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ABSTRACT

The quantitative specificity of the STAT1 transcrip-
tion factor was determined by measuring the rela-
tive affinity to hundreds of variants of the consensus
binding site including variations in the length of the
site. The known consensus sequence is observed to
have the highest affinity, with all variants decreas-
ing binding affinity considerably. There is very lit-
tle loss of binding affinity when the CpG within the
consensus binding site is methylated. Additionally,
the specificity of mutant proteins, with variants of
amino acids that interact with the DNA, was deter-
mined and nearly all of them are observed to lose
specificity across the entire binding site. The change
of Asn at position 460 to His, which corresponds to
the natural amino acid at the homologous position
in STAT6, does not change the specificity nor does it
change the length preference to match that of STAT6.
These results provide the first quantitative analysis
of changes in binding affinity for the STAT1 protein,
and several variants of it, to hundreds of different
binding sites including different spacer lengths, and
the effect of CpG methylation.

INTRODUCTION

The STAT family of TFs play important roles in the differ-
entiation of immune cell types as well as in their responses
to various stimuli (1,2). Mutations in several members of
STAT family of proteins have been shown to play critical
roles in autoimmune disorders as well as primary immun-
odeficiency syndromes (3–7). Uzel et al. described patients
with IPEX-like phenotypes from five different STAT1 mu-
tations, all of which resulted in increased and prolonged
phosphorylation of STAT1 in response to IFN-ϒ , IL-6 and
IL-21 (7). Other examples of monogenic cause involve gain
of function (GOF) mutations in STAT3 and STAT1, result-
ing in autoimmunity (8–10). Soltesz et al. reported gain of
function of STAT1 signaling resulting from either hyper-
phosphorylation or impaired dephosphorylation, which is

the consequence of mutations in the coiled-coil and DNA
binding domains (DBD) of the protein (10). Alternatively,
stronger binding of the mutant DBD of STAT1 to the sub-
strate DNAs may also play a role in GOF eventually leading
to autoimmunity (10).

Overexpression of STAT3 (11) and STAT5 (12) were
found to be linked with tumorigenesis. Furthermore,
in cells, cytokine independence and expression of anti-
apoptotic proteins were observed due to consecutive phos-
phorylation and DNA binding activities of STAT5 with mu-
tations in DNA binding domain (13). Presence of tetrameric
STAT5, which could result from mutation in transactivation
domain, was also strongly correlated with tumorigenicity in
mice and humans (14,15). Under chemical induction, mice
lacking STAT1 develop tumors faster than wild-type indi-
viduals (16). In many instances, STAT1, STAT3 and STAT5
were identified to be either constitutively activated in certain
types of tumors or required for the phenotype of oncogenic
cell lines (17), with STAT1 and STAT3 sometimes playing
opposing roles (18).

The activation of STAT proteins is achieved by a sin-
gle consensus tyrosine (Tyr) phosphorylation, which has
been shown to regulate the partitioning of STAT1 protein
between different dimer conformations (19,20). Although
STAT proteins are known to regulate different genes, they
all have a high affinity towards the gamma activator se-
quence (GAS) element. By using a selection experiment,
Horvath et al. showed that the sequence for optimal DNA
binding with STAT1 is TTCC(C/G)GGAA, which has a
core GAS element with the half palindromes (underlined),
‘TTC’ and ‘GAA’, separated by three nucleotides (21). It
has also been demonstrated that STAT6 has a preference for
binding to a GAS sequence in which the half palindromes
are separated by four nucleotides (N4 sites), whereas STAT1
and STAT5 prefer half palindromes separated by three nu-
cleotides (N3 sites) (22,23). Structures of protein–DNA
complexes have been determined by X-ray crystallography
for STAT1, STAT3 and STAT6 (23–25). Surprisingly, there
is only one amino acid that makes direct hydrogen bond
interactions with the DNA bases, to both the C and adja-
cent T in each half palindrome. That amino acid is an as-
paragine in STAT1 and STAT3 (N460 in STAT1 and N466
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in STAT3) and a histidine in STAT6 (H415). In STAT6,
H415 has been shown to be critical for the preference of N4
sites over N3 sites, and the mutant H415N reverses that, so
the preference is for N3 sites (23). There is an additional
lysine residue (K336 in STAT1, K340 in STAT2 and K284
in STAT6) that makes water-mediated hydrogen bonds to
the bases in the spacer region of the GAS sequence (23–
25). There are two additional residues (S459 and Q463 in
STAT1, S465 and Q469 in STAT3 and V414 and Q418 in
STAT6) that form a hydrophobic pocket around the methyl-
groups of the two Ts in the half-palindrome and presumably
contribute to binding specificity (23–25).

