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Abstract. From the theorisation of the gravity assist, several methods have been used to design flyby trajectories. 

Depending on the gravitational model used, two categories of approaches can be identified. The multiple targeting 

method implements a -branch and bound architecture, which foresees: the subdivision of the overall trajectory in many 

legs connecting only one pair of planets at each time; the analysis of interplanetary trajectory in the two-body dynamics 

of the Sun; the modelling of the flyby and of the manoeuvre to switch from one leg to another from arrival and departure 

conditions at the planet of flyby obtained by two-body analysis of consecutive trajectories. 

Energy method, instead, tackles such problem from a purely energetic point of view, considering the specific energy 

associated to the conic to identify reachable bodies and possible encounter conditions. The representative methods 

associated to this two approaches are the Lagrange solution for the Lambert problem in the two-body problem and the 

Tisserand Criterion in the Circular Restricted Three Body Problem (CR3BP). 

Both approaches represent an essential tool for a complete preliminary design, although the refined trajectory must 

be determined through an iterative procedure in which the approximate solution of patched two-body problem is 

improved in a more complex dynamical model through optimisation algorithm that uses the dynamics as a black box. 

This paper proposes an optimisation strategy which implements the targeting (phasing) resolution approach applied 

to a single fly-by design problem with a closer look to the energy. Preliminary solutions, found through the Lambert 

method, are refined in the CR3BP through an optimisation strategy based on an energetic approach which introduces an 

alternative formulation of the Tisserand parameter to describe constraint and cost functions. 

Preliminary results show an improvement in term of performances with the respect of a classic optimisation scheme 

although more conservative constraints are included. This novel algorithm proves to be capable to solve the single flyby 

problem and to generate unique mostly continuous trajectories. Its verification was performed on a hypothetic future 

mission to Mars mission with a scheduled flyby at Venus. 

 
I. INTRODUCTION 

The golden age of space travel saw the birth of several 

successful interplanetary missions that pave the way to 

the exploration of the rocky planets, Jupiter and the 

Galilean moons, and Saturn. Since Mariner 10, all deep 

space missions were characterised by the implementation 

in the trajectory design of the flyby technique ascribed to 

Yuriy Kondratyuk. In his paper [1], he firstly described 

the influence of gravity of planets on the trajectory of a 

spacecraft and suggested the possibility of escape and 

capture by altering the probe velocity passing at 

considerably close distance from a massive body. In short, 
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the probe experiences a change of velocity both in terms 

of magnitude and direction as a result of the influence of 

the gravitational attraction of the flyby planet. Such 

effects can be modelled separately distinguishing the 

rotation of the relative velocity resulting between entry 

and exit conditions on the hyperbolic trajectory inside the 

sphere of influence and the vector sum of the relative 

velocity and the heliocentric one of the planet at the 

crossing of the sphere of influence. 

Recent missions are characterized by a significant 

reduced budget which translated into an increase of the 

collaborations among the space agencies and into a 

critical cut of the number of deep space probes (i.e. 

Galileo, Ulysses, Cassini, New Horizon, Dawn and Juno) 

and, vice versa, an increased interest for rocky planets, 

Mercury and Mars, in particular, for asteroids (Hayabusa) 

and comets (Rosetta and Deep Impact) too. 

In contrast, plans for future mission are foreseeing a 

return to deep space projects with the objective to 

discover past and possible current forms of life, to 

understand the formation and the aggregation of planets 

from the planetesimal disk and to investigate asteroid 

deflection and asteroid exploitation. Targets of interest, 

apart from Mars which is in the plan of colonisation, are 

Europa and its frozen ocean, Titan and its methane seas, 

Encedalus and Triton for the cryo-volcanism [2] but also 

asteroids from the main and the Kuiper belt. If these 

missions sound extremely ambitious, the available budget 

does not go hand to hand and could even decrease to a 

level that were never reached neither for missions to the 

rocky planets. Thus, it is clear how mission design places 

a dominant role in containing the mission cost. 

This work, motivated by the renewed interest by the 

European Space Agency and the National Aeronautics 

and Space Administration for future missions to Mars, 

planetary moon system and asteroid, found inspiration in 

the project with a view of colonisation of the Red Planet 

and in the issues associated to undertake manned flight. 

Considering the vulnerability of the crew to radiation and 

to confinement in enclosed spaces, direct flight can be 

seen too risky and thus flyby at Venus must be considered 

to open additional launch windows. 

