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This study was to investigate the anti-diabetic effects and molecular mechanisms of
Tang-Kang-Fu-San (TKFS), a traditional Tibetan medicine, in treating type 2 diabetes
mellitus of spontaneous diabetic db/db mice. Firstly HPLC fingerprint analysis was
performed to gain the features of the chemical compositions of TKFS. Next different
doses of TKFS (0.5 g/kg, 1.0 g/kg, and 2.0 g/kg) were administrated via oral gavage
to db/db mice and their controls for 4 weeks. TKFS significantly lowered hyperglycemia
and ameliorated insulin resistance (IR) in db/db mice, indicated by results from multiple
tests, including fasting blood glucose test, intraperitoneal insulin and glucose tolerance
tests, fasting serum insulin levels and homeostasis model assessment of IR analysis
as well as histology of pancreas islets. TKFS also decreased concentrations of serum
triglyceride, total and low-density lipoprotein cholesterol, even though it did not change
the mouse body weights. Results from western blot and immunohistochemistry analysis
indicated that TKFS reversed the down-regulation of p-Akt and p-AMPK, and increased
the translocation of Glucose transporter type 4 in skeletal muscles of db/db mice. In all,
TKFS had promising benefits in maintaining the glucose homeostasis and reducing IR.
The underlying molecular mechanisms are related to promote Akt and AMPK activation
and Glucose transporter type 4 translocation in skeletal muscles. Our work showed
that multicomponent Tibetan medicine TKFS acted synergistically on multiple molecular
targets and signaling pathways to treat type 2 diabetes mellitus.

Keywords: traditional Tibetan medicine, diabetes, Akt, AMPK, db/db mice

INTRODUCTION

Diabetes mellitus (DM) is a well-known group of metabolic disorders characterized by
hyperglycemia being resulted from abnormal insulin secretion and/or action (Rochester and
Akiyode, 2014). DM affects millions of people worldwide, with a rapidly increasing incidence and
prevalence. According to the International Diabetes Federation’s statistics in 2013, 382 million
people worldwide have diabetes, more than 90% of them have type 2 diabetes (T2DM), and even
this number will increase to 592 million by 2035 (Rochester and Akiyode, 2014; Saisho, 2015).
Insulin resistance (IR) occurs when the insulin-sensitive tissues (mainly skeletal muscle, adipose
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tissue, and liver) lose their ability to respond properly to insulin
(Hirabara et al., 2012), which has been assumed as a major
pathophysiological feature of T2DM (Brunetti et al., 2014; Saisho,
2015). Due to its numerosity and long-term complications, such
as nephropathy, retinopathy, neuropathy, and cardiovascular
disorders, etc., optimal treatments and prevention strategies for
T2DM are urgently needed (Rochester and Akiyode, 2014; Saisho,
2015; Tangvarasittichai, 2015).

Clinically there are several available oral agent classes,
including sulfonylureas, meglitinides, biguanide, α-glucosidase
inhibitors, dipeptidyl peptidase-4 inhibitors, dopamine
agonists, bile acid sequestrants, thiazolidinediones and/or their
combinations (Rochester and Akiyode, 2014; Marin-Penalver
et al., 2016). Unfortunately due to their cost, adverse effects,
etc., and most importantly their narrow targeting spectrum, it
becomes increasingly needed to develop multi-targeting drugs to
treat diseases by involving multiple factors and pathways (Tian
and Liu, 2012; Rochester and Akiyode, 2014; Marin-Penalver
et al., 2016). Herbal medicines have been used widely, especially
in developing countries, to treat the T2DM (Xiao and Högger,
2015; Loizzo et al., 2016; Vinayagam et al., 2017). Accumulating
experimental data and clinical trials supported that herbs, as
multi-component complex interacting with multiple targets and
functions, have their unique advantages in treating complex
chronic diseases afflicting modern populations, like T2DM, but
cause less drug resistance (Tian and Liu, 2012; Rochester and
Akiyode, 2014; Marin-Penalver et al., 2016).