Our interest is in determining the quantitative specificity
of STAT1 and identifying changes in specificity that may oc-
cur with mutations in the specificity determining residues,
K336, S459, N460 and Q463. Although many mutations
have been observed in STAT proteins, only one is known to
occur in those amino acids, Q463H (26,27). A recent study
performed alanine-scanning mutagenesis across the entire
coiled-coil and DNA-binding domains (28). They found
that substitution of alanine for any of the specificity deter-
mining residues, as well as the variant Q463H, were inac-
tive in driving expression of a reporter gene from a GAS
sequence (28). But that result does not rule out the possi-
bility that those mutant proteins might have high affinity
for alternative binding sites. We took advantage of an ear-
lier observation that introduction of two cysteine residues
in the C-terminal SH2 domain of STAT3 creates a variant
that dimerizes without phosphorylation and is active both
in vitro and in vivo (11). We used Spec-seq, which provides
high-resolution measurements of relative binding affinity to
hundreds of binding-site variants in parallel (29–31), to de-
termine the specificity of wild-type STAT1, including sen-
sitivity to CpG methylation and variation in the length of
the spacer region, and to several variant proteins with alter-
ations in the specificity-determining residues.

MATERIALS AND METHODS

Determination of relative-affinity using Spec-Seq

Protein−DNA interaction is measured by the dissociation
constant, KD, of the binding equilibrium. KD is defined as
the reciprocal of the association constant, KA̧ which is the
ratio of the equilibrium concentrations of reactants and the
DNA−protein complex:

KD(Si ) = 1
KA(Si )

= [P] [Si ]
[P · Si ]

(1)

In a competitive environment, the ratio of the concentra-
tions of the bound and unbound species determines the rel-
ative affinity of the competing DNA binding sites (29–31):

KD (S1) : KD (S2) : .. : KD (Sn) = [S1]
[P · S1]

:
[S2]

[P · S2]
: .. :

[Sn ]
[P · Sn ]

(2)

In a binding reaction, involving TF and a library of DNAs,
the concentration of bound or unbound species are directly
proportional to the number of individual DNA molecules
in bound or unbound fractions, respectively. Therefore, the
relative affinity is measured by the ratio of numbers of the

individual sites in each fraction:

KD (Si )

KD
(
Sj

) = [Si ]
[
P · Sj

]

[
P · Sj

]
[Si ]

≈ NU (Si ) / NU
(
Sj

)

NB (Si ) / NB
(
Sj

) (3)

where NB and NU are the numbers of a species (S) in
bound or unbound fractions, respectively. Current high-
throughput sequencing technologies allow parallel mea-
surement of NB and NU for thousands of DNAs. In-gel sep-
aration of protein−DNA complex (bound) from unbound
DNAs (unbound) allowed us to measure relative ratio of
each species in these fractions (see Scheme 1, Supplemental
materials). The natural logarithm of these ratios is the rela-
tive free energies of binding in units of kT (k = Boltzmann’s
constant and T = temperature used in experiments).

Protein expression

Based on an early report (32), STAT1 (Figure 1A) was ex-
pressed in a truncated form without the N-terminal domain
(1–131 amino acids), which is responsible for the tetramer-
ization of STAT proteins. Truncated STAT1 (amino acids
132–713) was expressed in Escherichia coli cells under T7
promoter inducible by IPTG. A 24-nucleotide (TGGTCT
CACCCGCAGTTCGAAAAA) sequence was attached at
the 3′-end of the constructs for encoding an additional eight
amino-acid (WSHPQFEK) long peptide (Strep-tag) for pu-
rification. Active dimers of STAT1 were obtained by incor-
porating additional mutations in the Src homology 2 (SH2)
domain. Bromberg et al. previously demonstrated the use
of a STAT3 construct with two mutations, replacing native
amino acids (A661 and N663) by cysteine, which led to the
nuclear localization of STAT3 (11). The modified STAT3
dimerized by forming disulphide bridges in the Src-domain
and demonstrated DNA binding in vitro and in vivo. The
tSTATcc construct was made with amino acid replacements
A656C and N658C (which are homologous to A661 and
N663 of STAT3) (Figure 1B).

