b ŵ)z1RSw52pz , (3c)

where zcz [ 1 (since zc [ z, following from the definition

of z) has been used and the caret symbol is the TWM

operator (Â[ zczA for an arbitrary quantity A). The

velocity variable (V̂, cw*), which satisfies the incom-

pressibility condition (3a), is called the total transport

velocity. The total transport velocity corresponds to

the Lagrangian mean velocity in the three-dimensional

Lagrangianmean framework. The symbolsRSV andRSw

in (3b)–(3c) are the Reynolds stress terms defined by

RSA[$ � (zczV0A0)1 (zczw*0A0)z , (4a)

for A 5 u, y, and w, and the double-prime symbol is the

deviation from the TWM (A0[A2 Â, compared at

fixed z). The vertical flux of momentum in (4a) is given

in terms of w*0 (the vertical velocity in the low-pass fil-

tered coordinate, z, not w0) with the consequence that it

is small (see AG12 for details). The symbol FSV in (3b)

is the form stress term defined by

FSV[ 2z%z $(p%1h%) 1 p%z $z%

52[z%$(p%1h%)]z1$(z%p%z ) , (4b)

TABLE 1. List of symbols, where A is an arbitrary quantity.

(xc, yc, zc, tc) Eulerian–Cartesian coordinates

(x, y, z, t) Vertically Lagrangian and horizontally Eulerian (VL) coordinates

A
c

Time-mean in Eulerian–Cartesian coordinates

Â[ zczA Thickness-weighted time-mean in the VL coordinates

A Unweighted time-mean in the VL coordinates

A9[A2A
c

Deviation from the Eulerian mean, compared at fixed zc (A9
c
5 0)

A0[A2 Â Deviation from the thickness-weighted mean, compared at fixed z (zczA05 0)

A%[A2A Deviation from the unweighted mean, compared at fixed z (A%5 0)

=c [ (›xc , ›yc ) Horizontal gradient in Eulerian-Cartesian coordinates [=c 5$2 ($zc)›zc ]
$ [ (›x, ›y) Lateral gradient in the VL coordinates ($z5 0,$zc 5$z%)
V [ (u, y) Horizontal component of velocity

w Vertical component of velocity

w*[ (w2 zct 2V � $zc)/zcz Vertical velocity associated with volume flux through surface of fixed z

(V̂, ŵ) TWM velocity

(V̂, cw*) Total transport velocity ($ � V̂1wz*b5 0)

h Sea surface height

p Sum of oceanic nonhydrostatic pressure and atmospheric sea surface pressure

pMel [ p 1 h 2 zc Combined nonhydrostatic and hydrostatic pressure in papers by Mellor

FSV Divergence of form stress [ 2[z%$(p%1h%)]z 1$(z%p%z )
RSA for A 5 u, y, and w Divergence of the Reynolds stress [$ � (zczV0A0)1 (zczw*0A0)z
h Bottom depth (.0)

A Amplitude of O(a) wave

a Surface slope of O(a) wave

k[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2

p
Horizontal wavenumber of O(a) wave

s Frequency of O(a) wave

u [ kx 1 ly 2 st Phase of O(a) wave

›t Time derivative operator for wave quantities

›T Time derivative operator for mean quantities (›t 5 ›t 1 a›T)
_$ Lateral gradient for wave quantities

$ Lateral gradient for mean quantities ($5 _$1a$)
Vqs

2 [ (z%1 V%1 )z Horizontal component of the quasi-Stokes velocity at O(a2)

wqs
3 52$ � (z%1 V1%) Vertical component of the quasi-Stokes velocity at O(a3)

z%1zV%1 2w%1 _$z%1 Horizontal component of the pseudomomentum in the VL framework (cf. AGVF)

E2 [
1

2

ðh
2h

jV%1j2 1w1%
2 dz1

1

2
h1%

2 Depth-integrated total (kinetic plus potential) wave energy at O(a2)
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where the triple-prime symbol is the deviation from the

unweightedmean (A%[A2A, compared at fixed z), in

particular z%[ zc 2 z is noted.2

Moving FSV to the lhs of (3b) yields the depth-

dependent radiation stress term, RSV 2 FSV.

b. Kinematic boundary condition

As illustrated in Fig. 1, the sea surface is referred to as

zc 5 h in the Eulerian–Cartesian coordinates, whereas

it is referred to as z5h in the VL coordinates. AG12

have shown that the kinematic boundary condition at

the sea surface reads

cw*5ht 1 V̂ � $h , (5a)

w*05V0 � $h , (5b)

h%[ z% , (5c)

at z5h. Application of the explanation of AG12 to a

sloping bottom yields (i.e., replace z5h in section 2e

of AG12 with z 5 2h),

cw*52V̂ � $h , (6a)

w*052V0 � $h , (6b)

z%5 0, (6c)

at z 5 2h. That z%5 0 at the bottom has already been

shown in the mesoscale eddy literature (e.g., McDougall

and McIntosh 2001).

The depth integral of the Reynolds stress term (4a) is

ðh
2h

RSA dz5

ðh
2h

$ � (zczV0A0 ) dz1 (zczw*0A0)jz5h2 (zczw*0A0)jz52h

5

ðh
2h

$ � (zczV0A0) dz1 (zczV0A0 � $h)jz5h 1 (zczV0A0 � $h)jz52h 5$ �
ðh
2h

(zczV0A0) dz , (7a)

where (5b) and (6b) have been used to derive the second line. The depth integral of the form stress term (4b) is

ðh
2h

FSV dz52h%$(p%jz5h 1h%)1

ðh
2h

$(z%pz%) dz52h%$(p%jz5h1h%)1$
ðh
2h

(z%pz%) dz2 (h%pz%jz5h)$h

52
1

2
$h%21$

ðh
2h

(z%pz%) dz2h%($p%1 pz%$h)jz5h , (7b)

where (6c) has been used to derive the first line. 3. Scaling the low-pass filtered equations

Let a � 1 be the scale for the surface slope. In this

manuscript, we assume that the bottom slope is $h; a,

with a consequence, as we note below, that the aspect

ratio of the circulation is also scaled by a. Then, let the

horizontal gradient operator be written as $5 _$1a$
where (›z ; _$ has been used and) _$ operates on wave

FIG. 1. Schematic of waves on a sloping bottom in (a) the

Eulerian–Cartesian coordinate and (b) the vertically Lagrangian

coordinate systems.

