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ARTICLE

Anterior cingulate is a source of valence-specific
information about value and uncertainty
Ilya E. Monosov1

Anterior cingulate cortex (ACC) is thought to control a wide range of reward, punishment,

and uncertainty-related behaviors. However, how it does so is unclear. Here, in a Pavlovian

procedure in which monkeys displayed a diverse repertoire of reward-related, punishment-

related, and uncertainty-related behaviors, we show that many ACC-neurons represent

expected value and uncertainty in a valence-specific manner, signaling value or uncertainty

predictions about either rewards or punishments. Other ACC-neurons signal prediction

information about rewards and punishments by displaying excitation to both (rather than

excitation to one and inhibition to the other). This diversity in valence representations may

support the role of ACC in many behavioral states that are either enhanced by reward and

punishment (e.g., vigilance) or specific to either reward or punishment (e.g., approach and

avoidance). Also, this first demonstration of punishment-uncertainty signals in the brain

suggests that ACC could be a target for the treatment of uncertainty-related disorders of

mood.
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Actions to maximize rewards and minimize threats or
punishments are thought to be controlled by a region of
the prefrontal cortex called the anterior cingulate cortex

(ACC), but how this control is accomplished is unclear.
Currently, there are several views of how ACC controls motivated
behavior1–9. Some posit that the ACC neurons rank-order
outcomes (such as rewards and punishments) by their utility or
value. The resulting signed value signal from ACC is then read
out by other brain areas to guide action towards the best possible
option or outcome2, 5–8, 10. This theory posits that many single
ACC neurons carry information about both rewards and pun-
ishments, and rank-order predictions of these outcomes accord-
ing to their expected value. Another theory posits that ACC
controls negative affect, threat, and pain-driven behaviors. This
theory suggests that many ACC neurons ought to preferentially
signal punishment-related information11–14. A third theory sug-
gests that the ACC is primarily engaged in deploying attention to
monitor task-performance and detect errors in our predictions and
actions15–22. This theory predicts that many ACC neurons ought
to be activated by salient, engaging, and cognitively demanding
situations, irrespective of their valence. Finally, a fourth theory
based on imaging studies in humans identifies ACC as a central
hub for processing information about uncertainty and other
exploration-related and learning-related variables, such as the value
of foraging23–27. Several recent proposals suggest that ACC could
support some or even many of these functions1, 3, 4, 6, 7, 22, 27–36,
however how it could do so is unclear.

One explanation that could reconcile these different theories is
that the ACC may contain multiple circuits that could separately
process control-related variables, such as information about
reward, punishment, and uncertainty. Such diversity within ACC
would allow other brain areas to read out inputs from the ACC
flexibly, either by combining or multiplexing information about
reward, punishment, and uncertainty, or by processing this
information separately in a valence-specific manner.

To assess how single ACC neurons signal reward, punishment,
and uncertainty, single-neuron activity was recorded from ACC
while monkeys experienced certain and uncertain predictions
about rewards and punishments. These predictions were cued
by well-learned single visual fractals that served as conditioned
stimuli (CS). This approach isolates value and uncertainty signals
in the activity of single ACC neurons and avoids choice-related or
learning-related fluctuations in subjective value and uncer-
tainty37–42.

The results suggest that the ACC contains groups of neurons
that process appetitive, aversive, salient, and uncertain informa-
tion, over short and long time scales. Particularly, many ACC
neurons represented expected value and uncertainty in a valence-
specific manner, signaling value or uncertainty of predictions
about either rewards or punishments. Other neurons signaled
information about rewards and punishments by displaying exci-
tation to both, rather than excitation to one and inhibition to the
other. These data caution against a unified view of ACC and
suggest that the ACC contains multiple circuits that could con-
tribute to the top-down control of a wide range of reward,
punishment, and uncertainty-related internal states and actions in
complementary but partly distinct ways.

Results
Diverse behaviors in response to rewards and punishments.
To test how single ACC neurons (n= 329) signal information
about reward, punishment, and uncertainty, two monkeys were
conditioned with an appetitive–aversive behavioral procedure
that contained two separate contexts, or blocks. One block con-
tained 12 trials in which three visual fractal objects (CS) predicted

rewards (juice) with 100, 50, and 0% chance. The second block
contained 12 trials in which three visual fractal CSs predicted
punishments (air puffs) with 100, 50, and 0% chance (Fig. 1a, b).
The monkeys did not have to fixate the CSs to complete the trial
(Methods). The design was such that the 100% reward CS had the
highest value in the reward block and the 0% punishment CS had
the highest value in the aversive block. Hypothetical encoding
strategies of reward and punishment predictions are shown in
Fig. 1c.

