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o r i g i n a l a r t i c l e

Prediction of Recurrent Clostridium Difficile Infection Using
Comprehensive Electronic Medical Records in an Integrated

Healthcare Delivery System

Gabriel J. Escobar, MD;1 Jennifer M. Baker, MPH, CHES;2 Patricia Kipnis, PhD;1,3 John D. Greene, MA;1

T. Christopher Mast, PhD, MSc;4 Swati B. Gupta, DrPH, MPH;5 Nicole Cossrow, MPH, PhD;4 Vinay Mehta, PhD;4

Vincent Liu, MD, MS;1,6 Erik R. Dubberke, MD7

background. Predicting recurrent Clostridium difficile infection (rCDI) remains difficult. METHODS. We employed a retrospective cohort
design. Granular electronic medical record (EMR) data had been collected from patients hospitalized at 21 Kaiser Permanente Northern
California hospitals. The derivation dataset (2007–2013) included data from 9,386 patients who experienced incident CDI (iCDI) and 1,311 who
experienced their first CDI recurrences (rCDI). The validation dataset (2014) included data from 1,865 patients who experienced incident
CDI and 144 who experienced rCDI. Using multiple techniques, including machine learning, we evaluated more than 150 potential predictors.
Our final analyses evaluated 3 models with varying degrees of complexity and 1 previously published model.

results. Despite having a large multicenter cohort and access to granular EMR data (eg, vital signs, and laboratory test results), none of the
models discriminated well (c statistics, 0.591–0.605), had good calibration, or had good explanatory power.

conclusions. Our ability to predict rCDI remains limited. Given currently available EMR technology, improvements in prediction will
require incorporating new variables because currently available data elements lack adequate explanatory power.

Infect Control Hosp Epidemiol 2017;38:1196–1203

Clostridium difficile infection (CDI) is a serious illness whose
presentation can range from loose stools to profuse watery
diarrhea, leading to dehydration, life-threatening complica-
tions, and sometimes death. This illness is associated with
substantial morbidity, mortality, excess health services utiliza-
tion, and increased cost.1–3 The Centers for Disease Control
and prevention estimated that there were 453,000 cases of
incident CDI (iCDI) in 2011, with 29,000 associated deaths
and 83,000 first recurrences (rCDI).1 Recurrences are com-
mon due to persistent or newly acquired bacterial spores.4

After initial treatment and resolution of diarrhea, up to 35% of
CDI patients experience rCDI.1,5,6 Of those with a primary
recurrence, 40% will have another CDI episode, and after 2
recurrences, the likelihood of an additional episode increases
to as high as 65%.7 However, due to recent advances, this
estimate may be overstated.8,9

Prevention of rCDI remains a critical unmet medical need,
and it is desirable to predict which patients are at highest risk
of recurrence. A number of research teams have developed

predictive models for rCDI.10–13 These models have had lim-
ited sample size, have been restricted to data from a single
center, have employed imprecise proxies for measures of dis-
ease severity, and have made limited use of electronic medical
record (EMR) data.
A need exists for risk prediction models to address these

gaps. As more healthcare systems in the United States transi-
tion to fully automated EMRs, it is important to take advantage
of the increased granular clinical data that are becoming
available. Although health systems are beginning to experi-
ment with predictive models embedded in EMRs,14–16 access
to such capability remains limited. The overall incidence of
CDI is affected by local factors such as antimicrobial stew-
ardship efforts, patient case mix, varying antibiotic utilization
patterns, C. difficile strain epidemiology, and prevention. Thus,
models may not be completely generalizable and may need
periodic updating. Although considerable interest in predict-
ing rCDI exists, descriptions of the performance characteristics
of existing models have been limited, and few have been
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sufficiently validated outside the populations in which they
were developed. Now that treatments are available to prevent
the recurrence of CDI (eg, fidaxomicin,17,18 bezlotoxumab19),
it is advantageous to patients and healthcare providers to
identify those at greatest risk for recurrence who may benefit
from the most appropriate treatments.