In this work, the design of a hypothetic mission to 

Mars will be considered as a test case for the application 

of two different approaches:  

§ the classical two-body designed which 

implements an accelerated resolution of the 

Lambert problem achieved in the rotated frame 

which allows a closer view to phasing and a 

direct transformation of its results in the synodic 

reference of the flyby planet and patching of the 

two legs via infinite or peri-centre manoeuvres 

depending on the flyby models considered (zero-

SOI or Patched Conic Approximation); 

§ a refinement of the two-body solutions in the 

Circular Restricted three(3)-Body Problem 

obtained by means of an alternative formulation 

of the Tisserand parameter. 

The next section (II) presents the classical procedure 

to construct two-body trajectories connecting two points 

defined at given epochs and to stick them together 

designing manoeuvres at the flyby in the linked-conic 

approximation. The third sub-section (II.III) shows how 

the results of the Lambert method can be written in co-

rotating quantities: fundamental for the design of peri-

apsis manoeuvres (II.III) but necessary step for the 

optimisation (III.III), as well. 

Section three (III) recalls the derivation of the Tisserand 

parameter and threats its extended formulation. Finally, a 

shooting method is used to optimise the results of 

Lambert problem and ensure patching in the CR3BP 

frame (III.IV). Preliminary results for a mission to Mars 

are presented in section four (IV). 

The overall motivation of this work relies in the 

COMPASS project masterplan whose main objective 

consists in the understanding of the effect of orbit 
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perturbations in an interplanetary environment and their 

use for mission design. 

II. TRAJECTORY DESIGN IN THE 2BP 

II.I. Classical Lambert Problem 

Dealing with flybys is a targeting problem in which 

the spacecraft trajectory is designed to intercept a moving 

object. From a design point of view, it is a tedious 

exercise as it requires to resolve several two-body 

boundary-value problems, one for each gravity assist that 

the mission is required to perform, plus one [3].  

For each leg, a conic leg connecting initial and final 

points, P1 and P2, defined at a specific epoch, t1 and t2 

respectively, must be determined. This is often referred as 

the Lambert problem. It was Lagrange who first derived 

an analytical result combining the time law with the 

Kepler equation:  

 ( )2 2 1 13
sin sint E e E E e E

a

µ
D = - - -   (1) 

where µ is the standard gravitational parameter of the 

Sun, a and e are semi-major axis and eccentricity of the 

conic arc, E is the eccentric anomaly of P1 and P2 and Δt 

the total time of flight- 

Eq. 1 can be rewritten into: 

 ( )
3

sin sint
a

µ
a a b bD = - - -   (2) 

by adopting the following transformation scheme: 

 ( ) 2 1 2 1
1 2, ,

2 2M P

E E E E
E E E E

- +
® = =æ ö

ç ÷
è ø

 (3) 

 sin sin Pe Ee =  (4) 

 ( ), ,
2 2M M PE E E

a b a b
e

- +
® = =æ ö

ç ÷
è ø

  (5) 

Such allows to write: 

 sin sin
2 2 2 2

s s c

a a

a b -
= =  (6) 

. 

where c and s are the chord P1P2 and the semi-perimeter 

of the triangle F*P1P2. 

The semi-major axis, a, is determined resolving 

numerically the non-linear equation (Eq 2) and the 

terminal velocities can be computed as follow: 

 
( ) ( )
( ) ( )

1 1

2 2

c

c

v A B u B A u

v A B u A B u

=

=

+ + -

+ + -
 (7) 

where: 

 cot cot
4 2 4 2

A B
a a
µ a µ b

= =  (8) 

and  

 1 2 2 1
1 2

1 2
c

r r r ru u u
r r c

-
= = =  (9) 

Over the years, several algorithms were made to improve 

generality, convergence, accuracy and efficiency, 

although the resolution procedure has similar approach in 

terms of invariants and iteration process.  

In the single flyby mission considered, only two Lambert 

legs are required.  

II.II. Flyby model 

Such constructed flyby trajectories are defined in the 

so called zero-SOI-radius model in which the dynamics is 

governed uniquely by the primary attractor and the effect 

of the secondary ones appears at the interception with an 

instantaneous change of heliocentric velocity both in 

magnitude and direction. 