In vivo protein expression was done by adding IPTG to E.
coli BL-21 (DE-3) cell culture, containing DHFR-control
vector (NEB PUREexpress), with cDNA of tSTATcc, at
OD600 = 0.6. The cultures were incubated for six hours
at 37◦C before lysing the cells by sonication. The separa-
tion of proteins from the cellular debris was performed by
centrifugation at 15 000 rpm. The supernatant was filtered
and loaded directly on a Strep-Tactin column. The protein
was eluted in buffer containing 100 mM Tris–HCl, 150 mM
NaCl, 2.5 mM desthiobiotin and 1 mM EDTA. Dimers of
tSTATcc were visualized in a 10% Tris-glycine SDS-PAGE,
in absence of reducing agents such as, �-mercaptoethanol or
DTT (Figure 1C). The monomeric tSTATcc was visualized
(63 kDa) in a denaturing 10% Tris-glycine SDS-PAGE gel
after incubating the protein sample in 100 mM DTT (Fig-
ure 1C).

Protein concentration was measured by using the equa-
tion: C = (1.55*A280) – (0.76*A260), where C is the concen-
tration of the protein in mg/ml, A280 is the absorbance of
protein samples at 280 nm and A260 is the absorbance at 260
nm. The protein concentration obtained by this method was
comparable with BCA protein quantification assay results.

The mutant proteins were synthesized by employing site
directed mutagenesis at specific positions of DNA binding
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Figure 1. Synthesis of tSTATcc. (A) Domains of STAT1. STAT1 has two isoforms. STAT1� is a 750 amino acid long protein, whereas STAT1� is 850
amino acid long. tSTATcc was a truncated variant of STAT1� (132–713 amino acid, 63 KDa) with additional mutations replacing A656 and N658 by
cysteines. (B) The sequence alignment of the SH2 domains of STAT1, STAT3 and STAT4, showing where the cysteines are substituted. (C) Polyacrylamide
gel visualization of tSTATcc. The dimer band appears in the native gel and disappears when run in a denaturing gel in presence of DTT.

domain (DBD) of STAT1. Eight PCR (polymerase chain
reaction) site-directed mutagenesis reactions were carried
out using Q5 Mutagenesis kit (NEB). The forward and re-
verse primers for each PCR mutagenesis are listed in the
Supplementary materials (Supplementary Figure S1). NEB
base changer web-tool was used to design the primers to re-
place the native amino acids K336, S459, N460 or Q463 of
tSTATcc construct by alanine, arginine or histidine. PCR
reactions were performed in 25 �l reaction mixtures, fol-
lowing the procedure described in the kit manual. Each re-
action mixture contained 25 ng tSTATcc template, encoded
in a DHFR-control vector (NEB), 125 ng of forward and
reverse primers, 10 nmol of dNTPs, 2.5 units of DNA poly-
merase in 35 mM Tris–HCl (pH 8.0) containing 12 mM
potassium acetate, 5mM DTT, 0.05% Triton X-100 and 0.05
mM EDTA. The products were ligated with Q5 ligase mas-
ter mix and transformed in DH5� E. coli cells. Purified plas-
mids were verified by sequencing.

Library design and preparation of dsDNA substrate

The binding models for STAT1 and the mutant constructs
were generated using the consensus (GAS) sequence and li-
braries based on GAS sequences. The libraries (Figure 2A)
were designed with randomized (no more than four posi-
tions at a time) GAS sequences. The synthesis of double
strand (dsDNA) libraries were initiated by mixing 100 pmol
single-strand (ss) degenerate template oligos (Figure 2A)
with 125 pmol FAM-labeled reverse complement primer, F1
(Supplementary Figure S2). A 10-s denaturation at 90◦C
followed by a 10-min annealing and extension at 52◦C in
presence of Taq polymerase afforded duplex DNAs. The
DNA libraries were purified by PCR purification columns
(QIAGEN), after the digestion of excess ssDNA by incu-

bating the mixture in presence of exonuclease (NEB Exo I)
for 30 min at 37◦C.