To address these gaps, we developed and validated rCDI pre-
dictive models in a large and representative sample of adults. For
our defined population, cared for by a single medical group within
an integrated delivery system, Kaiser Permanente Northern
California (KPNC), comprehensive EMR data were available. Our
modeling process included comparing different models and
externally validating a previously published model.

materials and methods

This project was approved by the KPNC Institutional Review
Board for the Protection of Human Subjects, which has jurisdic-
tion over all the hospitals and clinics described in this report.

Our setting consisted of 21 KPNC hospitals described pre-
viously.20–22 Under a mutual exclusivity arrangement, salaried
physicians of The Permanente Medical Group care for 4.2 million
Kaiser Foundation Health Plan members at facilities owned by
Kaiser Foundation Hospitals. All KPNC facilities (21 hospitals and
an additional 60 clinics) employ the same information systems
with a commonmedical record number.23 Comprehensive KPNC
information systems permit tracking of patient information across
the continuum of care, including some aspects of care outside
KPNC.22,23 Deployment of the Epic EMR system (www.epicsys-
tems.com), known internally as KP HealthConnect (KPHC),
began in 2006 and was completed in 2010.

The eligible population (denominator) included adults ≥18
years of age with at least 1 positive test (the index test) for
C. difficile toxins or DNA associated with a hospitalization
between 2007 and 2014. The date-time stamp of the physician
order for the index test was time zero (T0) for all study mea-
surements. Details on KPNC assays and testing procedures are
provided in the Appendix.

Measures

Primary study outcome. The dependent variable was rCDI,
which could occur either in the inpatient or outpatient setting.
To ensure that we distinguished between incident and
recurrent episodes, T0 had to be preceded by an 84-day
period with no evidence of CDI (Figure 1). A patient’s
treatment period extended from the first known instance of
antibiotic treatment to 48 hours after conclusion of such
treatment. A positive test defining a patient as having rCDI had
to occur within 84 days after the end of the treatment period.
Tests that occurred within the treatment period were not
included. Figure 1 also shows that predictors were included if
available up to 4 days after T0, a clinically reasonable period for
acquisition of information following a CDI testing order.

Mortality. We ascertained mortality using KPNC patient
demographic databases and publicly available files of deceased
patients provided by the Social Security Administration, as
described previously.22

Model development. We assessed more than 150 potential
predictors, including age, sex, and different configurations
of historical variables (eg, antibiotic exposure, recent hos-
pitalizations, and surgery). The final set of 23 predictors
incorporated in the 3 models was based on clinical grounds,
statistical performance, data abstraction burden in settings
without EMRs, and (for the fully automated models) current
KPNC data availability.15,16

Predictors fell into the following categories: demographic
(age, sex), location of iCDI onset (either the inpatient setting or a
skilled nursing facility), medication exposure (antibiotics, proton
pump inhibitors), comorbidities (both as individual predictors as
well as composite indices such as the Charlson comorbidity
index24 and the 12-month longitudinal COmorbidity Point
Score, version 2, or COPS222), medical history (eg, recent surgery
involving the gastrointestinal tract), and physiologic markers
(ie, laboratory tests, vital signs, and a severity of illness score, the
Laboratory-based Acute Physiology Score, version 2 (LAPS2).22

The LAPS2 employs 16 laboratory tests, vital signs, pulse oximetry,
and neurological status checks. We categorized 24 antibiotics as

figure 1. Time periods employed to define patient inclusion in cohort and patient data in predictive models. The T0 is defined by the
date/time stamp of the physician order for the index test. In order for the patient to be included in the cohort, the T0 had to be preceded by
84 days with no positive test for Clostridium difficile (“clean” period). To be considered an outcome, an infection had to occur during
the Recurrence period. This meant that a positive test result occurred within 84 days following the end of a variable treatment period
(time between the T0 and completion of antibiotic treatment, ABXEND). Patient data included in the predictive models had to be available
within 4 days from the T0 (Predictor period). See text for additional details.

