From master curves for the mechanical reinforcement of rubber based nanocomposites to lightweight materials for automotive

Maurizio Galimberti1

M. Galimberti et al From master curve to lightweigth materials Rubber Con 2017 Project Con Automorphe CZ), May 23-25, 2017 1
From master curve to lightweigth materials Rubber Con 2017 Prague (CZ), May 23-25, 2017 1 Giuseppe Infortuna¹, Silvia Guerra¹, Andrea Bernardi¹, Vincenzina Barbera¹ and an termina Silvia Agnelli², Stefano Pandini²

1Politecnico di Milano ²Università di Brescia

Department of Chemistry, Materials and Chemical Engineering G. Natta

Department of Mechanical Engineering

Department of Civil and Environmental Engineering

Objectives of the work

- To develop lightweight elastomeric materials for automotive application
- To prepare elastomer composites based on sp2 carbon allotropes
- M. Galimberti et al From master curve to lightweigth materials Rubber Con 2017 Prague (CZ), May 23-25, 2017 3 **To identify a common correlation between** features of sp^2 carbon allotropes $\hspace{1cm}$. Then and properties of elastomer composites

Objectives of the work

- To develop lightweight elastomeric materials for automotive application
- To prepare elastomer composites based on sp2 carbon allotropes
- For interesting a Common Contration Detween

features of sp² carbon allotropes

and properties of elastomer composites
 ∞ To design composites suitable for automotive application

on the basis of this correlation

M **To identify a common correlation between** features of sp^2 carbon allotropes $\hspace{1cm}$. Then and properties of elastomer composites
	- To design composites suitable for automotive application on the basis of this correlation

Outline of the presentation

- ☞ Characterization of sp² carbon allotropes
- Master curves for the mechanical reinforcement of $\:$ elastomer composites based on sp^2 carbon allotropes \hfill
- **EXECUTE:** Anisotropic properties of composites
- M. Galimberti et al From master curve to lightweight materials Rubber Con 2017 Prague (CZ), May 23-25, 2017 5 Design and preparation of lightweight materials
	- **EXECUTE:** Impact on CO₂ emission

Carbon allotropes

M. Terrones, et al. Nano Today 5 (4) (2010) 351e372.

Carbon allotropes

M. Terrones, et al. Nano Today 5 (4) (2010) 351e372.

Jin Zhang et al, Carbon 98 (2016) 708e732

Carbon fillers from a layer of sp2 -bonded carbon atoms

Carbon fillers from a layer of sp2 -bonded carbon atoms

Analysis of mechanical reinforcement

CNT and CB as the sp² carbon allotropes

CNT

NANOCYL® NC7000™ from Nanocyl

WAXD patterns of CNT and CB

Turbostratic structure

WAXD patterns of CNT and CB

Raman spectra of CNT and CB

of much higher degree of disorder in CB

Infrared spectra of CNT and CB

- 1 $\,$ vibrations of CH $_2$ and CH $_3$ groups $\,$. The set of the
- 2 E_{1u} IR active mode of the collective C=C stretching vibration
- 3 vibration of OH groups, bending of epoxy or ether groups

Gundianal groups in CNT

Carbon nanofillers: main features

^a by Boehm titration: carboxy, epoxy, hydroxy groups

Analysis of mechanical reinforcement

Composites with carbon allotropes, based on IR

Composites with only one filler (phr)

$IR = 100$

Fillers with the same volume fraction

Composites crosslinked with dicumyl peroxide: 1.40 phr

M. Galimberti, S. Agnelli, V. Cipolletti, "Progress in Rubber Nanocomposites 1st Edition" ISBN: 9780081004098, Elsevier

Composites with carbon allotropes, based on IR

Composites with hybrid filler systems (phr)

$IR = 100$

Fillers with the same volume fraction

Composites crosslinked with dicumyl peroxide: 1.40 phr

M. Galimberti, S. Agnelli, V. Cipolletti, "Progress in Rubber Nanocomposites 1st Edition" ISBN: 9780081004098, Elsevier

Composites with carbon allotropes, based on S-SBR

Composites with hybrid filler systems (phr)

SBR = 100

Composites with hybrid filler systems (phr) 0; 1; 2; 3; 4; 5; 6; 6.5; 7.5; 10; 11; 14; 18; 20 0; 10; 15; 20; 22; 30; 35; 45; 50; 60 10 $+$ CNT: 0 \div 14				
$SBR = 100$				
				CNT
				CB N326
				CB N326
$+$ CNT: 0 \div 14 22				CB N326
$+$ CNT: 0 \div 14 35				CB N326
Fillers with the same volume fraction				
Composites crosslinked with dicumyl peroxide: 1.40 phr				

