

Occupational exposure to fungi and mycotoxins in cork industry – An exploratory study

Susana Viegas

Bernd Osteresch, Yannick Hövelmann, Tiago Faria, Anita Quintal-Gomes, Benedikt Cramer, Carla Viegas, Hans-Ulrich Humpf

BACKGROUND – CORK INDUSTRY

Cork is:

- ✓ Impermeable material
- ✓ Resistant to fire
- ✓ Composed of suberin (hydrophobic substance)
- ✓ Used in a variety of products: the most common is wine stoppers.

Portugal is the most important producer of cork in the world and produces approximately 50% of the cork harvested annually worldwide.

CORK INDUSTRY (important numbers)

Portugal produced 49% of all cork in 2016 and has 650 companies working in this production sector.

Two thirds of mundial exportation come from Portugal, being:

- √ 77.4% from semi-processed products;
- √ 82.3% from processed products from natural cork;
- √ 68% from agglomerate products.

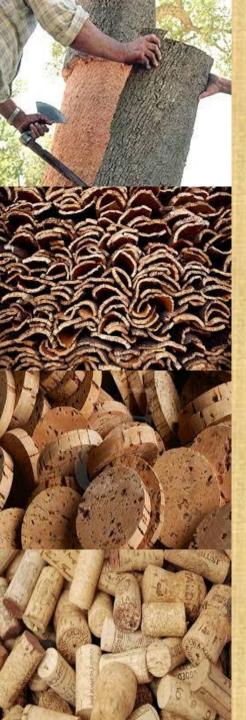
Portugal's cork industry employs about ten thousands workers having 718 M

euros of profit each year.

APCOR, 2016

OCCUPATIONAL HEALTH CONCERNS

The presence of the *Penicillium glabrum* complex in this industry involves the risk of respiratory diseases such as suberosis, a type of hypersensitivity pneumonitis that is one of the most prevalent diseases among cork workers.


Winck et al., 2004; Pereira et al., 2000; Serra et al., 2008; Basílio et al., 2006; Cruz, 2003; Oliveira, 2011; Pimentel and Avila 1973; Villar et al., 2009.

Epidemiologic studies had already reported an estimated prevalence between 9 to 19 % of suberosis among cork workers.

Winck, 2003

Besides *P. glabrum* complex, *Chrysonilia sítophila* was already reported as a dominant fungal species in all stages of cork production corroborating also the role in respiratory disorders in cork industry.

Danesh et al., 1997; Oliveira et al., 2003; Viegas et al., 2015

WHY STUDY OCCUPATIONAL EXPOSURE TO MYCOTOXINS?

 \checkmark High exposure to organic dust already reported, particulary to particles of smaller sizes (0.3 μm and 0.5 μm).

Viegas et al., 2014

- ✓ High diversity of fungi contamination depending of many factors:
- Crop (tree) contamination;
- Time between collecting and processing the cork;
- Storage conditions;
- Cork processing (cork boiling, quick drying);
- Cork transformation process.

Viegas et al., 2015, 2016

Videos

https://www.youtube.com/watch?v=ETsl-TiLowl

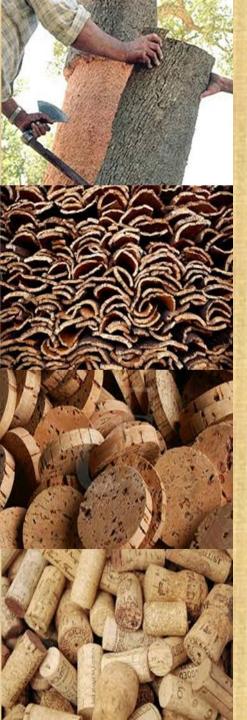
https://www.youtube.com/watch?v=NfeTxrzuf4M (Grupo Amorim)

https://en.wikipedia.org/wiki/Cork taint - Trichoderma and Fusarium strains the responsables for the TCA

STUDY DEVELOPED

Fungi and mycotoxins occupational exposure assessment performed in one cork industry.

