シャトルビークル「ツクヨミ」の水槽滑空試験

Æ	員	中	村	昌	彦*	正	員	浅	Ш	賢	**
Æ	員	百	留	忠	洋**			松	畄	宏	樹***
		Ш	谷	赾	抇****			植	Ħ	副日	中****

Gliding Tests of Underwater Shuttle Vehicle "Tsukuyomi" in Towing Tank

by Masahiko Nakamura, *Member* Tadahiro Hyakudome, *Member* Tetsuya Kawatani Kenichi Asakawa, *Member* Hiroki Matsuoka Tsuyoshi Ueda

Key Words: Virtual Mooring, Underwater Glider, Tank Tests, Motion Simulation

1. 緒 言

海洋環境の監視と海洋環境変動予測の高度化のために は、海洋環境変動全体を把握するための鍵となる海域で 長期的な連続観測を行うことが必要である.しかし、国 際プロジェクトであるアルゴ計画で使用されているアル ゴフロートは海の流れに乗って移動するために、定地点 に留まって長期的な観測を行うことができず、ブイシス テムは定点における長期観測を行っているが、設置には その設計から投入まで多大な労力と費用が必要となる上, 観測点の変更が非常に困難である.このような問題を克 服するためには水中ビークルを利用したバーチャルモア リング^{1,2)}が有利であり、海洋研究開発機構では九州大学 応用力学研究所の協力のもとに長期間にわたり一定海域 で観測が行える 3000m級シャトルビークル「ツクヨミ」 の開発を行っている. ビークルの名前は日本の古代神話 に登場する月に関する神の名に由来する.本論文では完 成した実機を用いて九州大学応用力学研究所深海機器力 学実験水槽(長さ:65m,幅:5m,深さ7m)において実 施された直進滑空試験,旋回試験について述べる.

2. 「ツクヨミ」の概要

ビークルは浮力を変更し、海面と海底をグライディン グにより往復することで、海洋観測データを収集する (Fig.1).海面に浮上した際、ビークルは通信衛星を利 用して収集したデータを地上局に送信すると共にさまざ まな動作指令を受け取る.ビークルは潜航・浮上の際の グライディングにより位置修正を行い、定地点に留まる. 1/2 スケールの模型を使用した流体力計測試験より、グラ イディングが静安定となるような最適形状(Fig.2)を決 定し³、実機(Fig.3)が建造された.ビークルのグライデ ィング・旋回はビークル内で重錘(バッテリー)を移動 し、重心位置を変更することにより制御する.耐圧容器

* 九州大学・応用力学研究所

** 海洋研究開発機構・海洋工学センター

*** トヨタ自動車株式会社
 (研究当時 九州大学・大学院総合理工学府)
 **** 九州大学・大学院総合理工学府

原稿受付 (学会にて記入します) 春季講演会において講演 (学会にて記入します) ©日本船舶海洋工学会 を貫通して動く部品が必要なくなるので、長期間の運 用・高圧化での運用に対して信頼性が格段に向上する.

Fig. 1 Concept of virtual mooring by shuttle vehicle "Tsukuyomi"

Fig. 2 Model of shuttle vehicle "Tsukuyomi"

Fig. 3 Shuttle vehicle "Tsukuyomi" for practical use in ocean observation

3. ビークル重心位置の測定

水中グライダーの重心位置が滑空角度に与える影響は 非常に大きく、実機の重心位置を正確に把握しないと、 精度の良い運動シミュレーションができない.そこで Fig.4に示すように水中にテグスを使用してビークルを吊 り下げ, 重錘を移動し, 傾斜試験を行って重心位置を求 めた. ビークルの浮心Bを中心とする座標系 (Fig.5)を用 いるとモーメントの釣り合いから次式が得られる. (x_G , z_G)は重心の座標, (x_p , z_p)はテグスによるビークル吊り下 げ点, Wはビークル空中重量, F_p はテグスにかかる張力, (x_{G0} , z_G)は重錘がニュートラル位置にある場合のビークル 重心の位置座標, x_m は重錘の移動量, W_m は重錘の重量, x_{Gm} は重錘をニュートラル位置から移動したことによる ビークルの重心の移動量, θ はビークルのトリム角である.

