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Traditionally, G-protein-coupled receptors (GPCR) are
thought to be located on the cell surface where they transmit
extracellular signals to the cytoplasm. However, recent studies
indicate that some GPCRs are also localized to various subcel-
lular compartments such as the nucleus where they appear
required for various biological functions. For example, the
metabotropic glutamate receptor 5 (mGluR5) is concentrated at
the inner nuclear membrane (INM) where it mediates Ca2�

changes in the nucleoplasm by coupling with Gq/11. Here, we
identified a region within the C-terminal domain (amino acids
852– 876) that is necessary and sufficient for INM localization of
the receptor. Because these sequences do not correspond to
known nuclear localization signal motifs, they represent a new
motif for INM trafficking. mGluR5 is also trafficked to the
plasma membrane where it undergoes re-cycling/degradation
in a separate receptor pool, one that does not interact with the
nuclear mGluR5 pool. Finally, our data suggest that once at the
INM, mGluR5 is stably retained via interactions with chromatin.
Thus, mGluR5 is perfectly positioned to regulate nucleoplasmic
Ca2� in situ.

From their position on the cell surface, G-protein-coupled
receptors (GPCRs)3 can transform external stimuli into a broad
range of signaling pathways within the cell. A mounting body of
evidence indicates that many GPCRs are also localized inside
the cell where they may couple to different signaling systems,

display unique desensitization patterns, and/or exhibit distinct
patterns of subcellular distribution (1–5). For example, GPCRs
have been found on mitochondria (6), endoplasmic reticulum
(ER) membranes (7), lysosomes (8, 9), and on nuclear mem-
branes (10 –12). Certain GPCRs are even found within the
nucleoplasm on nuclear bodies and/or nuclear invaginations
(13–16). Although many intracellular GPCRs are activated at
the cell surface and subsequently trafficked to their intracellu-
lar site, others can be activated at their subcellular location via
so-called intracrine ligands that can enter cells via diffusion or
be made in situ, endocytosed, and/or transported through
channels or pores (12, 17, 18). Intracellular GPCRs can also
function independently governing processes such as synaptic
plasticity (19), myocyte contraction (15), and angiogenesis (16).
Collectively, the present findings reinforce the notion that
intracellular GPCRs play a dynamic role in generating and
shaping intracellular signaling pathways.

As many GPCRs are on or in the nucleus, the question arises
as to how they get there. Various possibilities exist to transfer
membrane proteins from the outer to the inner nuclear mem-
brane (ONM and INM), including vesicle fusion, membrane
rupture, and channel-mediated pathways. Most prominently, a
diffusion-retention model has been proposed for many INM
proteins (e.g. lamin B receptor (LBR)) (20, 21). This model sug-
gests that proteins synthesized in the ER rapidly diffuse later-
ally in the ONM, pass through peripheral channels existing
between the nuclear pore complex and the pore membrane,
and then become tethered in the INM via nucleoplasmic inter-
actions with nuclear lamins or chromatin (22–24). Because the
peripheral channels are thought to be about 10 nm, nucleoplas-
mic domains cannot exceed masses of �60 kDa (25–27).
Although the exact signals are unknown, at least 15 proteins
have been shown to translocate through peripheral channels to
reside on the INM (20, 21, 28). Current findings show that a
wide range of mechanisms underlie transmembrane INM
transport, including use of phenylalanine-glycine (FG) motifs,
use of nucleoporins, and use of the peripheral channels or the
central channel or both (20, 21). Certain INM proteins also
contain an NLS, although mutation or deletion does not affect
INM localization (20). Many peptide-activated GPCRs also use
an NLS and karyopherins such as importin-�1 for nuclear
import after receptor activation on the cell surface (16).
Inasmuch as these receptors are not associated with the INM
but rather appear within the nucleoplasm itself (via unknown
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mechanisms), the nucleoplasm targeting motifs might be quite
different. Thus, unlike karyopherin-mediated transport of sol-
uble proteins, targeting proteins to the INM is more varied and
complex.

One intracellular GPCR found on the INM is the metabo-
tropic glutamate receptor 5 (mGluR5). mGluR5 plays a key role
in normal neurodevelopment as well as in many neurodevelop-
mental and neurological disorders such as Fragile X syndrome/
Autism Spectrum Disorders, anxiety, schizophrenia, drug
addiction, Parkinson’s disease, dyskinesias, and chronic pain
(1). Although mGluR5 is found on the plasma membrane,
60 –90% of the receptor is associated with intracellular mem-
branes like the INM (29 –33). Pharmacological isolation and
genetic manipulation have allowed us to determine that INM
mGluR5 couples to Gq/11 leading to a large sustained release of
luminal Ca2�, phosphorylation of nuclear Erk1/2, and activa-
tion of immediate early genes such as Elk-1, Fos, Fosl1, and
FosL2, and immediate early effector proteins such as Arc (34 –
36). Physiologically, intracellular mGluR5 contributes to long
term depression in the hippocampus (19) and pathological pain
in the spinal cord dorsal horn (33). To further dissect mGluR5’s
subcellular functions, defining the sequence motifs responsible
for its localization is necessary. Using molecular, immunologi-
cal, and optical techniques, here we show that 25 amino acids
within the mGluR5 nucleoplasmic domain are necessary and
sufficient for its localization to the INM. Moreover, mGluR5
appears to be tethered in place via interactions with chromatin.
Thus, mGluR5 appears to use a non-canonical signal sequence-
retention strategy to anchor itself on the INM where it is poised
to regulate transcription (35), chromosome remodeling, and
genomic integrity.

Results

mGluR5 C Terminus Is Necessary and Sufficient for Nuclear
Membrane Localization—Previously, we have shown that
mGluR5 can be expressed on the PM and on intracellular mem-
branes, including the ER, ONM, and INM (30, 31, 33). To date,
no motifs responsible for maintaining mGluR5 or other INM
GPCRs in this location have been described. Because traf-
ficking of GPCRs is often dictated by sequences within the
cytoplasmic tail (37– 41), we hypothesized that the mGluR5
C terminus is the domain required for INM localization. To
test this idea, we prepared HA-tagged chimeric constructs
derived from mGluR5 and the closely related GABAB2
GPCR. Typically, GABAB2 receptors form heterodimers
with GABAB1, masking an ER retention signal (42), following
which the heterodimer is efficiently transported to the PM
(43). Because GABAB2 always traffics to the PM, it serves as
a control for PM localization. Thus, chimeric plasmids were
created in which the C termini of mGluR5 and GABAB2 were
swapped (Fig. 1A).

For this experiment and others described below, HA-tagged
control and chimeric receptors were transiently transfected
into HEK293 cells and subsequently stained for PM expression
using antibodies directed against HA on non-permeabilized
cells. All constructs showed at least some level of PM expres-
sion, although absolute amounts varied as indicated by the line
scans and western blots associated with Figs. 1 and 2 (and data

not shown). Because the HA tag is in the extracellular ligand
binding domain, these results suggest that introduced recep-
tors assume the correct orientation within the PM and that
regardless of the described manipulation, the receptor could be
found on the PM.

Immunocytochemical analyses of permeabilized cells re-
vealed that the chimeric receptor, NmG5CGB2, was found pre-
dominately at the cell surface whereas NGB2CmG5 was on NM
and ER membranes. In particular, NGB2CmG5 co-localized with
the NM marker lamin B2 whereas NmG5CGB2 did not (Fig. 1A).
Line scan analysis corroborated that mGluR5 and NGB2CmG5
co-localized with lamin B2 on NM (Fig. 1, A–C). We also
assessed the intensity of fluorescent signals detected on either
the PM or NM across multiple experiments. These results con-
firmed that the C terminus of mGluR5 prevented the chimeric
NGB2CmG5 from going to the cell surface, and in contrast, the
GABAB2 C terminus predominantly localized mGluR5 lacking
its C terminus at the PM (Fig. 1, A and D). To confirm and
extend these results, we used subcellular fractionation. Follow-
ing transient transfection, mGluR5 was readily visible in NM
fractions (Fig. 2A), whereas GABAB2 was not (Fig. 2B). Consist-
ent with the immunocytochemistry, the NmG5CGB2 construct
was primarily detected in the PM fraction (Fig. 2C); whereas
NGB2CmG5 was detected in both PM and nuclear fractions (Fig.
2D). Quantitation of results from multiple experiments is
shown in Fig. 2E. Treatment with 1 mM glutamate or baclofen
(mGluR5 and GABAB2 agonists, respectively) did not produce
an obvious re-distribution of receptor subtypes in these cul-
tures (Fig. 11B, and not shown). Taken together, these data
indicate that the C terminus is necessary and sufficient for NM
localization of mGluR5.