Tang-Kang-Fu-San (TKFS), a traditional Tibetan medicine
developed with herbal formula strictly following the principles
in “rGyud-bzhi”(a principal textbook of Tibetan medicine), has
been widely used to treat T2DM for many years in China,
especially in the Qinghai-Tibet Plateau. TKFS consists of 11
medicinal herbs including Berberis Kansuensis Schneid, Curcuma
longa L, Phyllanthus emblica etc., which has been reported to be
clinically effective, however, scientific evidence for the efficacy
and exact mechanisms for the anti-diabetic activities of TKFS
are still lacking. Therefore, in order to obtain more experimental
evidence for a better clinical use of TKFS, the present study
analyzed the features of its chemical compositions, studied the
anti-diabetic effects and the possible intracellular mechanisms of
TKFS in the db/db mice, a spontaneous T2DM animal model
(Wang et al., 2014).

MATERIALS AND METHODS

HPLC Fingerprint Analysis
The herbal formula of TKFS, was provided by Tibet Autonomous
Region Institute of Traditional Tibetan Hospital. For each batch,
TKFS (0.5 g) were accurately weighed, and extracted with 50 mL
of 50% methanol in an ultrasonic water bath for 20 min.
Additional 50% methanol was added to adjust the volume, and
then the solvent was filtered through a 0.22 µm microfiltration
membrane.

The multiple-components of the TFKS were analyzed with
the Agilent 1260 HPLC system (Karlsruhe, Germany), including
a quaternary solvent delivery system, an on-line degasser, an

auto-sampler, a column temperature controller and a photodiode
array detector coupled with an analytical workstation. The
samples were analyzed using a Waters SunFire C18 column
(250 mm × 4.6 mm, 5 µm) at 30◦C. The binary gradient elution
system consisted of methanol (A) and 0.2% phosphoric acid
(B), and separation was achieved using the following gradient
program: 0–15 min, 97% B; 15–16 min, 97–85% B; 16–90 min,
85–50% B. The flow rate was set at 1.0 mL/min and the sample
injection volume was 10 µL. The detection wavelength was set at
273 nm.

Data analysis was performed by a professional software
named Similarity Evaluation System for Chromatographic
Fingerprint of Traditional Chinese Medicine composed by
Chinese Pharmacopoeia Committee (Version 2009 A), which was
recommended by China Food and Drug Administration (CFDA)
(Tang et al., 2014; He et al., 2015).

Animals and Drugs
Seven-week-old male diabetes spontaneous diabetic mutation
Leprdb mice (referred as db/db mice, n = 30, body weight,
39.5 ± 1.6 g) and non-diabetic wild type littermates (referred
as WT mice, n = 6, body weight, 19.9 ± 0.8 g) were purchased
from the Model Animal Research Center of Nanjing University
(Nanjing, China). They were housed in SPF animal rooms at
a 12 h light–dark cycle with the suitable relative humidity
(55 ± 5%) and temperature (22 ± 2◦C). Before the experiment
all mice were acclimated for 1 week to the environment.
All experimental animal procedures followed international
guidelines for care and use of laboratory animals and were
approved by the Animal Ethics Committee of South-central
University For Nationalities. Metformin tablets were purchased
from Beijing Jing Feng Pharmaceutical Factory (Beijing, China).

Experimental Process
The db/db mice were randomly divided into five groups (n = 6
per group ): db/db mice plus 0.9% saline group (model control
group), db/db mice plus low dose of TKFS group (TKFS 0.5 g/kg),
middle dose of TKFS group (TKFS 1.0 g/kg), and high dose of
TKFS group (TKFS 2.0 g/kg), db/db mice plus metformin group
(Metformin 200 mg/kg), and WT mice plus 0.9% saline group
(n = 6 as normal control group). According to the directions on
the label that have used in human beings (6 g/day per adult), dose
conversion from human to mice was converted according to body
surface area and eventually the doses of TKFS were decided above
for the mice.

