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Abstract Every time an Internet user downloads a video, shares a picture,
or sends an email, his/her device addresses a data center and often several
of them. These complex systems feed the web and all Internet applications
with their computing power and information storage, but they are very energy
hungry. The energy consumed by Information and Communication Technology
(ICT) infrastructures is currently more than 4% of the worldwide consump-
tion and it is expected to double in the next few years. Data centers and
communication networks are responsible for a large portion of the ICT en-
ergy consumption and this has stimulated in the last years a research effort to
reduce or mitigate their environmental impact. Most of the approaches pro-
posed tackle the problem by separately optimizing the power consumption of
the servers in data centers and of the network. However, the Cloud computing
infrastructure of most providers, which includes traditional telcos that are ex-
tending their offer, is rapidly evolving toward geographically distributed data
centers strongly integrated with the network interconnecting them. Distributed
data centers do not only bring services closer to users with better quality, but
also provide opportunities to improve energy efficiency exploiting the variation
of prices in different time zones, the locally generated green energy, and the
storage systems that are becoming popular in energy networks.
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In this paper, we propose an energy aware joint management framework for
geo-distributed data centers and their interconnection network. The model is
based on virtual machine migration and formulated using mixed integer linear
programming (MILP). It can be solved using state-of-the art solvers such as
CPLEX in reasonable time. The proposed approach covers various aspects of
Cloud computing systems. Alongside, it jointly manages the use of green and
brown energies using energy storage technologies. The obtained results show
that significant energy cost savings can be achieved compared to a baseline
strategy, in which data centers do not collaborate to reduce energy and do not
use the power coming from renewable resources.

Keywords Green Cloud · Energy Consumption · Green Energy · VM
migration · Energy Efficiency · Joint Optimization

1 Introduction

In recent years, the wide adoption of Information and Communication Tech-
nologies (ICT) and the exponential growth of Internet users have significantly
contributed to the increase of the world energy consumption [1,2], and the
impact of the digital economy is expected to increase even more over the next
years [1,3]. Even if ICT is actually helping other sectors of the economy to
reduce their environmental impact, the energy consumption of the ICT sector
itself cannot be neglected.

The main strategy of the research effort put so far in ICT energy issues
is the reduction of energy consumption, with the constraint of guaranteeing
the same quality of service. In addition, partially replacing polluting energy
by installing green energy plants close to big consumers is also part of the
solution to the problem.

In Cloud Computing, data centers are well known for being particularly
energy hungry. Electricity consumed by global data centers is estimated to be
between 1.1% and 1.5% of total electricity use [4]. Typically, data centers are
rather inefficient and consume more energy than required [5], leaving room for
improvement achievable through intelligent management techniques.

By breaking down the energy consumption of data centers into their com-
ponents as shown in Figure 1 [6], we can observe that about 52% of energy
is consumed by computing equipments and the remaining 48% are for power
equipments and cooling systems.

One of the reasons for energy inefficiency is the underutilization of servers
whose consumption is not proportional to computing load. As the statistics
show, average server utilization in data centers is around 30% [7], due to
capacity over provision based on worst-case scenario in order to ensure high
levels of reliability [8].

To address this problem and improve Cloud systems power efficiency, VM
(Virtual Machine) migration has been proposed and has shown great poten-
tial. Migrating a VM consists of changing its physical host without service
interruption. This can be done for different purposes, such fault resilience or
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Fig. 1 Data Center energy consumption breakdown

for system maintenance. It can be used in power management strategies to
move services running on a big set of underutilized servers to a smaller set
of optimally loaded servers, so that the others can be switched off for power
saving.

Even if VM migration also consumes energy, it has been shown that it is
more effective than leaving underutilized servers switched on [9,10].

Another important component that consumes energy in Cloud services
is the communication network. Networks are also typically provisioned for
worst-case scenarios such as traffic burst and busy-hours load. Actually, the
network has typically a pretty large capacity margin even with respect to peak
load for service quality and robustness reasons, and then it usually wastes
a lot of energy [11]. In the internal data center network, the main energy
consumers are Ethernet switches that are hierarchically interconnected. In the
external network based on IP technology, the core network routers dominate
energy consumption [12]. The relative contribution to energy consumption
of core router components is shown in Figure 2 [12]. IP networks typically
operate at less than 50% utilization, while still consuming almost 100% of
maximum power due to an almost flat energy profile (consumption versus
load) [11]. For managing network devices in order to consume less energy,
two main approaches are used: turning off the nodes or scaling down their
performance [13,14].

Most of previous work on energy efficiency in Cloud systems focused on
managing computing and networking components separately. However, opti-
mizing energy consumption of data centers and their network independently
may be significantly inefficient, in particular when dynamic resource manage-
ment schemes like VM migration are considered. Considering energy consump-
tion of data center servers only may cause traffic congestion and degrade the
quality of Cloud services offered to end users, as well as decrease the energy
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Fig. 2 Breakdown of power consumed by a core router

efficiency of the network. On the network side, energy saving techniques are
based on estimations of the traffic matrices over time, and if data centers
are not considered, large traffic variations due to decisions taken by dynamic
resource managers can cause energy waste. Integrating techniques for manag-
ing energy consumption of computing and networking components in a new
generation of Cloud systems can potentially provide non negligible efficiency
gains.

A key aspect that makes some level of integration in services offered by data
centers and networks particularly important is the geographic distribution of
Cloud systems. Distributing data centers over different locations brings Cloud
services closer to end users, and offers the opportunity to better exploit the
variation of energy prices in different locations and time zones, as well as the
efficient use of the green energy that is locally generated.

Even if there are only a few existing works in literature that have inves-
tigated the impact of joint optimization solutions for energy saving in Cloud
systems [15–17], the effectiveness of such solutions from energy cost point of
view, and their contribution to reducing environmental impact through the
use of green energy remain open issues that have motivated our work (see
Section 2 for more details).

In this paper, we present a holistic approach for jointly managing Cloud
data centers and their networks. In the considered scenario, the Cloud system
provides Platform as a Service (PaaS) to a variety of users, and data centers
are distributed geographically in different locations and interconnected by a
network. We propose an optimization model based on Mixed Integer Linear
Programing (MILP), which has the goal of minimizing the Cloud energy cost
and exploit the availability of green energy sources in different places where
data centers are located. The proposed approach covers many aspects of Cloud
Computing including live migration of VMs, energy storage management, and
green energy exploitation. In this model, we consider both energy consumption
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of data-center servers and their interconnection network, and optimize the use
of energy coming from the electrical grid, as well as the energy locally generated
using renewable resources exploiting also energy storage [18]1

The rest of the paper is organized as follows. Section 2 presents related work
on energy saving. Section 3 describes the proposed approach and introduces
the model formulation. Section 4 presents the tests performed and the obtained
results. Finally, concluding remarks are given in Section 5.

