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1. Introduction1

The identification problemof systemof simultaneous equations2

(SSE) lies at the heart of classical econometrics, see e.g. Koopmans3

(1949). Rank (and order) conditions for identification of these4

systems are well summarized in Fisher (1966) or Sargan (1988).5

Simultaneous systems of cointegrating (CI) equations have re-6

vived interest on SSE over the last three decades, especially forQ37

variables integrated of order 1, I(1), see Engle and Granger (1987).8

When identifying restrictions are placed only on the CI parameters,9

the rank and order conditions for identification for I(1) simultane-10

ous systems of CI equations, here indicated as I(1) SSE, coincide11

with the classical ones for SSE, see e.g. Saikkonen (1993), Davidson12

(1994) and Johansen (1995). The present paper discusses identi-13

fication for SSE with integrated variables of order higher than 1,14

when restrictions are only placed on the CI parameters, and shows15

that the rank and order conditions have relevant differences in this16

higher order case.17

∗ Corresponding author. Fax: +39 0332 785733.
E-mail addresses: rocco.mosconi@polimi.it (R. Mosconi),

paolo.paruolo@jrc.ec.europa.eu (P. Paruolo).
1 Fax: +39 02700423151.

CI SSE with variables integrated of order 2, or I(2) SSE, have 18

been used to accommodate models of stock and flow variables, 19

of inventories, and of consumption, income and wealth see Klein 20

(1950), Hendry and von Ungern-Sternberg (1981) and Granger and 21

Lee (1989). A different rationale for I(2) SSE is provided by the 22

literature on integral control mechanisms in economics initiated 23

by Phillips (1954, 1956, 1957) in relation to the Error Correction 24

Mechanism, EC, see Haldrup and Salmon (1998). 25

In I(2) systems, CI equationsmay involve both stocks and flows; 26

these equations are called ‘integral control’ in the EC literature, 27

or ‘multi-cointegrating’ relations (multi-CI), see Granger and Lee 28

(1989). They are also a special case of ‘polynomial-cointegration’ 29

relations, as introduced by Engle and Yoo (1991). A different type 30

of CI equations consists of linear combinations of flow variables 31

only; they represent balancing equations for flows, and they called 32

‘proportional control’ relations in the EC literature. 33

Identification of I(2) SSE has been addressed mostly through 34

‘normalization’ schemes, both in the parametric case, see Johansen 35

(1997), and in the semi-parametric approach of Stock and Watson 36

(1993), where the short-run dynamics is not estimated parametri- 37

cally. 38

The purpose of the present paper is to discuss the identification 39

problem in the I(d) SSE, with d = 2, 3, . . . , allowing for the 40

possibility of over-identification, giving rank and order conditions. 41
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These conditions
∧
generalize the ones valid for I(1) SSE, to which1