Initial Modulus as a function of the total filler content

Initial Modulus as a function of the total filler content

Composites with CNT have larger modulus

than composites with only CB

Initial Modulus as a function of the strain amplitude

 Composites with CNT have larger Payne effect than composites with only CB

Initial Modulus and Payne effect as a function of the total filler content

Initial Modulus and Payne effect as a function of the total filler content

Data from shear stress tests, 50°C

 \bullet CB

 \blacksquare CNT

 \triangle CB+CNT

- To identify a common correlation between features of sp^2 carbon allotropes $\hspace{1cm}$ and properties of elastomer composites
- To design composites suitable for automotive application

on the basis of this correlation

M. Galimberti et al From master curve to lightweigth materials Rubber Con 2017 Prague (CZ), May 23-25, 2017 26 To design composites suitable for automotive application on the basis of this correlation

Specific interfacial area as the parameter to correlate mechanical reinforcement

Specific interfacial area = A · ρ · Φ P interfacial area = A · ρ · Φ

filler properties

A = BET surface area

ρ = density

Φ = volume fraction

filler properties

- A = BET surface area
- $p =$ density
-

 \bm{me} asure unit: $\bm{{\mathsf m}}$ 2 / $\bm{{\mathsf m}}$ 3 and an annual control of the set

 $\Phi = \text{volume fraction}$
 $measure unit: \ m^2 / m^3$

Surface / volume in the composite

M. Galimberti et al From master curve to lightweigth materials Rubber Con 2017 Prague (CZ), May 23-25, 2017 27 Surface / volume in the composite

with ${\sf sp}^2$ carbon allotropes $-$

Elastomers: IR, SBR

with ${\sf sp}^2$ carbon allotropes with ${\sf sp}^2$ carbon allotropes

Elastomers: IR, SBR

with ${\sf sp}^2$ carbon allotropes with ${\sf sp}^2$ carbon allotropes

Master curve for the Payne effect of elastomers composites

with ${\sf sp}^2$ carbon allotropes with ${\sf sp}^2$ carbon allotropes

Elastomers: IR, SBR

Master curves for the mechanical reinforcement of elastomer composites

IR, SBR as the elastomers

Master curves for the mechanical reinforcement of elastomer composites

CNT and CB as the sp² carbon allotropes

CNT and CB lead to anisotropic properties of composites?

N220 aggregate

…but even perfectly spherical particles can give anisotropy, if not homogeneously dispersed!

Samples preparation

Samples preparation and device for shear stress tests

Shear stress tests: through thickness and in plane

Stress on faces perpendicular to axis 3

Stress on faces perpendicular to axis 1

Shear modulus vs shear strain amplitude

Shear modulus vs shear strain amplitude

Shear modulus vs shear strain amplitude

Transversal isotropic behaviour …

NR composites Grand Canyon with CNT, nano graphite

… for carbon fillers with high aspect ratio

with ${\sf sp}^2$ carbon allotropes with ${\sf sp}^2$ carbon allotropes

Elastomers: IR, SBR

Lightweight materials from the master curve of mechanical reinforcement

To define the target dynamic rigidity

of an elastomer composite

To achieve such rigidity with the best combination

M. Galimberti et al From master curve to lightweigth materials Rubber Con 2017 Prague (CZ), May 23-25, 2017 45 of sp^2 carbon allotropes $\begin{array}{|c|c|c|}\hline \text{ } & \text{ } & \text{ } \end{array}$

Objective:

lightweight materials

Lightweight materials from the master curve of mechanical reinforcement

$$
G'_{\gamma min}/G'_{m} = 0.90e^{0.050 i.a.}
$$

 φ Target density
 $\rho_C = \rho_{CB} * \phi_{CB} + \rho_{CNT} * \phi_{CNT} + \rho_m * (1 - \phi_{CB} - \phi_{CNT})$

M. Galimberti et al From master curve to lightweigth materials Rubber Con 2017 Prague (CZ), May 23-25, 2017 47 $\rho_C = \rho_{CB} * \phi_{CB} + \rho_{CNT} * \phi_{CNT} + \rho_m * (1 - \phi_{CB} - \phi_{CNT})$

Target modulus and density as a function of relative CNT content

Relative CNT content = $\phi_{\text{CNT}}/(\phi_{\text{CB}}+\phi_{\text{CNT}})$

Target modulus and density as a function of relative CNT content

Relative CNT content = $\phi_{\text{CNT}}/(\phi_{\text{CB}}+\phi_{\text{CNT}})$

Target modulus and density as a function of relative CNT content

Relative CNT content = $\phi_{\text{CNT}}/(\phi_{\text{CB}}+\phi_{\text{CNT}})$

Reduction of the tyre mass and benefits in terms of CO $_{\rm 2}$ emission of vehicles