Both TKFS and metformin were dissolved in 0.9% saline,
and mice were treated by oral gavage administration with doses
described above once a day for 4 weeks. At the end of the
last week, all mice were fasted overnight. After testing FBG, all
mice were sacrificed with an overdose of intraperitoneal injection
of pentobarbital (90 mg/kg). The mouse blood will be quickly
collected and immediately centrifuged (4◦C, 300 g for 10 min)
to gather the blood serum samples, which were subsequently
stored at −20◦C for further analysis. The pancreas tissues were
dissected and immediately immersed in 4% paraformaldehyde
for histological analysis. The skeletal muscles were dissected
and immediately frozen in liquid nitrogen or fixed in 4%
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paraformaldehyde for western blot or immunohistochemical
analysis.

Fasting Blood Glucose (FBG) and Body
Weight
Fasting blood glucose and body weight were measured at 08:00
to 08:30 on the first day of each week during the treatment
after fasted overnight. Blood samples were obtained by tail-prick
and measured by using a standard glucometer (LifeScan, Inc.,
Milpitas, CA, United States). The body weight was measured with
an electronic weighing scale.

Intraperitoneal (i.p.) Insulin Tolerance
Test (IPITT) and i.p. Glucose Tolerance
Test (IPGTT)
In the IPITT test, after the mice were fasted for 6 h at the second
week of the experiment, they were i.p. injected with insulin at 0.75
IU/kg as reported previously (Liu et al., 2014; Zhang et al., 2014),
and blood glucose levels were monitored at 0, 30, 60, and 120 min
after the insulin injection. The total area-under-the-curve (AUC)
of glucose from the sampling period from 0 to 120 min was
determined as the AUC value (Runtuwene et al., 2016).

The IPGTT was performed on mice at third week of treatment
with TKFS after fasted overnight, then D-glucose (0.75 g/kg) was
carried out by i.p. injection to each mice (Zhang et al., 2014).
The blood glucose levels as well as AUC values were recorded as
described above.

Fasting Serum Insulin Levels (FINS) and
Homeostasis Model Assessment of
Insulin Resistance (HOMA-IR) Analysis
Fasting serum insulin level were measured by using an
enzyme-linked immunosorbent assay mouse insulin ELISA kit
(CSB-E05071m, CUSABIO BIOTECH CO., Ltd, Wuhan, China).
IR value was calculated according to a previous study (Dong
et al., 2015), by using a formula as following: HOMA-IR = FINS
(µU/mL)× FBG (mmol/L) /22.5.

Biochemical Analysis
The serum total cholesterol (TC), triglycerides (TG), and low-
density lipoprotein cholesterol (LDL-C) levels were detected
by using enzymatic colorimetric kits and following the product
instructions (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China).

Histological Analysis of Pancreas
Tissues
The tails of pancreas from each mouse were fixed in 4%
paraformaldehyde, followed by processing of paraffin embedding,
tissue sectioning, and hematoxylin and eosin (HE) staining.
Morphological structure of islet of pancreas was observed and
photographed by using an optical microscope (BH-2, Olympus,
Japan).

Immunohistochemical Analysis
The paraffin sections were deparaffinized in xylene and
rehydrated through graded washes of ethanol as described
previously (Ma et al., 2015). After antigen retrieval with
high-temperature heating in a citrate buffer, the slides were
incubated with 3% H2O2 buffer for 10 min and washed it
out with PBST, then incubated with anti-GLUT4 (ab33780,
Abcam, Cambridge, United Kingdom) at 1:100 dilution at 4◦C
overnight. After washed with PBST, the slides were incubated
with biotin-labeled secondary antibody (PV-6001 Zhongshan
Jinqiao Co., Ltd, Beijing, China) at room temperature for 2 h.
Then the sections were incubated with avidin-biotin-peroxidase
complex (1:50, Elite ABC Ki, Vector) at room temperature
for 2 h. Finally after washed with PBST, the sections were
incubated with a reaction buffer containing 0.02% (w/v) DAB
and 0.003% (v/v) H2O2 in 0.01 M Tris-HCl (pH 7.4) at room
temperature for 5–10 min. After DAB staining, the slides were
washed, dehydrated again and mounted, finally observed and
photographed under an optical microscope (BH-2, Olympus,
Japan).