they reduce setting d = 1.2

The rest of the paper is organized as follows: Section 2 gives3

motivation via a simplemodel of inventories; Section 3 defines I(2)4

SSE and discusses observational equivalence; Section 4 presents5

rank and order conditions. Section 5 discusses identification for6

higher order systems; Section 6 concludes. Proofs are placed in an7

Online Appendix.8

In the following a := b and b =: a indicate that a is9

defined by b; (a : b) indicates the matrix obtained by horizontally10

concatenating a and b. For any full column rank matrix H , col(H)11

is the linear span of the columns of H , H̄ indicates H(H ′H)−1 and12

H⊥ indicates a basis of the orthogonal complement of the space13

spanned by the columns of H . Moreover PH := H(H ′H)−1H ′
14

indicates the orthogonal projection matrix on the columns of H ,15

and PH⊥
= I − PH denotes the orthogonal projection matrix on its16

orthogonal complement. vec is the column stacking operator, ⊗ is17

the Kronecker product, diag(A1, . . . , An) a block-diagonal matrix18

with A1, . . . , An as diagonal blocks.19

The vector process Xt is said to be integrated of order d (with20

integer d), I(d), when ∆dXt − mt = F(L)εt is a stationary linear21

process, mt is a deterministic process, L is the lag operator, ∆ :=22

1 − L and F(z) =
t

i=0 Fiz
i is convergent in the disk Ua := {z :23

|z| < 1+ a}, a > 0. Here it is assumed that F(z) is of full rank over24

Ua with the possible exception of z = 1, where the MA impact25

matrix F(1) is assumed to be non-zero, see Johansen (1996). When26

F(1) is of full rank, the process is said to be ‘non cointegrating I(d)’,27

indicated as ncI(d).28

2. Motivating example29

This section reports a model of inventories taken from Granger30

and Lee (1989), that motivates the derivations in the paper.31

Let yt and wt represent sales and production of a (possibly32

composite) good. Sales yt are market-driven and trending; in33

particular Granger and Lee assume that they are I(1). Production34

wt is chosen to meet demand yt , i.e. yt and wt have the same35

trend. Hence zt := wt − yt , the change in inventory, is stationary.36

This corresponds to a proportional control relationship among the37

flow variables ∆Xt := (wt : yt)′; in other words ∆Xt is CI with38

cointegrating vector (1 : −1)′, i.e.39

(1 : −1)∆Xt = u1t , (2.1)40

where u1t is a stationary process. The stock of inventories Zt =41 t
i=1 zi + Z0 can be expressed in terms of the cumulated produc-42

tion, Wt =
t

i=1 wi + W0 and cumulated sales Yt =
t

i=1 si + Y0,43

as Zt = Wt − Yt . Because wt and yt are assumed to be I(1),Wt and44

Yt are I(2).45

The principle of inventory proportionality anchors the inven-46

tory stock Zt to a fraction of sales yt , i.e. it implies the multi-CI re-47

lationship Zt = ayt+u0t , with u0t stationary,whichmay bewritten48

as49

(1 : −1 : 0 : −a)