2 Although FSV5[(p%1h%)$z%]z2$[(p%1h%)z%z ] is also

true, the expression as in the last line of (4b) is convenient for

handling the bottom boundary condition where (6c) holds, result-

ing in z%$(p%1h%)5 0 at z 5 2h no matter how the bottom is

sloped.
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quantities and $ operates on the low-pass filtered quan-

tities as well as on the large spatial-scale variation of

the wave quantities. Note that $A5a$A and $A%5
_$A%1a$A% for an arbitrary quantity A.

a. Perturbation expansion

The fluctuation component of all quantities is ex-

panded from O(a), except for w*%, which is expanded

from O(a2),

z%5az1%1a2z2%1O(a3) , (8a)

h%5ah1%1a2h2%1O(a3) , (8b)

p%5ap1%1a2p2%1O(a3) , (8c)

V%5aV1%1a2V2%1O(a3) , (8d)

w%5aw1%1a2w2%1O(a3) , (8e)

w*%5a2w2*%1O(a3) . (8f)

The scaling of w*% stems from the scaling of the bottom

slope. Writing (6b) at second order in a yields w
2
*05

2V0
1
� $h (orw

2
*%52V%

1
� $h becauseV%

1
5V0

1
).3 There-

fore the perturbation expansion for w*% starts from

O(a2).

b. Longuet–Higgins and Stewart versus
the vortex force

The depth-integrated radiation stress of LHS64 is

written in terms of the product ofO(a) wave quantities.

It follows that the depth-integrated Reynolds and form

stress terms (7a)–(7b) appear at O(a3) and can be writ-

ten as,

ðh
2h

RSV
3 dz5$ �

ðh
2h

V1%V1% dz , (9a)

ðh
2h

FSV
3 dz52

1

2
$h%1

21$
ðh
2h

(z1%p1z%) dz , (9b)

where we have used p%5 0 at z5h. Note that it is

the use of the $ operator that makes these expressions

third order in a. Equations (9a)–(9b) can also be de-

rived by taking the depth-integral of (4a)–(4b) written

at O(a3),

RSV
3 5$ � (V1%V1%)1 (w*2%V1%)z , (10a)

FSV
3 52[z2%

_$(p1%1h1%)]z2 [z1%
_$(p2%1h2%)]z

2 [z1%$(p1%1h1%)]z1$(z1%p1z%) , (10b)

where the third term, z
1
%$(p

1
%1h

1
%), on the rhs of

(10b) should not be confused with z
1
% _$(p

1
%1h

1
%)

[the latter is O(a2)]. It should be noted that, in contrast

to the depth-integrated terms (9a)–(9b), the depth-

dependent terms (10a)–(10b) contain quantities asso-

ciated with O(a2) waves.

Both Reynolds and form stress terms (10a)–(10b) are

part of the horizontal component of the TWM mo-

mentum equations (3b) to be written at O(a3). We now

come to the question of how to scale the mean flow. The

first choice is suitable for the circulation within an inner

shelf zone where the depth-integrated cancellation be-

tween the Eulerian mean velocity and the Stokes-drift

velocity might occur (cf. Lentz and Fewings 2012). We

therefore put

V5a2V2 1O(a3) , (11a)

w*5a3w3*1O(a4) , (11b)

h5a2h21O(a3) , (11c)

p5a2p21O(a3) , (11d)

so that the magnitude of the horizontal component of

the mean velocity is O(a2) and is the same order as

the Stokes-drift velocity. The TWM equation system

(3a)–(3c) becomes,

$ � V̂21w*3z
b 5 0, (12a)

›TV̂21RSV
3 52$(p21h2)1FSV

3 , (12b)

052p2z , (12c)

where the time development of low-pass filtered quan-

tities is assumed to be one order slower than the phase

cycle of the waves (i.e., ›t5 ›t1 a›Twhere ›t operates

on wave quantities and ›T operates on the low-pass

filtered quantities as well as the slow time evolution

of the wave quantities). The horizontal momentum

Eq. (12b) has been written at O(a3), and excludes a

mean-flow advection term, such as V̂2 � $V̂2, because it

is O(a5).

The second choice for the scaling is suitable for cir-

culation driven by a strong wind,

3 A105 (A2 zczA)1 5 (A2A2 zz%A%)1 5 (A%2 zz%A%)1 5 A1%
for an arbitrary quantityA. The numeric subscript attached to the

brackets in the present study represents summation of terms at

a given order of a.
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V5aV1 1O(a2) , (13a)

w*5a2w2*1O(a3) , (13b)

h5a2h21O(a3) , (13c)

p5a2p21O(a3) . (13d)

The horizontal component of the mean velocity is now

O(a), which is one order greater than the Stokes-drift

velocity, and the TWM equation system (3a)–(3c) be-

comes

$ � V̂11w*2z
b5 0, (14a)

(›T 1 V̂1 � $1 cw2*›z)V̂11RSV
3 52$(p21h2)1FSV

3 ,

(14b)

052p2z , (14c)

where Â1 5 (A1 zz%A%)1 5A1 for an arbitrary quantity

A, and the time development of the low-pass filtered

quantities is assumed to be two orders slower than the

phase cycle of the waves (i.e., ›t 5 ›t 1 a2›T). In both

systems associated with the first and second choices for

the scaling, the horizontal momentum equations (12b)

and (14b) are written at O(a3) whereas the horizontal

component of the vortex force is O(a5) or O(a4), as

noted by the underlined quantities in Table 2.4 Likewise

the vertical momentum equations (12c) and (14c) are

both O(a2) whereas the vertical component of the vor-

tex force isO(a4) orO(a3). Consequently, for the choice

of scalings presented so far, the vortex force equations

are not applicable, and this is true even if the momen-

tum equations are rewritten for the development of the

Eulerian mean velocity.