predicting recurrent c. diff infection with emr data 1197



high risk (eg, ciprofloxacin, clindamycin, and amoxicillin).25–27

A full list of the predictors examined is provided in the Appendix.
Based on statistical performance, the 3 best-performing

models are described here: basic, enhanced, and automated.
The basic model is a parsimonious model with components
that could be easily populated in most medical settings.
The enhanced model is a variant of the basic model to which
a limited set of variables, which could be extracted from an
EMR, were added. These variables, which are part of the
LAPS2 severity of illness score,22 were based on their statistical

contribution using methods described below. Finally, the
automated model is based on variables that could be generated
in real time given existing systems in place in KPNC.16

We elected to compare these final 3 models against the
Zilberberg model, a previously published model by Zilberberg
et al,25 because it was based on a large cohort and the authors
provided substantive detail on its statistical performance. For the
Zilberberg model, we structured predictors to match the speci-
fications of Zilberberg et al exactly. However, we did not employ
their original coefficients, instead allowing these to emerge given

table 1. Predictors Used Within Each Model

Modela

Predictor Basic Zilberbergb Enhanced Automated

Age (continuous) x x
Age (splines) x
Gastrointestinal surgery within 30 d prior to T0 x x
Immunosuppression statusc x x
Locus of iCDI onsetd x x x
Admitted from a skilled nursing facility x x
≥ 2 hospitalizations within 60 d prior to T0 x
New gastric acid suppression (PPI) at the onset of iCDI x
High-risk antibiotic at the onset of iCDIe x
Fluoroquinolone at the onset of iCDI x
Patient in the ICU at the onset of iCDI x
Blood urea nitrogen x
Creatinine x
Blood urea nitrogen: creatinine x
Total bilirubin x
Arterial pH x
Lactate x
Total white blood cell count x
Lowest temperature within T0 + 4 d x x
Highest temperature within T0 + 4 d x x
LAPS2+ splinesf x
COPS2+ splinesg x
Elapsed hospital length of stay at T0 x

NOTE. LAPS2, laboratory-based acute physiology score, version 2; COPS, comorbidity point score, version 2; T0, Time
zero (T0) is the date-time stamp of the physician order for the index Clostridium difficile infection test; iCDI, incident
Clostridium difficile infection (see text for how iCDI is defined); ICU, intensive care unit.
aSee text for more detail on model selection.
bWe replicated the model developed by Zilberberg et al.25
cA patient’s immunosuppression status was defined using algorithmic rules using International Classification of
Disease, Ninth Revision (ICD-9) diagnosis codes and immunocompromising medications and treatments used in the
6 mo prior to iCDI.
dLocus of iCDI onset is categorized as (1) community-onset, healthcare-facility–associated (iCDI diagnosed by a
positive toxin test within 72 h of admission or iCDI diagnosed in any outpatient setting and a hospitalization in the
prior 90 d); (2) community-onset, community-associated (reference group in model: iCDI diagnosed by a positive
toxin test within 72 h of admission or in any outpatient setting and no hospitalization in the previous 90 d); or (3)
hospital-onset, healthcare-facility–associated (CDI diagnosed > 72 h after hospital admission). These definitions
were also used by Zilberberg et al.25
eWe employed the same definitions as Zilberberg et al.25
fLAPS2 is a composite severity of illness score and employs 16 laboratory tests, vital signs, pulse oximetry, and
neurological status checks.22
gCOPS2 is a 12-month longitudinal comorbidity burden score that includes history elements (eg, recent surgery
involving the gastrointestinal track).22

1198 infection control & hospital epidemiology october 2017, vol. 38, no. 10



our population. The 4 models, arranged according to increasing
complexity, are summarized in Table 1.