Xt
∆Xt


= u0t . (2.2)50

Observe that the CI relations (2.1) and (2.2)
∧
form an SSE of two51

equations,52 
1 −1 0 −a
0 0 1 −1


Xt

∆Xt


= ut , (2.3)53

where ut := (u0t : u1t)
′ is a stationary error term.54

The present paper investigates the following question: is the55

multi-CI vector in (2.2) unique (with or without the 0 restriction in56

the third entry)? Pre-multiplication of (2.3) by the following 2× 2 57

matrix 58

Q =


1 b
0 1


(2.4) 59

with generic b, gives a system of equations with (1 : −1 : b : 60

−(a + b))′ in place of (1 : −1 : 0 : −a)′ as the first equation (the 61

multi-CI relation). Onemay expect that, when the third entry of the 62

multi-CI vector is restricted to 0, the first equation (as well as the 63

system) is identified. 64

This example, which motivates the derivations in the paper, 65

is deliberately very simple, with only one proportional control 66

relationship associated with the differenced (single) multi-CI 67

relation. In the general case, discussed in the following section, 68

there may be additional proportional control relationships. 69

3. I(2) simultaneous system of equations 70

This section introduces the I(2) SSE, discusses Observational 71

Equivalence (OE) and the class of Q transformations on the CI 72

parameters that induces OE. LetXt be a p×1 vector of I(2) variables. 73

The multi-CI relations involving Xt are of the type 74

β ′Xt + υ ′∆Xt =


β ′ υ ′
  Xt

∆Xt


= µ0t + u0t (3.1) 75

where β and υ are p × r and β is of full column rank r , r < p, and 76

u0t is stationary. Here µ0t denotes a deterministic vector. 77

The first difference of Eq. (3.1), β ′∆Xt + υ ′∆2Xt , is also 78

stationary; this implies that β ′∆Xt is stationary, given that ∆2Xt is 79

stationary, because Xt is I(2).Moreover, other CI relations involving 80

only ∆Xt can be present in the form γ ′∆Xt ; taken together the 81

proportional control relations are given by 82
γ ′

β ′


∆Xt =


0 γ ′

0 β ′


Xt

∆Xt


= µ1t + u1t , (3.2) 83

where γ is p× s and of full column rank, and u1t := (u′

1γ ,t : u′

1β,t)
′

84

is a stationary process, u1β,t := ∆u0t − υ ′∆2Xt , with (u′

0,t : u′

1γ ,t)
′

85

an ncI(0) process, and µ1t denotes a deterministic vector. 86

Collecting (3.1) and (3.2), the following system of k := 2r + s 87

stationary SSE results 88

ζ ′


Xt

∆Xt


=


β ′ υ ′

0 γ ′

0 β ′


Xt

∆Xt


= µt + ut , (3.3) 89

where ζ ′ indicates the matrix of CI SSE coefficients, µt := (µ′

0t : 90

µ′

1t)
′ and ut := (u′

0t : u′

1t)
′ is stationary. 91

Eq. (3.3) is the relevant SSE for the discussion of identification 92

in I(2) cointegrated system. Note that ζ ′ contains 0 entries in the 93

lower left corner and presents cross-equation restrictions, given by 94

the presence of β ′ in the first and third block of rows.2 95

3.1. The identification problem 96

This sectiondescribes theQ transformation that gives rise to the 97

identification problem in the I(2) SSE. Consider pre-multiplying ζ ′
98

in Eq. (3.3) by Q with 99

Q :=


Q00
r×r

Q0γ Q0β

0 Qγ γ
s×s

Qγ β

0 0 Q00

 (3.4) 100

2 Note that the CI SSE could be also written as ζ ′(X ′
t : ∆X ′

t−h)
′ , because ζ ′(X ′

t :

∆X ′

t−h)
′
− ζ ′(X ′

t : ∆X ′
t )

′
= (υ : γ : β)′(1 + L + · · · + Lh−1)∆2Xt is stationary.
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whereQ00 andQγ γ are non-singular squarematrices of order r and1

s; the number of generically non-zero elements of Q is given by2

q := r2+(r+s)2. Pre-multiplying ζ ′ byQ gives rise to an equivalent3

I(2) SSE; in fact observe that4

Q ζ ′
=

Q00β
′

Q00υ

′
+ Q0γ γ ′

+ Q0ββ ′


0

Qγ γ γ ′

+ Qγ ββ ′


0 Q00β
′

5

=:

β◦′ υ◦′

0 γ ◦′

0 β◦′

 =: ζ ◦′ (3.5)6

where β◦′
:= Q00β

′, γ ◦′
:= Qγ γ γ ′

+ Qγ ββ ′, υ◦′
= Q00υ

′
+7

Q0γ γ ′
+Q0ββ ′. Notice that the number of integral-control relations8

(r) and of proportional-control relations (r + s) is unaffected by9

the Q transformation, and that ζ ◦′
:= Q ζ ′ has the same zero-10

restrictions and cross-equation constraints as ζ ′ in (3.3). This is the11

identification problem in SSE with I(2) variables.12

This identification problem differs from the one encountered13

in I(1) system where OE is associated with pre-multiplication by14

any non-singular matrix Q , see Saikkonen (1993), Davidson (1994)15

and Johansen (1995).16

3.2. Observational equivalence17

This subsection shows that (i) the Q transformation defines OE18

values of the parameters in terms of the likelihood and (ii) a similar19

OEapplies to the representation of Stock andWatson (1993),which20

is used in semi-parametric models. This implies that the rank and21

order conditions derived in the next subsection apply both in the22

parametric and in the semi-parametric settings.23

Consider first the EC representation of a VAR A(L)Xt = εt under24

the conditions of the I(2) representation theorem of Johansen25

(1992). Here A(L) = I −
h

i=1 AiLi is the AR polynomial, and it26

is assumed that A(z) is convergent in the disk Ua and that A(z) is of27

full rank over Ua with the possible exception of z = 1.28

Johansen (1992) derived conditions under which a VAR process29

satisfying these assumptions is I(2), see also Johansen (1996)30

Chapter 4. These conditions are: (i) A(1) = −αβ ′ of reduced rank31

r < p and (ii) Pα⊥
ȦPβ⊥

= α1β
′

1 of reduced rank s < p − r , and (iii)32

P(α:α1)⊥( 1
2 Ä+Ȧβ̄ᾱ′Ȧ)P(β:β1)⊥ of full rank p−r−s, where Ȧ and Ä are33

the first and second derivative of A(z) with respect to z, evaluated34

at z = 1.35

Under conditions (i) and (ii), it can be shown that theVARmodel36

can be
∧
parametrized as the following EC3

37

∆2Xt = ηζ ′


Xt−1

∆Xt−1


+ Υ

 ∆2Xt−1
...