$$\begin{cases} x_G W \cos \theta + z_G W \sin \theta - x_p F_p \cos \theta - z_p F_p \sin \theta = 0 \\ x_G = x_{G0} + x_{Gm} \\ xGm = \frac{W_m}{W} x_m \end{cases}$$
(1)

Fig. 4 Measurement of position of center of gravity

Fig. 5 Coordinate system for measurement of position of center of gravity

Fig. 6 Result of inclining experiment

ビークルの浮心位置は既知なので,重心の座標を未知 数として傾斜試験結果に最小二乗法を適用すると重心位 置を求めることができる.Fig.6に傾斜試験の結果と求ま った重心位置を使用して計算した結果の比較を示す.重 錘の移動可能範囲内で良好な結果が得られていることが 確認できる.なお,得られたBGの値は4.15mmであった.

4. 滑空試験結果

ビークル水中重量と重錘の位置をさまざまに変更し滑 空試験を行った.水槽で滑空中のビークルを Fig.7 に示す. ビークルが水面に浮上している状態から浮力調整装置や 重心移動装置を駆動して滑空を開始させると,水槽の水 深の制約から定常滑空状態になる前に着底してしまう. そこで,Fig.4 に示すようにビークルをテグスで吊り下げ た状態であらかじめこれらのアクチュエーターを駆動し, 設定水中重量・設定重錘位置になった後ビークルを開放 し,滑空を開始させた.

Fig. 7 "Tsukuyomi" gliding in Ocean & Underwater Engineering Tank

滑空試験結果とシミュレーション結果の比較(潜航深 度とトリム角の時系列)をFig.8からFig.11に示す.それ ぞれの図において上図が潜航深度の時系列,下図がトリ ム角(滑空角度)の時系列である.

浮力を調整(水中重量を調整)するために圧力容器内 のオイルリザーバから Bladder にオイルを出し入れして も x-軸方向に重心位置が大きく変動しないようにオイル リザーバを重心位置付近に設置しているが,オイルの比 重が水より小さいため完全に変動を無くすことはできな い.そこで,シミュレーションにおいても浮力調整にと もなう重心移動を考慮するようにした.最初はこの影響 を無視してシミュレーションを行ったが,BGの値が小さ いためかなり影響が大きく,良好な結果を得ることがで きなかった.さらに厳密にはオイルリザーバが Bladder より若干上方に設置されているため z-軸方向にも重心が 移動するはずであるが,この影響は無視できるものとし た.シミュレーションに使用した運動方程式や流体力係 数の導出は参考文献(3)に詳しく述べられているので省略 する.

図より過渡状態のピッチング運動は計算結果と一致し ない場合が見られるが、定常滑空角度はよく一致してい る.潜航深度の時系列のずれは潜航開始直後のピッチン グ運動のずれが影響していると考えられる.滑空角度が 安定してからの深度の変化率は実験と計算で非常によく 一致している.「ツクヨミ」は3000m級の水中グライダ ーであり、深く潜行する場合の運動シミュレーションに は過渡状態におけるピッチング運動の計算誤差による影 響は無視できると考えられる.

Fig.12 に定常滑空角度の実験結果と計算結果の比較を 示す. 全般的に滑空角度が小さくなると誤差が大きくな る傾向があり、トリム角度がプラスの領域では、シミュ レーションではビークルがバックしてしまい、実験との 比較はできなかった. 重心位置を 0.1mm 弱変更すると前 進するようになるので、精度の高い重心位置計算が求め られていることがわかる.

Fig. 8 Results of gliding tests (Weight of vehicle in water : 4.12 N)

(Weight of vehicle in water : 8.82 N)

Fig. 10 Results of gliding tests (Weight of vehicle in water : 13.67 N)

Fig. 12 Steady gliding angle corresponding to shifting of battery

Fig. 13 Steady speed corresponding to shifting of battery

Fig.13 にビークル前進速度を示す.ビークルに追従す るように曳航電車を走行させ、曳航電車の速度をビーク ル前進速度としている.手動操作で電車をビークルに追 従させているので動作が遅れ、計測値は低めの値となっ ている可能性が大きいことを考慮すると、計算結果は比 較的良好であるといえる.