To compare with the circulation regime associated

with the vortex force, we consider a third choice for the

scaling, which is the same as that in (12a)–(12c) except

that the time development of low-pass filtered quantities

is assumed to be three orders slower than the phase cycle

of the waves (i.e., ›t 5 ›t 1 a3›T). The TWM equation

system (3a)–(3c) becomes

$ � V̂21w*3z
b5 0, (15a)

(›T 1 V̂2 � $1 cw3*›z)V̂21RSV
5 52$(p41h4)1FSV

5 ,

(15b)

RSw
4 52p4z , (15c)

where the horizontal and vertical momentum equa-

tions now appear at O(a5) and O(a4), respectively. The

Reynolds stress and the form stress terms are given by,

RSV
5 5$ � (V0V0)4 1$ � (zz%V0V0)4

1 (w*0V0)5z1 (zz%w*0V0)5z , (15d)

FSV
5 52[z% _$(p%1h%)]5z 2 [z%$(p%1h%)]5z

1$(z%pz%)4 , (15e)

RSw
4 5$ � (V0w0)31$ � (zz%V0w0)3

1 (w*0w0)4z1 (zz%w*0w0)4z , (15f)

where the numeric subscript attached to the brackets

represents summation of terms at a given order of a (see

Table 3 for a template). Because the depth-dependent

stress terms (15d)–(15f) consist of waves up toO(a4), the

depth-integral of (15d)–(15f) cannot be written as the

product of O(a) wave quantities, in contrast to LHS64.

Indeed, the Reynolds stress and form stress terms at

lower order in a are now zero, and the scaling implied by

LHS64 is no longer valid. Rather, the Reynolds stress

and form stress terms RSV
5 and FSV

5 are of the same

order as the horizontal component of the vortex force,

and the stress term RSw
4 is of the same order as the

vertical component of the vortex force, and both sets of

terms can be transformed into the vortex force using the

recipe of AGVF. Indeed, it is an important point that

the Reynolds stress and form stress terms appear at

TABLE 2. Comparison of the scalings of the low-pass-filtered

equations given in section 3 of the presentmanuscript,MRL04, and

CL76. Underlined quantities indicate that the vortex force is of

higher order in a than the corresponding wave-averaged momen-

tum equations.

Equation system

The present

manuscript

MRL04 CL76(12a-c) (14a-c) (15a-c)

Coefficient of ›T a a2 a3 a4 a2

Coefficient of $ a a a a2 1

V̂, V, V
c

a2 a a2 a2 a2cw*, w*, w, wc a3 a2 a3 a4 a2

Horizontal momentum

equation

a3 a3 a5 a6 a4

Vertical momentum

equation

a2 a2 a4 a4 a4

VStokes 3 ($3V
c
) a5 a4 a5 a6 a4

VStokes � (›zVc
2$wc) a4 a3 a4 a4 a4

4 The horizontal and vertical components of the vortex force

are written by VStokes 3 ($3V
c
) and VStokes � (›zVc

2$wc), re-

spectively, where VStokes is the Stokes-drift velocity (CL76; Craik

1985).
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higher order in a in the scaling associated with the

vortex force than in the scaling considered by LHS64.

In fact, as shown in Table 2, the scaling of (15a)–(15c)

is similar to that of McWilliams et al. (2004, hereafter

MRL04).

To summarize, the scaling of the low-pass filtered

equations associated with the radiation stress of LHS64

is described by either the equation system (12a)–(12c) or

(14a)–(14c) and should not be confused with the scaling

appropriate to the vortex force (see Lane et al. 2007).

The fact that we focus in this paper on the scaling as-

sociated with the radiation stress of LHS64 is for the

purpose of mathematical clarity regarding the attempt

of Mellor (2003, 2008) to derive a depth-dependent ver-

sion of LHS64 and does not necessarily indicate that the

radiation stress (or the wave-induced pressure term) is

more important than the vortex force in the real ocean.

Indeed, recent numerical studies show the importance of

(the vertical component of) the vortex force associated

with the vertical shear of the mean velocity for describing

the circulation in surf zones (e.g., Uchiyama et al. 2009,

2010).

4. The vertical structure of the radiation stress over
a sloping bottom

In the remainder of the manuscript, we focus on the

first choice of scaling for the low-pass filtered flow given

in section 3. The second choice requires the introduction

of viscosity to incorporate the wind stress (cf. Fan et al.

2010) and is not considered further here.

a. First-order waves

Substitution of (8a)–(8f) and (11a)–(11d) to (1a)–(1d)

yields

z1zt% 1 _$ �V1%5 0, (16a)

z1t% 5w1% , (16b)

V1t% 52 _$(p1%1h1%) , (16c)

w1t%52p1z% . (16d)

We assume O(a) waves to be monochromatic and

(nearly) steady:h1%5A cosuwhereA is wave amplitude,

u 5 kx 1 ly 2 st is wave phase with k and l being

wavenumbers in the x and y direction, and s is wave

frequency. These parameters are constant on the time

and spatial scales of waves (i.e., ›tA5 0 and _$A5 0 for

A5A, k, l,s) but may vary on the time and spatial

scales of low-pass filtered quantities (i.e., ›TA 6¼ 0 and

$A 6¼ 0 forA5A,k, l,s).With the boundary conditions

of w1%5 0 at z 5 2h [using the assumption that the

bottom slope is O(a)] and p
1
%5 0 at z5h, we solve

(16a)–(16d) to yield

s25 k tanhk(h1 h), k[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 l2

p
, (17a)

f1%5 (A/k) cosu
cosh k(z1 h)

sinh k(h1 h)
, (17b)

V1%5 _$f1t%5 (2s _$u)f1uu% 5s _$uf1% , (17c)

w1%5f1zt% 5 (2s)f1zu% , (17d)

z1%5f1z% , (17e)

p1%5s2f1%2h1% , (17f)

where _$u5 (k, l) and h1%5 z1%jz5h are understood. The

above solution is given in the VL coordinates. The

wave-induced velocity inMellor (2003, 2005) can be called

the quasi–Stokes velocity following McDougall and

McIntosh (2001) and can be transformed as follows:5

V
qs
2 [ (z1%V1%)z5 (f1z%s2f1%)z(

_$u)/s

5 [z1%(p1%1h1%)]z(
_$u)/s . (18)

Using (18), the depth integral of the quasi–Stokes ve-

locity can be related with the wave energy,

ðh
2h

Vqs
2 dz5h1%V1%jz5h 5h%2

1|{z}
E

2

( _$u)/s , (19)

where (6c) and p
1
%5 0 at z5h have been used, and

E2 5h%2
1

is the depth-integrated total (i.e., kinetic

plus potential) wave energy at O(a2). Note that the

depth-integrated wave kinetic energy is equal to the

wave potential energy:

TABLE 3. The rule of numeric subscript in the present study,

which represents summation for a given order of perturbation ex-

pansion in terms of a.