∆2Xt−h+2

+ εt ,

ζ :=


β 0 0
υ γ β


.

(3.6)38

The parameters of the model are the unrestricted adjustment39

matrix η, the CI matrix ζ , the short run dynamics matrix Υ and Ω ,40

the variance–covariance matrix of εt . The Gaussian log-likelihood41

3 Let ∆2Xt = ΠXt−1 + Γ ∆Xt−1 +
k−2

i=1 Υi∆
2Xt−i + εt , where condition (i)

implies Π = αβ ′ . Next define τ := (β : γ ) where γ is any matrix that satisfies
col(β : γ ) = col(β : β1) and consider Γ = Γ Pτ + Γ Pτ⊥ = λ⋆τ

′
+ αδτ ′

⊥

where λ⋆ := Γ τ̄ , δ := ᾱ′Γ τ̄⊥ because α′

⊥
Γ τ⊥ = 0 by condition (ii). Adding

and subtracting αcτ ′ one obtains Γ = λτ ′
+ αυ ′ where λ := λ⋆ − αc and

υ ′
:= δτ ′

⊥
+ cτ ′

= (c : δ) (τ : τ⊥)′ . Here η := (α : λ). Because (τ : τ⊥) is square
and nonsingular and no restrictions are placed on (c : δ), this shows that υ ′ is not
restricted to lie in any specific subspace.

ℓ associated with observations X1, . . . , XT and parameters λ := 42

(η, ζ , Υ , Ω) is proportional to ℓ(λ) := −
1
2 (T log detΩ + 43T

t=1 ε′
tΩ

−1εt),when εt is taken to be iid N(0, Ω). The parameter 44

space for λ := (η, ζ , Υ , Ω) is unrestricted, except for the 45

requirements on ζ to have the structure in (3.3) and on Ω to be 46

positive definite. 47

Consider next the square invertible matrix Q in (3.4) and insert 48

Q−1Q between η and ζ ′ in (3.6); it is simple to observe that λ := 49

(η, ζ , Υ , Ω) and λ◦
:= (ηQ−1, ζQ ′, Υ , Ω) produce the same 50

likelihood, ℓ(λ) = ℓ(λ◦), i.e. that λ is OE to λ◦. This shows that 51

the class of transformations Q creates OE in terms of the likelihood 52

of the EC (3.6). 53

The Q transformation in (3.4) has a similar effect on the 54

representation in Stock and Watson (1993). Let Xt be I(2) with MA 55

representation ∆2Xt = F(L)εt ; under the condition that F(z)−1
56

has a pole of order 2, there exists some ncI(0) process H(L)εt and 57

some square and nonsingular matrix B := (b2 : b1 : b0) of order 58

p, with bi of dimension p × ri, ri ≥ 0, such that one can define 59

yt := B′Xt = (y2′t , y1′t , y0′t )′, with yit = b′

iXt , and 60 ∆2Ir2 0 0
−θ1

1,2∆ ∆Ir1 0
−θ1

0,2∆ − θ0
0,2 −θ0

0,1 Ir0


y2t
y1t
y0t

 = H(L)εt , (3.7) 61

see Stock andWatson (1993) eq. (3.2).4 Collecting termswith equal 62

order of differencing, one can write (3.7) as 63 b′

2∆
2

γ ′∆

β ′
+ υ ′∆

 Xt = H(L)εt (3.8) 64

where ut := H(L)εt is ncI(0) and 65b′

2

γ ′

β ′

 :=

 Ir2 0 0
−θ1

1,2 Ir1 0
−θ0

0,2 −θ0
0,1 Ir0


b′

2

b′

1

b′

0

 ,

υ ′
:= −


θ1
0,2 0 0

b′

2

b′

1

b′

0

 .