Statistical Methods

We divided cohort data into derivation (patients with iCDI
between 2007 and 2013) and validation (iCDI in 2014) datasets.
All analyses during model development were performed using
the derivation dataset, with final coefficients applied once to the
validation dataset. As a further precaution against overfitting, we
divided derivation data into Derivation 1 (iCDI dates 2007–2012)
and Derivation 2 (2013) datasets.28 Within the Derivation 1
dataset, we identified a set of candidate predictors by first per-
forming univariate and bivariate analyses and then applying a
random forest algorithm.28,29 We evaluated the performance and
robustness of all models on the Derivation 2 data set using 5-fold
cross-validation.30 We excluded multiple models because,
although they performed well in the derivation dataset, perfor-
mance deteriorated dramatically following cross-validation. This
was particularly true with respect to models that incorporated
multiple interaction terms.

We fit a simple logistic regression, excluding deaths prior
to rCDI for the basic, the enhanced, and the automated
models. However, because patients with CDI have a substantial
mortality risk and might die prior to developing rCDI, we eval-
uated several models (based on the enhancedmodel predictors) to
address the possible impact ofmortality on rCDI prediction. These
included competing risk discrete survival models29 and Cox
competing risk survival regression.31 We conducted sensitivity
analyses in which we first assigned a probability of rCDI
to all patients in a randomly selected portion of the derivation
dataset. We then tested various models using the remaining
records in which the dependent variable was not dichotomous
but continuous (ie, patients who died were assigned a probability
of rCDI, and then we modeled for rCDI as a continuous
outcome), and we incorporated the conditional probability of
mortality into the analyses. Additional details are provided in the
Appendix.

We compared the discrimination of each model using
the c statistic (area under the receiver operator characteristic
curve),32 calibration through calibration plots,33 the incremental
contribution of additional predictors using integrated discrimina-
tion improvement (IDI), and net reclassification improvement as
recommended byCook34 and Pencina et al.35 As recommended by
Cook,34 we also included the Nagelkerke pseudo-R2 in our
assessments of model performance. In standard linear regression
models, the ratio of the mean-squared error to the variance of the
dependent variable can be subtracted from 1 to define an R2 that is
always between 0 and 1. In a validation sample, however, the
mean-squared error may exceed the variance of the dependent
variable, and the resulting R2 may be negative. A negative R2

indicates a very poor fit with the validation sample.36

We also conducted sensitivity analyses in which we
employed a 30-day (as opposed to an 84-day) period for
outcome ascertainment.

results

We scanned KPNC databases from 2007 to 2014 and identified
a total of 41,499 positive tests for Clostridium difficile. A total of
11,251 patients who experienced iCDI. In the derivation
dataset, a total of 9,386 patients with iCDI experienced 1,311
first recurrences (14.0%); 2,197 (23.4%) patients died prior to
the end of the follow-up period; and 260 (2.8%) died following
a recurrence. The corresponding numbers in the validation
dataset were 1,865 iCDIs, 144 (7.7%) rCDIs, 376 (20.2%)
deaths prior to the end of the follow-up period, and 27 (1.4%)
deaths following rCDI. The Appendix provides a flow chart
describing the cohort assembly. Excluding patients who died
prior to the end of the follow-up period, Table 2 summarizes
our cohort characteristics, which are fairly similar to the
cohort described by Zilberberg et al.25 However, in general, the
KPNC cohort was older but healthier (eg, the proportion with
Charlson scores <3 was 80%, while that in the Zilberberg et al
cohort was ~55%). Furthermore, the KPNC cohort generally
had lower risk (eg, only 24% were receiving high-risk anti-
biotics, compared to 40% in the Zilberberg cohort). Expanded
versions of this table are provided in the Appendix.
We compared performance of the discrete time survival

and competing risk Cox regression models against the simple
logistic regression algorithm where we excluded patients who
died prior to an rCDI. The simple logistic regression basic,
enhanced, and automated models showed performance com-
parable to that of the competing risk survival models.
Table 3 summarizes performance characteristics of our