(AB)3 5 A1B2 1 A2B1

(AB)4 5 A1B3 1 A2B2 1 A3B1

(AB)5 5 A1B4 1 A2B3 1 A3B2 1 A4B1

(ABC)3 5 A1B1C1

(ABC)4 5 A2B1C1 1 A1B2C1 1 A1B1C2

(ABC)5 5 A3B1C1 1 A1B3C1 1 A1B1C3 1 A1B2C2 1 A2B1C2

1 A2B2C1

5 The quasi-Stokes velocity is the extra velocity that must be

added to the Eulerian mean velocity to give the total transport

velocity [see AG12, their Eqs. (16) and (17)] and is closely related

to the Stokes drift, as discussed there.
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1

2

ðh
2h

jV1%j21w%2
1 dz5

1

2

ðh
2h

s2(k2f%2
1 1f%2

1zu) dz5
1

2

ðh
2h

s2(k2f%2
1 1f%2

1z ) dz

5
1

2

ðh
2h

s2(f1%f1z%)z dz5
1

2

ðh
2h

[(p1%1h1%)z1%]z dz5
1

2
h%2
1 , (20)

where (17c)–(17f) have been used.

The depth-integrated radiation stress term is given by the difference of (7a) and (7b)

ðh
2h

[RSV
3 2FSV

3 ] dz5$ �
ðh
2h

V1%V1%dz1
1

2
$h%2

1 2$
ðh
2h

(z1%p1z%) dz

5$ �
ðh
2h

V1%V1%dz1
1

2
$
ðh
2h

jV1%j2 1w%2
1 dz1$

ðh
2h

(z1%w1t%) dz

5$ �
ðh
2h

V1%V1%dz1$
ðh
2h

J dz5$ �
ðh
2h

V1%(p1%1h1%)(
_$u)/s dz1$

ðh
2h

J dz

5$ � [CgE2(
_$u)/s]1$

ðh
2h

J dz5$ � (Cgh1%V1%jz5h)1$
ðh
2h

J dz , (21)

where the second line has been derived using (20), the

third line has been derived using (16b), and the last line

has been derived using (19). The symbol J comes from

Smith (2006) and is defined by

J[
1

2
(jV1%j22w%2

1 ) , (22)

which turns out to be a depth-independent quantity

because cosh22 sinh25 1. The symbolCg5 ›s/›(k, l) is

the group velocity in classical linear wave theory. Also,

J is the same as the wave-induced pressure term given

by Eq. (39) on page 45 of ARB08. To summarize, the

depth-integrated radiation stress term is available using

only the first-order wave solution even if the bottom is

sloped. However the depth-dependent radiation stress

term, RSV
3 2FSV

3 based on (10a)–(10b), requires the

second-order wave solution (Ardhuin et al. 2008a,

section 4).

b. Second-order waves associated with
nonlinear terms

We decompose the solution of the second-order waves

into that associated with the nonlinear terms of (1a)–(1d)

and that associated with the bottom slope. The equation

system for the former solution is derived from (1a)–(1d):

z2zt% 1 _$ � (V2%1 z1z%V1%)5 0, (23a)

z2t%1V1% � _$z1%5w2% , (23b)

V2t%1V1% � _$V1%52 _$(p2%1h2%)2w1t%
_$z1% , (23c)

w2t%1V1% � _$w1%52p2z%2w1t%z1z% , (23d)

which can be solved using the boundary conditions of

w
2
%jz52h 5 0 and p

2
%jz5h 5 0 (appendix B). The solution

is proportional to cos 2u (or sin 2u) with the consequence

that it does not correlate with the first-order solution

in the calculation of the Reynolds stress term (10a) and

the form stress term (10b).6

c. Second-order waves associated with
the bottom slope

The equation system for the solution associated with the

bottom slope is based on the linear terms of (1a)–(1d),

(z1T% 1 z2t%1w*2%)z1$ �V1%1 _$ �V2%5 0, (24a)

z1T% 1 z2t%1w*2%5w2% , (24b)

V1T% 1V2t%52 _$(p2%1h2%)2$(p1%1h1%) , (24c)

w1T% 1w2t% 52p2z% , (24d)

which can be solved using the boundary conditions

of w
2
%jz52h 52V%

1
 jz52h � $h and p

2
%jz5h 5 0. The exact

solution in the Eulerian coordinates has been given by

Chu and Mei (1970) and Zou et al. (2003, see their ap-

pendix). It would be possible to derive the correspond-

ing solution using the VL coordinates. However it would

be more useful if the depth-dependent form stress term

(10b) can be transformed into an expression where the

second-order wave solution does not appear. This is

shown in what follows using the recipe of AGVF.

6 When nonmonochromatic waves are considered, the solution is

more complicated and second-order waves arising from the non-

linear terms cannot be neglected as in the present study.
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The equation system (16a)–(16d) and (24a)–(24d)

may be written in a general form,

zzt%52$ �V%2 (w*%)z , (25a)

zt%5w%2w*% , (25b)

Vt%52$(p%1h%) , (25c)

wt%52pz% , (25d)

where ›t 5 ›t 1 a›T, $5 _$1a$, and A%5aA
1
%1

a2A
2
% for an arbitrary quantity A%. Using (25c)–(25d),

the form stress term (10b) can be rewritten

FSV52zz%$(p%1h%) 1 ($z%)pz%

5 zz%Vt%2 ($z%)wt% . (26)

Using (25a), the first term on the last line of (26) can be

rewritten:

zz%Vt%5 (zz%V%)t 2 zzt%V%5 (zz%V%)t 1 ($ �V%1w*z%)V%

5 (zz%V%)t 1 [$ � (V%V%)1 (w*%V%)z]2V% � $V%2w*%Vz%

5 (zz%V%)t 1RSV 2V% � $V%2w*%Vz%

5 (zz%V%)t 1RSV 2
1

2
$jV%j22 ($3V%)3V%2w*%Vz% . (27a)

Using (25b), the second term on the last line of (26) can be rewritten:

2($z%)wt%52[($z%)w%]t 1 ($zt%)w%

52[($z%)w%]t 1 ($w%2$w*%)w%

52[($z%)w%]t 1$

�
1

2
w%22w%w*%

�
1 ($w%)w*% . (27b)

We substitute (27a)–(27b) to (26) then pick-up terms at

O(a3) to yield

FSV
3 5 [z1z%V1%2 ( _$z1%)w1%]T 1RSV

3

2
1

2
$(jV1%j22w%2

1 )2 [($3V%)3V%]3 ,

(28)

where w1*%5 0 and V%
1z
2 _$w%

1
5 0 have been used.