(3.9) 66

Stock and Watson (1993) take B := (b2 : b1 : b0) to be a 67

permutation matrix of order p5; this restriction is not necessary, 68

and one can take B to be any appropriate nonsingular matrix, 69

where in particular bi and bj need not be orthogonal, i, j = 0, 1, 2; 70

see also Boswijk (2000). Note here that (b2 : γ : β) is square and 71

nonsingular, being the product of B, which is nonsingular, and 72

the block triangular matrix in (3.9) with identities on the main 73

diagonal, which is also nonsingular. Representation (3.8) is called 74

SW in the following. 75

The next theorem shows in what sense SW is Q -invariant. 76

Theorem 1 (Q-invariance of SW). Let Xt be I(2) with MA 77

representation ∆2Xt = F(L)εt where F(L)εt is I(0) and let (3.7) be 78

its SW, where H(L)εt is ncI (0). Then Xt also satisfies the SW 79 b′

2∆
2

γ ◦′∆

β◦′
+ υ◦′∆

 Xt = H◦(L)εt (3.10) 80

4 The notation yd+1−i
t (respectively θ i−1

d+1−s,d+1−j) here corresponds to yit
(respectively θd−i

s,j ) in Stock and Watson (1993). Moreover, r0 = r , r1 = s, r2 =

p − r − s here correspond to k2, k1, k0 there.
5 I.e. a matrix obtained by rearranging the rows or columns of the identity matrix

of order p.
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where H◦(L)εt is ncI(0), β◦′
:= Q00β