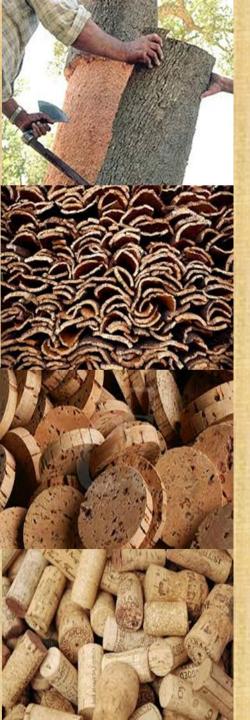
- o 26 workers
- Process stages: Storage outside Crushing Autoclave/Boiling Screening and
 Sorting Finishing Palletizing Warehouse



STUDY DEVELOPED

Fungal burden assessment

- ✓ Air and surface samples were collected and subject to further macro and microscopic observations.
- ✓ Collected additional air samples in order to perform real-time quantitative polymerase chain reaction (PCR) amplification of genes from *Penicillium glabrum* complex (*Penicillium* section *Aspergilloides*) and *Aspergillus* section *Fumigati*.


Impaction method

Swab method

Impingir method

STUDY DEVELOPED

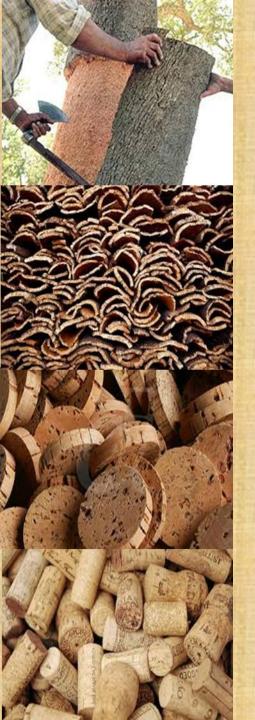
Mycotoxins Assessment

✓ Nineteen spot urine samples of cork workers were analyzed. Collected in the middle of the week.

✓ Workers answered a questionnaire that contained questions related with food consumption and current and previous occupational tasks developed.

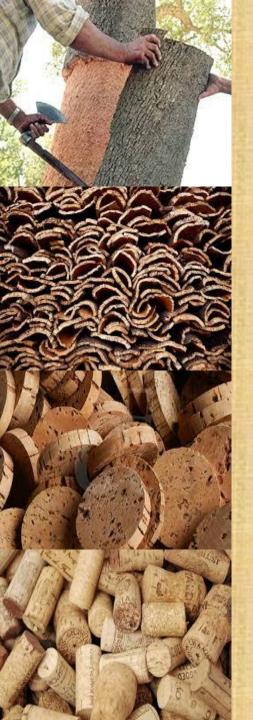
✓ An improved "dilute and shoot" LC-MS/MS multi-mycotoxin approach was used to monitor urinary excretion of mycotoxins by the simultaneous detection of 33 biomarkers.
 Gerding et al. (2014) and Hövelmann et al. (2016)

Biomarkers: AFB1,AFB2,AFG1,AFM1,ALT,AME,AOH,BEA,CIT,DH,CIT,DON, DON—3-GlcA, EnA1, EnB, EnB1, FB1, HT-2, HT-24-GlcA, 10-OH-OTA, OTA, Otα, 2'R-OTA, T-2, ZAN, ZEN, ZEN-14-GlcA, α-ZEL, β-ZEL, α-ZEL-14-GlcA, β-ZEL-14-GlcA, TEA, αllo-TEA

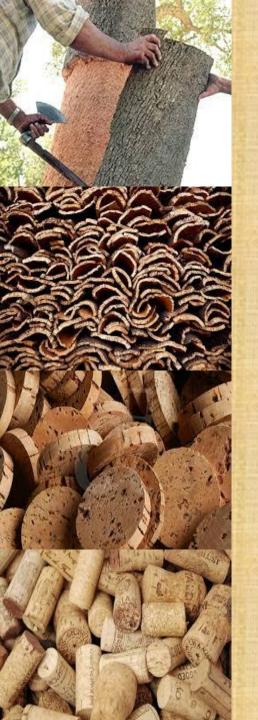

RESULTS – FUNGI

Air Samples

- ✓ Conventional methods: Most prevalent fungus was *Cladosporium* sp. (42.8%). *Lichtheimia* sp. (21.2%), *Penicillium* sp. (19.2%) and *Geomyces* sp. (16.8%) were also isolated.
- ✓ Molecular analysis: Detected P. glabrum and Aspergillus section Fumigati.


Surfaces samples

- ✓ Penicilium sp. (66.4%) was the most abundant. Cladosporium sp. (11.7%).
 Geomyces sp., Chrysonilia sp., Alternaria sp. and Aureobasidium sp. also isolated in surfaces but with much lower counts.
- ✓ Chrysonilia sp., Alternaria sp. and Aureobasidium sp. were only identified in surfaces.