2 Related Work

As mentioned in the introduction, most of the existing works tackle the prob-
lem of energy efficiency in Cloud systems separating the management of data
center servers and network nodes.

For the data centers, there is a large body of work on energy management
of computing resources. We can categorize existing approaches into two classes:
server consolidation with power state management and workload scheduling.

Server consolidation consists of efficiently using the available computing
resources with the view to reduce the total number of active servers and
thus saving energy by turning off unused ones. Entropy is a resource man-
ager proposed in [19] that is based on constraint programming, and it is able
to consolidate applications running on a number of underutilized servers to
a smaller number of highly utilized servers using live migration of VMs. The
adopted scheme does not take into account heterogeneity in application re-
quirements and servers, which is rather common in multiple cloud provider
environments. A similar approach able to cope with heterogeneous environ-
ments is named pMapper [20], an application placement controller based on
continuous optimization. For more complex environments, with a combina-
tion of SLAs (Service Level Agreements), different power models and energy
policies, a VM consolidation engine named Plug4Green has been proposed in
[21].

The workload placement in modern data centers with a large number of
servers significantly affects their operating temperature in addition to energy
consumption. A smart placement using workload scheduling techniques may
reduce cooling requirements and save even more energy. A good example of
schemes based on this scenario is EnaCloud [22]. EnaCloud is an energy-aware
heuristic-based approach that chooses the most appropriate scheme for dy-
namic application placement based on their arrivals, departures or resizing
events. The approach in [23] proposes an integer linear programming (ILP)
model that combines job allocation and VM migration.

None of the above solutions considers network requirements or the geo-
graphic distribution of data centers.

1 This paper is an extension to our work presented in [18]. The main difference is that
now we consider more complex scenario, we minimize the cost by solving VM migration
problem instead of only redirecting requests between data centers.
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As for previous work on Cloud networks, available contributions are mainly
focused on designing and operating the communication infrastructure in order
to achieve fault tolerance, scalability, high utilization and cost efficiency [24,
25]. For energy efficiency, beside the hardware improvements, many contribu-
tions related to protocols and network architecture aim at achieving a better
trade-off between performance and energy consumption.

In [26], G-Route (Green Route), a service routing protocol for achieving
energy-efficiency and collaboration among cloud providers, is proposed. It is a
routing scheme that creates autonomous energy-efficient paths between differ-
ent providers before running a specific service. It has been implemented and
tested on Amazon EC2 cloud infrastructure, and shown quite significant en-
ergy and cost savings per service request. A drawback of this approach is that
it needs a trusted third party to control the energy profiling process. Other
energy-aware routing solutions can be found in [27–34].

Switching off network nodes and rerouting traffic on other paths has a
significant impact on saving energy. In [35] the authors proposed an integer
linear programing model and some heuristic algorithms that minimize energy
by finding the set of routers and links that must remain powered on for a
given traffic level while switching off the others. This model is based on the
knowledge of the traffic profile exchanged between source/destination nodes,
and the maximum link utilization. Unlike most similar works where the objec-
tive is to minimize cost or to maximize performance, the authors minimize the
total power consumption of the network. Other works that consider switching
off network components and sleep mode for saving energy can be found in
[36–43].

PCube [44] is an elastic data center scheme that conserves energy by adjust-
ing the network topology and varying bandwidth availability based on traffic
demand. It is designed to be able to dynamically adjust network structure
depending on different traffic volumes, and to turn off a set of switches to save
energy. Similar solutions are Bcube [45] and ElasticTree [46].

The above solutions focus on network only and do not consider the energy
optimization of servers in data centers together with network nodes.

Relatively few papers consider joint management of data centers and net-
work. In [16], the authors proposed an optimization approach to jointly min-
imize the energy consumption in data center hosts and network. The basic
idea is to consider both VM placement and traffic routing for energy saving.
To avoid the complexity of the problem, a unified representation method is
proposed and the optimization model of VM placement is made similar to a
routing problem; then the placement and routing problems are solved as a sin-
gle one. A similar approach is PowerNetS [15], a power optimization strategy
based on workload and traffic correlation analysis. The problem is formulated
using constrained programming with the goal of consolidating VMs which
are not positively correlated with the same physical machines. At the same
time, the model takes into account the network by consolidating VMs that
are linked through traffic flows onto the same server or servers close to each
other. In [47] the authors proposed an energy saving scheme for VM placement
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considering both physical servers and network resources. The problem is mod-
eled as a combination of bin packing and quadratic assignment problems with
multi-objective optimization and solved with a greedy algorithm that com-
bines hierarchical clustering with best fit scheme. The above approaches focus
on the network internal to the data center and do not consider geographically
distributed Cloud systems, as well as the availability of green resources and
energy storage.

The approach in [48] jointly minimizes the cost in big data processing
based on three factors: task assignment, data placement, and data routing.
The cost minimization problem is formulated as a mixed-integer nonlinear
programming (MINLP) model, that is then linearized to make it tractable.
This work considers geographically distributed data centers but it does not
explicitly model the external network for energy consumption, it does not
exploit the difference of energy prices in various locations, and it does not
take into account green energy usage.

In [49], the authors jointly optimize three problems: VM placement, the
distribution of requests, and data center resizing. The geo-distribution of data
centers is explored, by considering variation in energy prices within different
locations. The problem was formulated using MILP, and solved using a two
phase heuristic. However, the energy consumption of the network was not
included neither the exploitation of green energy resources.

In this paper, we study the energy cost minimization problem of Cloud
systems by managing data centers and Network as a whole. Differently from
existing works, where the focus is only on one aspect of cloud computing like
VM placement/migration, in this paper we aggregate multiple Cloud Comput-
ing aspects into one approach, and propose a holistic energy aware solution
for managing Cloud data centers and their interconnection network.