Western Blot Analysis
The total protein from the skeletal muscles were extracted as
described previously (Yang et al., 2015). Next the protein was
fractionated on 10% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred onto PVDF
membrane. After blocking with 5% non-fat milk for 1 h,
the membranes were incubated with anti-Akt (#4685),
anti-phospho-AktSer473 (#4060), anti-GLUT4 (#2213),
anti-AMPKα (#5831), phospho-AMPKα (Thr172) (#2535) (CST,
Danvers, MA, United States) and anti-GAPDH (Proteintech,
Wuhan, China) primary antibodies at 1:1000 dilution at 4◦C
overnight. Then the membrane were washed in TBST and
incubated with appropriate horseradish peroxidase-conjugated
secondary antibodies. The protein bands were visualized
by using a BeyoECL Plus (P0018, Beyotime Biotechnology,
China), and a densitometry analysis was performed by
using ImageJ software (NIH, Bethesda, MD, United States).
GAPDH was used as the internal control for semi-quantitative
analysis.

Statistical Analysis
All data were expressed as the means ± SEM. GraphPad Prism
5 software (San Diego, CA, United States) was used for the
data statistical analysis and graphics. Unpaired t-test was used
to analyze statistical comparisons between two groups. Multiple
comparisons were compared by one-way analysis of variance
(ANOVA) followed by Bonferroni’s post hoc tests. p-value < 0.05
was assumed as statistically significant.

RESULTS

HPLC Fingerprint Analysis of TKFS
Based on the results of determination, HPLC fingerprints for
TKFS were established. Reference chromatographic fingerprint
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FIGURE 1 | HPLC fingerprint analysis of TKFS. The HPLC chromatographic of TFKS at 273 nm wavelength. In total 13 peaks were labeled, the peak 3 is Gallic acid
and the peak 13 is Curcumin (A). HPLC fingerprint of 10 batches of TKFS was also presented (B).

for TKFS was generated based on 10 samples. A good separation
and reproducible chromatogram was achieved and 13 peaks
were marked as the common peaks (from peak 1 to peak 13)
(Figure 1A) in the chromatograms of the 10 batches (Figure 1B).
Our developed method successfully determined their features,
especially those identities of Gallic acid (the 3rd peak of TKFS
sample at 273 nm in Figure 1A), the most important active
constituent of TKFS, was verified and chosen (showed by Peak 3)
to calculate the relative retention time (RRT) and relative peak
area (RPA) of all the other peaks (Table 1). The results from
the 10 batches of samples (Figure 1B) indicated that the RPAs
of the 13 common peaks (Figure 1A) varied, but the RRT
was invariable for the herb. The similarities of the TKFS were
calculated, compared with the reference chromatogram, the least
similarity value of these samples was 0.90, which indicated
that the samples had similar chemical compositions and this
reference chromatogram could be applied as a standard HPLC
fingerprint.

The Effect of TKFS on FBG and Body
Weights
The FBG levels and body weights in model control group
were significantly increased than those in WT group in all
weeks we studied (p < 0.01) (Figures 2A,B). Compared to the
model control, all groups with TKFS at 0.5 g/kg, 1.0 g/kg and
2.0 g/kg as well as metformin significantly lowered FBG levels
than those in model control group (p < 0.05 or p < 0.01)
(Figure 2A). However, there was no significant difference in
the body weights between all db/db groups treated with TKFS
at different doses or metformin to that with saline (p > 0.05)
(Figure 2B).

