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I. Introduction

The measurement of particle size distributions is important in many fields 

of science and engineering. Much of the current emphasis on air pollution con

trol is concerned with reducing particulate emissions from industrial sources.
f

Particle size distributions determine not only what control strategy will be 

used but also the potential adverse health effects from the respirable fraction. 

The polymer, pharmaceutical and cosmetic industries rely heavily on particle size 

measurements to manufacture their products with the desired properties. Medical 

research is devoting a considerable effort to measuring biological particles 

ranging from blood cells to possible cancer viruses in hopes of understanding 

and preventing disease. These few examples illustrate the widespread interest 

in measuring particle size distributions.

The methods used to measure particle size distributions are as diverse as

the fields in which they are used. These methods include centrifugation, cascade

impaction, electrostatic contact charge transfer, acoustical techniques, gas
(1 2 )adsorption, flame photometry and optical techniques just to name a few. ’

The optical techniques in turn consist of several dozen different methods which 

may be classified as scattering from single particles or scattering from a 

collection of particles.

The many different single particle techniques use the intensity of light 

scattered or the degree of light extinction to size individual particles. A 

multichannel analyzer then assembles particle size statistics from a large 

number of such counts. After a short time, (e.g. 1 sec) the instrument has 

counted and sized thousands of particles, thus providing a histogram of the 

number size distribution. To insure that only one particle is counted at a 

time, these techniques require a very dilute system of particles. Moreover, 

all of the single particle techniques require taking a small sample of the
i

!
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particle stream and passing it through the detector.

In contrast, the techniques based on scattering from a collection of

particles must unfold the size distribution from the integrated scattering of

many particles. This is a very difficult task and is generally performed by
(3)a computer matching of theoretical and experimental data. Kerker has re

viewed a large number of different methods using scattering from a collection 

of particles. A few of the more widely used methods include angular maxima and 

minima in the scattered intensity, angular variation of scattered intensity at 

a fixed wavelength and spectral variation of turbidity or scattered light at a 

fixed angle. The potential advantages of these techniques compared to the single 

particle techniques include a smaller detectable size, remote measurements, and 

representative measurements of the complete distribution. Since scattering from
t

the complete distribution is measured rather than from individual particles, the 

time required for measuring the scattering is reduced by a factor equal to the 

number of individual particles counted.

Although many different theoretical and experimental techniques based on 

scattering from a collection of particles have been developed, the full potential 

of these methods have not been reached. Experimentally, the problems with exces

sive particle concentration and detector solid angle have required a series of 

measurements at decreasing concentration and solid angle with subsequent extra

polation. This greatly increased the experimental time. However, modern 

laser optical systems can significantly reduce and possibly eliminate these 

experimental problems. The greater intensity of the laser allows much lower 

concentration of particles and smaller solid angle. In addition the interpre

tation of the experimental data to obtain particle size distributions has been 

very time consuming.
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The purpose of this investigation is to further develop the method based 

on angular maxima and minima in the scattered intensity. Compared to the 

other scattering methods from a collection of particles, this techique has 

the potential for faster size determination and is less prone to the experi

mental problems of particle concentration and detector solid angle. In view 

of these advantages, a large number of investigations have been made using 

scattering extrema. However these prior investigations have considered only 

limited cases. The present study performs a systematic investigation of the 

scattering extrema and provides a foundation for developing specific tech

niques. Several promising techniques have emerged from this study.

»
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II. Prior Investigations of Angular Light Scattering Maxima and Minima

The earliest application of light scattering extrema to determine particle

sizes was developed in La Mer's^ ^  laboratory, where the angular positions

of the red and green bands in the scattered light, called higher order Tyndall

spectra, were measured using incident white light. The colors in the scattered

light arise because the scattered intensities at any given angle and particle

size are different for each wavelength. Particle sizes are then determined by

matching the angular position of the red and green bands with theoretical

calculations. Although this technique has been investigated and improved by

other researchers^^, the method is best applied to atmospheric or cosmic^®^

particles where the incident radiation is a continuous spectrum.

Using monochromatic incident light greatly simplifies the angular externa 
(9)method. Dandliker was the first to demonstrate this simplification by

measuring the location of the first minimum intensity encountered in the for-*

ward direction. The particle size is then determined using equation 1 based
(3)on the Rayleigh-Gans-Debye, (RGD), theory.

a sin (0/2) ■ k (1)

where a is the relative particle size D/\

D is the particle diameter in pm

\ is the wavelength of light in pm

0 is the angle of observation from the forward

direction in degrees 

k is an empirical constant 

Nakagaki and H e l l e r e x t e n d e d  the method by showing the systematic 

behavior of the angular scattering maxima and minima using the RGD theory.