Analyses across all recorded behavioral sessions showed that
the monkeys understood the behavioral procedure. Their CS-
related anticipatory mouth movements (e.g., licking of the juice
spout) and anticipatory blinking were correlated to the
probability of reward and punishment, respectively (Spearman’s
rank correlations; p< 0.001; rho= 0.24 for licking; rho= 0.37
for blinking; Supplementary Fig. 1). While these anticipatory
responses were related to the expected value of the CSs, other
behaviors, such as gaze, were driven by the absolute expected
value of the CSs (often called motivational intensity or salience43)
and by outcome uncertainty. Particularly, the monkeys’ gaze was
initially drawn to the CSs associated with the more probable
outcome (Fig. 1d), irrespective of valence. Target acquisition
times during all the 100 and 50% CS trials were faster when
compared with the 0% trials, within either reward or punishment
block (p< 0.001; rank sum tests; single trials from no-abort cue
blocks from all behavioral sessions= 31,838 trials). Within the
reward block, target acquisition times were faster during 100%
reward CS trials than during 50% reward CS trials (p< 0.01; rank
sum tests).

Later in the trial the monkeys’ gaze was most strongly attracted
towards the 50% reward CS (Fig. 1e; rank sum test; p< 0.001;
measured during the last 1 s of the trial). We could not reliably
observe CS-related gaze behavior during the last second of the
punishment-predicting CSs because the gaze signal was quenched
by defensive blinking (Fig. 1f).

To study punishment, it is crucial to verify that the outcome or
unconditioned stimulus is aversive. It could be that blinking
behaviors depicted in Fig. 1f reflect conditioning, but not
aversion. To address this issue, we utilized distinct reward and
punishment blocks that contained abort cues during one-half of
the trials (Methods). This paradigm is a type of active avoidance
used to test the aversiveness of cues, outcomes, and contexts in
humans and experimental animals44–48. If monkeys made a
saccade to the abort cue, the trial was aborted (Fig. 1g). Because
these reward and punishment blocks alternate, the optimal
reward-driven strategy would be to rapidly abort every trial in
which the 100 and 50% reward CSs were not presented. In
contrast, the monkeys’ aborting behaviors were influenced by
reward, punishment, and uncertainty. In the punishment block,
monkeys actively aborted punishment-predicting CSs more often
than the 0% punishment CS, confirming that the air puff was an
aversive outcome (Fig. 1h). While initially 100% punishment
CS was associated with faster target acquisition than 0% CS
(suggesting that it was more motivationally salient because it
strongly attracted gaze; 43), later in the trial (when abort cues
were presented), monkeys aborted the 100% CS faster than 50%
and 0% punishment CSs. The data show that the monkeys’
motivation to abort was positively related to the probability of
punishment.

Also, monkeys aborted 50% reward CSs less than 100% reward
CS trials (though, note that the proportion of aborted trials
during either 100 or 50% reward CSs was extremely low). This
decrease in abort error rate is consistent with the observations in
Fig. 1e that the 50% reward CS captured attention (despite having
a lower expected value than 100% reward CS), reducing the
number of saccades to the location of the abort-cue.
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In sum, the behavioral data suggest that monkeys utilized
different representations (or encoding strategies) of rewards and
punishments to influence their behaviors.

Next, we asked if the ACC contains distinct representations
of rewards and punishments or if ACC neurons encode

rewards and punishments with a common currency, such as a
general value signal (Fig. 1c). The locations of ACC neuronal
recordings are shown in Supplementary Fig. 2 and match the
locations of neuronal recordings in previous studies of
macaque ACC5, 9, 32, 49, 50.
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Fig. 1 The reward-punishment behavioral procedure. a Monkeys experienced two types of distinct blocks of trials in which three visual fractal-conditioned
stimuli (CSs) predicted rewards and punishments with 100, 50, and 0% chance. The reward block consisted of 12 trials in which reward was possible, and
the punishment block consisted of 12 trials in which punishment was possible. b Structure of a single trial. CS could appear in the center (as shown)
or peripherally, 10 degrees to the left or right of center. c Theoretical valence-coding strategies in the reward-punishment procedure. d–f Monkeys’
behaviors were motivated by reward, punishment, and uncertainty. d Cumulative probability functions of peripheral-CS gaze acquisition time. In reward
or punishment block, the speed of CS acquisition was correlated with outcome probability (Spearman’s rank correlations; p< 0.01). e Proportion of trials
the monkeys oriented to the location of peripheral CSs shown across the entire CS epoch for reward-block and punishment-block trials. During the last
1000ms of the trial, the monkeys’ gaze was preferentially attracted to the 50% reward CS (p< 0.01; rank sum test). f Proportion of trials the monkeys
blinked shown across the entire CS epoch for reward-block and punishment-block trials. Insets show mean proportion of time monkeys blinked during the
last 500ms of the CS epoch. g In distinct blocks we included an abort cue during approximately one half of the trials (Methods). Structure of trials with an
abort cue. (g, left)—trials in which the monkeys did not abort (eye position is schematized by the red arrow); (g, right)—trials in which the monkeys
aborted the trial. h Proportion of trials aborted in the reward block (top-left) and punishment block (top-right). The speed of trial aborting decreased with
increasing punishment probability (bottom). The black–gray color legend for d–f are defined in a. Error bars indicate standard error. Single asterisks indicate
significance at a 0.05 threshold and double asterisks indicate significance at 0.01 threshold

