From master curves for the mechanical reinforcement of rubber based nanocomposites to lightweight materials for automotive

Maurizio Galimberti¹

Giuseppe Infortuna¹, Silvia Guerra¹, Andrea Bernardi¹, Vincenzina Barbera¹ Silvia Agnelli², Stefano Pandini²

¹Politecnico di Milano ²Università di Brescia

PRAGUE – CZECH REPUBLIC 23.–25. 5. 2017

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

Department of Chemistry, Materials and Chemical Engineering G. Natta

Department of Mechanical Engineering

Department of Civil and Environmental Engineering

From master curve to lightweigth materials

Rubber Con 2017

Objectives of the work

- To develop lightweight elastomeric materials
 for automotive application
- To prepare elastomer composites based on sp² carbon allotropes
- To identify a common correlation between features of sp² carbon allotropes and properties of elastomer composites

Objectives of the work

- To develop lightweight elastomeric materials
 for automotive application
- To prepare elastomer composites based on sp² carbon allotropes
- To identify a common correlation between features of sp² carbon allotropes and properties of elastomer composites

 To design composites suitable for automotive application on the basis of this correlation

Outline of the presentation

- Characterization of sp² carbon allotropes
- Master curves for the mechanical reinforcement
 of elastomer composites based on sp² carbon allotropes
- Anisotropic properties of composites
- Design and preparation of lightweight materials
- Impact on CO₂ emission

Carbon allotropes

M. Terrones, et al. Nano Today 5 (4) (2010) 351e372.

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

Carbon allotropes

M. Terrones, et al. Nano Today 5 (4) (2010) 351e372.

Jin Zhang et al, Carbon 98 (2016) 708e732

M. Galimberti et al

Carbon fillers from a layer of sp²-bonded carbon atoms

Rubber Con 2017

Carbon fillers from a layer of sp²-bonded carbon atoms

Analysis of mechanical reinforcement

CNT and CB as the sp² carbon allotropes

CNT

NANOCYL® NC7000™ from Nanocyl

WAXD patterns of CNT and CB

Turbostratic structure

Rubber Con 2017

WAXD patterns of CNT and CB

Raman spectra of CNT and CB

much higher degree of disorder in CB

Rubber Con 2017

Infrared spectra of CNT and CB

- 1 vibrations of CH_2 and CH_3 groups
- 2 E_{1u} IR active mode of the collective C=C stretching vibration
- 3 vibration of OH groups, bending of epoxy or ether groups

Functional groups in CNT

Carbon nanofillers: main features

Carbon filler	BET surface area (m²/g)	Acidic groups (mmol/g) ^a	рН
CB N326	77	1.3	7.6
CNT	275	2	8.7

^a by Boehm titration: carboxy, epoxy, hydroxy groups

Analysis of mechanical reinforcement

Composites with carbon allotropes, based on IR

Composites with only one filler (phr)

IR = 100

CNT	0	1.25	2.50	5.00	10.00	15.00	30.00
G	0	1.39	2.78	5.56	11.11	16.67	33.30
CB N326	0	1.25	2.50	5.00	10.00	15.00	30.00

Fillers with the same volume fraction

Composites crosslinked with dicumyl peroxide: 1.40 phr

M. Galimberti, S. Agnelli, V. Cipolletti, "Progress in Rubber Nanocomposites 1st Edition" ISBN: 9780081004098, Elsevier S. Agnelli, V. Cipolletti, S. Musto, M. Coombs, L. Conzatti, S. Pandini, T. Riccò, M. Galimberti, eXPRESS Polymer Letters 8(6) (2014) 436

M. Galimberti et al

Rubber Con 2017

Composites with carbon allotropes, based on IR

Composites with hybrid filler systems (phr)

IR = 100

CNT	0	1.25	2.50	5.00	10.00	15.00	30.00
CNT/CB			1.25 / 1.25	2.50/ 2.50	5.00/	7.50/ 7.50	15.00/ 15.00
G	0	1.39	2.78	5.56	11.11	16.67	33.30
G/CB	0		1.39/ 1.25	<mark>2.78/</mark> 2.50	5.55/ 5.00	8.34/ 7.70	16.65/ 15.00
CB N326	0	1.25	2.50	5.00	10.00	15.00	30.00

Fillers with the same volume fraction

Composites crosslinked with dicumyl peroxide: 1.40 phr

M. Galimberti, S. Agnelli, V. Cipolletti, "Progress in Rubber Nanocomposites 1st Edition" ISBN: 9780081004098, Elsevier S. Agnelli, V. Cipolletti, S. Musto, M. Coombs, L. Conzatti, S. Pandini, T. Riccò, M. Galimberti, eXPRESS Polymer Letters 8(6) (2014) 436