An empirical equation was developed that gave the approximate location of the
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scattering maxima and minima based on discrepancies between the RGD data and 
. (3)the Mie data at one refractive index. Their equation, rewritten in a form

similar to equation 1, is

" sln(6/2) ' .40 ! ?;si M <2 >

where *s 3 constant from the RGD theory

M is the refractive index of the particle divided by the 

refractive index of the medium.

This equation shows the decrease inasin(0/2) with an increase in M. In

a later study Heller and Nakagaki^*^ improved the accuracy of equation 2 by

replacing the denominator with a more complicated function of M. The resultant 

equation correctly predicted the angular location of the extrema to within 

1° for the general size range of .interest in colloid chemistry. This same 

equation was also shown to predict extrema obtained from varying the wave

length of the incident radiation at a fixed angle.
( 12)Dezelic and Kratohvil were able to show good agreement between 

experimental light scattering measurements using the angular extrema method 

and electron microscopy. They measured the angular location of each of the 

accessible maxima and minima of the scattered intensity for several mono

disperse polystyrene latexes. The particle sizes were then obtained by com

paring the experimental extrema angles to theoretical calculations until a 

match was obtained. An important experimental observation of their study 

indicated that the method based on the location of the extrema is less affected

by multiple scattering than other scattering methods.
(13, 14)

Maron and his co-workers conducted a series of experimental and

theoretical investigations that generalized Dandliker*s method. They had 

observed, as Nakagaki and Heller^^ had shown earlier that the constant k

; V*
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in equation 1 decreases as the relative refractive index, M, increases. The 

empirical equation developed from these studies is shown in equation 3.

a sin(0^/2) = k ^  - k ^ M  (3)

where k ^  and kj£ are empirical constants

i is the order (number) of the extremum minimum or maximum 

counting from the forward direction 

These studies also indicated that unpolarized light could also be used 

to size particles by using different constants in equation 3. Subsequent 

investigations by Maron et al^"*’ showed that equation 3 could also be 

used to find particle sizes from experiments using angular variation of the 

polarization ratio or higher order Tyndall spectra. The polarization ratio 

is defined as the ratio of the intensities of the two orthogonal components 

of light scattered by a sphere from incident unpolarized light.

Kerker et al^*7  ̂have tested the range of validity of equation 3 

using extensive computer calculations of the angular intensity extrema.

Very accurate determinations of the extrema locations were possible because 

intensity data were calculated at every 1° over a wide range of M and a values. 

Previous researchers had to interpolate angular extrema data from tables of 

Pangonis and Heller^*^ or of Lowan^^^ where the intensity data were spaced 

every 5° or 10° respectively. Kerker et a l ^ 7  ̂ found that equation 3 is 

a good approximation for the angular extrema provided that neither M nor a  

is too large.

A large number of empirical equations describing the angular extrema
(20-23)location were recently derived by Patitsas using extensive Mie

calculations at intervals of 0.4°. He showed that the constant in equation 1 

decreases with particle size in addition to the refractive index. The rate
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at which the constant decreases with particle size also increases as the 

refractive index increases. Patitsas also found that using 0/2 in place of 

sin(0/2) results in a more systematic behavior of the extrema. One of his 

most interesting observations was that the extrema in the backward direction 

for particles with large refractive indexes and large diameters obey equation

a . <22>

a sin[(180-9.)/21 - k. W

Unfortunately he does not discuss the implication of this observation and treats 

this as another one of the many empirical equations found in his papers.