Four additional libraries with 5′ mononucleotide bar-
codes (Supplemental Figure S3) were designed by either
randomizing the palindrome or spacer region of the con-
sensus GAS sequences and treated with or without CpG
methyltransferase (M.SssI) following vendor’s (NEB) pro-
tocol. Briefly, 1 �g duplex DNA libraries were incubated
with 160 �M S-adenosylmethionine (SAM) and 4 unit of
CpG methyltransferase for 1 h at 37 ◦C. The libraries were
further purified by QIAGEN PCR purification columns. To
ensure efficient enzymatic methylation both the methylated
and unmethylated versions of the Pa-CCG libraries (PA-
treated and PA-untreated in Supplementary Figure S3) were
treated with restriction enzyme HpaII that cuts at CCGG
(which every sequence contains) only if it is unmethylated.
Supplemental Figure S4 shows that PA-untreated is nearly
completely cut whereas PA-treated is completely resistant
to cutting.

EMSA and Sample preparation for sequencing

The protein−DNA binding reactions were done in 1× NEB
CutSmart buffer (50 mM KOAc, 20 mM Tris-OAc, 10 mM
Mg(OAc)2, 100 �g/ml BSA, pH 7.9) supplemented with
10% glycerol. Fifty nmol of the FAM-labeled DNA libraries
were incubated at 4◦C for 30 min with varying concentra-
tions of wild type protein, tSTATcc, or the mutants in 15
�l reaction volume. The reaction mixtures were run (4◦C)
in 10% Tris-glycine PAGE gel at 200 V for 1 h. The FAM-
labeled DNA fragments in the bound (slow migrating band)
and unbound (fast migrating bands) were visualized by a
BioRad imager with a 520 nM bandpass filter (Supplemen-
tal materials, Scheme 1, Figure S5). The visible bands were
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Figure 2. (A) DNA libraries. Designed based on GAS-consensus sequence. The randomised region was flanked by two primer-binding regions (P1 and
P2) for amplification and indexing, followed by sequencing. (B) Binding energy logo for tSTATcc, involving the single-mutant of the preferred sequences
in the Sp-3nu and Pa-CCG libraries. All energies are in units of kT. (C) Comparison between the relative binding energies of Sp-3nu and Pa-CCG libraries
from two separate experiments. (D) Ratio of the binding energies of sequences in Sp-3nu (blue) and Pa-CCG (green) library that either have at least one
CG dinucleotide (circles) or do not have any CG dinucleotide (triangles). Y-axis represent libraries treated with CpG methyl transferase whereas, X-axis
represent untreated libraries.

excised from the gels and DNAs were extracted and puri-
fied using acrylamide extraction buffer (100 mM NH4OAc,
10 mM Mg(OAc)2, 0.1% SDS) and QIAGEN gel purifica-
tion columns, respectively. The DNAs were amplified and
barcoded by indexed Illumina-primers. The combination
of either P1 or PE1-LT and P2 (Supplementary Figure S2)
were used for the amplification of Sp-3nu, Pa-CCG and Sp-
4nu (Figure 2A) or sequences with specific variable spacers
(Supplementary Figure S6). Similarly, PE1 and PE2 were
used for the methylation sensitivity assay. The sequencing
results from Illumina 1 × 75 Myseq runs were filtered and
sorted based on conserved regions and barcodes. For each
library, the ratio of individual sequence in bound and un-
bound reads was calculated as a measurement of relative
binding affinity (Equation (3)) compared to the consensus
sequence.

RESULTS AND DISCUSSION

Synthesis of tSTATcc as a model protein

Although STAT proteins were recognized as important
signal transducing proteins and transcription factors for
decades, a thorough binding model for STAT has been un-