These results must be reinterpreted in the Patched 

Conic Approximation which assumes a division of the 

problem in consecutive domains where the dynamics of 

the spacecraft is influenced by one single attractor at a 

time [4]. Considering the terminal velocities at the flyby 

planet defined with respect to the primary source of 

attraction, the Sun, the relative arrival and departure 

velocities at the target can be obtained from: 
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 (10) 

diminishing the heliocentric velocity resulting from the 

resolution of the Lambert problem (leg) of the 

heliocentric velocity of the flyby planet (body).  

These describe two hyperbolic trajectories that in general 

do not match since they present different magnitude and 

direction [3]: 

 v v- +
¥ ¥¹  (11) 

A powered gravity assist is required to achieve the 

patching of legs. According to the theory [9], the 

minimum cost in term of delta-v is achieved by 

performing a manoeuvre at the common periapsis of the 

hyperbolae which can be determined by solving the 

nonlinear system: 

 

/ 2

1/2

1/2

1/2

1 2

1

1sin
2
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pr ve

e
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d

d dd
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¥ì

= +ï
ï
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 (12) 

where rp is the periapsis and δ the turning angle: 

 v vd - +
¥ ¥=  (13) 

Patching is ensured by selecting the asymptotic distance Δ 

such that: 

 1/2
1/2 / 2 cot 2v

dµ
- +
¥

D =  (14) 

Finally, the delta-v that must be applied at the periapsis 

equals the difference of the periapsis velocities: 

 2 2

p p

v v v
r r
µ µ+ -

¥ ¥D = + - +  (15) 

Exploiting the properties of the hyperbola, Δ can be 

rewritten as: 

 

2/ 2
/

/ 2 1 1pr v
v
µ

µ

- +
¥- +

- +
¥

æ ö
D = + -ç ÷ç ÷

è ø
 (16) 

and it can be noticed that since Δ and δ depend uniquely 

on v∞ and rp, if the periapsis decreases below the pre-

defined value identified by the mean atmosphere altitude: 

 min
flyby

body atmR R h= +  (17) 

an additional manoeuvre is required at ∞- to rise the 

periapsis to the minimum allowed value. 

If from a theoretical point of view, periapsis 

manoeuvre appears to be the most efficient, in term of 

feasibility, manoeuvre at infinite are preferred as they 

permit a “relaxed” execution. 

Such resolution scheme is extremely useful in order to 

evaluate how the total delta-v is affected by the variation 

of the boundary conditions expressed in terms of epoch 

(T) of departure and arrival which define the time of 

flight. For a single flyby, determining the flight schedule 

that minimizes the total delta-v requires to solve as many 

Lambert problems as  

 
1

1

body

i i

n
leg leg

dep arr
i

T T
+

=

å  (18) 

while ensuring the match between arrival and departure 

condition between consecutive flybys. Even like that, the 

computational effort is huge and increases proportionally 

with the number of flybys. 

II.III. Rotated and synodic frames 

Depending only on geometric relations, the capability 

of the Lagrange algorithm, to find the correct results for 

the Lambert problems, is not affected if the initial 

conditions are computed in different reference frames, as 

long as they do not modify the geometry of the problem. 

Considering a classical targeting configuration (with 

departure and arrival conditions assigned to the positions 

of a 1st, 1r  , and 2nd, 2r , planet defined respectively at 
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time 1t  and 2t ), the Lambert problem can be resolved in 

rotated frame (by performing a rotation of ( )1 1r t  and 

( )2 2r t about ( )1 2r t  or ( )2 1r t without adulterating the 
geometry, see Figure 1). 

 

Figure 1: The rotated frame with the respect of ( )2 1r t  

The use of the rotated frame presents some interesting 

properties since: 

§ it allows a closer look to the phasing as the angular 

distance between the terminal points and the x-axis 

depends only on the phase, ϕ, and the time of flight 

§  it is the halfway frame for the transformation of 

the sidereal reference in the synodic one, and thus 

permits a direct conversion in the co-rotating 

system. 

Considering the shift of the origin from 1m to the 

barycentre of 1m and 2m , the rotation of ( )
2 2
r t on 

( )
2 1
r t  and the reduction of the velocities by the 
tangential contribute rw´  : 
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( ) ( )
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( ) ( )

*
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*
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n
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t

µ
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w

w
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= - ´
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ì
ï
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 (19) 

results in the synodic frame, represented in Figure 2.  