The investigations described so far have been concerned with measuring 

monodisperse particle size distributions using primarily polarized monochro

matic light with the electric vector vibrating perpendicular to the plane of 

observation. Maron et al^^' had previously tried to relate the differ

ence in particle sizes obtained at two different wavelengths to the degree 

of heterodispersion but was not successful. Prior to the present investigation,

the only way heterodisperse distributions could be obtained from extrema measure-
(24)ments was to use a technique developed by Wallace and Kratohvil . This 

technique consisted of first finding the modal size of the distribution by 

matching the extrema minima in the forward direction with the theoretical 

extrema from monodisperse particle sizes. They found that the location of the 

extrema minima in the forward direction were independent of the degree of 

heterodispersion for a constant modal size. The degree of heterodispersion 

was then found from the ratio of the intensity maximum to the intensity minimum 

for a given extrema pair. As the heterodispersion increased, this ratio would 

decrease monotonically to the limiting value of 1 where the extrema pair is 

washed out.
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(24)Wallace et al have examined this technique using vertically polarized *
(26 )unpolarized and horizontally polarized scattered light and the polari- 

. (25)zation ratio . They found that the most sensitive measurements were made 

using vertical polarization and the least sensitive using horizontal polari

zation. However all of these methods greatly overestimate the experimentally 

determined heterodispersion compared to electron microscope data.

The preceeding investigations have been concerned with developing 

techniques to measure particle sizes using either empirical equations or 

graphical comparisons. They have not been concerned with investigating and 

interpreting the scattering patterns themselves. The earliest attempt at

understanding the complex pattern of the scattered intensity as a function
(27 28)of particle size and angle of observation was made by Van DeHulst *

He devised an altitude chart using the phase shift parameter 2ar(M-l) as the 

ordinate and the diffraction parameter a6 as the abscissa. Contours of 

constant scattering amplitude were then drawn on the graph. This representa

tion allowed one to view diffraction minima or maxima as an oscillating curve 

meandering about a constant a 0 . Very small values of 2n(M-l) correspond to 

the RGD theory where the extrema show constant values of 2 sin(0/2). Large

values of 2 a (M-l) on the other hand correspond to Fraunhoffer diffraction

where a sin 0 describes the extrema.
(29)Penndorf modified the altitude chart by using the diffraction

parameter a sin 0 instead of o 0 . This change showed that the intensity minima

in the forward direction meandered about the classical diffraction minima at

o sin 8 = 3.83, 7.02 and 10.17. He argued that the extrema in the forward
(30 31)direction can be described as diffractive extrema. Penndorf ’ also 

observed that the contour plots of the angular intensity extrema could be
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divided into two regions. One region was defined by the extrema that migrate

in the forward direction with increasing size a . The other region consists of

extrema that migrate in the backward direction with increasing size a.
(32)Rowell had also observed this behavior.

(30 31)Penndorf * reasoned that if the extrema migrating in the forward

direction were described as diffractive extrema then the extrema migrating in

the backward direction could be described as reflective extrema. If the

diffractive extrema show a constant value of a sin 0 then the reflective extrema
(33)will have a constant value of a sin(rr-9), Penndorf then constructed a 

new altitude chart which was equally divided into diffraction and reflection 

regions. The extrema in the diffraction regions were plotted as a versus 

a sin 0 with the resulting contours wandering about constant a sin 0 values. 

Similarly, the extrema in the reflective region, when plotted as a versus 

a sinOr-0), were seen as curves oscillating about constant a sinCn-G) values. 

Although Penndorf correctly assessed the extrema that migrate in the 

backward direction as originating from a reflection phenomena, he used the 

wrong function to describe the behavior. The term asin(^-0) would only apply 

for very large particles where Fresnel's equations could be used. Similarly, 

plotting the diffractive extrema against a sin 0 applies for very large 

particles where the Fraunhoff diffraction theory holds.

i V-1



10

III Calculation of Angular Light Scattering Maxima and Minima

A. Survey of Problem and Initial Calculations

The initial and most time consuming phase of the present investigation 

was concerned with developing computer programs to calculate angular light 

scattering extrema. Previous investigators had obtained the angular extrema

in one of two ways. One method involved graphical interpolation of angular
j _ • i . u , j d 0 »  11* 13-16, 29-31, 33)intensity data previously tabulated . However,

graphical interpolation is very time consuming and is only feasible for analyz

ing a limited number of data. For more extensive extrema analysis, previous 

investigators chose the other method which required a computer to perform a

point by point comparison of closely spaced data despite the greater number of
^ „ . . (17, 20-26, 32)data points required. ’ ’