′, γ ◦′
:= Qγ γ γ ′

+ Qγ ββ ′,1

υ◦′
= Q00υ

′
+ Q0γ γ ′

+ Q0ββ ′ are the elements of ζ ◦′
= Q ζ ′

2

in (3.5) and Qij are the blocks of the Q matrix in (3.4), i, j = 0, γ , β .3

4. I(2) identification conditions4

This section considers the I(2) SSE (3.3) under general linear5

restrictions on ζ . Consider the following linear restrictions6

R′

⋆
m⋆×f⋆

θ = c⋆, θ
f⋆×1

:=

vec


β
υ


vec γ

 (4.1)7

where f⋆ := p(2r + s). The next theorem gives rank and order8

conditions for (4.1) to identify ζ .9

Theorem 2 (Rank and Order Conditions for I(2) SSE). A necessary10

and sufficient condition (rank condition) for the restrictions (4.1) to11

identify ζ in the I(2) SSE (3.3) is that the matrix12

R′

⋆ diag (Ir ⊗ ζ , Is ⊗ (γ : β)) (4.2)13

is of full column rank q, where q = r2 + (r + s)2. A necessary but14

not sufficient condition (order condition) for (4.2) to have full column15

rank is that its number of rows is greater than or equal to its number16

of columns, that is17

m⋆ ≥ q. (4.3)18

A few remarks are in order.19

Remark 3 (No Integral Control Relations, r = 0). If r = 0, then20

Ir ⊗ζ and β are dropped from (4.2) and the rank condition reduces21

to rank R′
⋆ (Is ⊗ γ ) = s2. This is the usual rank condition for22

identification in a standard I(1) SSE, see Johansen (1995), due to the23

fact that the I(2) SSE simplifies into an I(1) SSE in first differences.24

Remark 4 (No Additional Proportional Control Relations, s = 0). If25

s = 0, then γ is dropped from ζ , which simplifies into26

ζ =


β 0
υ β


, (4.4)27

and Is ⊗ (γ : β) is dropped from (4.2). The rank condition28

becomes rank R′
⋆ (Ir ⊗ ζ ) = 2r2. Note that this is not the usual rank29

condition for identification in a standard I(1) SSE. The I(2) SSE (4.4)30

in fact still involves υ and the β block is repeated in the upper left31

and lower right corners.32

Remark 5 (Practical Implementation of the Rank Condition). In33

order to check the rank condition on matrix (4.2), consider the34

restrictions (4.1) in explicit form, i.e. θ = H⋆ϕ+h⋆, whereH⋆ = R⋆⊥35

and c⋆ = R′
⋆h⋆; here ϕ contains the unrestricted parameters in θ .36

For given value of ϕ, ϕ◦ say, one can form θ◦ as θ◦
= H⋆ϕ

◦
+ h⋆,37

and hence ζ ◦ and (γ ◦
: β◦) using the definition of θ . One can then38

numerically find the rank of R′
⋆ diag(Ir ⊗ ζ ◦, Is ⊗ (γ ◦

: β◦)) e.g. by39

computing its singular values.40

One way to choose ϕ◦ can be for instance to generate this as a41

random draw from some distribution with Lebesgue density, such42

as the Gaussian. If the rank condition is satisfied outside a set of43

Lebesguemeasure zero, then the probability of drawing an element44

from this set is zero, see Boswijk and Doornik (2004).45

Remark 6 (Role of the Order Condition). The order condition can be46

used – as in classical SSE – as a preliminary check to control that47

the number of restrictions in (4.1) is at least equal to q.48

Next consider the rank and order conditions for equation-by- 49

equation constraints, where ith column of ζ is indicated as ζi and 50

the ith column of γ as γi. They can be formulated as follows 51

R′

i
mi×2p

ζi = ci, i = 1, . . . , r,

R′

i
mi×p

γi−r = ci, i = r + 1, . . . , r + s.
(4.5) 52

These restrictions are a special case of (4.1), with 53

R⋆ = diag(R1, R2), 54

where R1 = diag(R1, . . . , Rr) collects the first r equations and 55

R2 = diag(Rr+1, . . . , Rr+s) the next s equations (concerning γ ). 56

The following corollary specializes the rank and order conditions 57

to the case of equation-by-equation restrictions. 58

Corollary 7 (Identification, Equation-by-equation Restrictions). Let 59

the restrictions be given as in (4.5); then the ith column of ζ , i = 60

1, . . . , r, is identified if and only if 61

rank

R′

iζ


= 2r + s, i = 1, . . . , r; (4.6) 62

column number i− r in γ for i = r + 1, . . . , r + s is identified if and 63

only if: 64

rank

R′

i(γ : β)


= r + s, i = r + 1, . . . , r + s. (4.7) 65

The joint validity of rank conditions (4.6) for i = 1, . . . , r and (4.7) for 66

i = r + 1, . . . , r + s is equivalent to the full column rank of (4.2), 67

which can also be expressed equivalently as follows 68

rank

R′

1 (Ir ⊗ ζ )


= r (2r + s) and

rank

R′

2 (Is ⊗ (γ : β))


= s (r + s) .
(4.8) 69

Anecessary but not sufficient condition (order condition) for (4.6) is 70

mi ≥ 2r + s, i = 1, . . . , r. (4.9) 71

Similarly, a necessary but not sufficient condition (order condition) 72

for (4.7) is 73

mi ≥ r + s, i = r + 1, . . . , r + s. (4.10) 74

5. Systems of equations with integrated variables of higher 75

order 76

This section discusses the rank and order conditions for the 77

I(d) SSE, d = 1, 2, 3, . . .. In this section r and s in the previous 78

sections are indicated as r0 and r1 respectively, whileβ , γ andυ are 79

indicated here as γ0, γ1 and υ01. As shown in the Online Appendix, 80

the relevant I(d) SSE is given by 81

ζ ′

k×pd


Xt

∆Xt
...

∆d−1Xt

 =


ϕ′

0 υ ′

01 υ ′

02 . . . υ ′

0d−1
0 ϕ′

1 υ ′

12 υ ′

1d−1
0 0 ϕ′

2 υ ′

2d−1
...

. . .
. . .

...
0 . . . . . . 0 ϕ′

d−1




Xt
∆Xt
...

∆d−1Xt

 82

= µt + ut (5.1) 83

where ut is I(0), ϕi := (γi : γi−1 : . . . : γ1 : γ0) = (γi : ϕi−1), of 84

dimension p × ki with ki :=
i

h=0 rh, k :=
d−1

i=0 ki, and ri ≥ 0 85

is the number of columns in γi, i = 0, . . . , d − 1; see Online 86

Appendix for details on the definition of other matrices. System 87

(5.1) is henceforth referred to as an I(d) SSE. 88

Restrictions on the SSE (5.1) are expressed as follows: 89

R′

m×f
vec ζ = c. (5.2) 90
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Here f := kpd. As for the I(2) case, let θ be the f⋆ × 11

vector containing the generically nonzero elements of ζ ; the linear2

restrictions (5.2) can be equivalently expressed as3

R′

⋆
m⋆×f⋆

θ = c⋆. (5.3)4

Without loss of generality, one can assume that f − f⋆ of the5

restrictions in (5.2) ensure that ζ ′ has a block-triangular structure6

with cross-equation restrictions,6 while m⋆ := m − f + f⋆7

are possibly (over-)identifying restrictions on θ . Because ζ and8

θ contain the same parameter matrices, there exists some non-9

singular matrix Awith entries equal to 0 or 1 that satisfies vec ζ =10

Aθ .11

The Q transformation that induces lack of identification in (5.1)12

is of the form13

Q =


Q00 Q01 . . . Q0,d−1
0 Q11 . . . Q1,d−1
...