RESULTS – MYCOTOXINS

- ✓ In most of the samples (63.1%) was detected more than one mycotoxin/metabolite.
- ✓ 9 different mycotoxins/metabolites were detected in workers urine samples: DH-CIT, DON-3-GlcA, EnA1, EnB, EnB1, OTA, 2'R-OTA, TeA and allo-TeA.
- ✓ The most reported mycotoxin was TeA (94%>LOQ) followed by allo-TeA (44.4% >LOQ). TeA (ng/ml): <LOD 37.75/mean=7; allo-TeA (ng/ml): <LOQ -5.54/mean=2)</p>
- ✓ OTA was detected in 5 samples (26.3%) and 2 of those samples have quantified values (median = 0.12 ng/ml) and the same samples also have quantified values of 2′R-OTA (mean=0.31 ng/ml).
- √ 5 Mycotoxins/metabolites <LOQ:
 </p>
- DH-CIT detected in 4 samples; DON-3-GlcA detected 1 sample; EnA1 detected in 1 sample; EnB detected in 3 samples; EnB1 detected in 1 sample.

DISCUSSION

- ✓ This is the first study intended to assess the co-exposure to multiple mycotoxins of a group of workers from a specific occupational setting (cork industry).
- ✓ **Low values** probably related predominantly with **food consumption**. The case of TeA?
- ✓ Multibiomarker approach unveil real exposure scenario: co-exposure to low vales of several mycotoxins.
- ✓ Different results were obtained in other settings where there was a higher exposure to mycotoxins related with also higher prevalence of toxigenic species (animal production, slaughterhouses, waste management).
- ✓ Besides the mycotoxins detected other should be targeted considering Aspergillus section Fumigati prevalence (gliotoxin).

CONCLUSIONS

- ✓ Need of recognizing mycotoxins as a possible occupational risk factor.
 Mycotoxins should be targeted for occupational biomonitoring programs.
- ✓ Considering the type of tasks developed several biomonitoring campaigns should be performed to allow an accurate exposure assessment.
- ✓ Multibiomarker approach generates important data to perform exposure assessment Real life exposure scenario = co-exposure to several mycotoxins.
- ✓ Even at low levels can we expect negative health effects due to mycotoxins interactions?
- ✓ Challenges related with the lack of toxicokinetic data for some mycotoxins generating several additional questions to be answer to allow an accurate and adequate exposure and risk assessment. Not a straight line!!

REFERENCES

- Assunção, R. Silva, M.J. Alvito, P. .Challenges in risk assessment of multiple mycotoxins in food.
 SPECIAL ISSUE: Mycotoxins in a changing world. World Mycotoxin Journal, 2015; 1-21 Wageningen
 Academic ISSN 1875-0710 print, ISSN 1875-0796 online, DOI 10.3920/WMJ2016.2039 1.
- o Gerding, J., B. Cramer and H. U. Humpf (2014). Determination of mycotoxin exposure in Germany using an LC-MS/MS multibiomarker approach. Molecular Nutrition & Food Research 58(12): 2358-2368.
- O Hövelmann, Y., S. Hickert, B. Cramer and H. U. Humpf (2016). Determination of Exposure to the Alternaria Mycotoxin Tenuazonic Acid and Its Isomer allo-Tenuazonic Acid in a German Population by Stable Isotope Dilution HPLC-MS3. Journal of Agricultural and Food Chemistry 64(34): 6641-6647.
- Viegas, S. Faria, T. Task-based approach to study occupational exposure to particulate matter in cork industry. International Congress on Environmental Health 2014, 24 a 26 de setembro no Porto.
- Viegas, C. Clérigo, A. Pacífico, C., Faria, T., Sabino, R. Francisco, M. Verissimo, C. Viegas, S. New approach to study the real exposure to fungi in cork industry: nasal swabs mycobiota investigation coupled with screening on fungal resistance to azoles. Annual Meeting of International Society of Exposure Science, Utrecht, Netherlands, 9-13 October 2016.

Occupational exposure to fungi and mycotoxins in cork industry – An exploratory study

Susana Viegas

Bernd Osteresch, Yannick Hövelmann, Tiago Faria, Anita Quintal-Gomes, Benedikt Cramer, Carla Viegas, Hans-Ulrich Humpf