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00072-y ARTICLE

NATURE COMMUNICATIONS |8:  134 |DOI: 10.1038/s41467-017-00072-y |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Many ACC cells signal value of either reward or punishment.
The neuronal recordings revealed both that many ACC neurons
represent expected value in a valence-specific manner, displaying
greatest sensitivity to the probability of either rewards or
punishments; and also that many ACC neurons prefer uncertain
CSs in a valence-specific manner, often displaying preference for
either reward or punishment uncertainty.

To summarize the valence-encoding strategies of ACC
neurons, correlation analyses were peformed for each recorded
neuron (n= 329), which assessed the relationship of CS responses
and outcome probability (Methods; Supplementary Fig. 3 and
Supplementary Table 1). The correlation coefficients are shown in
Fig. 2b-inset. Most neurons that displayed significant correlations
with outcome probability (Spearman’s rank correlation; statistical

threshold: p< 0.05) did so in a valence-specific manner, for either
reward or punishment probability.

Two valence-specific example neurons are shown in Fig. 2a.
The first neuron displayed greatest excitation to punishment-
predicting CSs and did not differentiate among 100, 50, and 0%
reward CSs. The second neuron displayed greatest excitation to
reward-predicting CSs (strongest to 100% reward) and did
not differentiate among 100, 50, and 0% punishment CSs.
To assess if such specific valence coding strategies were common
among ACC neurons, we visualized the differences in neuronal
responses for predictions of good outcomes and bad outcomes in
the reward and punishment blocks (Fig. 2b). These analyses
confirmed that many value-coding ACC neurons display valence-
specific responses (Fig. 2).
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Notably, other studies showed that within reward loss or
reward gain trials, distinct ACC neurons signaled predictions and
deliveries of reward gains and losses7, 28, 51, 52. Our data replicate
these studies. Among reward-value neurons, many were excited
or inhibited by increasing probabilities of rewards (Fig. 2c),
signaling positive or negative reward values, respectively. In
contrast, among the punishment-value neurons, most were
excited by increasing probabilities of punishments.

Also, these ACC neurons did not display-trial-by-trial correla-
tions with conditioned responses; see Supplementary Table 2.

The second most common valence coding strategy seen among
ACC neurons signaled the motivational intensity or unsigned
value of the CSs (red in Fig. 2). Few neurons showed a generalized
value signal that rank-ordered the reward or punishment
predictions according to their expected value (100> 50> 0%
rewards and 0> 50> 100% punishments; Fig. 2). The time
courses of neuronal responses among these neuronal types are
shown in Supplementary Figs. 4–5.

Following 50% CSs, many ACC neurons discriminated
between outcome deliveries and omissions. Many of these
prediction error responses also tended to be valence specific.
For example, distinct ACC neurons signaled reward omissions,
reward deliveries, punishment omissions, and punishment
deliveries (Supplementary Fig. 3). Interestingly, the value of the
CSs (during the CS epoch) and their associated outcomes were
often signaled by different neurons (Supplementary Fig. 3).
To summarize, the data thus far suggest that ACC neurons can
signal the values of predictions and deliveries of rewards and
punishments through the activity of distinct populations of
neurons.

ACC neurons are known to discriminate among different
behavioral tasks33 and contexts53, and integrate task-related
information over long time scales31, 54. Hence, it was important to
assess if ACC contains valence-specific neurons in a behavioral
procedure in which reward and punishment CSs are presented in
the same context or block of time. To this end, in an additional
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control procedure, Monkey B was conditioned with nine distinct
visual fractal CSs that predicted reward with 100, 75, 50, 25, and
0% chance and punishment with 100, 75, 50, and 25% chance.
The monkey displayed conditioned responses that suggested that
it understood the meaning of the CSs. The monkey’s licking and
blinking behaviors were correlated with the probability of reward
and punishment, respectively (Supplementary Fig. 6A). Among
95 ACC neurons recorded in this procedure, 16 were selectively
enhanced by increases in the probability of punishment, but were
insensitive to changes in the probability of reward. An example
of one such neuron and their average responses are shown in
Fig. 3a, b. Oppositely, 9/95 neurons were enhanced by increases
in the probability of reward, but were insensitive to changes in the
probability of punishment. An example of one such reward-
specific value-coding neuron and their average activity are shown
in Fig. 3c, d. Therefore, in the blocked reward-punishment
behavioral procedure (Fig. 1) and in the single-block control
procedure, the ACC contained neurons that signaled reward and
punishment values in a valence-specific manner. Consistent with
this observation, population coding strategies (summarized by
plotting correlation coefficients of correlations that assessed the
relationship of neuronal activity and probabilities of either reward
or punishment) were qualitatively similar across the blocked and
the single-block behavioral procedures (Fig. 2b; Supplementary
Fig. 6B).