The Effect of TKFS on Glucose Tolerance
and Insulin Tolerance
In IPGTT and IPITT test, the TKFS (0.5 g/kg, 1.0 g/kg, and
2.0 g/kg) and metformin obviously lowered the levels of AUC
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TABLE 1 | Relative peak area.

No. 1 2 3(s) 4 5 6 7 8 9 10 11 12 13

S1 4.05 3.71 1.00 0.32 0.47 0.20 0.70 0.46 0.64 0.83 0.21 0.38 0.15

S2 3.38 5.30 1.00 0.78 1.05 0.33 0.57 0.58 1.08 0.65 0.33 0.33 0.22

S3 3.33 5.09 1.00 0.54 0.76 0.26 0.53 0.58 1.09 0.63 0.38 0.31 0.27

S4 3.57 4.74 1.00 0.46 0.69 0.26 0.59 0.59 0.99 0.71 0.35 0.46 0.24

S5 3.32 5.16 1.00 0.66 0.93 0.30 0.54 0.58 1.09 0.63 0.35 0.32 0.24

S6 3.78 4.42 1.00 0.52 0.71 0.24 0.63 0.49 0.76 0.73 0.25 0.36 0.18

S7 3.46 4.84 1.00 0.54 0.73 0.28 0.58 0.31 0.99 0.69 0.32 0.34 0.22

S8 3.62 4.40 1.00 0.41 0.58 0.24 0.63 0.56 0.90 0.75 0.30 0.36 0.20

S9 3.43 5.20 1.00 0.60 0.79 0.28 0.55 0.61 1.07 0.64 0.37 0.33 0.25

S10 3.41 5.23 1.00 0.67 0.89 0.31 0.55 0.60 1.08 0.65 0.36 0.34 0.24

FIGURE 2 | Effects of TKFS on fasting blood glucose (FBG) (A) and body weight (B). FBG and body weight were measured at 08:00 to 08:30 on the first day of
each week. ++p < 0.01 vs. WT; ∗p < 0.05, ∗∗p < 0.01 vs. db/db. Results are presented as means ± SEM and n = 6 in each group.

in db/db mice (showed that in model control group), which are
significantly increased than those in WT group (normal control
group) (p < 0.05, p < 0.01) (Figures 3A,B).

The Effect of TKFS on HOMA-IR Index
The levels of FINS and the HOMA-IR index were markedly
enhanced in db/db diabetic mice compared to those in WT
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FIGURE 3 | Effects of TKFS on intraperitoneal (i.p.) glucose tolerance test (IPGTT) and i.p. insulin tolerance test (IPITT). Intraperitoneally (i.p.) injected D-glucose for
IPGTT (A), or insulin for IPITT (B) were measured in each group after treatment and their total area-under-the-curve (AUC) values were determined respectively.
++p < 0.01 vs. WT; ∗p < 0.05, ∗∗p < 0.01 vs. db/db. Results are presented as means ± SEM (n = 6 each group).

FIGURE 4 | Effects of TKFS on fasting serum insulin levels (FINS) and homeostasis model assessment of insulin resistance (HOMA-IR). FINS (A) and HOMA-IR index
(B) were detected in each group after 4 weeks of treatment. ++p < 0.01 vs. WT; ∗∗p < 0.01 vs. db/db. Results are presented as means ± SEM (n = 6 each group).
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FIGURE 5 | Effects of TKFS on the (A) total cholesterol (TC), (B) triglycerides (TG), and (C) low-density lipoprotein cholesterol (LDL-C) levels. The total TC, TG, and
LDL levels in mouse blood serum were measured in each group after 4 weeks of treatment. ++p < 0.01 vs. WT; ∗∗p < 0.05, ∗∗p < 0.01 vs. db/db. Results are
presented as means ± SEM (n = 6 each group).

mice. TKFS (1.0 g/kg and 2.0 g/kg) significantly decreased the
insulin level compared to the model control group (p < 0.01),
and the HOMA-IR was significantly reduced as well (p < 0.01)
(Figures 4A,B). There were no detectable changes in the
FINS of db/db mice treated with TKFS (0.5 g/kg) and
metformin compared with their vehicle controls (Figure 4A),
but both of them, decreased the HOMA-IR index significantly
(Figure 4B).