5. 旋回試験結果

水槽で旋回中のビークルを Fig.14 に示す.実験では, 水槽水深の制約から滑空試験の場合と同様,あらかじめ 重錘(バッテリー)を x-軸まわりに回転し,横方向にも 重心を移動した後ビークルを開放し運動を計測した.重 錘を回転し,横方向に重心を移動すると,上方向にも重 心が若干移動するので、シミュレーションでは BG が減 少する影響を考慮している.

Fig. 14 "Tsukuyomi" turning in Ocean & Underwater Engineering Tank

実験結果と計算結果の比較をFig.15, Fig.16 に示す.図 は上から順にビークル潜航深度, ロール角, ピッチ角, ヨー角を示している. φmは重錘の回転角である. 左舷側 に重心を移動するとビークルは右旋回し、シミュレーシ ョン結果はこの挙動をよく再現している.しかし、旋回 中の滑空角度が直進滑空時の値と異なるほど,回頭角の シミュレーション結果は実験結果から外れてしまう(旋 回中の横方向速度は非常に小さいと考えられるので、流 体力係数 N_v'は速度が小さい場合の模型試験結果³⁾を使 用してシミュレーションを行っている.).旋回の影響 と考えるには差が大きすぎるため、失速状態におちいっ ていることが考えられる.水中重量が最大(18.52 N)で 重心移動装置を 61.5 度回転した場合は滑空角度が直進滑 空時の値と大きく異なる0度近くの値となり、挙動はあ きらかに失速状態であった. 航空機の場合は失速すると 急激に落下するが、水中ビークルの場合は中性浮力に近 いため急激に深度を増すことは無い.

ビークル水中重量が 13.67 N, 18.52 N の場合は失速状 態であったと考えられるので,実験結果とシミュレーシ ョン結果の比較(滑空角度と回頭角速度が大きく異なる) は記載しなかった. 十分な水深が確保できれば(実海域 での試験では),最初は直進滑空をさせ,前進スピード が十分に大きくなり定常に達した後に横方向に重心を移 動し旋回を開始すると,失速が回避できると思われる.

6. 結 言

水槽において,バーチャルモアリング用 3000m 級シャ トルビークル「ツクヨミ」の滑空試験,旋回試験を行い, 挙動を確認すると共にシミュレーション結果との比較を 行った結果,次の結論を得た.

- (1) 滑空はきわめて安定しており,シミュレーション結果は実験結果とよく一致する.
- (2) 重心を左舷側に移動すると右旋回し、シミュレ
 ーション結果はこの挙動をよく再現できる.
- (3) 失速しないで滑空する領域では旋回に対するシ ミュレーション結果は実験結果と一致する.
- (4) 旋回を行うには、直進滑空で前進スピードを十 分に大きくした後に横方向に重心を移動するの が望ましい.

参考文献

中村昌彦,兵頭孝司,小寺山亘:バーチャルモアリング用円盤型水中グライダーの開発(その1 制御システムと模型実験用ビークルの開発),日本船舶

海洋工学会論文集, 第5号, 2007, pp.35-46.

- M.Nakamura, W.Koterayama, M.Inada, K.Marubayashi, T.Hyodo, H.Yoshimura and Y.Morii : Disk Type Underwater Glider for Virtual Mooring and Field Experiment, Int. Journal of Offshore and Polar Engineering, Vol.19, No.1, 2009, pp.66-70.
- 3) 中村昌彦、浅川賢一、百留忠洋、杵嶋暁、松岡宏樹、 南匠弥:バーチャルモアリング用シャトルビークル 「ツクヨミ」の運動シミュレーション,日本船舶海 洋工学会講演会論文集,第12号,2011,pp.123-126.

(Weight of vehicle in water : 8.82 N)