In the two-block appetitive/aversive procedure, monkeys and
ACC neurons were highly sensitive to the nearing of their
preferred context over many trials (Fig. 4). To show this,
the analyses were concentrated on the behavioral and neuronal
responses to the trial start cue. Though trial start cues were
presented 3.5 s before the trial’s outcome would be experienced by
the monkeys, their anticipatory orienting behavior (the duration
it took them to foveate the trial start cue) was significantly faster
in the reward vs. punishment block (Fig. 4a). Also, during the
punishment block the speed of target acquisition changed as a
function of trial number, decreasing as the reward block neared
(Fig. 4a). Similarly, reward and punishment-sensitive neurons
signaled the nearing of their preferred blocks. Reward-sensitive
neurons displayed gradual and systematic changes in the aversive
block in anticipation of the reward block (Fig. 4b). And,
punishment-sensitive neurons displayed systematic changes in
the reward block in anticipation of the aversive block (Fig. 4b).

Therefore, ACC neurons can signal valence specifically or
non-specifically (Fig. 2). And, valence-specific neurons can signal
the nearing of their preferred contexts or events over long time
scales (Fig. 4).

Representation of reward and punishment uncertainty in ACC.
Next, we assess if and how single ACC neurons encode
uncertainty. In contrast with the hypothesis that ACC encodes
economic or general common currency values, some recent
neuroimaging studies have highlighted the ACC as a
central hub for processing outcome uncertainty and guiding
behaviors aimed to reduce this uncertainty. However, single
neuron evidence for uncertainty processing in ACC has been
missing.

We found 88 uncertainty selective neurons in the
ACC (Methods), some of which responded for punishment
uncertainty. An example neuron is shown in Fig. 5a (left). This
neuron did not respond selectively to reward-predicting CSs or
reward outcomes. In the punishment block, the neuron was most
strongly activated by 50% punishment CS until the trial outcome.
Among uncertainty selective neurons, 23/88 neurons were
selectively excited by punishment uncertainty but not reward
uncertainty (Fig. 5b; Supplementary Fig. 7). Zero were selectively
inhibited by punishment uncertainty (Fig. 5b, c). Among
the punishment-uncertainty neurons, nine neurons displayed
significant variability (Kruskal–Wallis test; Methods) among the
reward block CSs (Fig. 5c) but there was no obvious trend for
positive or negative reward value coding among them. These
results show that some ACC neurons signal punishment
uncertainty in a selective manner, and that a minority of them
can also multiplex this uncertainty signal with information about
rewards.

Consistent with the observation that ACC can signal task-
related information in a valence-specific manner (Fig. 2), we also
found neurons that preferred reward uncertainty but not
punishment uncertainty (Fig. 5a, b). An example neuron is
shown in Fig. 5a-right. This neuron responded to the 50% reward
CS and maintained tonic firing until the time of the trial-outcome
(reward or no reward). It was not modulated by punishment
predicting CSs. 45/88 uncertainty selective neurons were excited
by reward uncertainty, while 12/88 uncertainty selective neurons
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were inhibited. Some reward uncertainty excited neurons also
carried information about punishment probability; Fig. 5d and
Supplementary Fig. 7. Among these, almost all were enhanced by
increased probability of punishment. Finally, a minority of
uncertainty selective neurons (8/88) were selective for both
reward and punishment uncertainty (Fig. 5b).

Like all other populations of uncertainty or risk-coding
neurons, ACC uncertainty neurons discriminated between 100
and 0% CSs in their preferred block37, 55–58. Within the aversive
block, 9/23 punishment uncertainty neurons responded more to
100 than 0% punishment CSs, and 3/23 responded more to 0 than
100%. 22/45 reward uncertainty enhanced neurons responded
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(left) and one that signals reward uncertainty (right). b Single neuron discrimination indices of punishment and reward uncertainty-selective neurons
(left and right). Inset shows discrimination of eight neurons that displayed uncertainty selectivity in both reward (x-axis) and punishment blocks (y-axis).
Discrimination indices were obtained by ROC analyses (Methods). Values below 0.5 indicate selective suppression, indices above 0.5 indicate selective
enhancement. c Punishment uncertainty-enhanced neurons in the reward block (left-scatter plot) and punishment block (right-scatter plot). Scatter plots
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more to 100 than 0% reward CSs, and 0/45 responded more to 0
than 100% reward CSs.