3 Global Green Cloud management framework

3.1 Problem description

We consider a PaaS (Platform as a Service) scenario, where the provider op-
erates on a virtualized infrastructure composed by multiple data centers dis-
tributed over different geographical locations. Each data center is equipped
with thousands of physical servers. This scenario is rather common nowadays
even if the number of locations and and servers vary with the size of the
provider. For example, Google data centers are distributed among various lo-
cations in the world: 19 in the US, 12 in Europe, one in Russia, one in South
America, and three in Asia. [50] While Amazon Web Services Cloud operates
42 Zones within 16 geographic Regions around the world [51].

Let I be the set of available data centers. We assume they are fully con-
nected by a backbone network (mesh topology), where in each path between
two data centers i and j , the number of routers and the available bandwidth
capacity are known.



8 Amine Barkat et al.

We assume that the Cloud Provider is able to host different user applica-
tions by offering a set L of heterogeneous types of VMs. Each type of VMs
executes a specific service application that is capable to serve a set K of user
request classes as shown in the system model [Figure 3].

Fig. 3 Cloud System Model

We consider a one-day horizon, divided into 24 time periods, in which the
duration of each time period is one hour, and we solve the problem in advance
for each day. We consider predictions of the application workload based on
historical traffic information [52–54], thus, an estimation of the incoming traffic
for each application is provided. We denote by λtik the arrival rate of requests
of class k ∈ K to data center i at time t ∈ T .

Based on the traffic profile, our goal is to minimize the total energy cost in
the cloud system by allocating VMs to servers and if necessary, migrating them
between data centers, considering the fact that migration itself costs energy
on both source and destination. Depending on the location of a data center
and its time zone (day/night), the price of energy varies. We exploit different
energy regions by migrating VMs to data centers where the price of energy is
cheaper. We also consider the availability of energy from renewable resources
for reducing environmental impact of the cloud system. Therefore, migration
of VMs to data centers with more available green energy is an opportunity that
can be exploited to optimize costs. Basically, using VM migration we actually
reduce the load of expensive and polluting data centers, while we exploit cheap
and green energy when available.

We consider that VMs are live migrated between data centers (DCs) using
post-copy live migration scheme [55], in which the VM is suspended immedi-
ately upon beginning of the migration process. First CPU state is transferred
to the destination DC, while the memory is still at the source DC. Then the
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destination DC requests fault pages from the source DC, while the latter is
transferring the memory state to the destination DC. Post-copy live migra-
tion decreases the migration traffic therefore reduces the total migration time,
since the VM page is transfered only once over the network unlike in pre-copy
live migration [56]. Indeed, in this case memory pages are copied from the
source DC to the destination DC without interrupting the execution of the
virtual machine, which implies a succession of iterations of memory transfer
before stopping the VM execution on the source DC and starting it again at
the destination DC.

By migrating VMs from one data center to another, we consider migration
energy cost of the destination data center, the source data center, and the
network. For the network, its energy is assumed to be proportional to the
amount of exchanged traffic, which includes bandwidth consumed by migrated
VMs including there memory, disk images of VMs, and users traffic.

Moreover, we jointly manage the use of green and brown energy. We assume
that all the energy coming from the electrical grid is brown energy, while we
consider the energy generated in data centers as green and available for free if
it is consumed locally, to privilege the use of on-site generated green energy.
However, it is straightforward to modify the formulations to include also an
amount of green energy coming from the electrical grid (with a cost depending
on location).

We assume that data centers are able to generate on-site an amount of
green energy using renewable sources, such as solar energy, wind energy or
geothermal energy. The use of this smart electricity sourcing strategies on-site
is increasing, e.g., Facebook’s solar-powered data center [57], and Green House
Data wind-powered data center [58]. Since our work focuses only on system
management, we do not include capital expenditures for renewable sources.
The costs of green energy generation are significantly declining over the last
few years. Depending on the technology, installation prices vary, e.g., Parabolic
trough plants used to generate Concentrating Solar Power (CSP) have capital
costs as low as 4600$/kW in USA market, while wind power technologies tend
to be more competitive, between 1800$/kW and 2200$/kW [59].

Matching exactly the energy consumption with green energy generation
is difficult and can potentially generate inefficiencies when produced energy
cannot be consumed immediately. Therefore, we relax this problem by consid-
ering the use of energy storage technologies. In our scenario, data centers are
equipped with rechargeable battery systems that are able to store the locally
generated green energy. Balancing the use of green energy produced, between
immediate usage and storage in batteries for later consumption allows for green
energy to be available when the price of brown energy is high, as well as to
solve the problem of discontinuous availability of renewable resources.

For each time period, the model defines how to allocate the load in each
data center. In other words, how many VMs are kept active or off. The same
thing for the network, where we define for each time period which links are
to be turned on and which should be off depending on the number of routers
in each link and their capacity. Note that, even if we associate energy con-
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sumption to links, the real energy consumers in the network are line cards
connected to the links in the routers on both sides.

3.2 Problem Formulation

In this section, we first introduce decision variables. We then formulate the
cost minimization objective function and the problem constraints.

3.2.1 Decision Variables

The goal of our optimization model is twofold: 1) finding how many VMs to
be migrated among DCs, and the source and destination of the migrations,
2) managing the usage of the available green energy sources. These decisions
allow to move the load and the energy consumption among DCs during the
day in order to exploit the availability of green energy and the differences in
brown energy prices of various DC locations.

We formulate the problem using several sets of decision variables. The first
pair of main decision variables refer to VMs migration and requests forward.
The integer variable v t

ijl represents the number of VMs of type l to be migrated
from DC i to data center j during time period t . This variable depends on the
number of received requests by each data center. We use a continuous positive
variable xtijkl to represent the arrival rate of class k requests received by VM
of type l in data center i and then served in data center j after live migration.

The second pair of main decision variables are related to the green energy
management. In particular, variables sgeti and dgeti indicate the sources of the
green energy supplied to the DC i during the time period t. sgeti is the amount
of energy coming from DC batteries, while dgeti is the green energy produced
at the DC i directly supplied to the DC for its operations.

Together with these main decision variables, there are several other sec-
ondary variables that, depending on the values of the main ones, are used to
model the behavior of the system. We can group them in the three domains,
they refer to: VM and Migration, Networking, Battery and Green Energy
Management.