The first term on the rhs of (28) is the temporal deriva-

tive of ‘‘the pseudomomentum in the VL framework’’

(AGVF) and can be transformed to the quasi–Stokes

velocity,

z1z%V1%2 ( _$z1%)w1%5 z1z%V1%1 z1%
_$w1%

5 z1z%V1%1 z1%V1z%5 (z1%V1%)z . (29)

Namely, as long as the O(a) wave is horizontally homo-

geneous and irrotational in the vertical plane, the analyti-

cal expression of the VL pseudomomentum is identical

to the quasi–Stokes velocity. Because O(a) waves satisfy
_$3V%

1
5 0, the last term of (28) may be rewritten

[($3V%)3V%]35 ($3V1%1 _$3V2%)3V1% 52($3V1t%1 _$3V2t%)3
_$f1%

5 [$3 _$(p1%1h1%)1
_$3$(p1%1h1%)]3

_$f1%

5 [$3 (s2f1u%
_$u)1 ( _$u)3$(s2f1u%)]3

_$f1%5 [s2f1u%($3 _$u)]3 _$f1%5 0, (30)

where (17c) has been used to derive the first line, and

both (16c) and (24c) have been used to derive the

second line. The procedure through (26)–(30) is based

on AGVF.

d. Depth-dependent radiation stress

Substitution of (22) and (29)–(30) to (28) yields the

depth-dependent radiation stress term applicable to

circulation on a sloping bottom,
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RSV
3 2FSV

3 52(z1%V1%)zT 1$J , (31)

which contains no singular treatment at the sea surface,

in contrast to Mellor (2008, 2011a,b). Moreover (31) does

not require the solution of the second-order waves. Sub-

stitution of (31) to (12b) yields

›T [V̂22 (z1%V1%)z]52$( p2|{z}
0

1h21 J) . (32)

The left-hand side is the time development of V̂2 2
(z%

1
V%

1
)z 5V

2
2 z%

1
V%

1z
[V

c

2, where the last term is

the Eulerian mean velocity. Namely the wave-averaged

momentum equation (32) has been written for the de-

velopment of theEulerianmean velocity, which is as in the

three-dimensional Lagrangianmean framework of AM78.

The unweighted mean nonhydrostatic pressure p2 in (32)

is zero owing to (12c) and because we can put p2 5 0 at

the surface (sincewe are not taking account of variations in

atmospheric pressure in either space or time).

In contrast to Smith (2006), who used depth-integrated

equations, the J term on the rhs of (32) has been derived

from depth-dependent equations in the present study. Our

simple derivation in section 4c is complementary to both

Lane et al. (2007) who identified the J term (see ẑ on page

1127 of their paper) in the three-dimensional Eulerian

mean framework of MRL04 yet with a separate treatment

of the vicinity of the sea surface, and ARB08 (see SJ on

page 45 of their paper) who presented a rigorous derivation

using the three-dimensional Lagrangian mean framework.

The VL coordinate system has the advantage that no spe-

cial treatment is required near the sea surface, in contrast

to the three-dimensional Eulerian mean framework, and

there is no misalignment of the mean surface height, in

contrast to the three-dimensional Lagrangian mean frame-

work [see Fig. 2 and McIntyre (1988)].7 Although our ap-

proach in section 4c is simple and recommended, it is left

FIG. 2. Illustration of the phase cycle of a wave propagating in the direction of xc axis. A

control volume element in (a) the generalized-Lagrangian-mean (GLM) coordinates of

Andrews and McIntyre (1978) and (b) the vertically Lagrangian (VL) coordinates of the

present study is shaded in blue and red, respectively, with its low-pass-filtered height, as

measured in each coordinate system, being indicated by horizontal lines, and the reference

horizontal position being indicated by vertical lines. Each color line indicates a material sur-

face which is formed by connecting the instantaneous position of water particles whose three-

dimensionally Lagrangian low-pass-filtered height is a given value.

7 This concern has been eliminated in ARB08 at least to the

leading order in terms of a perturbation expansion.
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for a future study to rederive (31) using the approach of

Garrett (1976) and Smith (2006) so as to see how to apply

the set of the wave energy equation and the wave crest

equation to the depth-dependent problem (appendix C).

It is of interest to compare the unweighted-mean

nonhydrostatic pressure p2(50) (averaged in the VL

coordinates) with the Eulerian mean nonhydrostatic

pressure pc2 (averaged inEulerian–Cartesian coordinates)

using a Taylor expansion in the vertical direction (ap-

pendix D) to read

pc2 [ p22 z1%p1z%5p21 z1%w1t%5 p22 z1t%w1%

5 p22w%2
1 52w%2

1 , (33)

where (17d)–(17f) have been used. Substitution of

(05)p2 5 pc
2
1w%2

1
to the rhs of (32) yields

›TV
c
252$

h
pc2|{z}

2w%2
1

1h21
1

2
(jV1%j21w%2

1 )
i
, (34)

which is similar to the Eulerian average of the vector-

invariant form of momentum equations with (the

traditional form of) the Bernoulli head and no vorticity

(not shown). To summarize, the J term can be in-

terpreted as the sum of (the traditional form of) the

Bernoulli head and the Eulerian mean nonhydrostatic

pressure pc (Smith 2006, section 5).

5. The connection to previous studies

a. Smith (2006) and LHS64

The depth-integral of (31) isðh
2h

[RSV
3 2FSV

3 ]dz

52(h1%V1%jz5h)T 1$
ðh
2h

J dz2 Jjz52h$h . (35)

The difference of (21) and (35) yields

(h1%V1%jz5h)T 1$ � (Cgh1%V1%jz5h)52J$h , (36)

which is identical to (2.27) of Smith (2006).

To see the connection with LHS64, we return to (21).