Outcome deliveries following uncertainty elicit prediction
errors43, 59, 60. However, the majority of ACC uncertainty
neurons did not signal prediction errors (Supplementary Fig. 8).
This observation provides further evidence for the notion that
within ACC, there may be distinct groups of neurons tracking
predictions and outcome-related or feedback-related prediction
errors (Supplementary Fig. 3).

In sum, ACC can signal uncertainty about either rewards or
punishments in a valence-specific manner or to multiplex
information about uncertainty and value in multiple manners
(Supplementary Fig. 9). Also, prediction errors following
uncertain epochs were often signaled by distinct populations
of neurons.

Uncertainty can arise due to variability in outcomes or due to
the possibility of making an error. For example, in our behavioral
procedure aborting a reward-associated CS is an error because it
reduces the probability of reward on that trial to 0. Though we
observed few such errors (Fig. 1), the anticipation of the abort
cue resulted in increases of overt attention towards the reward-
possible CSs and the activity of uncertainty neurons in ACC
(Supplementary Fig. 10). Therefore, ACC uncertainty neurons
are sensitive to uncertainty arising due to internal processing
(that increases attention27) as well as due to uncertain stimulus-
outcome associations.

Recent studies show that several subcortical brain regions in
the septum and the striatum contain populations of neurons that
signal the graded level of reward uncertainty56, 57. Because these
brain regions receive inputs from the ACC61, 62, an important
question is, do ACC reward uncertainty neurons also signal
graded levels of uncertainty and reward size? To answer this
question, ACC reward enhanced uncertainty neurons were
recorded while monkeys participated in the reward probability/
reward amount behavioral procedures used in our previous
studies55–57, 63. The reward-probability block contained five
objects associated with five probabilistic reward predictions (0, 25,
50, 75 and 100% of 0.25 ml of juice). The reward-amount block

contained five objects associated with certain reward predictions
of varying reward amounts (0.25, 0.1875, 0.125, 0.065 and 0 ml).
The expected values of the five CSs in the probability block
matched the expected value of the five CSs in the amount block.
The block design was used to remove the confounds introduced
by risk-seeking related changes in subjective value processing of
the CSs37, 55–57.

Consistent with our previous reports using the same procedure,
after conditioning, monkeys choices rank ordered the CSs in
either block according to their expected values (Fig. 6a,
see refs 55–57, 63) indicating they understood the meanings of
the CSs. After training, 58 ACC reward uncertainty enhanced
neurons were identified and studied in the single CS reward
probability/reward amount behavioral procedure.

The online identification of reward uncertainty neurons was
the same as in our previous studies56, 57, 63. The average response
of ACC reward uncertainty enhanced neurons is shown in
Fig. 6b, c. During the reward-probability block, the neurons
responded most strongly to the most uncertain CS (50% CS),
more weakly to 25 and 75% CSs. The same neurons displayed the
weakest response to the certain CSs (0 and 100%). In the reward
amount block, their responses encoded reward size in a roughly
linear manner, displaying highest firing for the greatest CS
associated with the greatest reward sizes (Fig. 6c; rho= 0.3;
p< 0.001; Spearman’s rank correlation; n= 58). These data
indicate that, on average, ACC reward-uncertainty neurons
signal the level of reward uncertainty and can also signal reward
amounts in a roughly linear manner (Fig. 6b).

Discussion
It has been proposed that the ACC exerts top–down control on a
wide-range of reward, punishment, and uncertainty-related
internal states and action selection processes. But how single
ACC neurons encode reward, punishment, and uncertainty has
remained unclear. Here, in a Pavlovian procedure in which
monkeys displayed a diverse repertoire of reward, punishment,
and uncertainty-related behaviors, many ACC neurons
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represented expected-value and uncertainty in a valence-specific
manner, signaling value or uncertainty of either rewards or
punishments. Also, other ACC neurons signaled information
about rewards and punishments by displaying excitation to both,
rather than excitation to one and inhibition to the other.

These results are mostly incompatible with several theories of
ACC. First, though the ACC did contain neurons that were
selectively activated by punishment predictions, there was no
indication that the majority of ACC neurons exclusively signaled
aversive or noxious information. Second, the data are inconsistent
with the notion that many single ACC neurons encode a general
value or common currency signal that generalizes across
appetitive and aversive contexts (such as a theoretical economic
value signal). Very few ACC neurons displayed positive
relationships with reward probability and negative relationships
with punishment probability (or vice versa).

In contrast, the data are consistent with the hypothesis that the
ACC contains multiple circuits that have the capacity to distinctly
process control-related and motivation-related variables, such as
information about reward, punishment, and uncertainty. This
diversity in information coding strategies could allow other brain
areas to read-out inputs from the ACC flexibly, either by com-
bining or multiplexing information about reward, punishment,
and uncertainty; or by processing such information separately, to
mediate many internal states and actions1–4, 22, 31, 33, 34, 49, 53, 64,
such as those that are enhanced by both rewards and punish-
ments (e.g., vigilance), and those specific to either reward or
punishment (e.g., approach and avoidance).