 

 
Figure 2: The synodic frame 

The use of rotating quantities has several advantages 

in the context of: 

§ the design of two-body optimal manoeuvre which 

involves the patched conic approximation and the 

use of velocities relative to planet of flyby 

§ the optimisation of the two-body trajectories in the 

CR3BP that will be further discussed in the 

following paragraph. 

In order to remain consistent with the synodic frame, 

the resolution of the Lambert with rotated terminal points 

must be initialised in such a way that the centre of 

rotation is preserved passing from a leg to another. In 

other words, the rotation must be performed about the 
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planet of the flyby, which for the first leg is associated to 

( )2 1r t  but for the second to ( )1 2r t . 

III. OPTIMISATION STRATEGY 

The propagation of the Lambert two-body solution in 

the CR3BP does not result in a unique trajectory but 

shows gaps ranging from tens to hundreds of thousands of 

kms. Differently from the patched conic approach, the 

CR3BP presents continuous mixed dynamics which 

induce the two legs not to converge in a unique smooth 

orbit. A local optimiser implemented in MATLAB®, 

fmincon, has been selected to solve the problem of 

patching in the CR3BP.  

Previous studies from Campagnola et al. [7] 

demonstrated that a reckless optimisation might converge 

to quasi-ballistic solutions which are not representable in 

the two-body design. 

The definition of cost and constraint functions has a 

fundamental role in direct the convergence towards the 

desired result and thus must be wisely selected. The 

Tisserand parameter represents a suitable candidate to 

address the issues that previous studies identified. 

III.I. The Planar CR3BP and the Jacobi Integral 

The PCR3BP model, compared to the n-body 

problem, implements a simpler gravity field which, 

nevertheless, takes into account most of the perturbations 

experienced during a flyby trajectory. 

The motion of a massless particle subjected to the 

gravitational attraction generated by two heavy masses 

rotating on coplanar circular orbits about their barycentre 

can be expressed in the co-rotating frame following [6]: 

( )

( )

( )

2

2 2 1 2

2

1 2

2
2 2

12

2 2
2

2

n
 

2
2n

2n

F x y
d x dy F r

dt dt x
r x b y

d y dx F
r x a ydt d

r

t y

µ µ
= + + +

¶
- =

¶
= + +

¶
+ =

= - +¶

ì
ïï
í
ï
ïî

  (20) 

Where the mean motion, n, and the positions of the 

primary, a, and the secondary, b:  

 1 2 2 1

3

1 2 1 2

n a bl l
l

µ µ µ µ

µ µ µ µ
= = =

+

+ +
 (21) 

are functions only of the fundamental distance between 

1m and 2m , l, and the mass parameter, µ*:  

 * 2

1 2

µ
µ

µ µ
=

+
 (22) 

III.II. The Tisserand Parameter 

Considering the aforementioned dynamical system, 

the Jacobi’s constant represents an integral form of the 

dynamics and constitutes the unique invariant of motion: 

( )
2 2

2 2 2

1 2

1 2n  2
dx dy

C x y
r dt dtr

µ µ
= + + + - +

æ öæ ö æ ö æ öç ÷ ç ÷ç ÷ç ÷ è ø è øè ø è ø
 (23) 

 The Tisserand parameter can be directly derived from 

the Jacobi’s constant expressed in the sidereal quantities 

( ), ,x h z : 

( ) ( )1 2

1 2

2 2 22n  2
r

C
r

x
µ µ

h xh x h z= - + + -
æ ö + +ç ÷
è ø

 (24) 

under the assumptions of: 

- small mass parameter: * 0µ <<  ; 

- large distance from the secondary: 1r r» ; 

- direction of the rotation of the primary and the 

secondary along z:
,n 0x y = ; 

exploiting the definition of the angular momentum: 

 cosh ixh xh- =  (25) 

 and the energy (vis-viva) equation: 

 ( )2 2 2 2 2v
r a

µ µ
x h z+ + = = -  (26) 

which results in: 
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 (27) 
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that normalised by the heliocentric velocity of the 

secondary, gives: 

 ( )21
2 1 cos

P

P

P PT a e i
a

= + -  (28) 

Such quantity is expressed in term of the normalized 

semi-major axis, a, eccentricity, e, and inclination, i, 

computed with the respect of the primary. The Tisserand 

parameter has a fundamental importance: whether flyby 

induces an overall change of the Keplerian elements, it 

remains constants and constitutes an invariant property of 

an object undergoing to a close encounter with a planet. 