models in the validation dataset. All models demonstrated
modest discrimination, as shown by their areas under the
receiver-operator characteristic curve, or c statistics (range,
0.591–0.605) and poor explanatory power, with negative
Nagelkerke pseudo-R2s (−0.1033 to −0.0875). At a predicted
risk of ≥15% the positive predictive value ranged from 11.0%
to 12.1%; sensitivity ranged from 69.4% to 79.2%; and speci-
ficity ranged from 32.0% to 43.6% across the models. With
this threshold, the number of patients needed to evaluate
(NNE) to detect 1 case of rCDI ranged from 8.3 to 9.0 across
the models. Figure 2 shows calibration of the Zilberberg model
and the enhanced model; neither model was well calibrated.
Sensitivity analyses of the possible impact of mortality

indicate that consideration of this issue (eg, by assigning a
weighted probability of rCDI to patients who died and then
modeling for rCDI as a continuous outcome) did not improve
prediction. Sensitivity analyses using a 30-day (instead of 84-
day) follow-up period resulted in worse model performance.
Additional results are provided in the Appendix.

discussion

Using a large recent cohort, we developed and validated 3 rCDI
predictive models using contemporary modeling techniques
and EMR data. We also validated a previously published
model25 in a different population. However, despite including

predicting recurrent c. diff infection with emr data 1199



table 2. Incident Clostridium difficile (iCDI) Cohort Description

Recurrencea No Recurrencea Total

No. 1,455 7,223 8,678 P Value

Age, median y (mean± standard deviation) 74.0 (71.3± 15.4) 69.0 (66.8± 17.2) 70.0 (67.5± 17.0) <.0001
Female, No. (%) 831 (57.1) 4,131 (57.2) 4,962 (57.2) .9557
Non-white race, No. (%) 351 (24.1) 2,068 (28.6) 2,419 (27.9) .0005
Charlson scoreb

0–2, No. (%) 1,141 (78.4) 5,817 (80.5) 6,958 (80.2) .0413
3–5, No. (%) 308 (21.2) 1,394 (19.3) 1,702 (19.6)
6 + , No. (%) 6 (0.4) 12 (0.2) 18 (0.2)

Community onset, community associated, No. (%)c 315 (21.6) 2,244 (31.1) 2,559 (29.5) <.0001
Community onset, healthcare-facility associated, No. (%)c 766 (52.6) 2,804 (38.8) 3,570 (41.1) <.0001
Hospital onset, healthcare-facility associated, No. (%)c 374 (25.7) 2,175 (30.1) 2,549 (29.4) .0008
No. of inpatient stays in 60 d preceding iCDI

0, No. (%) 581 (39.9) 3,953 (54.7) 4,534 (52.2) <.0001
1, No. (%) 603 (41.4) 2,252 (31.2) 2,855 (32.9)
2 + , No. (%) 271 (18.6) 1,018 (14.1) 1,289 (14.9)

Patient in intensive care at iCDI onset, No. (%) 121 (8.3) 853 (11.8) 974 (11.2) .0005
Any antibioticse at iCDI onset, No. (%) 610 (41.9) 3,170 (43.9) 3,780 (43.6) .1682
High-risk antibioticse at iCDI onset, No. (%) 351 (24.1) 1,764 (24.4) 2,115 (24.4) .8090
Fluoroquinolone at iCDI onset, No. (%) 168 (11.5) 687 (9.5) 855 (9.9) .0175
Low-risk antibioticsd at iCDI onset, No. (%) 127 (8.7) 835 (11.6) 962 (11.1) .0017
Intravenous vancomycin at iCDI onset, No. (%) 47 (3.2) 166 (2.3) 213 (2.5) .0361
LAPS2e at iCDI onset (mean± standard deviation) 75.0 (80.8± 43.4) 76.0 (81.7± 45.3) 76.0 (81.6± 45.0) .4591
COPS2e at iCDI onset (mean± standard deviation) 58.0 (69.0± 54.0) 45.0 (60.0± 52.6) 48.0 (61.5± 52.9) <.0001
Admitted from skilled nursing facility, No. (%) 260 (17.9) 843 (11.7) 1,103 (12.7) <.0001