available. The development of Spec-seq (30,31) allows us to
accurately measure relative affinities of TFs for thousands
of sites in parallel. Here, we synthesized a truncated version
of STAT1, which was used to generate a binding model for
the protein. Most of the DNA binding studies with STAT1
(Figure 1A) was done in the past with a truncated STAT1�
(∼60 kDa), which was phosphorylated by purified kinases
to obtain active dimers (33). Another approach involved in-
corporation of mutations, which resulted in the replacement
of native amino acids (A661 and N663) by cysteines in the
SH2 domain of STAT3 (Figure 1B). The cysteine mutation
allowed STAT3 to form active dimers via disulphide bonds,
which ultimately led to nuclear localization and DNA bind-
ing (11). In this study, we took a similar approach by re-
placing two amino acids of STAT1, A656 and N658 by cys-
teines. The resulting protein, tSTATcc, showed dimer for-
mation when visualized in a gel without the presence of
reducing agents such as DTT or �-mercaptoethanol (Fig-
ure 1C, left panel). The dimers gradually disappeared with
the addition of DTT as viewed in Figure 1C, right panel.
The protein was purified from E. coli BL21 (DE3) cells and
displayed complex formation with duplex DNA contain-
ing a GAS sequence (TTCCCGGAA) (Supplementary Fig-
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Figure 3. (A) Binding energy logo for tSTATcc-N460H, involving the single-mutant of the preferred sequences in the Sp-3nu and Pa-CCG libraries. (B)
Evaluation of the binding energies of tSTATcc or tSTATcc-460H. Libraries with variable 3-base spacer (Sp-3nu) and 3-base palindrome (Pa-CCG) were
used for the comparison. (C) Binding energies of tSTATcc or tSTATcc-460H was compared using Sp-4nu (Figure 2A) library. Note that energy = 0 is for
the consensus GAS sequence which is not included in the sequences shown in this plot but was included in the mixture of sequences included in the binding
reaction.

ure S5). The construct, tSTATcc was used in combination
of several DNA libraries for generating binding models for
STAT1. Additionally, the construct was used as a model for
the study of the effect of DNA binding for proteins with
mutated amino acids in the DBD.

Library design and relative binding affinity

STAT1 is known to have strong affinity for GAS sequence.
The crystal structures of both STAT1 (25) and STAT3
(24) reveal that these proteins form a symmetric complex
with the palindromic 9-bp GAS site. We generated two li-
braries by dividing the GAS sequence in a central 3-bp
spacer and two 3-bp flanking regions. We refer to these
half-palindromic regions as L for left-half site (TTC) and
R for right-half site (GAA). The spacer region (CCG) was
referred to as S. The library Sp-3nu (Figure 2A) was syn-
thesized with a degenerate S, whereas Pa-CCG had a ran-
domized L site (Figure 2A). These two libraries added to
tSTATcc and relative binding affinity of all 128 sites were de-
termined using Spec-seq (Supplemental materials, Scheme
1). Figure 2B describes the relative binding specifies of Sp-
3nu and Pa-CCG in form of energy logo (34,35). The en-

ergy logos show the change in free energy of binding for the
single-mutant variants of the strongest binding sites, CCG,
for the spacer, and TTC, for the L site. Most variant bind-
ing sites had an energy difference greater than 1 kT between
the single mutants. The energy weight matrices (ePWMs)
resulted from Spec-seq libraries, Sp-3nu and Pa-CCG, were
used to generate ePWMs for the whole 6-bp (palindrome
and spacer) sequences (Supplementary Figure S7). Since the
L-site and the R-site of the 9-bp sequence are palindromic,
we assumed that the PWM for the R-site (Pa-CCG) will be
reverse complementary to the L-site. The reproducibility of
the Spec-seq method was determined by comparing the rel-
ative binding energies of Sp-3nu and Pa-CCG libraries from
two different experiments. Figure 2C shows the ratio of the
binding energies of 64 Sp-3nu (red circles) and 64 Pa-CCG
(blue triangles) sites from two separate experiments involv-
ing tSTATcc. The data were fitted to a straight line (r2 >
0.8). The mean differences between 64 SP-3nu and 64 Pa-
CCG sites in two experiments were 0.22 kT and 0.13 kT,
respectively, which is within the range of expected noise in
our data (31).
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Table 1. Relative binding energies for the members of variable-spacer library

Normalized ��G binding (kT)

Sequence tSTATcc tSTATcc-460H

1C GAS: TTTTTTCGGGAAAA 1.6 1.8
2C GAS: TTTTTCCGGGAAAA 0 0
3C GAS: TTTCCCGGGAAAA 1.6 1.6
0T GAS: TTTTTTTAGGAAAA 1.5 1.8
1T GAS: TTTTTCTAGGAAAA 1.7 1.7
2T GAS: TTTTCCTAGGAAAA 1.9 1.7

Figure 4. Interaction between the GAS sequence and major-groove bind-
ing amino acids in the DNA binding region of STAT1. The protein binds
as a dimer and only one of the two monomers is shown here. The other
monomer interacts with the DNA in the same way but in the opposite ori-
entation of this sequence. The nucleotide sequence is shown in the box and
the bases are color-coded for emphasizing the variation of molecular in-
teraction with the functional groups of amino acids. Blue circles represent
hydrogen-bond donors, whereas green and yellow circles represent hydro-
gen bond acceptors and methyl group on T, respectively. Additionally, the
black circles represent water molecule mediated H-bonding and the hydro-
gen bonding is shown by the arrows.