mGluR5 C-terminal Amino Acids 852– 876 Are Responsible
for Nuclear Membrane Localization—To further define regions
critical for NM localization, we prepared three different con-
structs to examine the involvement of the proximal regions of
the mGluR5 C terminus for NM localization. Because the size
of the C-terminal region available to go through the nuclear
pore might influence its ability to do so (22), additional con-
structs were deliberately kept within the size range of the orig-
inal mGluR5 C terminus. Thus, constructs were similar to the
NmG5CGB2 construct but carried small C-terminal extensions
downstream of the seventh transmembrane domain of mGluR5
before the addition of the GABAB2 C terminus (Fig. 3A). Dis-
tribution and orientation of the constructs NmG5_854CGB2,
NmG5_896CGB2, and NmG5_966CGB2 were examined by immuno-
staining and subcellular fractionation methods (Fig. 3, A–G).
Lamin B2 co-localization was observed for the NmG5_896CGB2
and NmG5_966CGB2 constructs in HEK293 cells; however,
NmG5_854CGB2 was primarily localized on the PM (Fig. 3, A–C).
This distribution pattern was further confirmed by subcellular
fractionation (Fig. 3, D–G). Occasionally, doublet bands were
seen in some PM and NM fractions, which presumably reflect
the glycosylation state of the receptor at the time of processing.
This interpretation is consistent with results below (Fig. 11A),
in which similar doublets were seen prior to PNGase F treat-
ment but not afterward. These results suggest that mGluR5
amino acids 855– 896 are required for NM localization.

Sequences in mGluR5 Are Responsible for INM Localization
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To further define which amino acids were responsible for
nuclear targeting, we separately deleted amino acids 852– 876
(�852– 876) and amino acids 877– 896 (�877– 896) from the
HA-tagged full-length mGluR5 plasmid (Fig. 4, A and B). HA
immunostaining indicated that the �852– 876 construct was
largely in the ER, whereas �877– 896 still showed strong co-lo-

calization with lamin B2 (Fig. 4, A and B). Thus, these results
suggest that amino acids 852– 876 contain the minimal region
for NM localization.

To determine whether these sequences were sufficient to tar-
get the nucleus on their own, we created a construct with an
N-terminal Kozak sequence followed by mGluR5 amino acids

FIGURE 1. Intracellular C terminus of mGluR5 is necessary and sufficient for nuclear membrane localization of the receptor. A, co-localization of the
full-length or chimeric constructs with NM marker lamin B2. Schematic illustrations of the constructs that were transfected and tested for nuclear localization
in HEK293 cells are next to each cellular pattern of expression. All constructs are HA-tagged at their N terminus. Numbers represent corresponding amino acid
residues where the intracellular C terminus starts and the protein ends. Yellow bars indicate the HA tag; red bars indicate mGluR5; and blue bars indicate GABAB2
receptor sequences. In chimeric constructs the mGluR5 C-terminal sequences are replaced by the GABAB2 C terminus or vice versa. HEK293 cells were
transfected with the constructs shown in A, fixed, and processed for immunohistochemistry using HA and lamin B2 antibodies. Cells were analyzed by confocal
microscopy to detect receptor (red) or lamin B2 (green) localization. Images represent single optical sections of 0.4 �m merged such that yellow indicates
co-localization of the specific antigens. White lines represent the positions of line scans across the cell diameter used for calculating the fluorescent emissions
(intensity in arbitrary units) from subcellular structures; HA and LB2 fluorescent traces are shown in B. C, analysis of line scan fluorescence. The average nuclear
HA fluorescence (determined by co-localization with LB2) was divided by an equivalent length (3 �m) of adjacent ER-localized HA fluorescence. The y axis
reflects the NM/ER intensity ratio. Bars represent the mean � S.E. of at least three independent replicates each with ratios from �15 cells/construct. The
individual replicates per set of constructs are indicated by triangles, squares, and diamonds within the bar; **, p � 0.01. D, compiled data from
immunohistochemistry results. ROI were selected from NM and PM using lamin B2 staining and transmitted light images, respectively. NM HA intensity
was divided by PM HA intensity; the y axis reflects the NM/PM intensity ratio. Bars represent the mean � S.E. of at least three independent replicates each
with ratios from �30 cells/construct. The individual replicates per set of constructs are indicated by triangles, squares, and diamonds within the bar; **,
p � 0.01.
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827–992, an HA epitope, and then a stop codon. Because there
are no transmembrane domains in this construct, it would not
be associated with any membrane. However, if nuclear localiza-
tion signals are found within this stretch of amino acids, then
presumably karyopherins will recognize these motifs and pro-
mote the transport of the receptor fragment into the nucleo-
plasm. We also created new constructs, including the �852–
876 deletion as well as the �877– 896 deletion in the mG5
(827–992) backbone (Fig. 4C). As shown in Fig. 4, C and D, HA
staining is only observed within the nucleus for constructs con-
taining amino acids 852– 876. In contrast, the construct miss-
ing those amino acids is largely found in the cytoplasm (Fig. 4, C
and D). Therefore, these sequences contain sufficient informa-
tion to be translocated into the nucleus.

To confirm and extend these results in a more physiological
environment, we tested the localization of constructs in
dissociated striatal neurons that endogenously express
mGluR5. Thus, rat striatal neurons were transfected with the
chimeric constructs, proximal mGluR5 constructs, or dele-
tion constructs (mGluR5, GABAB2, NmG5CGB2, NGB2CmG5,
NmG5_854CGB2, NmG5_896CGB2, �852– 876, and �877– 896),
subsequently immunostained, and then assessed for localiza-
tion (Fig. 5, A and B). Lamin B2 co-localization was observed for
the NGB2CmG5, NmG5_896CGB2, and �877– 896 constructs, sim-
ilar to what was observed in HEK293 cells. These data are con-
sistent with mGluR5 requiring amino acids 852– 876 for NM
localization.

Distal C-terminal mGluR5 Sequences Do Not Play a Role in
Nuclear Membrane Localization—To determine whether more
distal mGluR5 C-terminal sequences also played a role in NM
localization, we prepared additional constructs consisting of
the entire GABAB2 receptor fused with distal mGluR5 C-
terminal stretches (NGB2CmG5_827–966, NGB2CmG5_967–1036,
NGB2CmG5_967–1106, and NGB2CmG5_1107–1171). This strategy
kept the total length of the chimeric C terminus at or below the
original length of the mGluR5 C terminus. To compare all
sequences within the same paradigm, we also tested the proxi-
mal mGluR5 C terminus by fusing the sequences 827–966 to
the GABAB2 tail (NGB2CmG5_827–966; see Fig. 6A). Results con-
firmed that the mGluR5 C-terminal sequences 827–966 were
able to re-direct the GABAB2 receptor to intracellular mem-
branes, including the NM, whereas distal mGluR5 C-terminal
sequences did not affect GABAB2 distribution (Fig. 6, B–D).
This distribution pattern was also confirmed by subcellular
fractionation (Fig. 7, A–E).

Activation of mGluR5 Chimeric Constructs Leads to In-
creased Cytoplasmic and Nucleoplasmic Ca2�—To determine
the functional response of the various mGluR5 proximal C-ter-
minal constructs, we measured the following: 1) whole cell
Ca2� changes (Fig. 8); 2) IP3 changes using targeted IP3 sponges
(Fig. 9); and 3) nuclear Ca2� changes using isolated nuclei (Fig.
10). Bath application of mGluR5 agonists induced Ca2� oscil-
lations in HEK293 cells loaded with the Ca2� indicator Oregon