The Effect of TKFS on Serum
Biochemistry
The serum concentrations of TC, TG and LDL-C in the model
control group were markedly increased than those in the WT
group (p < 0.01). TKFS (1.0 g/kg and 2.0 g/kg) and metformin
treatments all significantly inhibited the elevation in the levels of
serum TC, TG, LDL-C of the model control db/db mice group
(p < 0.05, p < 0.01) as shown in Figures 5A–C.

Effects of TKFS on the Pathomorphism
of Pancreas Tissues
Reduced or impaired β-cell function is one of the typical
components in the pathogenesis of T2DM and previous studies
clearly supported that it is essential to preserve or rescue the
β-cell function as treating the T2DM (Saisho, 2015). As shown
in Figure 6, compared to the WT group, the model control group
db/db mice showed more frequently pathological changes, such
as: atrophy of islets, islet cells necrosis, lacking organization of
islet cells, vanished pancreas and pancreatic acini boundaries, or
hypertrophy islet cells, etc. These abnormal histological changes
were significantly alleviated in the TKFS (1.0 g/kg and 2.0 g/kg)
and metformin treatment group compare to the model control
group (Figure 6).

The Effect of TKFS on p-Akt, p-AMPK
and GLUT4 Expression in Skeletal
Muscle
To evaluate whether TKFS regulates blood glucose and
ameliorates IR via PI3K/Akt or AMPK signaling pathways, levels
of p-Akt and p-AMPK in skeletal muscles were determined
by western blot (Figures 7A,B), and GLUT4 were determined
by western blot (Figure 7C) and immunochemistry analysis
(Figure 7D) respectively. As shown in Figures 7A,B, the p-Akt
and p-AMPK levels were significantly reduced in model control
group compared with that in WT group (p < 0.01). TKFS
(0.5 g/kg, 1.0 g/kg, and 2.0 g/kg) and metformin significantly
reversed the down-regulation of p-Akt and p-AMPK expression
compared with that in model control group (p < 0.05). The
GLUT4 protein expression was dramatically lower in model
control group than that in WT group (p < 0.01). Treatment with
TKFS (0.5 g/kg, 1.0 g/kg, and 2.0 g/kg) or metformin significantly
normalized the protein expression of GLUT4 in skeletal muscles
down-regulated in the model control group (Figures 7C,D).

DISCUSSION

It is well-known that over 5,000 years traditional Chinese
medicine had used numerous herbal formulas to form
multi-ingredient herbal medicine applied to various types
of diseases. T2DM is the most common form of DM in
worldwide diabetic patients, which mostly exhibit obesity,
hyperglycemia and dyslipidemia (high triglyceride and low high-
density lipoprotein cholesterol levels, postprandial hyperlipemia)
(Triplitt et al., 2000; Rochester and Akiyode, 2014). Due to
the complexity of T2DM pathogenesis and severe secondary
complications in multiple systems, it is much difficult to expect

Frontiers in Pharmacology | www.frontiersin.org 7 August 2017 | Volume 8 | Article 535

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-08-00535 August 22, 2017 Time: 17:52 # 8

Duan et al. Antidiabetic Effect of Tibetan Medicine Tang-Kang-Fu-San

FIGURE 6 | Effects of TKFS on the pathomorphism of pancreas tissues. Representative pictures of hematoxylin and eosin (HE) staining of the tails of pancreas from
each group mice after 4 weeks of treatment (×200, n = 3 each group).