M. Galimberti et al

Rubber Con 2017

Composites with carbon allotropes, based on S-SBR

Composites with hybrid filler systems (phr)

SBR = 100

CNT	0;	1; 2; 3;	; 4; 5; 6	6; 6.5; ī	7.5; 10;	11; 14; 1	18; 20
CB N326	0; 10; 15; 20; 22; 30; 35; 45; 50; 60						
CB N326	,	10	+ CNT: 0 ÷ 14				
CB N326		22		+	CNT: 0	÷ 14	
CB N326	4	35		+	CNT: 0	÷ 14	

Fillers with the same volume fraction

Composites crosslinked with dicumyl peroxide: 1.40 phr

Rubber Con 2017

Initial Modulus as a function of the total filler content

Data from shear stress tests, 50°C

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

Prague (CZ), May 23-25, 2017

Initial Modulus as a function of the total filler content

Composites with CNT have larger modulus

than composites with only CB

Data from shear stress tests, 50°C

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

Initial Modulus as a function of the strain amplitude

0.09 - 0.1 as total filler volume fraction

 Composites with CNT have larger Payne effect than composites with only CB

Data from shear stress tests, 50°C

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

Initial Modulus and Payne effect as a function of the total filler content

SBR as the elastomer

Data from shear stress tests, 50°C

M. Galimberti et al

From master curve to lightweigth materials

Initial Modulus and Payne effect as a function of the total filler content

Data from shear stress tests, 50°C

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

10

• CB

CNT

△ CB+CNT

100

 To identify a common correlation between features of sp² carbon allotropes and properties of elastomer composites

 To design composites suitable for automotive application on the basis of this correlation

Specific interfacial area as the parameter to correlate mechanical reinforcement

Specific interfacial area = $A \cdot \rho \cdot \Phi$

filler properties

- A = BET surface area
- ρ = density
- Φ = volume fraction

measure unit: m² / m³

Surface / volume in the composite

Rubber Con 2017

with sp² carbon allotropes

Elastomers: IR, SBR

Data from shear stress tests, 50°C

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

with sp² carbon allotropes

Elastomers: IR, SBR

Data from shear stress tests, 50°C

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

with sp² carbon allotropes

Master curve for the Payne effect of elastomers composites

with sp² carbon allotropes

Elastomers: IR, SBR

Data from shear stress tests, 50°C

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

Master curves for the mechanical reinforcement of elastomer composites

IR, SBR as the elastomers

Data from shear stress tests, 50°C

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

Master curves for the mechanical reinforcement of elastomer composites

CNT and CB as the sp² carbon allotropes

CNT and CB lead to anisotropic properties of composites?

N220 aggregate

"Aggregates generally exhibit anisotropy,

in the form of a reduction of aggregate breadth, or "flatness", in one direction"

...but even perfectly spherical particles can give anisotropy, if not homogeneously dispersed!

Grueber et al., Rubber Chemistry and Technology 67(2):280-287, 1994

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

Samples preparation

Samples preparation and device for shear stress tests

From master curve to lightweigth materials

Rubber Con 2017

Shear stress tests: through thickness and in plane

Stress on faces perpendicular to axis 3

Stress on faces perpendicular to axis 1

Rubber Con 2017

Shear modulus vs shear strain amplitude

NR + 35 phr CB N326

Slight anisotropic behaviour

Shear modulus vs shear strain amplitude

NR + 35 phr CNT

materials Rul

Rubber Con 2017

Shear modulus vs shear strain amplitude

NR + 4 phr CNT

NR + 15 phr CNT

CNT leads to anisotropic properties of the composites

Transversal isotropic behaviour ...

NR composites with CNT, nano graphite

Grand Canyon

... for carbon fillers with high aspect ratio

Rubber Con 2017

with sp² carbon allotropes

Elastomers: IR, SBR

Data from shear stress tests, 50°C

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

Lightweight materials from the master curve of mechanical reinforcement

To define the target dynamic rigidity

of an elastomer composite

To achieve such rigidity with the best combination

of sp² carbon allotropes

Objective:

lightweight materials

What to do?