NOTE. iCDI, incident Clostridium difficile infection; LAPS2, laboratory-based acute physiology score, version 2; COPS2, comorbidity point score,
version 2.
aCohort consists of patients with iCDI. Patients who died during the follow-up period were removed from analysis.
bSee Deyo et al24 for details on how this score was assigned.
cLocus of iCDI onset is categorized as (1) community onset, healthcare-facility associated (iCDI diagnosed by a positive toxin test within 72 h
of admission or iCDI diagnosed in any outpatient setting and a hospitalization in the prior 90 d); (2) community onset, community associated
(reference group in model: iCDI diagnosed by a positive toxin test within 72 h of admission or in any outpatient setting and no hospitalization in
the previous 90 d); or (3) hospital onset, healthcare-facility associated (CDI diagnosed >72 h after hospital admission). These definitions were
also used by Zilberberg et al.25
dWe employed the same antibiotic classifications as Zilberberg et al.25
eFor an extended definition of LAPS2 and (COPS2), refer to the text and Escobar et al.22 For both of these scores, increasing values are associated
with increasing mortality risk. The univariate relationship of an admission LAPS2 with 30-d mortality is as follows: 0–59, 1.0%; 60–109, 5.0%,
110 + , 13.7%; the univariate relationship of COPS2 with 30-d mortality is as follows: 0–39, 1.7%; 40–64, 5.2%, 65 + , 9.0%.

table 3. Model Performance in the Validation Dataseta at a Predicted Risk of ≥15%

Modelb,c c Statistic R2 Brier Score Sensitivity Specificity PPV NPV NNE NRI IDI

Age ≥65 years 0.546 −0.1131 0.0944 67.36 41.86 11.04 92.30 9.06 … …

Basic model 0.591 −0.0910 0.0937 75.69 41.19 12.11 94.06 8.26 0.0766 0.011
Zilberberg model 0.591 −0.0875 0.0933 74.31 39.03 11.54 93.42 8.66 0.0412 0.011
Enhanced model 0.587 −0.0924 0.0936 69.44 43.64 11.66 93.03 8.58 0.0387 0.014
Automated model 0.605 −0.1033 0.0942 79.17 32.04 11.09 93.49 9.02 0.0199 0.012

NOTE. c statistic, area under the receiver operator characteristic curve; R2, Nagelkerke’s pseudo-R2; PPV, positive predictive value; NPV, negative
predictive value; NNE, number of incident cases one would need to evaluate to detect one recurrence; NRI, net reclassification improvement;
IDI, integrated discrimination improvement; iCDI, incident Clostridium difficile infection.
aThe validation dataset consisted of 1,865 iCDI patients, of whom 144 developed rCDI. A total of 376 iCDI patients died (and thus could not be
assessed for recurrence).
bSee text for description of the 4 models. “Age ≥65 years” refers to a simple decision rule based on age alone. Sensitivity, PPV, NPV, NNE, NRI,
and IDI are based on the model giving a predicted recurrence risk of ≥15% within 84 days.
cWe conducted sensitivity analyses using predicted risk of ≥20%, ≥25%, and ≥30%. These results are provided in the Appendix.
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highly granular EMR data (eg, vital signs, laboratory tests,
composite severity of illness scores, and longitudinal comor-
bidity), the models and underlying data had poor ability to
predict rCDI. We formally tested a common assumption made
by many investigators (ie, that deaths can simply be excluded
from the numerator). We found that this approach is justified,
and that including patients who die prior to the conclusion of
the follow-up period did not improve prediction. Lastly, we
found that shortening the length of follow-up to 30 days
resulted in worse model performance.

Some authors have reported better model performance.
Examination of these other studies paints a less optimistic
picture. Hu et al10 report the use of machine-learning appro-
aches and a c statistic of 0.80 in their validation dataset. How-
ever, this study had a very small sample size (N= 110, with
N = 64 in the validation dataset) and did not employ cross-
validation (ie, no formal assessment of the possibility that model
performance in a different population might be poor). We were
able to achieve c statistics that were this high in our derivation
dataset, but these apparently successful models demonstrated
considerable instability during cross-validation. We did not
pursue them further and chose more parsimonious models.