FIGURE 7 | Effects of TKFS on p-Akt, p-AMPK and GLUT4 expression in skeletal muscles by western blot (A–C) analysis or immunochemistry (D). All mice in each
group mice were after 4 weeks of treatment. ++p < 0.01 vs. WT; ∗p < 0.05, ∗∗p < 0.01 vs. db/db. Results are presented as means ± SEM (n = 3 each group).

a single available medicine to prevent or treat all the events.
Meanwhile, those herbal medicines or nutritional therapies
to multiple targets may potentially prevent and control this

metabolic disease after their effectiveness and interacting
mechanisms are clearly elucidated (Xiao and Högger, 2015;
Loizzo et al., 2016; Vinayagam et al., 2017).
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With this idea, the present study focused on studying the
therapeutic efficacy of a traditional Tibetan medicine, TFKS,
to treat T2DM. The HPLC analysis was used to characterize
the phytochemical features of this multi-herbal formulae. The
13 common peaks (shown in Figure 1) were proposed as
the fingerprints of multiple chemical constituents of TKFS.
Among them the peak 3 was identified as Gallic acid, which
has been reported as a health food ingredient preventing DM
(Huang et al., 2016), and showed more promising effect than
resveratrol and metformin in decreasing oxidative stress-related
diabetic complications (Kaur et al., 2016). Furthermore, clinical
trials showed another constituent in TKFS is Curcumin, which
was identified at 430 nm (data not shown) has significant
antioxidant effects (Panahi et al., 2017), or treats hyperglycemia
and ameliorates dyslipidemia effectively (Neerati et al., 2014;
Mirzaei et al., 2017) in patients with T2DM. These recent
studies were encouragingly reinforced by the results from
TFKS. However, more scientific information, such as the exact
component and what potential role of each component playing
to treat T2DM in TFKS, still require us to conduct more
studies.

Leptin receptor-mutant (db/db) mice were reported as a
popular animal model of T2DM (Wang et al., 2014), with
syndromes including hyperglycemia, obese and hyperlipidemia,
etc. (Islam, 2013; Wang et al., 2014). The pathogenesis and
process of T2DM in db/db mice perfectly resembled those
in human DM diseases (Wang et al., 2014). To study anti-
diabetic effects of TKFS in treating T2DM, 8-week-old db/db
mice were used in our work. As known in previous studies
or claimed by the providers (Triplitt et al., 2000; Islam, 2013),
the db/db mice were diabetic and obese during the entire
experiment compared with the WT group mice. Consistently,
all db/db mice used in this study had developed a stably
higher FBG than that in WT mice, and TKFS effectively
decreased blood glucose in all the 4 weeks detected (shown
in Figure 2). However, even though TKFS was able to
ameliorate dyslipidemia significantly (shown in Figure 5) but
not affected the body weight much (shown in Figure 2) in
db/db mice. Because of the complexity of pathogenesis of
T2DM, a relative large proportion of T2DM patients are not
obese at all. Therefore, the “neutral” effect on body weight of
TKFS, even though a bit surprising, would suggest TKFS as
a suitable treatment for the population of not obese T2DM
patients.

Also it is well-known that T2DM disorders typically associated
with impaired glucose tolerance and insulin resistance (Triplitt
et al., 2000). Reduced sensitivity to insulin in peripheral target
tissues such as liver, muscle, and adipose tissue leading to
abnormal insulin secretion, ultimately result in hyperglycemia
(Abdulghani, 2013; Cornell, 2015). Insulin resistance in the
peripheral target tissues, particularly in skeletal muscles, is
considered the major cause and main therapeutic target
of insulin resistance in T2DM (Stanford and Goodyear,
2014; Cornell, 2015). In the present study, the i.p. glucose
tolerance test and i.p. insulin tolerance test were detected
(shown in Figure 3), which clearly indicated that a weakened
glucose tolerance and an impaired insulin tolerance were

observed in the db/db mice. TKFS improved glucose tolerance
and against insulin resistance, (shown in Figures 3, 4),
and alleviated the pathological changes in pancreas tissues
(shown in Figure 6), which further interpreted how TKFS
possibly achieves its promising therapeutic effects to treat
T2DM.