Lightweight materials from the master curve of mechanical reinforcement

$$G'_{\gamma \min}/G'_{m} = 0.90e^{0.050 \text{ i.a.}}$$

Target density

 $\rho_{\rm C} = \rho_{\rm CB} * \phi_{\rm CB} + \rho_{\rm CNT} * \phi_{\rm CNT} + \rho_{\rm m} * (1 - \phi_{\rm CB} - \phi_{\rm CNT})$

Target modulus and density as a function of relative CNT content

Relative CNT content = $\phi_{CNT}/(\phi_{CB}+\phi_{CNT})$

Target modulus and density as a function of relative CNT content

Relative CNT content = $\phi_{CNT}/(\phi_{CB}+\phi_{CNT})$

Target modulus and density as a function of relative CNT content

Relative CNT content = $\phi_{CNT}/(\phi_{CB}+\phi_{CNT})$

Reduction of the tyre mass and benefits in terms of CO_2 emission of vehicles

Definition of driving cycle - New European Driving Cycle (NEDC)

4 repetitions of ECE 15 driving cycle

1 repetition of Extra Urban Driving Cycle (EUDC)

	Unit	ECE 15	EUDC
Distance	[km]	4×1.013 = 4.052	6.955
Duration	[s]	4×195 = 780	400
Average Speed	[km/h]	18.7	62.6
		(with idling)	
Maximum speed	[km/h]	50	120

Mastinu, G, Ploechl, M. Road and off-road vehicle system dynamics handbook, CRC Pres, Bora Raton ; USA 2014

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

$$E = A \cdot C_x \cdot 1.9 \cdot 10^4 + m \cdot f_R \cdot 8.4 \cdot 10^2 + m \cdot 10$$
 (kJ/100km)

- A cross section area of the vehicle
- C_x is the drag coefficient
- *m* is the vehicle mass
- f_R is the rolling resistance of tyres

all of the three terms of the sum are of the same order of magnitude

Sensitivity of E

with respect to

- aerodynamic drag coefficient $p_1 = C_{x}$,
- tyre rolling resistance $p_2 = f_R$
- vehicle mass $p_3 = m$

$$\lim_{\delta p_i \to 0} \frac{\left[E(p_i + \delta p_i) - E(p_i)\right] / E(p_i)}{\delta p_i / p_i} = \frac{\partial E}{\delta p_i} \frac{p_i}{E}$$

$$\frac{\partial E}{\partial p_1} = \frac{\partial E}{\partial C_x} = A \cdot 1.9 \cdot 10^4$$
$$\frac{\partial E}{\partial p_2} = \frac{\partial E}{\partial f_R} = m \cdot 8.4 \cdot 10^2$$
$$\frac{\partial E}{\partial p_3} = \frac{\partial E}{\partial m} = a \cdot C_x \cdot 1.9 \cdot 10^4 + f_R \cdot 8.4 \cdot 10^2 + 10^4$$

Rubber Con 2017

E percent variations for 10% variation of p_i

Vehicle type	Data				% varia due to	ation of 10% va	E riation of	
	Rated					C _x	f _R	m
	Power	Α	C _x	f _R	m			
	kW	m²			kg			
Mid-range	140	2.2	0.26	12·10 ⁻³	1560	2	4	9
Compact	55	2.0	0.29	10·10 ⁻³	1120	4	3	8
Sports	310	1.95	0.29	12·10 ⁻³	1650	2	4	9
SUV	200	2.3	0.41	14·10 ⁻³	2640	2	4	9

aerodynamic drag coefficient $p_1 = C_x$, tyre rolling resistance $p_2 = f_R$ vehicle mass $p_3 = m$

Vehicle mass reduction is the more effective way to reduce the energy required to travel

Mass of tyres

Tyre size	Tyre mass
155/70 R13	6.5 kg
185/70 R13	7.0 - 7.2 kg
175/65 R14	6.5 - 7.2 kg
195/65 R15	8.2 - 9 kg
>R20	>15 kg

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

Reducing the mass of tyres

Reducing the mass of a tyre means reducing

- the energy consumption E (for travelling 100 km)
- the rolling resistance f_R

Assumption

During normal rolling of the tyre the rolling resistance is related only to hysteresis losses. Since hysteresis losses are related and proportional to the tyre mass, the percentage rolling resistance reduction is equal to the percentage tyre mass reduction.

Rubber Con 2017

Energy saved due to mass reduction

Vehicle	Tyre	Vehicle	% Energy saved	% Energy saved	Total %
type		mass	due to	due to	Energy saved
		reduction	mass reduction	RR	due to
			only	reduction	mass reduction
Mid-	195/70	4 kg	0.1	4	4.1
range	R15				
Compact	155/70	3 kg	0.2	3	3.1
	R13				
Sports	245/45	>5	<0.5	4	4.5
	R19				
SUV	>R20	>6	<0.2	4	4.2

Conclusions

M. Galimberti et al

From master curve to lightweigth materials

Rubber Con 2017

Prof. Gianpiero Mastinu Politecnico Milano Pirelli Tyre

www.lidup.polimi.it

Thanks for the attention!

From master curve to lightweigth materials

Rubber Con 2017

Prague (CZ), May 23-25, 2017