FIGURE 2. Subcellular fractionation of HEK293 cells expressing mGluR5,
GABAB2, or the chimeric constructs confirms cellular distribution pat-
terns. Uncropped immunoblots of HA-tagged constructs, lamin B2, and pan-
cadherin show that only constructs expressing the mGluR5 C terminus can be
detected in fractions containing both the nuclear (N) and plasma membranes
(P) as well as in whole cells (W). A–D, molecular weights are indicated in the
scale on the left of each construct panel. For all panels, 30 �g of protein from
each fraction were separated on reducing SDS gels and transferred to nylon
membranes. The blot was probed with antibodies against HA, lamin B2, or
pan-cadherin. E, quantitative analysis of western blotting results. Band inten-
sities were measured, and nuclear (N) HA intensity was divided by the plasma

membrane (P) HA intensity; the y axis reflects the N/P membrane intensity
ratio. Bars represent the mean of three independent experiments � S.E. The
individual replicates are indicated by triangles, squares, and diamonds within
the bar; **, p � 0.01.
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FIGURE 3. mGluR5 C-terminal amino acids 855–896 are sufficient for nuclear membrane localization. A, schematic illustration of the constructs that were
transfected and tested for nuclear localization in HEK293 cells. Yellow bars indicate the HA tag; red bars indicate mGluR5; and blue bars indicate GABAB2 receptor.
Numbers indicate the last amino acid of the mGluR5 C terminus prior to fusion with the GABAB2 intracellular C terminus (amino acids 741–940). HEK293 cells expressing
the indicated constructs were fixed and processed for immunohistochemistry using HA and lamin B2 antibodies. Images represent single optical sections of 0.4 �m
merged such that yellow indicates co-localization of the specific antigens. B, quantitative analysis of immunohistochemistry results and comparison of the constructs
with mGluR5 and GABAB2. Averaged HA intensity measured from NM ROIs was divided by averaged HA intensity from PM ROIs; the y axis represents the NM/PM
intensity ratio. Bars represent the mean � S.E. of at least three independent replicates each with ratios from �30 cells/construct. The individual replicates per set of
constructs are indicated by triangles, squares, and diamonds within the bar; **, p � 0.01; *, p � 0.05. C, compiled data from line scan profiles across diameters of cells
transfected with indicated chimeric constructs and analyzed as in Fig. 1C; the y axis represents the NM/ER intensity ratio. Bars represent the mean�S.E. of at least three
independent replicates each with ratios from �15 cells/construct. The individual replicates per set of constructs are indicated by triangles, squares, and diamonds
within the bar; **, p � 0.01. Subcellular fractionation of HEK293 cells expressing indicated constructs. D–F showed that NmG5_896CGB2 and NmG5_966CGB2 constructs can
be detected in both PM (P) and NM (N) fractions as well as in whole cells (W). Gels and blots were probed as described under Fig. 2. G, quantitative analysis of western
blotting results. Band intensities were measured, and nuclear (N) HA intensity was divided by the plasma membrane (P) HA intensity; the y axis represents the N/P
intensity ratio. Bars represent the mean of three independent experiments � S.E. The individual replicates are indicated by triangles, squares, and diamonds within the
bar; *, p � 0.05.
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Green BAPTA 1-AM whose spatio-temporal distribution was
analyzed using real time confocal microscopy (30, 31). To acti-
vate cell surface mGluR5 and/or intracellular mGluR5, a com-
bination of cell-permeant and -impermeant agonists and antag-
onists were utilized. Drug permeability was gauged using
published lipophilicity values (LogP), in which values �2 are
considered membrane-permeable (44). LogP values for quis-
qualate (�3.9), glutamate (�2.7), DHPG (�2.4), and LY393053
(0.6) are consistent with experimental evidence of membrane
impermeability (31, 34 –36). Thus, these agents cannot get into
the cell unless there is an active transport/exchange process
(19, 31, 34, 36). Using radiolabeled uptake studies, we have
shown previously that quisqualate (Quis) and glutamate are
transported into cells via sodium-dependent excitatory amino
acid transporters and/or cysteine/glutamate exchangers (31).
In contrast, neither DHPG nor LY393053 (LY53) is trans-
ported, although MPEP freely diffuses through membranes
(LogP 3.3) (1, 19, 31, 34, 36). Thus, these compounds can phar-
macologically isolate the cell surface from intracellular mGluR5
responses. Finally, although the chimeras contain the entire
GABAB2 tail, which couples to Gi/o proteins, they also contain

mGluR5 amino acids 827– 850, which, together with the second
intracellular loop, constitute the mGluR5 Gq/11-binding site
(45, 46). Therefore, wild type and chimeric receptors couple to
their normal signaling machinery.

Consistent with that prediction, transiently transfected
HEK293 cells expressing NmG5_854CGB2, NmG5_896CGB2, or
NmG5_966CGB2 as well as mGluR5 as a positive control
responded to either DHPG (Fig. 8, A and B), glutamate (Fig. 8, C
and D), or Quis (Fig. 8, E and F) by generating stereotypic Ca2�

oscillations. Consistent with LogP values and data showing
DHPG only activates cell surface receptors (31, 36), trans-
fected cells pre-treated with the impermeable antagonist,
LY53, did not respond to the impermeable agonist, whereas
Quis application still triggered oscillatory responses (Fig. 8,
E and F). Chimeric receptors did not show a significant dif-
ference in their oscillation amplitudes or frequencies in any
drug application condition (Fig. 8, B, D, and F, and data not
shown). These data indicate that all of the chimeric con-
structs are expressed on PM, ER, and at least the ONM where
they couple to signaling systems generating changes in intra-
cellular Ca2� levels.

FIGURE 4. mGluR5 C-terminal amino acids 852– 876 are necessary and sufficient for nuclear membrane localization. A, schematic illustration of deletion
constructs �852– 876 and �877– 896. Transfected HEK cells were fixed and stained for HA-tagged receptors (red) and lamin B2 (green). Images represent single
optical sections of 0.4 �m merged such that yellow indicates co-localization of the specific antigens. White lines represent the positions of line scans across the
cell diameter used for calculating the fluorescent emissions from subcellular structures. B, compiled data from line scan profiles are analyzed as in Fig. 1C. The
y axis represents the NM/ER intensity ratio. Bars represent the mean � S.E. of at least three independent replicates each with ratios from �15 cells/construct.
The individual replicates per set of constructs are indicated by triangles, squares, and diamonds within the bar; *, p � 0.05. C, mGluR5 C-terminal amino acids
827–992 localized to the nucleus. Schematic illustration of the truncated mGluR5 C-terminal construct with an N-terminal Kozak sequence, mGluR5 amino
acids 827–992, the HA epitope, and a stop codon. The �852– 876 and �877– 896 deletions were also created in the mG5(827–992) backbone. Transfected
HEK293 cells were fixed and stained using HA (green) and lamin B2 (red) antibodies. D, ratio of the average intensity of nuclear HA fluorescence versus
cytoplasmic HA fluorescence was quantified for each cell transfected with indicated chimeric constructs. Bars represent the mean � S.E. of at least three
independent replicates each with ratios from �50 cells/construct. The individual replicates per set of constructs are indicated by triangles, squares, and
diamonds within the bar; *, p � 0.05.
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mGluR5 Amino Acids 852– 876 Are Required for Inner
Nuclear Membrane Functional Responses—Because both cell
surface and intracellular mGluR5 can increase intracellular
Ca2� and as Ca2� can enter the nucleoplasm thru the
nuclear pore complex as well as via Ca2� release channels on
the nuclear envelope, it is difficult to assess whether one or
both of those routes are being utilized following receptor
activation. One way to overcome this limitation is use of a
functional “sensor.” In particular, we used a sensor incorpo-
rating an IP3-binding site because this site has sufficient
affinity to compete with the native receptor and therefore act
like a “sponge” to remove IP3 from its surroundings (47).
Previously, we showed that nuclear mGluR5 couples to Gq/11

to activate nuclear phosphatidylinositol-phospholipase C,
hydrolyze phosphatidylinositol 4,5-bisphosphate, and gen-
erate nuclear IP3 (34), and thus a nuclearly targeted IP3 bind-
ing domain fused with a fluorescent marker such as RFP
would be predicted to block nucleoplasmic Ca2� release due
to nuclear mGluR5-mediated IP3 production (Fig. 9A). Spe-
cifically, the nuclear IP3 sponge with three NLS sequences
will buffer IP3 in the nucleus preventing nuclear Ca2� signals
from being generated; conversely, the cytoplasmic IP3
sponge will buffer cytoplasmic IP3 and prevent cytoplasmic
Ca2� responses (Fig. 9A) (48). In the case of wild type
mGluR5, both sponge constructs showed the expected cel-
lular distribution (Fig. 9B) as well as the predicted Ca2�

FIGURE 5. mGluR5 C-terminal amino acids 852– 876 are necessary for nuclear membrane localization in dissociated striatal neurons. A, DIV5 rat striatal
neurons were transfected with the indicated constructs, maintained in culture until DIV8, fixed, and processed for immunohistochemistry using HA and lamin
B2 antibodies. Cells were analyzed by confocal microscopy to detect receptor (red) or lamin B2 (green) localization. Images represent single optical sections of
0.4 �m merged such that yellow indicates co-localization of the specific antigens. B, quantitative analysis of immunohistochemistry results of cells transfected
with indicated chimeric constructs. Averaged HA intensity measured from NM ROIs was divided by averaged HA intensity from PM ROIs; the y axis represents
the NM/PM intensity ratio. Bars represent the mean � S.E. of at least three independent replicates each with ratios from �7 neurons/construct. The individual
replicates per set of constructs are indicated by triangles, squares and diamonds within the bar; **, p � 0.01.
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response. Specifically, in the presence of glutamate, which
will activate receptors on the cell surface, ER, ONM, and INM,
Ca2� responses were seen in both the cytoplasm and the
nucleus in cells co-transfected with the nuclear or cytoplasmic
IP3 sponge (Fig. 9, C and E). In contrast, DHPG led to cytoplas-
mic Ca2� oscillations in the presence of the nuclear IP3 sponge
but no oscillations when IP3 was buffered using the cytoplasmic

IP3 sponge. This is consistent with DHPG not being taken up by
the cell but instead activating cell surface receptors (Fig. 9, D
versus F). Thus, the IP3 sponge constructs confirm and extend
our previous data showing that cell surface and intracellular
mGluR5 generates intracellular Ca2� responses.