. . .
. . .

...
0 0 0 Qd−1,d−1

 ,

Qjj
kj×kj

=


Qj,γj Qj,ϕj−1
0 Qj−1,j−1


, j = 1, . . . , d − 1,

(5.4)14

where Q00, Qj,γj for j = 1, . . . , d − 1 are square and nonsingular;15

hence also Q is square and nonsingular. The number of generically16

non-zero elements of Q is still indicated by q, and g denotes the17

q × 1 vector containing the generically non-zero elements of Q in18

(5.4) that gives rise to lack of identification, and by N the (unique,19

0–1) matrix that maps g into vec(Q ′), i.e. such that vec(Q ′) = Ng .20

One can now state the rank and order conditions for identifica-21

tion of ζ in the I(d) SSE.22

Theorem 8 (Rank and Order Conditions for the I(d) SSE). A necessary23

and sufficient condition (rank condition) for the restrictions (5.2) to24

identify ζ in an I(d) SSE (5.1) is that the matrix25

R′(Ik ⊗ ζ )N (5.5)26

is of full column rank q. A necessary but not sufficient condition (order27

condition) for the rank condition to hold is28

m⋆ ≥ q. (5.6)29

For the case d = 2, the condition of full rank of (5.5) is equivalent30

to (4.2) and the order condition (5.6) is equivalent to (4.3).31

Remark 9 (Differences with the Rank Condition for Standard SSE).32

The rank condition in (5.5) can be compared with the one obtained33

for standard SSE, see e.g. Sargan (1988), Chapter 3, Theorem 1. The34

matrix R′(Ik ⊗ ζ )N in the rank condition here is very similar to the35

matrix R′(Ik ⊗ ζ ) in the standard case, the only difference being36

the additional multiplicative factor N here. This is due to fact that37

the class of matrices Q in (5.4) is different from the of square and38

nonsingular matrices, which is the one that induces OE in standard39

SSE.40

Remark 10 (The I(1) Case is Covered). In the I(1) case, one has that41

Q = Q00, N = I and the rank condition (5.5) reduces to the42

standard one. Hence Theorem 8 covers also the case d = 1, and43

it is hence an extension of it.44

6 These concern the fact that ϕi−1 appears as one component in ϕi = (γi : ϕi−1)

for i = 1, . . . , d − 1.

6. Conclusions 45

This paper provides rank and order conditions for identification 46

in I(d) systems, d = 1, 2, . . . under general linear hypotheses on 47

the cointegrating vectors. The advantage of the present algebraic 48

approach in the discussion of identification of the I(d) SSE is 49

that it works for all approaches for which the Q transformation 50

induces observational equivalence, which includes parametric and 51

semiparametric specifications. 52

These results are relevant also when using sequential iden- 53

tification schemes. In fact, one could consider procedure that 54

first aims at identifying β through affine restrictions of the type 55

R′
◦
vecβ = c◦, and subsequently consider identification of υ, γ , 56

with or without β fixed. The first-stage identification of β is stan- 57

dard, see Johansen et al. (2010), and the associated rank condition 58

is rank R′
◦
(Ir ⊗ β) = r2. When β is identified, the identification 59

problem for υ, γ is still associated with a Q transformation of the 60

type (3.4) with Q00 = Ir ; hence the present discussion of identifi- 61

cation is relevant also for this sequential procedure. 62

In particular, the identification analysis of the coefficients in 63

υ , i.e. the coefficients involving the flow variables in the multi- 64

CI equations, requires a joint non-standard analysis of υ , γ and β , 65

since each columnofυ could be replacedwith a linear combination 66

of columns in υ , γ and β . 67
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