Definition of driving cycle - New European Driving Cycle (NEDC)

4 repetitions of ECE 15 driving cycle +

1 repetition of Extra Urban Driving Cycle (EUDC)

Mastinu, G, Ploechl, M. Road and off-road vehicle system dynamics handbook, CRC Pres, Bora Raton ; USA 2014

Energy E required to travel 100 km

\n
$$
E = A \cdot C_x \cdot 1.9 \cdot 10^4 + m \cdot f_R \cdot 8.4 \cdot 10^2 + m \cdot 10
$$
\n(kJ/100km)

\nA cross section area of the vehicle

\n C_x is the drag coefficient

\n m is the vehicle mass

\n f_R is the rolling resistance of types

-
- C_x is the drag coefficient
-
- f_R is the rolling resistance of tyres
- f_R is the rolling resistance of tyres
 or all of the three terms of the sum

are of the same order of magnitude

M. Galimberi et al From master curve to lightweigth materials Rubber Con 2017 Prague (CZ), May 23-25, section area of the vehicle
drag coefficient
vehicle mass
rolling resistance of tyres
 Φ all of the three terms of the sum
are of the same order of magnitude tion area of the vehicle
are coefficient
icle mass
ing resistance of tyres
all of the three terms of the sum
are of the same order of magnitude

Sensitivity of E

- Sensitivity of E
with respect to
- aerodynamic drag coefficient $p_1 = C_{\chi}$,
- tyre rolling resistance $p_2 = f_R$ Sensitivity of E

with respect to

- aerodynamic drag coefficient $p_1 = C_{x}$,

- tyre rolling resistance $p_2 = f_R$

- vehicle mass $p_3 = m$ - aerodynamic drag coefficient $p_1 = C_{xy}$, where $\mathcal{L} = \mathcal{L} \mathcal{L}$ Sensitivity of E

with respect to

- aerodynamic drag coefficient $p_1 = C_x$,

- tyre rolling resistance $p_2 = f_R$

- vehicle mass $p_3 = m$
- tyre rolling resistance $p_2 = f_R$
- vehicle mass $p_3 = m$

Sensitivity of E

\nwith respect to

\n- aerodynamic drag coefficient
$$
p_1 = C_x
$$
.

\n- type rolling resistance $p_2 = f_R$.

\n- vehicle mass $p_3 = m$

\n
$$
\lim_{\delta p_i \to 0} \frac{[E(p_i + \delta p_i) - E(p_i)] / E(p_i)}{\delta p_i / p_i} = \frac{\partial E}{\partial p_i} \frac{p_i}{E}
$$

$$
\frac{\partial E}{\partial p_1} = \frac{\partial E}{\partial C_x} = A \cdot 1.9 \cdot 10^4
$$

$$
\frac{\partial E}{\partial p_2} = \frac{\partial E}{\partial f_x} = m \cdot 8.4 \cdot 10^2
$$

$$
\frac{\partial E}{\partial p_3} = \frac{\partial E}{\partial m} = a \cdot C_x \cdot 1.9 \cdot 10^4 + f_R \cdot 8.4 \cdot 10^2 + 10
$$

M. Galimberti et al From master curve to lightweight materials
Rubber Con 2017
Prague (CZ), May 23-25, 2017 54

E percent variations for 10% variation of p_i

aerodynamic drag coefficient $p_1 = C_{x}$, tyre rolling resistance $p_2 = f_R$ vehicle mass $p_3 = m$

☞ Vehicle mass reduction is the more effective way to reduce the energy required to travel

Mass of tyres

Reducing the mass of tyres

- Partias of tyres
Reducing the mass of a tyre means reducing
- the energy consumption E (for travelling 100 km)
- the rolling resistance f_o - the energy consumption E (for travelling 100 km)
- the energy consumption E (for travelling 100 km)
- the rolling resistance f_R
-

Assumption

Assumption

During normal rolling of the tyre

the rolling resistance is related only to hysteresis losses.

Since hysteresis losses are related and proportional to the tyre mass,

the percentage rolling resistance reduct During normal rolling of the tyre the rolling resistance is related only to hysteresis losses. Since hysteresis losses are related and proportional to the tyre mass, the percentage rolling resistance reduction is equal to the percentage tyre mass reduction.

Energy saved due to mass reduction

Conclusions

cknowledgments
Prof. Gianpiero Mastinu Politecnico Milano
Pirelli Tyre cknowledgments
Prof. Gianpiero Mastinu Politecnico Milano
Pirelli Tyre

www.lidup.polimi.it

Thanks for the attention!