Using this strategy, we determined the responses of
NmG5_854CGB2, NmG5_896CGB2, and NmG5_966CGB2 in the pres-

FIGURE 6. mGluR5 C-terminal amino acids 967–1171 are not necessary for nuclear membrane localization. A, schematic illustration of the constructs that
were transfected and tested for nuclear localization in HEK293 cells. Yellow bars indicate HA tag; red bars indicate mGluR5; and blue bars indicate GABAB2.
Numbers indicate the first and the last amino acids of the mGluR5 C terminus added to the constructs. Note all constructs contain the entire GABAB2 receptor
plus or minus mGluR5 C-terminal fragments fused in-frame to the GABAB2 C terminus. B, HEK293 cells were transfected with the indicated constructs, fixed, and
processed for immunohistochemistry using HA and lamin B2 antibodies. Cells were analyzed by confocal microscopy to detect receptor (red) or lamin B2 (green)
localization. Images represent single optical sections of 0.4 �m merged such that yellow indicates co-localization of the specific antigens. White lines represent
the positions of line scans across the cell diameter used for calculating HA and LB2 fluorescent emissions from subcellular structures. C, quantitative analysis of
immunohistochemistry results and comparison of the constructs with mGluR5 and GABAB2. HA intensity measured from NM was divided by PM HA intensity;
the y axis represents the NM/PM intensity ratio. Bars represent the mean � S.E. of at least three independent replicates each with ratios from �30 cells/con-
struct. The individual replicates per set of constructs are indicated by triangles, squares; and diamonds within the bar; **, p � 0.01; *, p � 0.05. D, compiled data
from line scan profiles from cells transfected with indicated chimeric constructs. Analysis of line scan fluorescence: the average nuclear HA fluorescence
(determined by colocalization with LB2) was divided by an equivalent length (3 �m) of adjacent ER-localized HA fluorescence. The y axis represents the NM/ER
intensity ratio. Bars represent the mean � S.E. of at least three independent replicates each with ratios from �15 cells/construct. The individual replicates per
set of constructs are indicated by triangles, squares, and diamonds within the bar; **, p � 0.01.
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ence of either IP3 sponge. Both sponge constructs exhibited the
expected distribution in the presence of all chimeric constructs
(data not shown) as well as equivalent transfection efficiencies

(co-transfection efficiency was higher than 80% for all condi-
tions; �250 cells counted/condition, n 	 3).

Bath application of glutamate to cells co-transfected with
NmG5_896CGB2 and NmG5_966CGB2 and either the NLS or NES
IP3 buffer construct generated the same results as the wild type
mGluR5 clones (Fig. 9I). In contrast, co-expression of the NES
IP3 sponge with NmG5_854CGB2 led to reduced Ca2� generation
in the cytoplasm, whereas the NLS IP3 sponge did not inhibit
cytoplasmic Ca2� responses (Fig. 9I). Taken together, these
data indicate that the chimeras containing sequences between
855 and 896 are present on the INM where they can affect the
production of IP3 and hence nucleoplasmic Ca2�.

Although the IP3 sponge data are consistent with NmG5_896CGB2
and NmG5_966CGB2 being present on the INM, they do not rule
out the possibility that the observed Ca2� fluctuations are due
to other indirect causes. Given that only receptors present on
INM could directly trigger nucleoplasmic Ca2� responses in
the presence of a nucleoplasmic Ca2� fluorophore, we tested
whether isolated nuclei expressing mGluR5/GABAB2 proximal
constructs would respond to bath application of glutamate as
predicted from the NLS/NES IP3 sponge experiments (Fig. 9).
Isolated nuclei expressing wild type mGluR5 or NmG5_896CGB2
exhibited Ca2� oscillations in response to agonist application
(Fig. 10, A and C), whereas NmG5_854CGB2-expressing nuclei
did not (Fig. 10B). Moreover, the mGluR5 deletion clones
�852– 876 could not generate Ca2� oscillations in isolated
nuclei and showed diminished Ca2� oscillations when co-trans-
fected with the NES IP3 sponge, whereas �877– 896 mirrored
NmG5_896CGB2 (data not shown). Collectively, these data indi-
cate that sequences between mGluR5 amino acids 852 and 876
(SSAASRSSSLVNLWKRRGSSGETLS) are required for local-
ization on the INM where such constructs can generate
increased nucleoplasmic Ca2�.

mGluR5 Goes through the Golgi to Get to the INM—Most
transmembrane proteins are tagged with N-linked oligosaccha-
rides as they are translocated through the ER membrane. These
glycosylation groups are further modified as proteins move
from the ER through the Golgi, and thus differential glycosyla-
tion can be used to monitor protein trafficking through these
compartments. Specifically, N-linked glycosylation would be
sensitive to Endo H digestion, whereas Endo H resistance sug-
gests a protein has been trafficked at least to the cis/medial-
Golgi where PNGase F can remove all N-linked glycans.
mGluR5 has six putative N-glycosylation sites, although only
one (Asn-444) appears to be utilized (49). By treating plasma
membrane preparations with both enzymes and comparing the
resulting immunoblots with non-treated protein, we observed
an mGluR5 mobility shift akin to what was previously reported
following PNGase F but not Endo H treatment (Fig. 11A).
When nuclear membrane preparations were treated with Endo
H and PNGase F, similar results were observed, although occa-
sionally small amounts of nuclear protein appeared to be sen-
sitive to Endo H treatment (
7.5% of total). These data indicate
that �90% of mGluR5 is processed through the Golgi ruling out
simple ER diffusion to the INM.

INM mGluR5 Does Not Originate at the PM—If INM
mGluR5 is not diffusing from the ER, then perhaps like the
apelin, angiotensin, and F2rl1 GPCRs, mGluR5 is being routed

FIGURE 7. Subcellular fractionation of HEK293 cells expressing mGluR5
C-terminal chimeric constructs. mGluR5 amino acids 827–966 can partially
localize GABAB2 to the NM (N) versus PM (P) (A), whereas amino acids 967–1171 do
not (B–D). Gels and blots were probed as described under Fig. 2. E, quantitative
analysis of western blotting results. Band intensities were measured, and nuclear
(N) HA intensity was divided by the plasma membrane (P) HA intensity. The y axis
represents the N/P intensity ratio. Bars represent the mean of three independent
experiments � S.E. The individual replicates are indicated by triangles, square,
and diamonds within the bar; **, p � 0.01. W, whole cells.

Sequences in mGluR5 Are Responsible for INM Localization

MARCH 3, 2017 • VOLUME 292 • NUMBER 9 JOURNAL OF BIOLOGICAL CHEMISTRY 3645

 at W
ashington U

niversity on A
ugust 29, 2017

http://w
w

w
.jbc.org/

D
ow

nloaded from
 

http://www.jbc.org/


from the PM to the INM. Although canonical NLS motifs are
not apparent in the mGluR5 C-terminal domain (50, 51), there
are three consecutive basic amino acids (KRR) between 852–
876, the region defined as required for INM localization. How-
ever, mutating these sequences to QQQ had no effect on
mGluR5 localization (data not shown). Thus, these data suggest
that no canonical NLS or derivation thereof is responsible for
the INM localization of mGluR5. Instead, other sequences
and/or mechanisms must be a factor.

Because apelin, angiotensin, and F2rl1 translocate to the
nucleus upon receptor activation (13–16), we tested whether
glutamate treatment of mGluR5 stable HEK cells led to
increased levels of receptors on nuclear membranes following
subcellular fractionation. Even after 1 h of glutamate treatment,
no significant differences were seen in mGluR5 levels on

nuclear membranes following vehicle, glutamate-treated, or
MPEP/glutamate-treated samples (Fig. 11B).