Moreover, it gives a quick estimate of the relative velocity 

at the encounter [7][8]: 

 
2 21

@

3 3

:

p

p p

r

r

C

r r l v v

v T v
l

µ
¥ ¥

= - = -
 (29) 

III.III. The augmented Tisserand Parameter 

Under the assumption of large distances from the 

secondary, the application of the Tisserand parameter is 

only possible by introducing the Poincaré section in the 

negative x-axis as proposed by Campagnola et al [9], see 

Figure 3: 

 
Figure 3: The identification of the positions where to 

estimate the Keplerian elements of the trajectory 
propagated in the CR3BP in order to compute the 
Tisserand parameter [9] 

The use of the Poincaré section allows to identify a zone 

of confidence on the trajectory for the estimation of the 

Keplerian elements. Nevertheless, an unconstrained 

formulation could be more interesting from the point of 

view of the implantation and could have a larger field of 

application. 

Now, Abandoning the assumption of large distance from 

the secondary, the Jacobi Integral transforms into: 

 
( )2

2 2

1 2

3
cos 2

1
2

1
2C
a e

M i
a l r r

µ µ-
+ -= +

æ ö
ç ÷
ç ÷
è ø

 (30) 

which normalized by the barycentric velocity of the 

secondary under the assumption of a small parameter 

gives:  

 ( )
*

2

21

*

cos
1

2 1 22B B B
B

T a e i
a r r

µ µ
= + - - +  (31) 

Comparing the new formulation of the modified 

Tisserand parameter (Eq.31) with the classical one 

(Eq.28). Two considerations can be made: 

§ Eq.5 introduces barycentric Keplerian elements 

instead of the classical heliocentric ones; 

§ it includes an additional numerical term expressed 

as function of the relative distances from the 

gravitational sources, primary and secondary, 

which allows the Tisserand to remain on average 

constant along the trajectory 

III.IV. Local optimisation set up 

The local solver, fmincon, belongs to the family of 

non-linear constraint optimisation technique. By varying 

terminal conditions via a shooting method, it minimises a 

given cost function in the domain where the constraints 

are satisfied. Intuitively, the algorithm converges to an 

optimal solution, if exists, moving towards the stationary 

in the admissible zone of the “cost-space” bounded by the 

constraints. 
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With the control variable assigned as the velocity at 

the terminal points, a classical optimisation propagates 

back and forward the refined terminal states in order to: 

§ patch the legs at the encounter with the flyby 

planet: 

 *dep arr
enc encr r tol- <  (32) 

§ minimize the delta-v required by executing initial, 

mid-course and final manoeuvres: 

 
2 2 2

1 1 2 2 3 3
dep dep arr arrv v v v v v- + - + -  (33) 

From the point of view of the algorithm, the dynamics 

remains “hidden” in the objective function, thus the 

selection of a cost and constraints functions which are 

directly connected to the system dynamics is extremely 

important. 

The Tisserand parameter presents interesting 

properties which allows a wider use not only in the 

objective function but also in the constraints. Derived 

from the Jacobi constant, the Tisserand parameter 

describes the overall dynamic instead of the punctual 

representation given by the velocity. Introducing the 

Tisserand-Poincaré graph, which allows the 

representation of a heliocentric trajectory through its 

periapsis and apoapsis, it is possible to identify the quasi-

ballistic (red) and pure ballistic (green) region of flyby 

see Figure.4. These zones are delimited by the level sets 

associated to the Tisserand parameter of L4/5 and L1 

libration points, in particular: 

§ pure flyby occurs for:  

 
4/5LT T<  (34) 

§ quasi-ballistic appears for 

 
4/5 1L LT T T< <  (35) 

Thus, a new optimisation procedure can be designed 

in order to, not only, impose patching but also to force 

ballistic encounter. Moreover, the cost function can be 

rewritten in as: 

2 2 2

1 1 2 3 1 2 3 3
dep arr dep arr
enc enc

MK r r v v T T v v
l- -- + - + - + - (36) 

introducing the difference of velocity at the encounter 

through the dimensionalised Tisserand parameter and 

improving convergence by inserting in the objective 

function a scaled distance of the patching. 

