Anisotropic properties of natural rubber nanocomposites with sp² carbon allotropes

<u>S. Agnelli</u>, S. Pandini, F. Torricelli, P. Romele (Università degli Studi di Brescia, Brescia, Italy)

M. Galimberti, S. Musto, A. Serafini (Politecnico di Milano, Milano, Italy)

Ischia Porto (Na), 12-15 luglio 2017

Rubber reinforcement: carbon fillers vs nanofillers

VS

Particle geometry:

Examples:

TEM images of isoprene rubber + 30 phr filler*

Primary particles

dimension scale: dispersion:

Surface area:

Conventional fillers Carbon black (CB)

3D-like

~10 nm particles aggregated

low

Nanofillers

260 nm

Graphene nanoparticles

2D-like

Carbon nanotubes

1D-like

~1 nm particles singularly dispersed

high

Rubber reinforcement: carbon fillers vs nanofillers

High surface area = high reinforcement efficiency

Rubber reinforcement: carbon fillers vs nanofillers

Nanofillers

Carbon nanotubes

1D-like

Particle geometry:

Aspect ratio: max dimension/min dimension of the particle

High aspect ratio → possible preferential orientation → ANISOTROPIC properties

Anisotropy in rubbers filled with CNT

Orientation and alignment of CNT is seeked to fully exploite their properties along specific directions, particularly for electronical applications (field emission displays and sensors, data storage, and light-emitters)

Methods for the alignment of CNTs

(Ponnamma et al., Mater. Chem. C, 2014, 2, 8446):

- extrusion or injection molding. Alignment degree can be tuned by the shear rate as well as the pressure applied
- In situ polymerization
- mechanical stretching
- electrospinning
- filtration
- plasma-enhanced chemical vapor deposition (PECVD)
- template
- force field-induced alignment
- magnetic field-induced alignment
- liquid crystalline phase-induced alignment

"The alignment of MWCNTs in the 50/50 NR/NBR blends can be controlled by milling the compounds at a tight nip gap."

(Kueseng et al., Polymer Testing 32 (2013) 1229–1236)

Most attention is given to unidirectional alignment and longitudinal properties.

Aim of the work

Describe anisotropic properties

of a nanofilled homogeneous elastomeric material

along three main spatial directions

in a very common rubber product:

a <u>rubber plate</u>.

Evaluation also of the properties along transversal directions, usually neglected.

WHY?

Proper material characterization

The plate is a typical product for quality tests and material standard characterization neglects transversal direction.

Advanced design

Plate is produced by a common base production technique, at low shar rate.

Other processes can allow to tune anisotropy levels.

Rubber bellows

- Material: NR filled with different fillers (CB) and nanofillers (nanoG and CNT)
- A base production process is used: compression molding
- Tests along different directions, also through the thickness → shear tests
- Property considered: dynamic moduli and Payne effect

Materials

- Matrix: peroxide cured natural rubber (NR)
- Fillers and nanofillers:

CB: Printex XE2 from Degussa
 (BET surface area = 1000 m²/g)

Ingredient	Amount [phr (volume fraction)]			
NR	100	100	100	100
Filler	0	4 (0.02)	15 (0.07)	35 (0.15)
DCUP	3.5	3.5	3.5	3.5

NR=SMR GP, from Lee Rubber DCUP=dicumyl peroxide.

phr = weight parts per hundred rubber

- Material: NR filled with different fillers (CB) and nanofillers (nanoG and CNT)
- A base production process is used: compression molding
- Tests along different directions, also through the thickness → shear tests
- Property considered: dynamic moduli and Payne effect

- Material: NR filled with different fillers (CB) and nanofillers (nanoG and CNT)
- A base production process is used: compression molding
- Tests along different directions, also through the thickness → shear tests
- Property considered: dynamic moduli and Payne effect

- Material: NR filled with different fillers (CB) and nanofillers (nanoG and CNT)
- A base production process is used: compression molding
- Tests along different directions, also through the thickness → shear tests
- Property considered: dynamic moduli and Payne effect