To more directly examine whether PM mGluR5 could traffic
to nuclear membranes, we constructed the 13-amino acid bun-
garotoxin-binding site (BBS) within the mGluR5 extracellular
domain (Fig. 11C). The BBS is recognized by its high affinity
ligand, bungarotoxin, which when conjugated with rhodamine
allows the labeled receptor to be tracked via imaging techniques
(52). Bungarotoxin-labeled mGluR5 was followed for 1 h with
or without glutamate treatment. Although PM signals gradu-
ally dimmed, no label was ever observed at the nuclear mem-
brane. Rather, internalized puncta were observed near the PM
within 10 min of labeling after which they disappeared (Fig.
11C). In agreement with a previous study using Myc-tagged
mGluR5 (53), the addition of ligand accelerated the internaliza-

FIGURE 8. Activation of mGluR5 chimeric constructs leads to increased cytoplasmic Ca2�. mGluR5 (blue), NmG5_854CGB2 (red), NmG5_896CGB2 (green), and
NmG5_966CGB2 (orange) constructs were transiently expressed in HEK293 cells, loaded with Oregon Green BAPTA AM (30), and then monitored in real time
following bath addition of the indicated ligands. A, representative fluorescent traces after 100 �M DHPG. B, bars represent compiled data from the mean � S.E.
of the maximum response of the initial peak (�F/F0) from three independent replicates each with ratios from �30 cells/construct. The individual replicates per
set of constructs are indicated by triangles, squares, and diamonds within the bar. C, traces following 1 mM glutamate (Glu). D, compiled data as described in B.
E, representative traces following serial addition of drugs. To isolate the intracellular receptor, response cells were pretreated with the impermeable non-
transported antagonist LY53 (15 �M), which blocked the impermeable, non-transported DHPG-induced Ca2� responses but not the transported Quis-induced
Ca2� responses. F, compiled data as described above from maximal DHPG and Quis responses. No significant differences were observed between the constructs.

Sequences in mGluR5 Are Responsible for INM Localization

3646 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 292 • NUMBER 9 • MARCH 3, 2017

 at W
ashington U

niversity on A
ugust 29, 2017

http://w
w

w
.jbc.org/

D
ow

nloaded from
 

http://www.jbc.org/


FIGURE 9. Cytoplasmic IP3 sponge construct blocks Ca2� response of NmG5_854CGB2-transfected HEK293 cells. A, schematic representation of RFP-tagged
IP3 sponge constructs: NES, nuclear exclusion signal; NLS, nuclear localization signal; IP3R1(224 – 605), IP3 binding domain of the human type I IP3 receptor
(IP3R1). B, representative images showing expression of IP3 sponge NLS or IP3 sponge NES with mGluR5 in HEK293 cells. HA staining indicates mGluR5
expression, and RFP signal indicates IP3 sponge construct expression. C–F, representative traces are shown of cytoplasmic (blue line) or nuclear (red line) Ca2�

responses from HEK293 cells co-transfected with mGluR5 and IP3 sponge NLS constructs (C and D) or mGluR5 and IP3 sponge NES constructs (E and F) following
bath addition of 1 mM glutamate (C and E) or 50 �M DHPG (D and F) at indicated points. G and H, bars represent compiled data from the mean � S.E. of the
maximum response of the initial peak (�F/F0) from three independent replicates each with ratios from �30 cells/indicated construct and activated by
glutamate (G) or DHPG (H). The individual replicates per set of constructs are indicated by triangles, squares, and diamonds within the bar; **, p � 0.01. I,
compiled data from HEK293 cells expressing each construct (mGluR5, NmG5_854CGB2, NmG5_896CGB2, or NmG5_966CGB2) with either the cytoplasmic IP3 sponge (red
bars) or the nuclear IP3 sponge (blue bars). Bars represent the percentage of RFP-positive cells that also exhibited a glutamate-induced Ca2� response. Bars
represent the mean � S.E. from three independent replicates each with ratios from �30 cells/construct. The individual replicates per set of constructs are
indicated by triangles, squares, and diamonds within the bar; **, p � 0.01.
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tion of mGluR5, although its presence on the nuclear mem-
brane was never observed (Fig. 11D). These data suggest that
PM-localized mGluR5 is not the initiating source for NM-lo-
calized mGluR5. Rather, internalized receptors were either
degraded or recycled back to the PM (53).

mGluR5 C-terminal Domain Interacts with Chromatin—
Previously, immunogold staining with antibodies directed
against the C-terminal portion of mGluR5 showed the presence
of many immunogold particles associated with electron-dense
material close to the INM representing chromatin (30, 34).
Moreover, mGluR5 amino acids 827– 896 have a pI of 11.64,
and those of the defined INM domain (854 – 896) have a pI of
11.71. Conceivably, such an overall positive charge might pro-
mote interactions with the negatively charged chromatin (54).
To directly test the hypothesis that the mGluR5 C-terminal tail
interacts with DNA, we cross-linked putative nucleic acids to
transiently expressed mGluR5 and GABAB2 receptors and then
immunoprecipitated DNA using HA antibodies. To amplify
precipitated DNA, we used primers recognizing the human
repetitive DNA sequence, Alu (55). Precipitated material from
mGluR5-expressing cells but not GABAB2 led to DNA amplifi-
cation (Fig. 12A) suggesting that mGluR5 interacts with DNA.
Moreover, we could pull down DNA from the cells expressing
NmG5_896CGB2 receptor but not NmG5_854CGB2 receptor, fur-
ther suggesting the importance of amino acids 855– 896 for
INM localization and retention (Fig. 12, A and B).

INM mGluR5 Exhibits Low Mobility whereas ER-localized
mGluR5 Moves Rapidly in the Membrane—INM proteins
exhibit very little movement presumably due to their tethering

to the chromatin. Consistent with this hypothesis, photocon-
version of dendra-tagged mGluR5 on the NM also revealed a
very stationary protein akin to the LBR (Fig. 13, A and B). In
contrast, photoconversion of dendra-tagged mGluR5 in the ER
revealed rapid movement throughout the cytoplasm (Fig. 13, A
and B). We also used FRAP to assess mGluR5 mobility at the
nuclear membrane and again found that like INM LBR the
mGluR5 immobile fraction was �50%, whereas on ER mem-
branes both mGluR5 and LBR were highly mobile (Fig. 13, C
and D). Taken together, these data confirm the notion that
mGluR5 is not freely mobile at the INM but rather is anchored
in place presumably via its chromatin interactions (Fig. 13E).

Discussion

Although many GPCRs are localized at the INM, the signals
responsible for either trafficking or retaining these receptors in
this locale are just emerging. Using optical, molecular, and
pharmacological techniques, here we show that sequences
between 852 and 876 of mGluR5 are necessary and sufficient for
targeting this receptor to the INM. Because these sequences do
not correspond to any known NLS (50, 51), they represent a
new motif for INM trafficking. mGluR5 is also trafficked to the
PM where it undergoes re-cycling/degradation in a separate
receptor pool, one that does not interact with the nuclear
mGluR5 pool. Finally, our data suggest that once at the INM,
mGluR5 is stably retained via interactions with the chromatin.
Thus, mGluR5 is perfectly positioned to regulate nucleoplas-
mic Ca2� in situ.

FIGURE 10. Glutamate-mediated Ca2� changes in isolated nuclei. Nuclei (transmitted light images in upper right corner) were isolated from mGluR5-,
NmG5_854CGB2-, or NmG5_896CGB2-transfected cells, loaded with Oregon Green BAPTA, and treated at indicated times with 1 mM glutamate (Glu). A, representative
trace of Glu-mediated Ca2� oscillations in nucleus-expressing mGluR5. B, trace from NmG5_854CGB2-expressing nucleus. C, NmG5_896CGB2-expressing nucleus. D,
bars represent compiled data from the mean � S.E. of the maximum response of the initial peak (�F/F0) from three independent replicates each with ratios from
�10 nuclei/construct. The individual replicates per set of constructs are indicated by triangles, squares, and diamonds within the bar. NmG5_854CGB2-expressing
nuclei never exhibited Ca2� oscillations in three independent experiments whereas mGluR5- and NmG5_896CGB2-expressing nuclei were always positive. ***,
p � 0.001; NmG5_854CGB2 is significantly different from mGluR5; no significant (n.s.) difference between mGluR5 and NmG5_896CGB2.
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The requirement of the 852– 876 region for INM localization
is supported by a number of observations. First, two mGluR5
constructs, NmG5_896CGB2 and NmG5_966CGB2, which encom-
pass this region (855– 896), were detected on NMs via immu-
nocytochemical and fractionation analysis, but the �852– 876
deletion construct was not detected in either HEK293 cells
or striatal neurons (Fig. 4, 5). Second, both cytoplasmic and
nuclear IP3 sponge constructs did not block the Ca2�

responses of NmG5_896CGB2 and NmG5_966CGB2 receptors,
although the cytoplasmic IP3 sponge blocked the Ca2�

response of NmG5_854CGB2 (Fig. 9). Third, nuclei isolated from
NmG5_896CGB2- and �877– 896-expressing HEK293 cells
responded to the agonist glutamate and generated nucleoplas-
mic Ca2� oscillations but NmG5_854CGB2 and �852– 876
expressing nuclei did not (Fig. 10, not shown). Fourth, chroma-
tin immunoprecipitation revealed a specific DNA interaction
between amino acids 855– 896 but not for amino acids 827–
854 or GABAB2 receptors (Fig. 12). Finally, �90% of nuclear
mGluR5 exhibits a mature glycosylation pattern indicative of
trafficking through the Golgi (Fig. 11A), which makes immedi-
ate lateral diffusion from the ER to the ONM to the INM
unlikely. Rather, these data support a model in which the C-ter-
minal domain of mGluR5 is translocated to the INM via non-
canonical transport mechanisms and subsequently is retained
by chromatin interactions (Fig. 12).