 
Figure 4: The ballistic (green) and quasi-ballistic (red) 

regions identified by the Tisserand level sets of L4/5 
and L1 libration points 

IV. PRELIMINARY RESULTS 

Considering the mission to Mars with a scheduled 

flyby at Venus, the two-body design strategy consists 

in the identification of all the possible trajectories that 

connect Earth, Venus and Mars in a given time period, 

constrained to a maximum of one-year mission. An 

optimal solution can be found by varying departure and 

arrival dates for the Earth-to-Venus and Venus-to-Mars 

Lambert problems and studying its effect on the total 

delta-v.  

As said, “pork-chop plot” is an extremely useful 

tool which allows to intuitively visualise the minimum 

delta-v solution and produces a repetitive pattern which 

depends only on the synodic period. This can be done 

comparing the “pork-chop” plots of the first and 

second leg. 

The resolution of the Lambert problem from rotated 

initial conditions results in synodic solutions from 
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Figure 5: The results of Lambert problem in the synodic frame of Venus (the flyby planet): top-left and bottom-

right graphs shows the delta-v for departure from Earth and arrival at Mars. Top-right and bottom-left plots 
are the equivalent ones for arrival and departure from Venus which can be directly related to the relative 
velocities at the planet and to flyby conditions 

which the delta-v for the insertion onto the 

interplanetary trajectory at the Earth and for the capture 

at Mars, and the arrival/departure relative velocities at 

the encounter with Venus can be directly derived and 

represented in the “pork-chop” plots, see Figure 5.  

Using the patched conic approximation and determining 

for each trajectory the optimal delta-v at the periapsis 

(Eq.15), over hundreds of thousands of flybys are 

obtained and results in the periapsis distribution, Fig.6. 

Combining the delta-v at the periapsis with the one at 

the terminal points and re-arranging in term of the 

dates of departure from Earth and of arrival at Mars, 

the total delta-v can be represented in the combined 

“pork-chop” plot which groups all the minimum 

solutions and identifies the optimal delta-v, see 

Figure 7. 

 
 

 
Figure 6: The periapsis position resulting from 

resolution of the system of (Eq. 12) with the 
relative velocities at Venus, see Figure 5 
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Figure 7: The total “pork-chop” plot combines the 

delta-v for departure from Earth and arrival at 
Mars (see Figure 6) with the delta-v at the peri-
apsis obtained from (Eq.15) 

 
Figure 8: The pareto front resulting from the results 

of the combined “pork-chop” plot (see Figure 7) 
displayed in terms of minimum total delta-v and 
minimum total time of flight 

Pareto front (see Figure 8) can be used to select 

optimal solutions not only in terms of minimum delta-v 

but also in term of minimum time of flight which are 

sampled in 51 points that ensures a good representation 

of the different minimization problems. Some of the 

most representatives cases, among the total 51 optimal 

points on the Pareto front, are reported in Table 1 

Table 1: Seven equi-spaced points on the Pareto front  

Dep@Å	 Flyby@♀	 Arr@♂	 Dv[km/s]	 DT[d]	
27-Jan-20	 01-Jul-20	 20-Dec-20	 33.258	 328	
19-Jan-20	 29-Jun-20	 12-Nov-20	 38.293	 298	
01-Jan-20	 07-Mar-20	 19-Jul-20	 47.446	 200	
01-Jan-20	 01-Mar-20	 06-Jul-20	 69.167	 187	
01-Jan-20	 04-Mar-20	 01-Jun-20	 110.238	 152	
01-Jan-20	 01-Mar-20	 17-Apr-20	 143.173	 107	
08-Jan-20	 01-Mar-20	 05-Apr-20	 178.340	 88	
 

The efficiency of the optimisation algorithm is 

tested using the aforementioned results as initial 

guesses under the point of view of: 

§ convergence; 

§ number of iterations; 

§ number of function evaluations. 

A minimum distance of patching is fixed at 50 km, 

small enough to be considered negligible given the 

involved distances. A scaling factor of 109 n2 (where n 

is the mean motion and it is used to scale distances on 

velocities) was selected as it ensures to initially 

magnify the distance at the encounter and to drive the 

search of the optimal solution towards the direction of 

patching but at the same time to nullify its effect once 

the constraints is satisfied, leaving the algorithm free to 

choose the minimum delta-v. 