Contrary to previous literature reports, some predictors (eg,
specific antibiotic exposures) were of limited value, particu-
larly in models that included severity of illness. This probably
reflects the fact that severity of illness is highly correlated (and
may, in fact, be the underlying risk factor) with other pre-
dictors (eg, intensive care and antibiotics known to predispose

for CDI). We deliberately focused on predicting rCDI in iCDI
cases, though previous CDI is a well-known risk factor for
recurrence. It is possible that, had we included prior CDI as a
predictor, we might have achieved better model performance.
However, models that included the COPS2 score (a long-
itudinal comorbidity measure that captures information from
the preceding 12 months) did not perform much better.
Multiple investigators, using a variety of statistical approa-

ches, including machine-learning methods, have been unable
to produce static models with better performance using the
currently available set of predictors. While it is true that many
predictors reach statistical significance in bivariate analyses
(particularly when the sample size is large), the clinical sig-
nificance may be muted because the relative proportions of
patients with and without recurrence are not that different.
Further, it is clear that the risk factors (age, antibiotic expo-
sure, severity of illness) that place an individual at risk for iCDI
are also risk factors for rCDI. Thus, future efforts ought to be
placed on identifying better predictors rather than on using
different statistical approaches with the currently available
predictors. New predictors may include newer biomarkers (eg,
indicators of underlying predisposition to recurrence), environ-
mental factors (eg, proximity to other CDI patients, presence
of C. difficile spores4), behavioral aspects (eg, handwashing),
and/ormolecular markers (eg, information on specific C. difficile
strains). It is also important to consider rCDI in an ecological
context, and future predictive models may need to be explicit
about including environmental and ecological predictors

figure 2. Model Calibration Using the Validation Dataset. For both plots, the X axis shows predicted rates of recurrent CDI in 5%
increments, while the Y axis shows the actual observed rates (with associated 95% confidence intervals) in the validation dataset for all
observations with that predicted level of risk. The dotted line shows what would be found were calibration to be perfect. For both the
Zilberberg and Enhanced models, calibration is poor: calibration fails at levels above 10% predicted risk. Observed rates do not approach
predicted rates, meaning that both models over-predict recurrent CDI. Additional calibration figures, including Hosmer-Lemeshow plots,
are provided in the Appendix.
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(eg, isolation rooms, who is roomed where, other family
members exposure), if such data become available.

One alternative that we did not explore because it is cur-
rently not feasible with existing EMRs, was to develop dynamic
models. In contrast to the static approach we and others have
employed (ie, providing a single probability estimate based on
a discrete set of predictors available at some T0), such models
adjust posterior probabilities based on new information. In the
case of rCDI, having additional information on both antibiotic
treatment as well as other exposures (eg, proton pump
inhibitors) could have dramatic effects on our ability to
predict recurrence.37,38 The development of such models
would require EMRs with greater capabilities than those
currently available.

Our study had several additional limitations. Due to
resource limitations and sparse data, we limited our cases to
inpatient iCDI. During this study, KPNC implemented
aggressive efforts to reduce CDI. As a result, our data show that
the incidences of iCDI and rCDI were decreasing in our study
cohort. Despite these limitations, models to predict recurrence
have value. They do permit identification of patient subsets
with elevated or very low risk. In some scenarios, and in the
context of discrete interventions, the use of these models might
improve outcomes and decrease costs. In addition, existing
models point to predictors that can be assessed in the future,
such as the aforementioned ecological ones.

Compared to our ability to predict other outcomes (eg,
death, unplanned transfer to intensive care),16,20,22 our ability
to predict rCDI is limited and contrasts with much better
ability to predict iCDI.39,40 Given the major consequences of
rCDI on patient outcomes, our results support the need to
expand research on the prevention and treatment of recur-
rence. Such research may also result in the identification of
novel predictors that are currently unavailable even in the
most comprehensive EMRs.
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