We rewrite (21) as follows:

ðh
2h

[RSV
3 2FSV

3 ]dz5$ �
ðh
2h

V1%V1% dz1
1

2
$h%2

1 2$
ðh
2h

(z1%p1z%) dz

5$ �
ðh
2h

V1%V1% dz1
1

2
$h%2

1 1$
ðh
2h

(z1%w1t%) dz

5$ �
ðh
2h

V1%V1% dz|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
S
(1)
xx

1$
ðh
2h

(2w%2
1 ) dz|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

S
(2)
xx

1$
1

2
h%2
1|fflffl{zfflffl}

S
(3)
xx

, (37)

where S(1)xx , S
(2)
xx , and S(3)xx are the notation in LHS64. Con-

trary to Mellor (2008, 2011a,b), we have reproduced the

result from LHS64 without recourse to introducing a delta

function at the mean sea surface height in the expression

for the depth-dependent radiation stress, that is (31).

b. Mellor (2003)

The sea surface height h in (1c) originates from the

explicit treatment of hydrostatic pressure in AG12. The

connection to the implicit treatment of hydrostatic pres-

sure in papers by Mellor is as follows. The rhs of (1c)

may be written as

2$(p1h)1 pzc$z
c52=c(p1h)52=c[p1 (h2 zc)]

52$ [p1(h2 zc)]|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
pMel

1 (pzc21)|fflfflfflfflffl{zfflfflfflfflffl}
(pMel)

zc

$zc ,

(38)

where =czc 5 0 has been used to derive the first line,

and the symbol pMel [ p 1 (h 2 zc) is the (combined

hydrostatic and nonhydrostatic) pressure in Mellor

(2003, 2005, 2008, 2011a,b). The TWM average of

the rhs of (38) leads to the form stress term and is

given by

2zcz$(p
Mel)1 (pMel)z$z

c

52$(pMel)2 zz%$(p
Mel)%1 (pMel)z%$z%

52$(pMel)2$[ (pMel)%zz%|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Eq. (34e) of M03

]1 [ (pMel)%$z%|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Eq. (34f) of M03

]z ,

(39)

where the second and third terms on the last line corre-

spond toEqs. (34e) and (34f) ofMellor (2003), respectively.

We write the negative of these terms at O(a3),
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$[(pMel)%zz%]25$[(p1%1h1%)z1z%]2$(z1%z1z%)

5$[(s2f1%)f1zz% ]2$(z1%z1z%)

5$[(s2f1%)k
2f1%]2$(z1%z1z%)

5$jV1%j22$(z1%z1z%)

52$w%2
1 1$(jV1%j21w%2

1 )2$(z1%z1z%) ,

(40a)

and

2[(pMel)%$z%]3z52[(p1%1h1%2 z1%)$z1%]z

2 [(p1%1h1%2 z1%)
_$z2%]z

2 [(p2%1h2%2 z2%)
_$z1%]z . (40b)

We consider the depth integral of (40a)–(40b). As stated

in footnote 2 of this manuscript, the choice of the flux

divergence as expressed by the last two terms of (39) is

(correct but) inconvenient for handling the sloping

bottom boundary condition, in particular when taking

the depth integral. Hence we must assume the bottom is

flat [or the slope is at mostO(a2)]. The depth integral of

the first term of the last line of (40a) becomes S(2)xx in (37).

The depth integral of the sum of the last two terms of

(40a) and the use of (20) yield S(3)xx in (37). The depth

integral of the rhs of (40b) vanishes. Including the

Reynolds stress term then recovers the expression for

the vertically integrated radiation stress from LHS64, as

in (37).

It is noteworthy that we have related our analysis to

Eqs. (34e) and (34f) in Mellor (2003). Mellor (2011b)

recommends that Eq. (34e) be deleted fromMellor (2003)

and argues that Eq. (34f) is identically zero. Clearly we do

not support these recommendations. Although Eq. (34f)

inMellor (2003) is zero after vertical integration, as stated

inMellor (2003), is not necessarily zero at all depths. This

is because of the slow spatial derivative operator in the

first term on the rhs of (40b).

c. Mellor (2008, 2011a)

InMellor (2008, 2011a), the pressure terms are treated

using Eulerian averaging. Mellor then considered the

depth integral of (the combined nonhydrostatic and

hydrostatic) pressure. He computed the difference ofÐ h
2h p

Mel dzc and
Ð h
2h p

Mel
c
dz to yield h%2/2. When deter-

mining the vertical profile of the wave-averaged pressure,

he introduced the delta function at the height of the

mean sea surface to account for the difference of h%2/2.

To gain further insight we derive the following general

expression for the time average of the depth integral of

an arbitrary quantity A in terms of TWM and Eulerian

mean quantities:

ðh
2h

Adzc 5

ðh
2h

Azcz dz5

ðh
2h

Azcz dz5

ðh
2h

Â dz

5

ðh
2h

A
c
dz1 [h%A%jz5h 2 (h%2/2)Azjz5h] ,

(41)

where the last line has been derived using (D2) in

appendix D. Substitution of A 5 pMel([p 1 h 2 zc)

to the second term on the last line of (41) [and the use

of (pMel)%5 0 and (pMel)z 5 pz 2 zcz 521 at z5h]

yields h%2/2, which is consistent with Mellor (2008,

2011a). However this term originates from the second

term on the last line of (D2) which actually has a con-

tinuous vertical profile even if A 5 pMel.

6. Summary

Wehave derived the depth-dependent radiation stress

term for the effect of surface gravity waves on circu-

lations on a sloping bottom. The derivation has been

carried out using the thickness weighted mean (TWM)

equations in the vertically Lagrangian (VL) coordinates

of AG12 in which the radiation stress corresponds to the

Reynolds stress minus the form stress. A feature of our

analysis is the consistent use of a perturbation expansion

for both waves and circulation in formulating the

equations. The fact that we focus on the scaling associ-

ated with LHS64 is for the purpose of mathematical

clarity regarding the attempt of Mellor (2003, 2008) to

derive a depth-dependent version of LHS64, and does

not necessarily indicate that the radiation stress (or the

wave-induced pressure term) is more important than the

vortex force in the real ocean (see Section 3 for a de-

tailed discussion).

The VL coordinate used here was originally in-

troduced (in prototype form) by Mellor (2003) and

forms the basis of Mellor (2003, 2005). The analysis of

Mellor (2003) uses thickness-weighted averaging in a

coordinate system that is effectively the same as our VL

coordinate system. This is the reason that Mellor (2003)

successfully reproduces the vertically integrated results

of LHS64 without the need to introduce a delta func-

tion at the sea surface in the expression for the depth-

dependent radiation stress. As noted in section 5b, the

treatment adopted by Mellor (2003) is nevertheless not

ideally suited to the situation of a sloping bottom. We

suggest that the analysis in Mellor (2003) is correct as

long as the slope is at most O(a2). For the treatment of

a sloping bottom of O(a) we recommend the use of our
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Eq. (32) for which the velocity variable inside the time

derivative is the Eulerian mean (not the Lagrangian

mean) velocity, which is as in the three-dimensional

Lagrangian mean framework of AM78.