Unlike the movement of soluble proteins from the cytoplasm
into the nucleus, there appear to be many mechanisms associ-
ated with INM protein translocation. These range from lateral
diffusion through peripheral channels to movement through
the nuclear pore complex using linkers, carrier proteins, and
even known components of the soluble transport machinery
(20, 21). For example, certain GPCRs such as the apelin, angio-
tensin AT1, and bradykinin B2 receptors use a canonical NLS
for nuclear import (13). Indeed, the F2rl1 receptor translocates
from the PM to the NM via importin �1 and sorting nexin
Snx11 (16). However, unlike these receptors, mGluR5 has only
a very small stretch of basic amino acids (KRR) in its C-terminal
sequence, which when mutated did not block INM localization
(data not shown). Even though the KRR sequence was not
involved in INM trafficking, sequences encompassing the INM
domain were sufficient to localize to the nucleoplasm after
transfection (Fig. 4, C and D). The latter finding indicates that
other motifs within the INM sequence are recognized by trans-
location machinery allowing it to be carried to the nucleus.
Thus, despite precedence for known NLS sequences being
involved in transporting GPCRs to the nucleus, mGluR5 does
not use any of the classical motifs (56) to arrive at the INM.

Another feature of mGluR5 INM localization is that it does
not appear to originate at the PM. In agreement with earlier
observations (53, 57, 58), mGluR5 undergoes constitutive inter-

FIGURE 11. mGluR5 trafficking in HEK cells. A, glycosylation analysis of mGluR5 in subcellular fractions of either PM or nuclei derived from mGluR5-expressing
HEK cells. Control, Endo H-, or PNGase F-treated membrane fractions were analyzed using SDS-PAGE and western blotting with anti-mGluR5. PM and nuclear
membrane fractions primarily contained Endo H-resistant mGluR5; long exposures showed a small amount of nuclear mGluR5 (
7.5% of total) was sensitive
to Endo H treatment. B, fractionated nuclei from mGluR5-expressing HEK cells treated with vehicle, 1 mM Glu, or pre-treated with 10 �M MPEP followed by 1 mM

Glu for 1 h. Thirty micrograms of protein from each fraction were separated on reducing SDS gels and transferred to nylon membranes. The same blot was
sequentially probed with antibodies against HA, lamin B2, and pan-cadherin antibody. Quantitative analysis of western blotting results showed no significant
difference across all treatments. Bars represent the mean of three independent experiments � S.E. The individual replicates are indicated by triangles, squares,
and diamonds within the bar. C, internalization of fluorescent bungarotoxin-tagged mGluR5 after 1 mM glutamate treatment of transiently transfected HEK
cells expressing mGluR5 containing a BBS. Static images at indicated times after glutamate addition. D, internalization of fluorescently labeled mGluR5 was
followed in real time. Data from the mean � S.E. from 14 independent replicates. *, p � 0.05.
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nalization in the absence of ligand, a process that is significantly
enhanced after glutamate treatment (Fig. 11, C and D). Despite
this ongoing internalization, at no time did rhodamine-labeled
mGluR5 appear at the nuclear membrane. Instead, structures
akin to the recycling compartments identified by Trivedi and
Bhattacharyya (53) were apparent 30 min after initiation of
internalization (Fig. 11). Trivedi and Bhattacharyya (53) also
showed that mGluR5 is subsequently recycled back to the PM
within 2 h. Thus, in their study and this one, mGluR5 under-
went internalization and recycling as a seemingly “PM-centric”
receptor pool, not one associated with the NM. Consistent with
these data, nuclei purified 1 h after glutamate treatment of
mGluR5 HEK cells did not show increased levels of mGluR5 in
nuclear fractions nor were there increased numbers of recep-
tors (Fig. 11B). Moreover, photoconversion of dendra-tagged
mGluR5 showed diffusion only along the PM and in nearby
puncta; there were no photoconverted (red) puncta in perinu-
clear or INM locations (data not shown). These data suggest
that the nuclear mGluR5 receptor pool is distinct from the PM
pool.

Because nuclear mGluR5 contains complex glycans (Fig.
11A), it must be processed at least as far as the cis/medial-Golgi
compartment and possibly to the trans-Golgi network as well
(59). In either case, membrane traffic between the ER and the

Golgi is bidirectional and highly dynamic (59). Consistent with
its presence on PM and the nucleus, there are no sequences
within mGluR5 that have been described to serve as “retrieval”
motifs (21), i.e. sequences that might be involved in retrograde
trafficking from the Golgi to the ER. Similarly, INM sorting
motifs such as KTKK, KKLK, or KKSSK (21) are not apparent
either within the mGluR5 INM localization domain or C-ter-
minal tail. The lack of destination or retrieval motifs may con-
tribute to our finding that mGluR5 is present on all of these
membranes versus being entirely localized on one. These data
support a more dynamic diffusion model, one in which mGluR5
is cycled from the Golgi to the ER and then undergoes either
simple lateral diffusion or a facilitated process to reach the
INM.

At its simplest, lateral diffusion is thought to involve translo-
cation through the peripheral channels of the nuclear pore
complex. Because of the size constraints of these channels, the
nucleoplasmic domains of INM proteins must be under 60 kDa
(25–27). Because the C-terminal domain of mGluR5 is 35 kDa
(60), it is well below the predicted limit (20). However, tandem
copies of the mGluR5 C-terminal tail would be above the limit,
and in fact, increasing the size of the nucleoplasmic domain by
doubling the C terminus prevented mGluR5 from getting to the
INM (data not shown). Thus, at least by these criteria, it appears
that mGluR5 goes through the peripheral channels.

Recent data have expanded the mechanisms involved in INM
localization. For example, some INM proteins go through
peripheral channels using facilitator proteins, some require
ATP, and certain INM proteins help themselves via phenylala-
nine-glycine (FG) interactions with particular nuclear pore
proteins (e.g. Nup 35 (20)). Because the mGluR5 C terminus
contains no FG motifs, the latter mechanism seems unlikely.
Although some transmembrane-spanning proteins get to the
INM via the central pore possibly with the aid of a linker protein
(21), the most parsimonious pathway based on current data is
that mGluR5 translocates via the peripheral channel with or
without the help of a facilitator protein.

Interactions between INM proteins and nuclear resident
proteins and/or chromatin are thought to complete the INM
localization process (22). Because diffusion could go either way,
tethering the proteins on one side would provide directionality
to the process. For example, INM proteins such as Emerin, LBR,
Lamin-associated polypeptide (Lap)1, Lap2, and Man1 are all
tethered to the INM via lamin interactions (61, 62). LBR also
binds to the chromatin suggesting that nucleic acids can also
function in this capacity (63, 64). Our current data suggest that
the chromatin plays a role in the INM localization of mGluR5
(Fig. 11). By analogy with LBR, which interacts with chromatin
via a basic region (pI �9.8) (54, 65, 66), the mGluR5 INM local-
ization domain is also very basic, which may promote its chro-
matin interaction (Fig. 12).