3.2.2 VM and Migration

Integer variable w t
il denotes the number of active VMs type l that are originally

running on data center i , while we use the integer variable w t
il to refer to the

number of VMs executing on a data center i after all live migrations took
place. The variables wont

il and woff t
il depict the number of VMs to be turned

on and off respectively at time period t . The energy consumption associated to
the migration of type-l VMs, including both current VMs at DC i migrated to
other DCs and new VMs migrated to DC i from other DCs, is captured by the
variable migtil. Figure 4 describes a small illustrative scenario of the migration
process, in which a DC i receive a number v t−1

ijl of migrated VMs from a DC
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j during the time slot t − 1 , then, during time t it migrates a number v t
ijl to

a DC j , we mention the space between time bands is just to show the number
of turned off VMs woff t

il .

Fig. 4 VM variables

Networking: As for the network, we assume that the energy consumption
of a link is proportional to its load, expressed in terms of the ratio of used
bandwidth over available bandwidth. We rely on variable bt

ij to express the
bandwidth used at the link (i , j ) connecting DC i with DC j during the time
period t, which is determined by the traffic volume exchanged by the two DCs
due to all migration processes among them. In addition, we let unused links to
be switched off. We capture this behavior using binary variables ztij , equal to 1
if the link (i , j ) is active, and 0 otherwise. Similarly to data centers, zont

ij and

zoff t
ij indicate whether each link has to be turned on or off at the beginning of

time period t according to its status during the previous time period (t − 1 ).
Figure 5 illustrates a small example of networking variables changes during a
small scenario for transmissions in the link between a DC i and a DC j. In this
small example, the link is used for transmissions from time band 5 until time
band 8, after that, during time band 9 there are no transmissions, therefore
the link is turned off, and we indicate that by assigning 1 to the variable zoff t

ij .
The link has to be turned on again during time band 11, though, the variable
zont

ij takes the value 1.

Battery and Green Energy Management: Concerning green energy and
batteries, the variable cti represents the amount of energy charged in a battery
i at time t from renewable energy sources installed at DC i. It is related to
the main decision variables sgeti and dgeti as described by the Figure 7, where
basically the generated green energy not immediately provided in dgeti is used
to recharge the batteries.

In addition to the above-mentioned variables, we have a set of variables
to model the energy charging and discharging phases at DC i. We suppose
that the energy charged at a time t cannot be used in the same time period.
To define the energy level of a battery we use two different variables, one
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Fig. 5 Networking variables

refers to the level of energy at the beginning of a time period t denoted by
sti, and the other one sti refers to the level of energy at the end of the time
period t . Figure 6 shows how variable sgeti, which indicates the amount of the
batteries’ energy consumed during time period t to run the DC, is connected
to other energy-related variables. Finally, variables sgeti and dgeti define the
total amount of green energy provided to the DC during the time period t,
expressed by the variable gti

Fig. 6 Energy Generation, Storage and Consumption

Fig. 7 Batteries Functioning
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All defined variables are summarized in Table 1.

Main Decision variables
v t
ijl number of migrated VM type l from DCi to DCj at time t

xtijkl number of requests class k received by i and treated in j

sgeti energy supplied to DCi from batteries at time t
dgeti green energy directly supplied to DCi at time t

VMs related variables
w t

il number of VMs type l at DCi before live migration
w t

il number of VMs type l at DCi after live migration
migtil migrations energy consumption of VMs class l in DC i during t
wont

il number of VMs type l to be turned on
woff t

il number of VMs of type l to be turned off
Network variables

btij Bandwidth used in link (i , j ) at time t

ztij link (i , j ) status at time t (binary)

zont
ij Whether the link (i , j ) has to be turned on (binary)

zoff tij Whether the link (i , j ) has to be turned off (binary)

Batteries and Green Energy variables
cti Energy charger in battery i at time t
sti energy level in battery i at the beginning of time period t
sti energy level in battery i at the end of time period t
gti all green energy used by DC i during t

Table 1 Decision Variables

3.2.3 Objective function

The objective of our model is to minimize the energy cost, which consists of two
components: DC energy consumption and networking energy consumption.
Therefore, we design the following objective function:

min
∑
t∈T

∑
i∈I

{
M t

i

[
ρi
∑
l∈L

(
αilw

t
il + ηilwon

t
il + θilwoff

t
il +migtil

)
− gti

]}

+
∑
t∈T

∑
i,j∈I

Et
ijRij

[
(γij − δij)

bt
ij

Qij
+ δijz

t
ij + τijzon

t
ij + ξijzoff

t
il

]
(1)

The first term accounts for the cost of data centers consumption. It consid-
ers the costs of all data centers over all time periods, where for each data center
we multiply the specific site cost of brown energy, M t

i , and PUE (Power Usage
efficiency), ρi, for the total energy consumed by the servers. The consumed
energy consists of:
– the total consumption of running VMs, where αil is energy needed for

running a type l VM in DC i (e.g., Wh)
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– the energy needed for turning on and off the servers, where ηil and θil are,
respectively the energy needed for turning on or off a type l VM in DC i
(e.g., Wh)

– the energy consumed by DCs to migrate VMs, captured by variable migtil
In addition, the consumed energy is discounted by the amount of green energy
provided by renewable energy sources installed at DCs represented by gti . As
we consider the green energy produced locally, the operating cost of green
plants is set to zero in the model.

The second term of the objective function accounts for the network con-
sumption. It is computed as a sum of each path cost, which in turn consists
of two components:

– the energy required to operate each router on link (i, j) during the time
period t, considering both active and idle state energy consumption, re-
spectively indicated by γij and δij

– the energy required to turn on and off a router at the beginning of the time
period, respectively, τij and ξij

The model assumes that all the routers of the link (i, j) are identical,
therefore, the energy consumption of each router multiplied by the number of
routers along the link, Rij . This assumption can be easily modified by con-
sidering individualized energy consumption values, which have been omitted
here for sake of ease in presentation. Finally, in order to compute the energy
cost of this second term, the total energy consumption is multiplied by the
average energy price along the link during time period t, Et

ij .

3.2.4 Constraints

In this section we present different groups of constraints used to model the
Vm migration, the operations of data centers, the network, and battery and
green energy management features.

VM Migration: First, we must ensure that all the requests received from
cloud users are processed by the data centers. The requests of different classes
have to be processed by suitable type of VMs. For this purpose we use the
following constraints:∑

l∈Lk

∑
j∈I

xtijkl = λtik ∀i ∈ I,∀k ∈ K,∀t ∈ T (2)

In particular, constraint (2) ensures that all the incoming traffic is pro-
cessed in the Cloud, by any of the DCs with an appropriate VM. Note that
we consider the set Lk, which is the set of VM classes that can process class-k
requests.