There are at least two pathways known as PI3K and
AMPK signal transduction pathways involving in the
glucose metabolism (Nandipati et al., 2017). Intracellular
PI3K/Akt pathway and GLUT4 are very important for the
insulin-stimulated glucose intake in muscles (Wang et al.,
2016; Yu et al., 2017). The activation of Akt could excite
expression and translocation of GLUT4 resulting in enhanced
glucose uptake and utilization (KorkmazIcöz et al., 2016; Li
et al., 2017). AMPK, a serine/threonine protein kinase, is
an evolutionarily conserved guardian of cellular metabolism
and energy balance (Hardie, 2013), which plays a major role
in maintaining glucose and lipid metabolism (Qiang et al.,
2015; Nandipati et al., 2017). A lot of studies showing AMPK
pathway, as a major regulatory pathway of GLUT4 translocation,
can increases glucose uptake in both skeletal muscles and
adipose tissue, thus contributing to improved blood glucose
homeostasis (Yang et al., 2014; Seo et al., 2015; Mccarthy et al.,
2016).

To verify whether TKFS also works through PI3K/Akt or
AMPK pathway to play its therapeutic effect, we measured the
relative protein levels in skeletal muscles by western blot or
immunohistochemistry. Down-regulated p-Akt and p-AMPK in
muscle tissues, as well as the reduction in GLUT4 expression in
skeletal muscles in db/db mice were effectively restored by TKFS
treatment (shown in Figure 7). In a few recent reports, both
Gallic acid and Curcumin were demonstrated increasing tissue
insulin sensitivity and glucose uptake, protecting pancreatic
β-cells, or activating GLUT4 in through PI3K/Akt or AMPK
dependent pathways (Gandhi et al., 2014; Jimenez-Flores
et al., 2014). Again, the conclusion in the present study that
PI3K/Akt and AMPK signaling cascades are responsible for
TKFS’s anti-diabetic activities is perfectly in line with these
work. Further studies are important to define the interaction
other components in TKFS with Gallic acid and Curcumin,
and the actual signaling pathways for them to exert their
effects.

Finally whether TKFS associates with two interesting
target genes for the intervention of PI3K/Akt or AMPK
pathways was investigated. Peroxisome proliferator-activated
receptor gamma (PPARγ) is a nuclear receptor. During
inflammation and immune response, PPARγ negatively
regulates the activities of other transcription factors,
such as members of the NF-κB and AP-1 families (Gross
et al., 2017). In tissues with high oxidative rates (skeletal
muscle in the present study), PPARγ mRNA levels were
significantly reduced in db/db mice compared to that in WT
mice (Supplementary Figure 1A). Administration of both
TKFS (1.0 g/kg and 2.0 g/kg) and metformin significantly
normalized the PPARγ levels in db/db mice (Supplementary
Figure 1A). NLRC3 (NLR family CARD domain containing
3), belongs to a large family of cytoplasmic sensors, regulating
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inflammatory and autoimmune diseases. NLRC3 suppresses
PI3K/AKT pathway downstream of either receptor tyrosine
kinases or Toll-like receptor 4 (TLR4) to modulate mTOR
activity, thereby, preventing cellular proliferation and
tumorigenesis (Karki et al., 2016, 2017). In db/db mice, the
NLRC3 mRNA levels were significantly increased, but metformin
and the highest TKFS (2.0 g/kg) showed potent inhibitory effect
on NLRC3 expression (Supplementary Figure 1B). The data
demonstrated that TKFS could associate with PPARγ and NLRC3
to regulate gene expression in inflammation, lipid and glucose
metabolism, and insulin sensitization, further supporting the
therapeutic interest of TKFS.

In summary, the present study demonstrated that TKFS,
with its identical phytochemical features from 11 medicinal
herbs, could ameliorate diabetic syndromes in db/db mice. Our
data indicate that TKFS could potently improve the deficits
in glucose/lipid metabolism and against insulin resistance. The
underlying molecular mechanisms are at least by affecting the
activity of the key signal factors in PI3K/Akt and AMPK signaling
pathways directly or indirectly.
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