Finally, various studies have indicated that different C-termi-
nal interacting proteins can re-direct mGluR5 to a particular
membrane. For example, Homer or Tamalin take mGluR5 to
the somal or dendritic membranes of particular neurons (67).
Another recently described protein, Norbin, has also been
shown to enhance the presence of mGluR5 on the PM (68).
Interestingly, there are two Norbin-binding sites in the mGluR5

FIGURE 12. mGluR5 C terminus interacts with chromatin. A, CHIP analy-
sis of HEK293 cells expressing either mGluR5, GABAB2,NmG5_854CGB2, or
NmG5_896CGB2. As indicated previously, all constructs are tagged with the HA
epitope. Therefore, samples were immunoprecipitated with either HA or non-
specific IgG antibodies. PCR analysis of eluted DNA was done by using oligo-
nucleotides specific for human repetitive DNA sequence Alu. DNA interaction
was detected for mGluR5 and NmG5_896CGB2 construct but not GABAB2 and
NmG5_854CGB2. B, quantitation of CHIP results in A. The ratio of PCR product
intensity of HA immunoprecipitation versus nonspecific IgG immunoprecipi-
tation of each indicated chimeric construct was quantified. Bars represent the
mean of three independent experiments � S.E. The individual replicates are
indicated by triangles, squares, and diamonds within the bar; ***, p � 0.001.
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C-terminal tail, one of which is within the INM localization
sequence defined here. This sequence also completely overlaps
one of two predicted calmodulin-binding sites suggesting that
this region of the C terminus undergoes complex regulation.
Indeed, several kinase structural motifs are contained within
this sequence, including motifs for PKA, casein kinase II, PKC,
and CaMKII (69). Conceivably, phosphorylation might influ-
ence binding by calmodulin or Norbin akin to the described
role of sequences immediately adjacent (889 –917), which
encompass a PKC phosphorylation site (58). Roche and co-
workers (70) have shown that binding of calmodulin within this
domain promotes the interaction of the receptor on the plasma
membrane. PKC phosphorylation at Ser-901 leads to the loss of
calmodulin and the binding of Siah-1A, which promotes inter-

nalization (58). Conceivably, phosphorylation-dependent cal-
modulin binding prevents Norbin from trafficking mGluR5 to
the cell surface. Alternatively, these sequences may serve as a
binding site for an unknown protein(s) that helps re-distribute
mGluR5 to the INM; deletion of 852– 876 prevented this inter-
action (Fig. 4, A and B). Although these observations need to
be supported with further investigation, it is clear that the
sequence defined lies within a domain already notable for its
complex regulation.

In summary, amino acids 852– 876 of the rat mGluR5 C ter-
minus are necessary and sufficient for the INM localization of
the receptor. Given that no classic NLS sequences are present in
this domain or the entire C terminus, lateral diffusion from the
ONM to the INM seems a likely model to account for the pres-

FIGURE 13. mGluR5 is immobilized on NMs. A, dendra-tagged mGluR5 is almost stationary on NMs, whereas it is highly mobile in the ER of transiently
transfected HEK cells. Representative images showing ROIs (white circles) in isolated NMs (upper panel) or whole cell ER (lower panel) before and after photo-
conversion. B, quantitation of dendra-mGluR5 movement in NM and ER membranes. Background-subtracted mean fluorescence intensities/area are plotted
against time for each of the outlined ROIs on either ER or nuclear membranes. Data are the mean of three independent experiments (n 	 5 cells). C, quantitative
FRAP experiments to determine diffusion coefficients for tagged LBR and mGluR5. Fluorescent intensities after photobleaching were plotted at 1.12-s intervals
until plateauing. Fluorescence was normalized to prebleach intensity corrected for the total loss of fluorescence due to high energy laser bleaching, Io 	 100
(normalized prebleach intensity). Recovery at t 	 60 s was used as a measure of the mobile fraction of molecules. D, diffusion coefficients (D; �m2/s)) and
immobile fractions (%) of LBR-GFP and mGluR5-GFP. The diffusion coefficient and ER immobile fraction of tagged LBR were not significantly different from the
diffusion coefficient and ER immobile fraction of mGluR5-GFP as determined by t test, p � 0.5. N.A., not applicable, in this case because the immobile fraction
is above 50% and the kinetics do not fit a diffusional profile. n 	 10. E, proposed model of mGluR5 trafficking: current data indicate that �90% of mGluR5 traffics
to the trans-Golgi network. Subsequently, 
15– 60% (29, 30, 71, 74, 76, 77) of mGluR5 traffics to the PM where it appears to undergo a cycle of constitutive
endocytosis and recycling (58). Remaining mGluR5 is retrogradely trafficked back to the ER where it can undergo lateral diffusion to reach the INM. INM
receptors are held in place via interactions with the chromatin. NPC, nuclear pore complex.
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ence of mGluR5 on the INM. Retention on the INM via inter-
actions with the chromatin would maintain the receptor in this
location (Fig. 13E). Given the presence of many putative phos-
phorylation motifs within the INM localization sequence
defined here, we would predict that complex protein interac-
tions play a role in shaping mGluR5’s final destination.

Materials and Methods

Cell Culture—Human embryonic kidney cells (HEK293)
were maintained in Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal bovine serum and transiently trans-
fected using standard transfection techniques as described (30).
Primary striatal neuronal cultures using neonatal 1-day-old rat
pups were prepared and maintained as described (31). Stable
cell lines were generated using standard transfection tech-
niques followed by repetitive rounds of limiting dilution.
For immunocytochemistry and Ca2�-imaging experiments,
HEK293 cells were plated on glass coverslips or 35-mm glass
bottom culture dishes coated with 0.2 mg/ml poly-D-lysine and
incubated at 37 °C and 5% CO2.

Plasmids—All chimeric DNA constructs were generated
using standard polymerase chain reaction (PCR) amplification
methods with appropriate primers, and plasmids were con-
firmed by sequencing. N-terminal HA-tagged mGluR5a clone
was generated previously (30). The GABAB2 clone (30) was
modified by the addition of an HA tag after the signal peptide.
All other constructs were generated from either the HA-tagged
mGluR5 or GABAB2 construct. For all deletion constructs, the
indicated amino acids are the first and the last amino acids of
the regions deleted from the rat mGluR5 (�852– 876 and
�877– 896) (NM_017012). NmG5CGB2 and NGB2CmG5 chimeric
constructs were generated by adding cytoplasmic C-terminal
amino acids 741–940 from GABAB2 (NM_031802) to the
C-terminal end of mGluR5 just 3� to the last transmembrane
domain (ending at amino acid 826) and vice versa. Additional
clones were constructed such that increasing lengths of the
mGluR5 C-terminal tail were added in front of the GABAB2
C-terminal amino acids such that constructs NmG5_854CGB2,
NmG5_896CGB2, and NmG5_966CGB2 were created. The number
indicates the last mGluR5 amino acid of the construct. Given
the size constraints associated with the peripheral channel
between the nuclear pore complex and the pore membrane
(20), additional lengths of mGluR5 C terminus would have been
confounding. Therefore, we inverted the paradigm and put
additional pieces of the mGluR5 C terminus on the end
of the GABAB2 C-terminal tail. These included constructs
NGB2CmG5_827–966, NGB2CmG5_967–1036, NGB2CmG5_967–1106,
and NGB2CmG5_1107–1171. The mGluR5�KRR construct was gen-
erated by mutating amino acids 866 – 868 (lysine, arginine, and
arginine) to glutamine. The C-terminal truncated construct
was created by adding a Kozak sequence and AUG (GCCGC-
CACCAUGG) in-frame with the HA motif and then the
mGluR5 sequence from amino acids 827–966 followed by a
stop codon. For the mGluR5 clone containing a BBS, the HA
epitope was replaced with the BBS amino acids WRYYES-
SLEPYPD (52). For the dendra-labeled mGluR5 clone, the
N-terminal HA epitope was removed and replaced by the den-
dra sequence in-frame with the full-length mGluR5 coding

sequence. All the constructs described above were in pcDNA3
expression vector. IP3 sponge constructs were constructed (47)
and generously provided by Dr. Michael H. Nathanson, Yale
University, New Haven, CT.

Immunocytochemistry—Cells were fixed, blocked, and incu-
bated with antibody as described (31). For experiments in
which cells were not permeabilized, they were blocked with 3%
normal goat serum, incubated with the primary antibody at
room temperature, fixed with 4% paraformaldehyde, re-
blocked, and labeled with secondary antibody. Primary anti-
bodies included rabbit polyclonal anti-HA.11 (1:250, Covance,
Princeton, NJ) and monoclonal anti-lamin B2 (1:200, Zymed
Laboratories Inc.). Secondary antibodies included goat anti-
rabbit and goat anti-mouse Cy3 (both 1:300, Jackson Immu-
noResearch, West Grove, PA), goat anti-rabbit Alexa 488
(1:500, Molecular Probes, Eugene, OR), goat anti-mouse Alexa
488 (1:300, Molecular Probes).

Subcellular Fractionation—HEK293 cells were grown to near
confluency, washed twice with phosphate-buffered saline
(PBS), incubated with 5 mM N-ethylmaleimide (Sigma) for 10
min, and harvested by scraping followed by centrifugation.
Whole cell control fractions were taken after scraping. Homog-
enization and preparation of nuclear and membrane fractions
were done as described (30). Nuclei were further purified using
25–35% (v/v) iodixanol (Accurate Chemical and Scientific Cor-
poration, Westbury, NY) gradient as described in the manufa-
cturer’s instructions. Aliquots from each fraction were used for
gel electrophoresis (34).