Effect of DNA-methylation on STAT1 binding

CpG methylation is a major epigenetic factor in gene ex-
pression. CpG methylation in the promoter region of Inter-
feron Regulatory Factor 8 (IRF8), which contains a GAS
sequence and is regulated by STAT1, reduced activation of
the gene in colon carcinoma cell line (36). STAT1 was shown
to bind the promoter of IRF8 irrespective of methylation
status, but we were prompted to assess the general sensitiv-
ity of STAT1 binding to CpG methylation. Libraries Sp-
treated and PA-treated were subjected to CpG methyltrans-
ferase to generate methylated DNAs (Supplementary Fig-
ures S3 and S4). These libraries along with the unmethy-
lated variants, Sp-untreated and PA-untreated, showed un-
altered specificity of STAT1 binding. Even though all of the
sequences of PA-treated library can be methylated due to
the presence of at least one CG dinucleotide, only 34 out
of the 64 sequences in the Sp-treated library can be methy-
lated. The binding energies of these sequences were derived
from Spec-seq experiment using an equimolar mixture of
the internally barcoded methylated and unmethylated li-
braries (Supplementary Figure S3, underlined nucleotide).
Figure 2D shows the ratio of CpG methyltransferase treated

(Y axis) and untreated (X axis) 30 sequences that didn’t have
any occurrence of a CG dinucleotide (blue triangles) in the
spacer region. Additionally, the rest of the library (34 in
number) that had at least one CG dinucleotide (Blue cir-
cles) was also compared. Clearly methylation on these se-
quences did not alter tSTATcc binding. Similarly, the com-
parison of treated and untreated palindrome libraries, re-
veals unaltered STAT1 binding (Figure 2D). Despite hav-
ing a CG in the spacer, these sequences were further sepa-
rated into two groups based on whether or not they have
an additional CG in the palindrome region. The sequences
with an additional CG in the palindrome are represented
by green circles in Figure 2D, whereas sequences that don’t
have a CG dinucleotide in the palindrome region are rep-
resented by green triangles. These results clearly show that
methylation of GAS sequences does not alter STAT1 bind-
ing affinity. Therefore, the lack of activation of the IRF8
promoter when methylated indicates involvement of other
methylation sensitive transcription factors.

Binding model for tSTATcc-N460H and comparison with
wild type

The crystal structures of STAT1 and STAT3 suggest that
only a single amino acid, N460 of STAT1 and N463 of
STAT3, directly interacts with the bases of the palindromes
(L and R) via hydrogen bonding (24,25). In STAT6 the ho-
mologous amino acid is H415 (23). STAT6 still favors the
GAS sequence but with a preference for N4 sites over N3. It
was recently shown that the STAT6 mutant H415N prefers
the N3 spacer (23). We synthesised a mutant (tSTATcc-
N460H) by replacing the native amino acid of tSTATcc by
histidine and studied the DNA binding specificities of the
128 sites from two DNA libraries (Sp-3nu and Pa-CCG).
The mutant tSTATcc-N460H has specificity very similar to
the wild type tSTATcc (Figure 3A) but with slightly higher
specificity for the palindromic part (TTC) and slightly less
for the spacer (Figure 3B). We also studied the preference
of N460H mutation in tSTATcc for N3 and N4 sites using
a randomized 4 bp library, (SP-4nu, Figure 2A) and using
a smaller library of specific N3 and N4 sites (Supplemen-
tal Figure S6) including those tested previously (23). We
find that STAT1 N460H has the same preference for N3
sites over N4 sites as the wt protein (Figure 3C and Ta-
ble 1). This shows that other parts of the protein, besides
just the residue at 460, are required to allow high affinity
binding to the longer spacer. This result is similar to that
observed in a comparison of the Lac Repressor with the
PurR protein (37). While the Lac Repressor (LacI) can bind
with similar affinity to sites with spacers of 2–4 bp, PurR
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Figure 5. Binding energy logos involving tSTATcc and the mutants of
STAt1. (A) tSTATcc. (B) tSTATcc-N460H. (C) tSTATcc-K366A. (D)

highly prefers just 2 bp spacers. To convert PurR to LacI-
like specificity, where it could also bind with high affinity
to sites with longer spacers, required mutations in both the
DNA-interacting residues and those in a nearby loop region
connecting two parts of the DNA-binding domain. Presum-
ably additional changes in STAT1 could allow it to prefer
N4 sites, as in STAT6.