In addition, a migration plan requires to define the number of VMs to
migrate, as well as their source and destination DCs. For this purpose we use
the following constraints:
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∑
j∈I

v t
ijl ≥

∑
k∈K

[(∑
j∈I

xtijkl
)
− xtiikl

]
/µl ∀i ∈ I,∀l ∈ L,∀t ∈ T (3)

∑
j∈I

v t
jil ≥

∑
k∈K

[(∑
j∈I

xtjikl
)
− xtiikl

]
/µl ∀i ∈ I,∀l ∈ L,∀t ∈ T (4)

v t
iil = 0 ∀i ∈ I,∀l ∈ L,∀t ∈ T (5)

Equations (3) and (4) compute the number of VM that were sent and
received, respectively, by each DC. They are proportional to the rate of request,
respectively, redirected to and received from other DCs. Note that the term
xtiikl represents the requests arrived to DC i and locally served. The number
of migrated VMs must be sufficient to serve the rate of forwarded requests,
this is captured by the parameter µl expressing the maximum service rate for
a type l VM. The last constraint (5) guarantees that a DC does not migrate
VMs to itself.

The following constraint (6) determines the number of active VMs in a data
center i after making the necessary migrations. Starting from the number of
VMs that was created in a data center (w t

il), we subtract the number of VMs
that migrated and add the ones that arrived from other locations. In most
cases, a data center makes one of these operations: sending or receiving VMs
but not both at the same time, and that depends on its capacity and the
energy constraints.

w t
il = w t

il −
∑
j∈I

v t
ijl +

∑
j∈I

v t
jil ∀i ∈ I,∀l ∈ L,∀t ∈ T (6)

Finally, constraint (7) calculates the energy consumed by migration oper-
ations.

migtil = EHl

∑
j∈I

v t
jil + ESl

∑
j∈I

v t
ijl ∀i ∈ I,∀l ∈ L,∀t ∈ T (7)

Parameters ESl and EHl represent the energy consumption for migrating
a VM type l consumed, respectively, at source and destination DC.

DC behavior: Together with the migration plan, we need to model the DC
behavior. We assume each DC has a maximum number of requests that can
process per time period. This number depends on the number of VMs that
a data center is able to handle simultaneously. Hence, we use the following
constraints to ensure that the capacity requirements of data centers are not
exceeded:

wt
il ≤ Pil ∀i ∈ I,∀l ∈ L,∀t ∈ T (8)
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wt
il ≥

∑
j∈I

∑
k∈K

xtijkl
µl

∀i ∈ I,∀l ∈ L,∀t ∈ T (9)

wt
il ≥

∑
j∈I

∑
k∈K

xtjikl
µl

∀i ∈ I,∀l ∈ L,∀t ∈ T (10)

Where, constraint (8) ensures that the number of running VMs after all
migration operations took place does not exceed the capacity of the system
resources. In other words, the overall utilization of resources dedicated to run
class-l VMs is below a planned threshold in each DC i, Pil. Constraint (9)
defines the number of VMs of type l originated in DC i , while constraint (10)
defines the number of VMs of type l running on DC i after making all the
necessary live migrations. Both numbers depend on outgoing and ingoing rates
of migrated requests.

In order to ensure time continuity in the number of running VMs at each
DC, we need the following constraints.

wont
il ≥ w t

il − w t−1
il ∀i ∈ I,∀l ∈ L,∀t ∈ T (11)

woff t
il ≥ w t−1

il − w t
il ∀i ∈ I,∀l ∈ L,∀t ∈ T (12)

Constraints (11) and (12) determine the number of VMs to be turned on
and off at the beginning of time period t, according to their number at the
end of time period t− 1.

Networking: For the network, the following constraints are defined to en-
sure that we do not exceed bandwidth capacity and to guarantee the proper
operation of network links:

btij =
∑
l∈L

φtijl
(
VMsizel + DIl

)
+
∑
k∈K

(
Bk

∑
l∈L

xtijkl
)

∀i ∈ I,∀j ∈ I,∀t ∈ T
(13)

btij + btji ≤ Qijzij ∀i ∈ I,∀j ∈ I,∀t ∈ T (14)

ztij = ztji ∀i ∈ I,∀j ∈ I,∀t ∈ T (15)

Constraint (13) computes the portion of bandwidth used for transferring
data between different DCs. In our scenario, all the exchanged data is related
to migration operations. Basically, we consider the size of different types of
migrated VMs, in terms of memory state and the content of CPU registers,
then, we associate to each type of VMs an amount of users traffic in terms of
requests. Parameters VMsizel and DIl indicates the bandwidth consumed to
migrate a type-l VM and the size of disk images of type-l VMs, while Bk is the
bandwidth required for a type-k request. In order to consider the effect of large
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latency between data centers, a scale factor can be added to Equation (13)
to take into account the increase of bandwidth needed to manage memory
consistency during VM migration. However, a detailed investigation of the
effects of the latency on VMs’ performance is out of the scope of this paper,
which mainly focuses on energy efficiency aspects. Therefore, in the rest of the
paper we assume this scale factor can be approximatively set to 1.

Constraint (14) guarantees that the VM exchanges do not exceed the link
capacity, Qij , which is forced to 0 when the link is switched off (zij = 0).
Finally, Constraint (15) ensures that if a link is active in one direction, it is
also active in the other one.