Of particular note is the absence in our analysis of

a delta function term at the height of the mean sea

surface in the expression for the depth-dependent radi-

ation stress, as has been advocated by Mellor (2008,

2011a,b). This is despite the close similarly between the

approach adopted here and that advocated by Mellor

(2003, 2005). We suggest that the reason for this differ-

ence is that Mellor (2008, 2011a,b) uses (Eulerian) aver-

aging at fixed height to average the vertical momentum

equation and part of the horizontal momentum equation

(see section 5c). Vertically integrating these equations

does not give the same result as averaging the vertically

integrated equations, as in LHS64. The lack of inter-

changability hinges on the undulating free surface, the

treatment of which forcedMellor to introduce the delta

function into the radiation stress. By contrast, the av-

erage of the vertical integral of any variable in Eulerian

coordinates is the same as the vertical integral of the

TWM of that same variable in the VL coordinates [i.e.Ð h
2h Adzc 5

Ð h
2h Â dz in (41)]. It is interesting that (D2)

in appendix D turns out to be a cornerstone in both

surface wave literature and mesoscale eddy literature

in oceanography.
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APPENDIX A

The Nondimensionalized Equations of Motion
and the Transformation to the Vertically

Lagrangian Coordinate System

The equation system of AG12 and the non-

dimensionalization are briefly explained here.

a. Eulerian coordinates

We consider incompressible inviscid water of con-

stant, uniform density in a nonrotating frame. Let an

arbitrary variable with an associated physical dimension

be expressed by Á, and Eulerian–Cartesian coordinates

be labeled by the set of independent variables,

(�xc, �yc, �zc, �tc), where �xc, �yc are horizontal coordinates and

�zc (the geopotential height) increases vertically upward

and (�u, �y, �w) are the corresponding three-dimensional

components of velocity. The continuity, horizontal and

vertical momentum equations then take the form,

�$c � �V1 �w�zc 5 0, (A1a)

�r (›�tc 1
�V � �$c 1 �w›�zc)

�V52�$cp�2 �$c[ �r�g(�h2 �zc)]|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
�r�g�$c�h

,

(A1b)

�r(›�tc 1
�V � �$c 1 �w›�zc) �w52�p�zc , (A1c)

where �V[ (�u, �y) is the horizontal velocity vector,
�$c 5 (›�xc , ›�yc) is the horizontal gradient operator, and

�r�g(�h2 �zc) is hydrostatic pressure which vanishes at the

sea surface where �zc 5 �h with �g being the acceleration

due to gravity. Use of the hydrostatic pressure has led to

no gravitational acceleration term appearing in (A1c).

The quantity �p is the sum of oceanic nonhydrostatic

pressure and atmospheric sea surface pressure.

We nondimensionalize (A1a)–(A1c) using a length

scale �D and associated scales for the other variables,

(�xc, �yc, �zc, �h)5 �D(xc, yc, zc,h), �t c5 (�D/�g)1/2tc , (A2a)

(�u, �y, �w)5 (�g�D)1/2(u, y,w), �p5 (�r�g�D)p , (A2b)

where dimensionless variables are expressed without

the acute symbol. Substitution of (A2a)–(A2b) to (A1a)–

(A1c) yields

=c �V1wzc 5 0, (A3a)

(›tc 1V � =c1w›zc)V52=cp2 =c[(h2 zc)]|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
=ch

, (A3b)

(›tc 1V � =c1w›zc)w52pzc . (A3c)

This nondimensionalization is for the purpose of con-

venience and does not restrict the dynamics of the fluid

motions.

b. Vertically Lagrangian (VL) coordinates

AM78 (see their p. 612) have developed a hybrid

Lagrangian–Eulerian coordinate system. The idea is to

choose a coordinate system that follows the high-frequency

fluid motion (i.e., waves), as in Lagrangian coordinates,

but is such that the equations for the low-frequency

fluid motion (i.e., circulation) appear as in Eulerian co-

ordinates. The hybrid coordinate system of AM78 has

been adopted only in the vertical direction in AG12, and

is called the VL coordinate system. In the horizontal the
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standard Eulerian coordinates are retained.A1 Pro-

totypes of the VL coordinate system (i.e., one-di-

mensional analog of AM78) have been developed by

Iwasaki (2001) and Jacobson and Aiki (2006) to describe

large-scale hydrostatic circulation in the atmosphere

and ocean, respectively.

The VL coordinates are labeled by the set of inde-

pendent variables (x, y, z, t). The horizontal coordinates

x and y are the same as the standard Eulerian–Cartesian

coordinates. The transformation between the Eulerian

coordinates and the VL coordinates may be written

xc5 x, yc5 y, zc5 zc(x, y, z, t), tc 5 t , (A4)

with the inverse transformation given by

x5 xc, y5 yc, z5 z(xc, yc, zc, tc), t5 tc . (A5)

The value of the vertical coordinate z attached to a partic-

ular fluid particle at the horizontal location (xc, yc) at time

tc is assigned as follows. First, we let zL be the (Lagrangian)

low-pass filtered height of that same fluid particle cen-

tered around time tc. Then we form the material surface

that consists of all fluid particles with this same low-pass

filtered height, zL, centered around time tc. We then

define z to be the (Eulerian) low-pass filtered height of

this material surface at the location (xc, yc) and again

centered around the time tc. It follows immediately that

z[ zc , (A6)

where the overbar indicates a low-pass temporal filter

carried out in the VL coordinates. To proceed with the

mathematical development, we note that spatial de-

rivatives in the VL coordinates are given by

0
BBB@

›x
›y
›z
›t

1
CCCA5

0
BBB@

1 0 zcx 0

0 1 zcy 0

0 0 zcz 0

0 0 zct 1

1
CCCA
0
BBB@

›xc

›yc

›zc

›tc

1
CCCA . (A7)

We also note that z[ zc leads to

(zcx, z
c
y, z

c
z, z

c
t )5 (0, 0, 1, 0) , (A8)

identities that are useful when we average the governing

equations. It should also be noted that zcz corresponds to

the thickness in isopycnal coordinates (e.g., Andrews

1983; Greatbatch 1998; Greatbatch and McDougall

2003; Aiki and Richards 2008; Tsujino et al. 2010;

Young 2012).

Equation (A7) may be used to write the governing

equations (A3a)–(A3c) in terms of the VL coordinates

to yield (1a)–(1d).