Effect of mutations of DNA-binding amino acids on binding
specificity

We also investigated the effect of mutations of the DNA-
binding amino acids by synthesizing mutant tSTATcc pro-
teins. Figure 4 shows the amino acids of STAT1 interacting
with the DNA, based on the crystal structures of STAT1
and STAT3 (24,25), that are thought to primarily determine
the specificity of the proteins. Beside N460 that makes di-
rect hydrogen bonds to the C and adjacent T of the palin-
drome, three additional amino acids are thought to con-
tribute to DNA binding. K336 interacts with the spacer se-
quence via hydrogen bonding through a water molecule and
S459 and Q463 form a hydrophobic pocket for the methyl
group of the T in the first base of GAS sequence. Recently
all four of those amino acids were replaced by alanine and
shown to be inactive in driving a reporter gene via a GAS
sequence (28). We wondered if replacing those amino acids
by alanine, or with the large charged amino acid arginine,
might alter the sequence preference of STAT1. Therefore,
we produced seven additional variants of the tSTATcc pro-
tein: K336A, S459A, N460A, Q463A, S459R, N460R and
Q463R. These seven mutant proteins were used in combi-
nation with libraries, Sp-3nu and Pa-CCG (Figure 2), to
measure relative affinities using the Spec-seq method. Sur-
prisingly, each of those mutations renders the protein nearly
non-specific (Figure 5). The preferred sequences (which are
not usually the GAS sequence) generally have energy differ-
ences of less than 0.2kT from alternative sequences, which is
within the variance of our measurements (Figure 2C). That
is, even though we can plot energy logos in Figure 5, com-
paring the energy scale of the logos of the wt protein and the
N460H variant (also shown in Figure 5), indicates that the
differences are not significantly different from experimental
noise. We also include in Figure 5 the ‘information content’
for each protein, calculated from the energy matrices (Sup-
plemental Figure S7) for the 9-long binding sites. While the
wt protein and the N460H variant have 2.68 and 3.43 bits,
respectively, the other variant proteins all have <0.23 bits,
confirming that they are all essentially non-specific in their
binding affinity.

CONCLUSION

We have generated a binding model for STAT1 based on
a construct which successfully allowed the active dimer-

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
tSTATcc-S459A. (E) tSTATcc-S459R. (F) tSTATcc-N460A. (G) tSTATcc-
N460R. (H) tSTATcc-Q463A. (I) tSTATcc-Q463R. Column 1 indicates the
specific mutation in the STAT1 construct and the information content for
the entire binding site (which is calculated a 2x IC of position 1–3 plus IC
of positions 4–6). Column 2 represents binding energy logos generated by
considering single nucleotide mismatches from the preferred sequence.
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ization of the protein, in vitro, without phosphorylation.
STAT1 shows a strong preference for the consensus GAS se-
quence, TTCCCGGAA, but is insensitive to methylation of
the CpG within that sequence. One mutant protein, N460H,
which corresponds to the change in a DNA-binding residue
that occurs in STAT5 and STAT6 proteins, has almost no
effect on the specificity or on the spacing preference between
the half-sites. We also tested seven additional mutations,
at three additional positions in the DNA-binding domain.
Surprisingly, instead of altering the specificity of STAT1,
they all eliminate specificity almost entirely. Although only
N460 makes direct hydrogen bonds to the bases in the major
groove, the other amino acids that interact with the DNA
via water-mediated hydrogen bonds and hydrophobic con-
tacts, are critical to the specificity of STAT1. This is con-
sistent with prior alanine-scanning results that showed loss
of activation of a promoter containing a GAS sequence
(28), but further shows not just altered specificity, but es-
sentially complete loss of specificity. We speculate that the
substitutions we made to those amino acids, both to ala-
nine and arginine, may interfere with proper folding of the
DNA-binding domain or they may disrupt a very tight in-
terface between the protein and DNA that is required for
high specificity binding.
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