This study demonstrates a novel selective punishment
uncertainty signal in the brain and will therefore provide new
opportunities to study internal states, such as anxiety and
depression, which are thought to be strongly driven by persistent
uncertainty about bad outcomes25, 65–68.

Punishment uncertainty neurons were often found in more
anterior and ventral regions of the bank of the ACC while reward
uncertainty neurons were found in all areas, but were particularly
common in the dorsal extent of the ACC. Since the dorsal
and ventral regions of the dorsal ACC have differences in their
projection patterns to the striatum, amygdala, cortex, and brain
stem62, 69–71, one possibility is that reward and punishment
uncertainty are processed by distinct circuits involving somewhat
different (but overlapping) areas of ACC. This conjecture
is further supported by a series of experiments in which we
identified neurons in two anatomically distinct networks that
signal information about reward uncertainty but not punishment
uncertainty: the septal-basal forebrain network and the striatal-
pallidal network55–57, 63. Both of these networks receive inputs
from and send direct and indirect inputs to the ACC, and neither
displayed consistent coding of punishment uncertainty.

Previous work has identified that the ACC may be important
for monitoring decision uncertainty and decision outcomes72

and for information seeking4, 73. It will be important to assess
how different groups of neurons identified in this study,
and throughout the subcortical uncertainty-related network,
contribute to those functions.

When rewards and punishments are bundled into a single
stimulus (or option) that monkeys can choose to approach or
avoid, neurons in the pregenual cingulate cortex (an area that is
anatomically distinct from but related to regions studied in
this article) were either correlated with approach behavior or
avoidance74. Interestingly, the avoidance-related neurons were
also more active when the monkeys’ decision reaction times were
slow. The authors suggested that this effect may be related to the
subjective conflict between the reward and punishment within a
particular bundle74. Along similar lines, Ebitz and Platt found
that in a saccade task, distractor-induced conflict enhanced the

activity of many neurons located within the ACC22. Here, it was
found that the possibility of an abort cue presentation during
high-valued trials (that monkeys rarely aborted) enhanced the
activity of ACC uncertainty-sensitive neurons. In these trials, the
abort cue was an aversive distractor to which saccades ought not
to be made. One interesting hypothesis is that task-conflict, the
increased probability of action-performance errors and of reward
prediction errors (following uncertainty) modulate the same
groups of ACC neurons.

ACC neurons display selectivity for contexts and tasks33, 53.
Compatible with those observations was the finding that valence
sensitive neurons predicted and anticipated the nearing of their
preferred context over long time-scales. Also, on average, the CS
responses of many reward and punishment-sensitive neurons did
not consistently differ across blocks in which abort cues may be
presented vs. blocks in which the abort cues were never presented,
suggesting that ACC neurons may have the capacity to adjust
their responses relative to the values of the possible predictions
within a given context or block of trials.

Anterior regions of area 14c within the macaque ventromedial
prefrontal cortex (vmPFC) and the dorsal raphe nucleus
serotonin neurons, like ACC, display a capacity for context and
valence specificity38, 75, 76 by tonically and phasically signaling the
valence of blocks or contexts. One possibility that now requires
serious investigation is that serotonin could play a crucial reg-
ulatory role in valence and context-specific behavioral selection
through raphe-to-prefrontal projections to the ACC and vmPFC.

This study has several limitations. Rewards and punishments
often elicit diverse and distinct behavioral states77, 78. This makes
the dissociation of a valence-specific value signal from an action-
value signal difficult. Though ACC neurons, like neurons in the
orbitofrontal cortex42, did not display trial-by-trial correlations
with conditioned responses, they likely influence action by
increasing or decreasing motivation in a valence, context, and
action-specific manner. Also, because one of the aims of this
study was to ask if ACC contained uncertainty selective neurons,
uncertainty that was unrelated to the CS was minimized. For
example, the behavioral procedures did not include choice trials
in which uncertainty or risk can come about due to many
factors25, 37, 79, 80. It will be important to understand the time
course and dynamics of reward and punishment-related signals in
ACC during choice behavior, particularly in economic decision
making tasks in which rewards and punishments are combined
into single choice options.

Identifying neuronal mechanisms that facilitate flexible control
of action and learning toward rewards and away from punish-
ments remains a central pursuit of systems neuroscience. Here,
we demonstrate a remarkable diversity and valence specificity of
ACC neurons that may in part provide a neuronal substrate
for such capacity. The data suggest that the ACC has multiple
distinct and cooperative functions in behavioral control related to
the expectation and receipt of reward, punishment, and their
uncertainty.