Similarly to the case of the number of VMs at DCs, we need to ensure the
time continuity of the link status. Constraints (16) and (17) define which links
have to be turned on or off at each time period transition.

zont
ij ≥ z t

ij − z t−1
ij ∀i ∈ I,∀l ∈ L,∀t ∈ T (16)

zoff t
ij ≥ z t−1

ij − z t
ij ∀i ∈ I,∀l ∈ L,∀t ∈ T (17)

Green Energy and Batteries management: Green energy management
and storage play an important role in our model. The constraints below guar-
antee the appropriate behavior of the available renewable resources and bat-
teries.

gti ≤ ρi
∑
l∈L

(
αilw

t
il + ηilwon

t
il + θilwoff

t
il +migtil

)
∀i ∈ I, ∀t ∈ T (18)

gti = sgetiβi + dgeti ∀i ∈ I,∀t ∈ T (19)

cti + dgeti ≤ Γ t
i ∀i ∈ I, ∀t ∈ T (20)

∑
t∈T

gti ≤
∑
t∈T

Γ t
i ∀i ∈ I (21)

In particular, constraint (18) ensures that the consumed green energy dur-
ing a time period is less than the required amount to run the corresponding
DC. Constraint (19) states that the green energy at time period t can be pro-
vided directly from the renewable source (dgeti) or from batteries (sgeti), taking
into account the energy loss rate during a time period due to its storage, de-
noted by βi. Constraint (20) guarantees that the amount of energy charged in
batteries and the one directly supplied are less than the total amount gener-
ated in one time period, denoted by Γ t

i , while constraint (21) ensures that the
total green energy consumed during a day in a data center (

∑
tT
gti) does not

exceed the total amount generated (
∑

tT
Γ t
i ). This makes the daily repetition

of the plan sustainable.
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sti = ct−1i ψi + st−1i ζi ∀i ∈ I,∀t ∈ T \ {1} (22)

sgeti = sti − sti ∀i ∈ I, ∀t ∈ T (23)

sgeti ≤ sti ∀i ∈ I, ∀t ∈ T (24)

Constraints (22), (23), and (24) are related to batteries. Constraint (22)
states that the energy level in a battery at the beginning of the period t is
given by the energy remaining at the end of time period t − 1 (considering
the energy discharging efficiency of the battery ζi) and the energy charged
during (t − 1 ) (considering the energy charging efficiency of the battery ψi).
Constraint (23) forces the amount of discharged energy, sgeti, to be equal to
the difference between the level of energy at the beginning and at the end of
time period t . Constraint (24) makes sure that the energy discharged from a
battery is less than the available energy in that battery at the beginning of
the time period.

The following final constraints are related to physical limitations of the
batteries. Constraints (25), (26) and (27) ensure that the model does not
exceed the energetic capacity and charging and discharging rate limits of a
battery.

sti ≤ Smaxi ∀i ∈ I, ∀t ∈ T (25)

cti ≤ Cmaxi ∀i ∈ I, ∀t ∈ T (26)

sgeti ≤ Dmaxi ∀i ∈ I, ∀t ∈ T (27)

Parameters Smaxi, Cmaxi, and Dmaxi refer, respectively, to the maxi-
mum energy storage capacity, energy charging in one hour, and energy dis-
charging in one hour of the considered batteries (which is the duration of one
time period). We also assume the energy charged into a battery during time t
can not be used until the next time period, therefore, we add the constraints
(28), (29) and (30) to initialize batteries’ status in t = 1 .

sge1i = 0 ∀i ∈ I (28)

s1i = 0 ∀i ∈ I (29)

s1i = 0 ∀i ∈ I (30)

Table 2 summarizes all model parameters.

4 Model Evaluation

Our model has been evaluated using a state-of-the-art MILP solver and consid-
ering various instances and workload configurations. In this section, we present
results obtained on a set of scenarios with realistic values for parameters.
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I Set of Data Centers
T Set of Time bands
L Set of VMs types
K Set of request classes

Data centers and VMs parameters
λtik incoming class k requests rate at DC i in time t (Req/hour)
Bk bandwidth required for a type k request
Pil the maximum number of VMs type l in DC i

VMsizel bandwidth consumed to migrated a type-l VM type
DIl size of disk images of VMs type l
µl maximum service rate for a type l VM

EHl destination DC energy consumption for migrating a VM type l
ESl source DC energy consumption for migrating a VM type l
αil energy needed for running a type l VM in DCi
ηil energy needed for turning on a type l VM in DCi
θil energy needed for switching off a type l VM in DCi
ρi PUE (Power Usage efficiency) for DC i
Mt

i price of energy in DC i at time t
Network parameters

Rij number of routers in link (i , j )
Qij Maximum bandwidth in link (i , j )
γij energy needed for running a router in (i , j )
δij energy needed for keeping idle a router in (i , j )
τij energy needed for turning on a router in link (i , j )
ξij energy consumption for switching off a router in (i , j )
Et

ij price of energy in link (i , j )

Batteries and Green Energy parameters
Γ t
i Green Power that could be generated at DC i in time t (kWh)
ψi energy charging efficiency in DC i battery
βi energy loss rate per time in DC i battery
ζi energy discharging efficiency in battery i

Smaxi maximum energy storage capacity in battery i
Cmaxi maximum energy charging in one hour for battery i
Dmaxi maximum energy discharging in one hour for battery i

Table 2 Model Parameters

4.1 Parameter Setting

We considered 15 data centers distributed geographically all over the world.
For their locations, we have taken inspiration from Cloud Computing infras-
tructure of Google [60]. We used four geographical macro areas: West USA,
East USA, Europe and Asia. In each area, data centers have the same or close
time zone. A detailed view of used data centers location and number of servers
is provided in Table 3. We mention here that the number of servers used for
each data center is not the real number of Google DCs, but it is generated
within a the range of [5000,16000].

For each data center, we associate a PUE value in order to include the
power facilities that support the IT equipment load, such as cooling systems.
According to [61] the global average PUE of the largest data centers is around
1.7, while the average PUE for all Google data centers is 1.12. In our tests, we
vary PUE values between 1.1 and 2.
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DC City Country Macro-area Time zone Servers
DC1 Mountain View - CA USA West America UTC-08 6000
DC2 Pleasanton - CA USA West America UTC-08 5250
DC3 San Jose - CA USA West America UTC-08 6000
DC4 Atlanta - Georgia USA East America UTC-05 10500
DC5 Reston - Virginia USA East America UTC-05 6750
DC6 Berlin Germany Europe UTC+01 9750
DC7 Groningen Netherlands Europe UTC+01 12000
DC8 Mons Belgium Europe UTC+01 13000
DC9 Paris France Europe UTC+01 15750
DC10 Dublin Ireland Europe UTC+00 13500
DC11 Milan Italy Europe UTC+01 9000
DC12 Moscow Russia Asia UTC+03 14250
DC13 Tokyo Japan Asia UTC+09 11250
DC14 Hong Kong China Asia UTC+08 8250
DC15 Beijing China Asia UTC+08 11250

Table 3 Data Centers location and Number of servers

For data centers capacity, we generated a random number of physical
servers for each DC, within the range [5000:16000], and we assume 1:1 ra-
tio for the physical to virtual resources assignment (i.e., 1 physical core is
assigned to 1 virtual core of equal capacity).