APPENDIX B

Second-Order Waves Associated with
Nonlinear Terms

Substitution of the O(a) solution (17c)–(17f) to the

O(a2) Eqs. (23a)–(23d) yields

z2zt% 1 _$ �V2%1 (f1%f1%)usk
45 0, (B1a)

z2t%1f1%f1uz% sk25w2% , (B1b)

V2t%1f1%f1u%s
2k2 _$u52 _$(p2%1h2%)1f1z%f1zu% s2 _$u ,

(B1c)

w2t%1f1%f1z%s
2k252p2z%1f1z%f1%s

2k2 , (B1d)

where _$f
1
%5f

1u
% _$u, f

1t
%52f

1u
%s, f

1uu
% 52f

1
%, and

f
1zz
% 5 k2f

1
% have been used.

Substitution of (17b) to (B1a)–(B1d) yields

_$ �V2%1w2z%52sin2u
11 cosh2k(z1 h)

sinh2kH
A2sk2 , (B2a)

z2t%5w2%1 sin2u
sinh2k(z1h)

4 sinh2kH
A2sk , (B2b)

V2t%52 _$(p2%1h2%)1 sin2u
1

sinh2kH
A2s2 _$u ,

(B2c)

w2t%52p2z% , (B2d)

whereH[h1 h. Using a bottom boundary condition of

w
2
%jz52h 5 0, we solve (B2a)–(B2d) and obtain,

A1 The differences between the three-dimensional Lagrangian

coordinates of AM78 and the VL coordinates are illustrated in

Fig. 2. As the wave propagates rightward, the control cell of the

three-dimensional Lagrangian coordinates (blue) rotates clock-

wise and returns to the original position. The fact that the cell does

not drift away (despite of the presence of the Stokes-drift and

the Eulerian mean flow) is attributed to the use of the hybrid

Lagrangian-Eulerian coordinates in AM78. The control cell of the

VL coordinates (red) moves like a piston whose thickness stretches

and shrinks. As indicated by the horizontal black lines, the mean

vertical position of the control cell in the three-dimensional

Lagrangian coordinates is misaligned with that in the VL coordi-

nates (McIntyre 1988).
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V%2 5 cos2u
22 2k(z1 h) sinh2k(z1 h)1 2B cosh2k(z1 h)

4 sinh2kH
A2s _$u , (B3a)

w%2 5 sin2u
2sinh2k(z1 h)2 2k(z1 h) cosh2k(z1h)1 2B sinh2k(z1 h)

4 sinh2kH
A2sk , (B3b)

z2%5 cos2u
2k(z1 h) cosh2k(z1 h)1B sinh2k(z1 h)

4 sinh2kH
A2k , (B3c)

p2%1h2%5 cos2u
22k(z1 h) sinh2k(z1 h)1 2B cosh2k(z1 h)

4 sinh2kH
A2s2 , (B3d)

where h
2
%[ z

2
%jz50 is understood. Parameter B may be

determined from a surface boundary condition p
2
%jz50 5 0

to yield

B5
2s2 sinh2kH2 k cosh2kH

2s2 cosh2kH2k sinh2kH
kH

5
2(tanhkH) sinh2kH2 cosh2kH

2(tanhkH) cosh2kH2 sinh2kH
kH

5
cosh3kH2 3 coshkH

sinh3kH2 3 sinhkH
kH , (B4)

where the dispersion relation (17a) has been used.

APPENDIX C

Energy Equations

The depth-dependent wave energy equations in a

general form have been derived by AG12. We take the

sum of Eqs. (A6a) and (A6b) of AG12 and pick-up

O(a3) terms to yield

1

2
(jV1%j2 1w1%

2)T 1 [z1T% (p1%1h1%)1z1t%(p2%1h2%) 1 z2t%(p1%1h1%)]z1$ � [V1%(p1%1h1%)] 1 [w*2%(p1%1h1%)]z 5 0,

(C1)

which has some similarity to the depth-dependent radiation stress term based on (10a)–(10b),

RSV
3 2FSV

3 5$ � (V1%V1%)1 [w2*%V1%1 z2%
_$(p1%1h1%)1 z1%

_$(p2%1h2%)1 z1%$(p1%1h1%)]z2$(z1%p1z%) . (C2)

It is left for a future study to rederive (31) using the

set of (C1) and (C2) as well as the wave crest equa-

tion in order to see how to extend the approach of

Garrett (1976) and Smith (2006) to the depth-dependent

problem.

APPENDIX D

Approximated Expressions for the Eulerian Mean

Using a Taylor expansion in the vertical direction,

we express the Eulerian mean of an arbitrary quan-

tity A (averaged in the Eulerian–Cartesian coordi-

nates) in terms of quantities averaged in the VL

coordinates,

A
c
5A1 (2z%)(Azc) 1 (2z%)2(Azczc)/21⋯

5A2 z%(Az/z
c
z)1 z%2[(Az/z

c
z)z/z

c
z]/21⋯

’ A2 z%[(Az1Az%)(12 zz%)] 1 (z%2/2)Azz1⋯

5A2 z%Az%1 (z%2/2)zAz1 (z%2/2)Azz1⋯

5A2 z%Az%1 [(z%2/2)Az]z1⋯ . (D1)

Substitution ofA5 p to (D1) and the use of (12c) yields the

first line of (33).Using (D1)we express theTWMquantity as

Â[ zczA5A1 zz%A%

5A
c
1 (z%A%)z2 [(z%2/2)Az]z2⋯

5A
c
1 [z%A%2 (z%2/2)Az]z2⋯ , (D2)
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which is a cornerstone for computing the difference of

the depth integral of the TWM and Eulerian mean

quantities.D1
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D1 The vertical integral of the second term on the last line of (D2)

vanishes if the sea surface is assumed to be rigid as in theoretical

studies for mesoscale eddies (i.e., z%5 0 at both the top and bottom

of the ocean), allowingMcDougall andMcIntosh (2001) to show that

the quasi-Stokes velocity Vqs [ V̂2V
c
associated with mesoscale

eddies in a stratified fluid has no depth-averaged component. Sub-

stitution of A% ’ A91 z%A
c

zc (where A9 is the deviation from

the Eulerian mean, Table 1) to (D2) yields, Â ’ A
c
1 [z%A91

(z%2)A
c

zc 2 (z%2/2)Az]z ’ A
c
1 [z%A9 1 (z%2/2)A

c

zc ]z , which is

identical toEq. (A5) ofMcDougall andMcIntosh (2001) (they used

an additional approximation z% ’ 2g9/gc
zc where g is density,

which is specialized to depths away from the top and bottom

boundaries). The above argument has led to the pile-up rule of

Aiki and Yamagata (2006).
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