Methods
General procedures. Three adult male rhesus monkeys (Macaca mulatta) were
used for the neurophysiology experiments (1—Monkey B, 2—Monkey Z, and
3—Monkey R). All procedures conformed to the Guide for the Care and Use of
Laboratory Animals and were approved by the Washington University Institutional
Animal Care and Use Committee. A plastic head holder and plastic recording
chamber were fixed to the skull under general anesthesia and sterile surgical
conditions. The chambers were tilted laterally by 35° and aimed at the anterior
cingulate and the anterior regions of the basal ganglia. After the monkeys recovered
from surgery, they participated in the behavioral and neurophysiological
experiments.

Data acquisition. While the monkeys participated in the behavioral procedure we
recorded single neurons in the anterior cingulate. The recording sites were
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determined with 1 mm-spacing grid system and with the aid of MR images (3T)
obtained along the direction of the recording chamber. This MRI-based estimation
of neuron recording locations was aided by custom-built software (PyElectrode).
Single-unit recording was performed using glass-coated electrodes (Alpha Omega).
The electrode was inserted into the brain through a stainless-steel guide tube
and advanced by an oil-driven micromanipulator (MO-97A, Narishige). Signal
acquisition (including amplification and filtering) was performed using Alpha
Omega 44 kHz SNR system. Action potential waveforms were identified online by
multiple time-amplitude windows with an additional template matching algorithm
(Alpha-Omega). Neuronal recording was restricted to single neurons that were
isolated online. Neuronal and behavioral analyses were conducted offline in Matlab
(Mathworks, Natick, MA).

Eye position was obtained with an infrared video camera (Eyelink, SR
Research). Behavioral events and visual stimuli were controlled by Matlab
(Mathworks, Natick, MA) with Psychophysics Toolbox extensions. Juice, used as
reward, was delivered with a solenoid delivery reward system (CRIST Instruments).
Juice-related licking was measured and quantified using previously described
methods63. Airpuff (~35 psi) was delivered through a narrow tube placed ~6–8 cm
from the monkey’s face.

Behavioral procedures. The reward-punishment behavioral procedure consisted
of two alternating blocks of trials: a reward block and a punishment block. In the
reward block, three visual fractal CS were followed by a liquid reward (0.4 ml of
juice) with 100, 50, and 0% chance, respectively. In the punishment block, three
visual fractal CSs were followed by an air puff with 100, 50, and 0% chance,
respectively. One block consisted of 12 trials with fixed proportions of trial types
(each of the three CSs appears four times during each block). The inter-trial-
intervals (ITIs) ranged from ~2–6 s.

Each trial started with the presentation of a trial-start cue at the center. The
trial-start cue disappeared after 1 s and one of the three CSs was presented pseudo
randomly (the CS could appear in three locations: 10 degrees to the left or to the
right of the trial-start cue or in the center). After 2.5 s, the CS disappeared, and the
outcome (juice, aifpuff, or nothing) was delivered. The monkeys were not required
to fixate.

Abort cues were presented during one half of the trials in distinct blocks
(abort-blocks) in one of three locations 10 degrees away from the CS. Abort blocks
contained distinct visual fractals as CSs. Typically, a recording session contained
the following repeating block structure: reward (abort) block, punishment (abort)
block, reward block, punishment block, reward block, punishment block.

An additional single block reward-punishment behavioral procedure was used
to study the activity of ACC in monkey B. The trial structure was the same as in the
two-block procedure. Here, nine visual fractals served as CSs that predicted reward
with 100, 75, 50, 25, and 0% chance and punishment with 100, 75, 50, and 25%
chance. No abort cues were presented in this procedure.

To study if reward uncertainty-sensitive ACC neurons signal the level of reward
uncertainty and reward size, a five reward-probability and reward-amount
procedure was used. This procedure consisted of two blocks, a reward-probability
block and a reward-amount block. The trial structure was detailed in White and
Monosov, 2016 (see ref. 57). Each trial started with the presentation of a green
trial-start cue at the center. The monkeys had to maintain fixation on the trial-start
cue for 1 s; then the trial start cue disappeared and one of the CSs was presented
pseudo randomly. After 2.5 s, the CS disappeared, and juice (if scheduled for that
trial) was delivered. The reward-probability block contained five visual fractal
objects CSs associated with five probabilistic reward predictions (0, 25, 50, 75 and
100% of 0.25 ml of juice). The reward-amount block contained five objects
associated with certain reward predictions of varying reward amounts (0.25,
0.1875, 0.125, 0.065 and 0 ml). Each block consisted of 20 trials with fixed
proportions of trial types (each of the five CSs appears four times in each block).
Monkeys R, B, and Z participated in this procedure.