Regarding technical characteristics of servers in DCs, we consider an HP
ProLiant DL370 G6, with a Intel Xeon W5580 processor (8 cores at 3200 Mhz)
and 96GB of total memory. Even if we considered three different classes of VMs
(see below), we modeled only a single server type, in order to simplify energy
consumption analysis. For this reason, all VMs require the same amount of en-
ergy to run at peak load or when idle, while they differ in the class of requests
that can be processed and their total number per time period. However, the
model is flexible to include more than one type of physical servers, this is pos-
sible through assigning each class of VMs to a specific configuration of physical
servers, therefore, different classes of VMs can take different values of energy
consumption. The values of energy consumed for migrating a VM are taken
from an experiment that is designed to estimate servers (Host/Destination)
consumption due to live migration [9]. However, the model is tested on an
example of homogeneous data centers, but the formulations are flexible to in-
clude heterogeneity by giving different energy consumption for different classes
of VMs.

Another important parameter is the energy cost, which varies over time,
with peak hours not simultaneously occurring at different time-zones. In this
paper, we have used as input the average energy prices in the day-ahead mar-
ket in different markets in the world including GME (Gestore dei Mercati
Energetici) in Italy, New England Market and PJM in California USA, SEMO
in Ireland and many others. Energy prices were collected and averaged dur-
ing October 2014. Table 4 reports the list of market managers considered.
The resulting costs of energy varies between 10 and 65 Euro/MWh. Figure 8
represents energy price trend for each different macro area.
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Country Market Manager
USA New England Market (ISO-NE) [62], California ISO [63], PJM [64]
Canada Independent Electricity System Operator (IESO) [65]
Italy Gestore dei Mercati Energetici (GME) [66]
France Powernext [67]
Netherlands, UK,
and Belgium

APX-ENDEX [68]

Germany European Energy Exchange (EEX) [69]
Ireland SEMO [70]
Japan Japan Electric Power Exchange (JEPX) [71]
Russia Trade System Administrator (ATS) [72]

Table 4 Energy Market Managers considered in the paper.

Fig. 8 Average Energy Prices for different Macro Areas during one day

We assume that data centers are fully connected, thus, we consider that
capacity of different links varies between 0.5 Gbps and 1 Gbps. Moreover, a
typical link connecting data centers is built up both by physical lines (such as
optical fiber) and network components (such as routers and switches). There-
fore, we estimate the energy cost of each link as the cost of energy consumed by
its routers, proportionally to the bandwidth in use. For the number of routers
in each link, a traceroute application was used to determine the number of
hopes between two nodes. We have also considered a single reference router
which is a Juniper E320, with a maximum power consumption of 3.84 kW [73].
The other values of parameters related to routers are listed in Table 6.

We built workloads based on a trace of requests registered at a website
of a big University. This trace was collected hourly during one year, from
sessions registered on 100 servers. To generate the workload, we consider the
total number of Internet users for each country where a data center is located
[74], then, based on the number of Google search done all over the world and
percentages of Internet users of the same country, we estimate the requests
rate for each data center.
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For VMs types, we consider 3 classes of VMs, where each class is able to
serve 5 types of requests. The differences between this three classes is mainly
the size of the VM and the size of its disk images. While each type of request
have different requirements in terms of bandwidth. For VMs size and related
parameters, we took inspiration from Amazon EC2 Instance Types [75]. Disk
images size varies depending on the type of VMs. In the considered scenario,
we assume that the type of VM are not storage intensive therefore we consider
that the size of disk images is between 0.5 and 20 GB. However, latency factor
is considered to be 1 in the following tests. The considered values of each class
are summarized in table 5.

VM Class VM size (GB) Disk images size (GB)
Class 1 0.5 0.5
Class 2 1 7
Class 3 2 20

Table 5 VMs settings

In order to estimate the total amount of green energy produced by each
data center during a single day, we multiply the average energy produced by
a green plant per square meter with the average data center size that we vary
between 450 m2 and 10000 m2 [76]. Moreover, we consider that data centers are
equipped with Li-ion (lithium-ion) batteries with overall capacity of 1486 Ah.
This kind of batteries have a C-rate around 73 Ah per module, so with a voltage
of 14.8 V, a module can charge 1.08 kWh during one hour, which is almost
the full capacity of a module. Energy charging and discharging efficiency are
considered equal to 88% [77]. Table 6 summarizes parameter settings used to
test the model.

Bk [200, 450] kb αil [60, 90] Wh ηil [2, 3] Wh
θil [0.28, 14] Wh ρi [1.1,2] γij 3.84 kWh
δij 0.768 kWh τij 0.128 kWh ξij 0.128 kWh

EHl [203, 908] Ws ESl [203, 908] Ws PUE [1.1,2]
Smaxi 1486 Ah Cmax t

i 1.08 kWh/module ψi and βi = 88%
Mt

i [10, 65] Euro/MWh DIl [0.5, 20] Gb Qij [0.5,1] Gbps
Rij [1,36] Routers Nb. of Servers [5250,157500]

Table 6 Parameters settings

4.2 Numerical Results

We used the commercial solver IBM ILOG CPLEX 12.1 as a MILP optimiza-
tion solver [78]. The model has run on an 8-core 2.4GHz Intel Xeon server with
96 GB RAM. To evaluate the energy saving of joint optimization and com-
pare it to traditional strategies that separate data centers and network energy
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management, we considered the proposed model denoted by Global Green and
two different scenarios.

The Servers Only scenario, where we optimize only servers side without
considering an optimization for the network. In other words, network equip-
ments are considered to be turned on all the time without any energy manage-
ment strategy. A second scenario, called Separated, consists of two separated
energy management strategies for both data centers and the network. In this
case, data centers collaborate to minimize their energy consumption without
considering that their interchangeable traffic can have an impact on the net-
work energy consumption, while the network side turn on and off the routers
based on the amount of traffic imposed due to DCs load balancing. A third
scenario called Global Green represents our proposed approach.

Considering that our model is solved based on one day horizon, all of
the following results represent the behavior of the system in one day, energy
expenditures included.