- Material: NR filled with different fillers (CB) and nanofillers (nanoG and CNT)
- A base production process is used: compression molding
- Tests along different directions, also through the thickness → shear tests
- Property considered: dynamic moduli and Payne effect

Shear sandwitch clamps of DMA Q800 – TA Instruments

- Material: NR filled with different fillers (CB) and nanofillers (nanoG and CNT)
- A base production process is used: compression molding
- <u>Tests along different directions, also through the thickness → shear tests</u>
- Property considered: dynamic moduli and Payne effect

- Material: NR filled with different fillers (CB) and nanofillers (nanoG and CNT)
- A base production process is used: compression molding
- <u>Tests along different directions, also through the thickness → shear tests</u>
- Property considered: dynamic moduli and Payne effect

- Material: NR filled with different fillers (CB) and nanofillers (nanoG and CNT)
- A base production process is used: compression molding
- Tests along different directions, also through the thickness → shear tests
- Property considered: dynamic moduli and Payne effect

Dynamic-mechanical tests in shear mode

Test conditions:

Room temperature (23÷26°C)

Frequency: 1 Hz

Shear strain amplitude range: 0.013%÷30%

Agnelli et al., Macromolecules 2016, 49, 8686-8696

Agnelli et al., Macromolecules 2016, 49, 8686-8696

Anisotropy index

Results

Anisotropy level of storage modulus

Investigations of filler structuring

Analyses

- Transmission electron microscopy (TEM) analysis
- Electrical resistivity measurements

Preliminary data on:

- NR + 15 phr CNT
- NR + 35 phr CNT

Transmission electron microscopy (TEM) analysis

TEM:

Philips CM200 electron microscope 200 kV

Field Emission Gun filament

Materials:

- NR + 15 phr CNT
- NR + 35 phr CNT

Ultrathin sections obtained perpendicular to the reference axis 1

Sketch of expected CNT structuring:

Ultrathin slice (approximately 70–100 nm thick) preparation by ultramicrotomy technique. (sample temperature: -130° C; diamond knife)

Bright field Transmission electron microscopy (TEM-BF) analysis

NR + 35 phr CNT

<u>Electron diffraction measurements</u> by Selected Area Electron Diffraction (SAED) Patterns

NR + 35 phr CNT

SAED ring pattern

(002) Debye-Scherrer ring → d-spacing of 0.34 nm → concentric arrangements of the nanotubes walls

Bright field Transmission electron microscopy (TEM-BF) analysis

NR + 15 phr CNT

<u>Electron diffraction measurements</u> by Selected Area Electron Diffraction (SAED) Patterns

NR + 15 phr CNT

SAED ring pattern

b d d

(002) Debye-Scherrer ring → d-spacing of 0.34 nm → concentric arrangements of the nanotubes walls

Electrical resistivity measurements

Measurement setup:

Specimens: 3x3x3 mm³

KEITHLEY 2636A System Sourcemeter

Contacts: Copper+silver paste

- NR + 15 phr CNT
- NR + 35 phr CNT

Electrical resistivity measurements

Anisotropy index:

$$\rho_{TT}/\rho_{IP} = 38$$

$$\rho_{TT}/\rho_{IP} = 10$$

Through-thickness

Conclusions

- Dynamic shear characterization allowed to <u>estimate the mechanical anisotropy level</u> in a thin rubber plate.
- In a homogeneous compression molded rubber plate, CNT and nanoG confer a transversal isotropic behavior,
 whose intensity depends on filler content.

- This behavior could be interpreted as a consequence of a random orientation of the filler particles in the sheet plane, and of their planar piling up through the sheet thickness.
- A combined microscopy approach (<u>TEM+SAED</u>) and <u>electrical measurements</u> provided confirmation of CNT structuring.

Thank you for you attention!

<u>Transverse isotropy</u> is observed in sedimentary rocks at long wavelengths.