Western Blotting Analysis—Proteins obtained from subcellu-
lar fractionation were resuspended in lysis buffer (150 mM

NaCl, 1 mM EDTA, 0.1% SDS, 1% Nonidet P-40, 0.5% sodium
deoxycholate, 50 mM Tris-HCl, pH 7.5, and protease inhibitors
Complete Tablets; Roche Applied Sciences). Protein concen-
trations of each fraction were determined using the Bradford
assay (Bio-Rad). Lysates were subjected to SDS-PAGE, blotted
as described (31), and probed with rabbit polyclonal anti-HA.11
(1:1000, Covance), monoclonal anti-lamin B2 (1:2000, Zymed
Laboratories Inc.), or polyclonal anti-pan-cadherin (1:2000,
Cell Signaling Technology, Inc., Beverly, MA). Horseradish
peroxidase-conjugated goat anti-rabbit IgG (1:5000, Cell Sig-
naling Technology) or anti-mouse IgG (1:5000, Sigma) was
used in conjunction with enhanced chemiluminescence
(Amersham Biosciences) to detect the signal. Densitometric
analyses were performed using the ChemiDocTM XRS� system
(Bio-Rad) together with associated Image LabTM software.

Deglycosylation—Deglycosylation of samples with Endo H
(New England Biolabs, Ipswich, MA) or PNGase F (New Eng-
land Biolabs) was performed as described (72). The mGluR5
HEK stable cell line was grown to near confluency, washed
twice with phosphate-buffered saline (PBS), and harvested by
scraping followed by centrifugation. Cells were homogenized,
and nuclei and plasma membranes were prepared as described
(30). The resultant nuclei and plasma membrane pellets were
resuspended in buffer containing 75 mM Tris, 12.5 mM MgCl2, 1
mM EDTA, pH 7.4, and protease inhibitors (Complete Tablets;
Roche Applied Science). Aliquots (50 �g of protein) from each
fraction were subjected to Endo H or PNGase F treatment.
Samples were denatured in denaturing buffer (0.5% SDS and 1%
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�-mercaptoethanol) at 55 °C for 10 min. The denatured sam-
ples were then subjected to digestion with 2500 units of Endo H
in a 60-�l reaction mixture containing 50 mM sodium citrate,
pH 5.5, 0.5% SDS, and 1% �-mercaptoethanol or with 2500
units of PNGase F in a 60-�l reaction mixture containing 50 mM

sodium phosphate, pH 7.5, 0.5% SDS, 1% Nonidet P-40, and 1%
�-mercaptoethanol for 4 h at 37 °C. The reactions were stopped
by adding 0.2 volume of 5� sample buffer. The treated samples
were analyzed by SDS-8.5% PAGE under reducing conditions.

Calcium Imaging—For whole cell measurements, transfected
HEK293 cells were washed with serum-free medium, incubated
with Oregon Green 488 BAPTA 1-AM (Molecular Probes), and
imaged as described (34). To measure Ca2� changes in individ-
ual nuclei, nuclei from HEK293 cells were prepared and pro-
cessed as described (30). Extra- and intracellular buffers used in
whole cell and nuclear Ca2� imaging experiments were as
described (31). Drugs ((RS)-3,5-dihydroxyphenylglycine (DHPG),
Tocris Cookson Inc., Ellisville, MO; Quis, Tocris Cookson, Inc.;
2-amino-2-(3-cis- and trans-carboxycyclobutyl)-3-(9H-thiox-
anthen-9-yl)propionic acid (LY393053), Lilly; and 2-methyl-6-
(phenylethynyl) pyridine (MPEP), Tocris Cookson Inc.) at
�100 concentration were added to the side of the dish and
allowed to diffuse at room temperature.

Confocal Microscopy and Data Analysis—Ca2� measure-
ments and imaging of immunostained samples were done by
using laser scanning confocal microscope Fluoview 500 (Olym-
pus, Center Valley, PA) with an Olympus LUMPlanFl/lR �20/
0.50w, �40/0.80w, or �60/0.90w objective as described previ-
ously (30, 31). Images were analyzed with MetaMorph (version
5.0.7; Molecular Devices) Professional Image Analysis software.
Images of HA-positive cells were taken such that the focal plane
was centered on the NM demarcated by lamin B2 staining.
Images with saturated signals were excluded to avoid analysis of
overexpressing cells. Immunostained samples were quantitated
in a blind fashion such that regions from the plasma membrane
and nuclear membrane were selected by using transmitted light
images and lamin B2 images, respectively, and the ratio of
nuclear membrane to the plasma membrane was compared
between different constructs. Line scan analysis was performed
by randomly drawing a horizontal line near the center of the
nucleus followed by a vertical line perpendicular to the first
(73). Fluorescence intensity was quantified along both lines
using MetaMorph software. For clarity, only the horizontal line
is included in panel images. Background fluorescence was mea-
sured in an untransfected cell within the field and subtracted
from the NM, PM, or ER fluorescence measurements. For each
image, the NM pixel intensity was divided by ER or PM pixel
intensity, and values from multiple cells were averaged to
compute the NM/ER or NM/PM intensity ratio for each con-
struct. The data shown represent the average of �15 cells per
construct.

FRAP—FRAP experiments (74) were performed on a confo-
cal laser scanning microscope Olympus FluoViewTM FV1000
(Olympus, Melville, NY) equipped with objective UPLSAPO
60 � O NA:1.35 (Olympus). HEK cells transiently transfected
with green fluorescent protein-tagged LBR or mGluR5 were
maintained at 37 °C in an atmosphere containing 5% CO2. Pro-
teins were photobleached by a 10% 405-nm laser line, SIM Tor-

nado (Olympus) for 100 –300 ms. Images in the green channel
were acquired using a 1–5% 488-nm laser and detection at
500 –540 nm before and after photobleaching. The scanning
laser intensity did not significantly photobleach the specimen
over the time course of the experiment. To correct for photo-
bleaching, a similar region of interest in a non-bleached area
located in the same field of view was selected, and the time-de-
pendent decrease in fluorescence was used to correct the recov-
ery curves. The corrected fluorescence recovery was analyzed
using MetaMorph image analysis software and curve fitted
using the one-phase association exponential equation from
GraphPad Prism (San Diego). The average fluorescence before
photobleaching was counted as 100%. The mobile fraction was
defined as the fluorescence intensity after full recovery divided
by the fluorescence intensity before photobleaching. Diffusion
coefficients (D) were calculated from confocal FRAP data using
the half-time of recovery (�1⁄2) and the simplified Equation 1,

D � 0.25
rn

2

�1/2
(Eq. 1)

which holds when re 	 rn, i.e. when the effective postbleach
radius (re) equals rn (the nominal or user-defined bleaching spot
radius) as described (75).

Photoconversion of Dendra-mGluR5—An Olympus Fluo-
ViewTM FV1000 with objective UPLSAPO �60 Oil NA:1.35
(Olympus) was used. Dendra-mGluR5-transfected HEK cells
were plated in imaging chambers using phenol-red free DMEM
10% (v/v) fetal bovine serum, 2 mM glutamine, and 25 mM

HEPES, pH 7.4, at 37 °C (42). A small ROI on the ER or nuclear
membrane was photoactivated by a 5–15% 405-nm laser line,
SIM Tornado (Olympus), for 200 –500 ms. Green channel
images before photoactivation were obtained using the 488-nm
laser (2%) and detection at 500 –540 nm. Red channel images
before and after photoconversion were obtained using the
543-nm laser (50%) and detection at 560 – 670 nm. Movement
of the photoactivated red fluorescent protein was observed by
measuring the fluorescence intensities in the ROI using Meta-
Morph image analysis software.

Chromatin Immunoprecipitation—Chromatin immunopre-
cipitation experiments were done as described previously (36)
starting with 
5 � 106 cells transfected with the indicated con-
structs. Lysates were first cross-linked and then immunopre-
cipitated with 2– 4 �g of anti-HA or nonspecific IgG (Millipore
Corp., Billerica, MA) at 4 °C overnight. Immune complexes
were collected, washed, eluted, and reverse cross-linked. Eluted
DNA was purified and used as a template for PCR with primers
designed to detect human repetitive Sx/Sg and Y subfamilies of
Alu (55): forward primer, GGCGCGGTGGCTCACGCC, and
reverse primer, GAGACGGAGTCTCGCTCT.
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