Fig. 9 Comparison of the optimal daily cost of energy for the different optimization ap-
proaches

Figure 9 shows the energy costs for the different scenarios for different
values of traffic (number of requests per day). We also report the energy sav-
ings (in percentage) of the Global Green scenario with respect the other two.
These costs are the objective function values resulting from the optimization
described in Section 3.2. The joint optimization approach (Global Green) can
save large amount of energy cost up to 70% compared to the cost without net-
work power management. The reason behind this is the non-negligible energy
saved in the network turning on and off routers according to traffic dynam-
ics. The savings can be up to 34% compared to the separate case, and this
is due obviously to the separate solution of the two problems that leads to
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suboptimal solutions, and to the use of fixed traffic values for the optimization
of the network. As expected, the savings tend to decrease as traffic increases
since we are forced to keep more system nodes (servers and routers) active
to accommodate a larger number of requests and we have less room (smaller
space of admission solutions) for optimizing energy consumption.

Fig. 10 Comparison of the optimal daily energy consumption for the different optimization
approaches.

In Figure 10 we plot the energy consumption of the same three scenarios.
Obviously, we observe a significant saving of about 43% of the joint model com-
pared to the Servers Only case, because of the network energy consumption.
On the other side, the energy consumption of the separate and joint models
is comparable. The reason is that in the objective function we considered the
energy costs rather than the energy consumption. Since the local generated
green energy is available for free, the system tends to exploit it at best using
also storage to better match production periods with consumption.

In order to better investigate the behavior of the proposed joint optimiza-
tion model, we performed a series of other tests aimed at understanding the
contribution of different system features like the geographical distribution of
data centers with different energy prices and green energy availability. To this
purpose we have considered with three additional scenarios: the Brown Base
scenario, where we do not consider any load balancing between data centers
nor the use of green resources. In the scenario called Green Base, we introduce
the use of green resources locally but without transferring load between data
centers. Conversely, in Global Brown scenario, we exploit traffic distribution
among data centers but without using green energy generation. Note that in
scenarios where green energy production is considered, we also use storage to
optimize its use over time.
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Before analyzing the results of the model, it is worth considering their com-
putational complexity. Figure 11 shows the average execution time required by
CPLEX to solve the models using different workload configurations. We ob-
serve that in all cases it is possible to solve the problem within a few minutes
even for a very large number of user requests. For small instances, i.e. 2 Billion
requests, the solver takes around 1 minute for the Global Green scenario, and
half a minute for the Global brown scenario. While for the two base cases
(Brown and Green), solution time is always less than half a second, even if the
problems become unfeasible for instances with more than 16 billion requests,
due to capacity limits of data centers servers. In the worst case, with a very
high traffic compared to capacity (40 Billion requests per day), the solution of
the joint optimization problem took 4.52 minutes, which is very good for a 24
hours time horizon of traffic planning.

Fig. 11 Solving Time

Figure 12 shows the results obtained for energy costs using the scenarios
mentioned above for different traffic levels. On top of each bar, we indicate the
percentages of savings of the Global Green model compared the one indicated
by the bar. It can be easily noted how significant cost reduction is achieved
through collaboration between data centers using VMs migration. Moreover,
with the cooperative and jointly optimized schemes the available capacity of
the Cloud system is higher than with the non-cooperative schemes, as for high
load levels the Base Brown and Green models are not feasible. We notice also
that using the cooperative model without green energy (Global Brown) still
provides non-negligible savings compared with the non cooperative approach
(Base Brown).

To better understand how the Global Green model uses energy in the sys-
tem, we can analyze the split of energy use in Figures 13 and 14. The amount
of green energy is limited by the capacity of generators considered in our in-
stances, and it is a significant portion of the energy used only at low traffic
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Fig. 12 Overall Cost Comparison

Fig. 13 Energy Consumption Split

levels, while it becomes rather small at high load. Taking a closer look to
optimal solutions we notice that the system in different time periods tends
to saturate the capacity of sites where energy is cheaper and green energy
available for migrating VMs, and uses the other sites for the load exceeding
capacity until the savings are significant compared to migration costs. As load
increases, the capacity of cheap and green sites tends to be saturated by local
demand and the cost savings decrease since migration is used mainly for load
balancing.

Figure 15, shows the number of migrated VMs in both Global Green and
Global Brown scenarios. As it is expected, it is proportional to the number
of received requests. Even though VM migration process itself costs energy,
the overall cost saved is more significant. We can notice also that with the
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Fig. 14 Energy Split Percentage

Fig. 15 Number of Virtual Machines Migrated

presence of green sources of energy more VMs are migrated to exploit it, unlike
the brown case where we only benefits from the difference of prices between
various locations.

While our model can achieve significant savings of the total power cost,
it may cause consumption of larger amounts of energy as shows Figure 16.
The reason is that we use beside data center servers, network devices for VMs
load balancing and this consume more power. On the other hand, our model
performs better in exploiting green energy by migrating VMs as reported in
Figure 17. Therefore, even with the additional amount of energy that we con-
sume, the proposed model is greener because it uses less brown sources of
power by replacing them with green resources.
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Fig. 16 Total Energy Consumption

Fig. 17 Green Energy Usage

5 Conclusion

Most of existing work on energy optimization in Cloud systems manages sep-
arately data center servers and their interconnection network. In this paper
we presented a new optimization framework based on MILP for jointly man-
agement of Cloud data centers and their network.

The proposed model considers a set of data centers geographically dis-
tributed over different locations around the world. Data centers collaborate
by migrating VMs between them when necessary to exploit different energy
prices in various time zones. Another factor that we consider is the availability
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of green energy resources in some data centers and the possibility to store this
energy using batteries.

In Cloud scenarios, migrating VMs between different sites needs additional
network resources due to the size of VMs themselves and their data. Beside
managing both data centers and their network, we also manage both the use
of brown and green energies. Our strategy consists on redirecting the load to
sites with more available green energy. We suppose also that some data centers
are able to store the generated energy for later use, therefore we can save the
clean power to use it when its generation is not possible or during peak energy
price periods, thus we solve the problem of the possibility to be discontinued.

We show that the proposed optimization model can be solved using a state
of the art MILP solver (CPLEX) in a reasonable time even for big size in-
stances. The obtained results are very promising and shows that our approach
allows significant cost saving compared to the base scenarios used nowadays.
Moreover, from an environmental point of view, our model reduces greenhouse
gas emission by pushing the Cloud to use more green power resources, along-
side with optimizing its use in each data center using local energy storage.
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