In separate experimental sessions, the monkeys’ choice preference was tested for
the CSs. This procedure has been detailed in our previous studies56, 63. Each trial
started with the presentation of the trial-start cue at the center, and the monkeys
had to fixate it for 0.5 s. Then two CSs appeared 10 degrees to the left and right.
The monkeys had to make a saccade to one of the two CSs within 5 s and fixate it
for at least 750 ms. Then the unchosen CS disappeared, and after 1 s the outcome
(associated with the chosen CS) was delivered, and the chosen CS disappeared.
If the monkey failed to fixate one of the CSs, the trial was aborted and all stimuli
disappeared. The trials were presented pseudo randomly, so that a block of 180
trials contained all possible combinations of the 10 CSs four times. Monkeys R, B,
and Z participated in this procedure.

Data processing and statistics. Spike-density functions were generated by
convolving spike times with a Gaussian filter (σ= 100 ms). All statistical tests
were two-tailed. For comparisons between two task conditions for each neuron,
we used a rank-sum test, unless otherwise noted. For comparisons between two
task conditions across the population average, we used a paired signed-rank test,
unless otherwise noted. p< 0.05 with Bonferroni correction was used as a threshold
for these tests unless otherwise noted.

All correlation analyses were Spearman’s rank correlations. The significance of
the correlation analyses (threshold: p< 0.05, unless otherwise noted) was tested by
10,000 permutations38, 56, 57, 63.

CS responses were measured in a single time window that started 100 ms from
the CS onset until the outcome. Outcome responses were measured in a single
500-ms window that started 50 ms following the outcome delivery. To normalize
task-event-related responses, we subtracted baseline activity (the last 500 ms of
the inter-trial interval) from the activity during the task-event related
measurement epoch.

A neuron was defined as CS responsive if it displayed variance across CSs either
in the reward or punishment block (Kruskal–Wallis test, p < 0.01). The statistical
identification of uncertainty neurons was detailed previously38, 56, 57, 63. As before,
a neuron was defined as uncertainty sensitive if its CS responses varied across the
three possible outcome predictions in either block (Kruskal–Wallis test, p< 0.01)
and if its response to the uncertain CS (50%) was significantly stronger or weaker
than its responses to both 100 and 0% CSs (two-tailed rank-sum test; p < 0.05;
Bonferroni corrected). Therefore, a neuron could be uncertainty-sensitive in
reward block, punishment block, or both.

To calculate receiver operating characteristic (ROC) that assessed neuronal
discrimination of value and uncertainty, we compared spike counts during the
CS epoch of two conditions. The analysis was structured so that area under curve
values >0.5 indicate that the response for the value or uncertainty was a selective
enhancement, while values <0.5 indicate that the response for the value or
uncertainty was a selective suppression.

Trial-by-trial correlations of single unit activity and conditioned responses
(Supplementary Table 2) were performed so as to minimize the influence of global
task correlations. For each neuron type, the neurons’ preferred CS was chosen (e.g.,
reward uncertainty enhanced neurons’ 50% reward CS epochs were analysed), and
the relationship of spiking activity (mean spike count) and the magnitude of
conditioned responses during that CS epoch was tested by a Spearman’s rank
correlation. Similar results were obtained if partial correlations were performed
across all CS conditions in which spiking activity and conditioned responses were
z-scored within each CS condition before the correlation was performed. For the
trial-by-trial correlations assessing firing rate during the CS epoch and the
subsequent ITI pupil dilation, the pupils were assessed in a 0.50 s window,
1.5 s following the outcome. For each neuron, object selectivity was assessed by
comparing its responses to two distinct visual fractals that conveyed the neuron’s
preferred outcome prediction (e.g., reward value enhanced neurons’ responses for
two visual fractals that conveyed 100% reward).

Supplementary Fig. 9 visualizes how uncertainty and value-coding strategies
co-occur in single neurons across the reward and punishment blocks. Each neuron
is represented by a vector of 4 value and uncertainty discrimination indices ranging
from 0 to 1. Value discrimination indices were obtained by ROC analyses that
compared 100 and 0% CS responses. Uncertainty discrimination indices were
obtained by ROC analyses that compared 50 and 100% CS responses. If a neuron
did not pass the uncertainty sensitivity test (described above), the result of the
uncertainty ROC analysis was set to 0.5. If a neuron was uncertainty-sensitive in
one of the blocks (i.e., reward or punishment blocks), its value index was set to 0.5
in that block. The data were organized by hierarchical clustering on Euclidean
distance utilizing Ward’s minimum variance method. Because clustering is a data
mining method, here it is utilized to organize the matrix of neurons for qualitative
observation. The results are interpreted as visual confirmation for multiple value
and uncertainty coding strategies in ACC, not as evidence for discrete and stable
clusters (e.g., robust to noise or increases or decreases in neuron number).

Data availability. Data supporting the findings of this study are available within
the article and its Supplementary Information Figures or from the authors on
request.
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