Preliminary results show that both optimisation 

strategies, at convergence, effectively generates an 

unique flyby trajectory, see Figure 9. Moreover, in 

most of the cases it can be shown that the energetic 

algorithm, which uses the modified Tisserand 

parameter, has better performances. 

The repetition of classical and Tisserand 

optimisation for each initial condition, identified by 51 

optimal points sampled uniformly on the Pareto front, 

leads to some conclusions 
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Figure 9: The difference between the overall trajectory propagated directly from the 

solution of Lambert problem (top-left) and from the optimised results (bottom-left)  

 

Figure 10: The performance of the classical (blue) and 
energetic (red) optimisation in terms of number of 
iterations and number of function evaluations, 
represented respectively with the circle, ◯, and 
with the triangle, Δ, markers in case of 
convergence and with the cross, X, and square, □, 
ones in the other 

The number of iterations and the number of 

evaluation functions are represented for the two 

approaches using respectively the circle, ◯, and the 

cross, X, markers and the triangle, △, and the square, 

□ , ones. Blue and red colours distinguish between 

classical and energetic methods, while ◯, Δ and X, □ 

inform whether the optimisation did or did not 

converge. As it can be seen, the energetic approach 

shows for most of the cases better performances in 

terms of both the number of iterations and the function 

evaluation, even though more conservative objective 

and constraints objective functions are implemented. 

Through the T-P graph, it can be shown that a 

classical implementation of the optimisation might 

enter into quasi-ballistic region, while the energetic 

method cannot. At the same time, reversing the 

constraints, the algorithm might be forced to search for 

the optimal solution in the forbidden zone. 

V. CONCLUSION 

An analysis of the design for two-body flyby 

trajectories is presented and used to select optimal 

terminal conditions which are further optimised in the 

CR3BP. The classical Tisserand parameter is 

introduced and an unconstrained (in opposition to the 

standard whose application is constrained to negative 

x-axis, where the Poincaré section is fixed) equivalent 
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is presented. Two different approaches are considered 

in the definition of objective and constraints functions 

for the shooting method: the energetic strategy embeds 

the modified Tisserand parameter.  

Preliminary results show that this strategy performs 

better in the majority of the cases despite more 

conservative constraints.  

VI. FUTURE WORK 

In future work, the calculus of variations will be 

exploited in the resolution of free time of 

flight/phasing problem and the preliminary design will 

be improved through the kick map model of the 

dynamics. 

Advancement in the optimisation scheme will be 

made through the implementation of the Hamilton-

Jacobi-Bellman equation for the design of optimal low-

thrust trajectories in the CR3BP. 

VII. ACKNOWLEGMENT 

This project has received funding from the 

European Research Council (ERC) under the European 

Union's Horizon 2020 research and innovation 

programme (grant agreement No 679086 - 

COMPASS). 

VIII. REFERENCES 

[1] KONDRATYUK, Yuriy. V. To those who will read to 
build., 1938.  
[2] TEAM and S. Roadmap., “Solar System Exploration–
This is the Solar System Exploration Roadmap for 
NASA’s Science Mission Directorate.,” NASA Science 
Missions Directorate, Planetary Science Division, 
Washington, DC, 2006. 

[3] PRUSSING, John E.; CONWAY, Bruce A. Orbital 
mechanics. Oxford University Press, USA, 1993. 

[4] KOON, Wang Sang, et al. Dynamical systems, the 
three-body problem and space mission design. Free online 
Copy: Marsden Books, 2008. 

[5] COLOMBO, Camilla; FERRARI, Fabio. Orbital 
Mechanics Notes. Politecnico di Milano, 2016 

[6] SZEBEHELY, Victor; GREBENIKOV, E. Theory of 
Orbits-The Restricted Problem of Three Bodies. Soviet 
Astronomy, 1969, 13: 364. 

[7] BATTIN, Richard H. An introduction to the 
mathematics and methods of astrodynamics., Aiaa, 1999. 

[8] ROY, Archie E. Orbital motion. CRC Press, 2004. 

[9] CAMPAGNOLA, Stefano; RUSSELL, Ryan P. 
Endgame Problem Part 2: Multibody Technique and the 
Tisserand—Poincaré Graph. Journal of Guidance, 
Control, and Dynamics, 2010, 33.2: 476. 


	FronteCongresso
	MENZD01-17