The accuracy of these previous methods, as well as the method used in 

the present study, is strongly dependent on the angular spacing of the calcu

lated scattering data. Thus the extrema angles obtained from graphical inter

polation of scattering data spaced at 5° intervals would be accurate to within 

1°. The accuracy of the technique based on a comparison of consecutive angular 

scattering data is equal to the angular spacing of the data. The most accurate 

of these previous investigations determined the extrema for monodisperse dis

tributions to within 0.4° using a comparison of consecutive data spaced at 
o C 21“23)0,4 intervals . Preliminary calculations in the present study indicated

that the location of the angular extrema had to occasionally be known to within

0.1° to resolve certain particle size distributions. Using either of the

previous methods was out of the question for the proposed comprehensive study

because of the enormous computational and graphical time requirements. A method

had, therefore, to be devised which could determine the angular scattering

extrema with the required high precision without excessive computer time 
and cost.
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A number of different approaches to determine the angular extrema were

investigated. The initial response to finding the scattering extrema was
* (3)to take derivatives of the Mie functions as is done for elementary functions.

However, setting the resultant derivative to zero and solving for the angular

roots appeared to be far too complicated and subject to very large errors

in the extrema locations. A closely related method in which the derivative

of the Mie functions are used in the Newtor-Raphson m e t h o d ^ ^  seemed to be

feasible. The major drawback of this method was the development and testing

of an entirely new computer code. The code for determining the scattering

intensities froni heterodisperse distributions had taken over two years to 
( 35)develop. Rather than spend a considerable amount of time to develop a 

new code it was decided to modify Che available Mie intensity code* for the 

present investigation and apply numerical methods to find the extrema.

(37)The Fibonacci method was selected to determine the extrema of the 

scattered intensities. This is the most widely used single variable search 

technique constrained to search within a given interval. The procedure 

is based on reducing the interval in which an extremum is located by system

atically eliminating a portion of the original interval using positive integers 

known as the Fibonacci numbers. The Fibonacci numbers are used to locate two 

points within the interval for function evaluation. The function values at these 

two points determine the portion of the interval that should be eliminated.

This process is continued by repeatedly determining function values within the

reduced interval and making the appropriate interval reduction.
( 37 jThe computer code listed in the book by Kuester and Mize was modified to 

reduce the number of function evaluations. As written, the code would re-evaluate

*The Mie intensity code was previously written to generate tables of light
( 36)scattering intensities.



one of the two points used to reduce the search interval for each iteration. 

Minor changes in their program to eliminate this re-evaluation reduced the 

number of required function evaluations by about half.

An important aspect of all the numerical methods used in the present 

study to locate extrema is the initial detection of an extremum. It is a 

waste of computer time to perform a detailed extremum search in an angular 

region that does not contain an extremum. Therefore, an initial search of 

the extrema was made using intensity data spaced at sufficiently small inter

vals to allow detection of the extrema yet large enough to minimize the 

number of data points. The initial search method used for all of the 

numerical techniques in the present investigation is described later in this 

chapter.

Despite the significant improvement over the methods used by previous 

investigators, the computer code using the Fibonacci algorithm combined with 

the modified light scattering code was far too time consuming for the proposed 

investigation. It was estimated that the computation time would have to be 

reduced by two orders of magnitude to allow the calculations to be run in the 

neighborhood of 10 hours central processor time for the IBM-360-65 computer.

To accomplish this reduction an extensive investigation was made on optimizing 

the light scattering code and developing improved extrema search algorithms.

B. Optimization Of The Light Scattering Code
(35)The light scattering code developed by Yajnik et al calculated 

the angular scattering intensity for heterodisperse distributions by integrat

ing ther scattering intensity from a weighted average of monodisperse

particles. The code for determining the scattering from monodisperse
(38 )particles was very similar to the one developed by Denman et al. A

comparison of monodisperse calculations in the present investigation with
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Denman's results generally indicated agreement to five decimal places with 

occasional differences of one unit in the fifth place. Although attempts 

to improve the efficiency of Denman's code were unsuccessful, a significant 

reduction in computation costs were obtained by optimizing the integration 

method.

1. Numerical Integration Over a Particle Size Distribution Using Simpson's Rule

The size distribution function used to calculate the integrated intensity
(39)function for heterodisperse systems is defined by

ffr.*oiB) “ (r"ro) exp{  " ICr“r0>/®l3? . r>ro
(5)

" 0 r <  ro

where r is the particle radius in^im

tq is the particle radius of the smallest

particle present inyUm

s is a parameter proportional to the width

of the distribution in^m.

The modal radius (radius at the peak of the distribution curve), r., isM
defined by

The distribution is shown in Figure 1 where the characteristic features of a 

sharp cut off in small particle sizes and the positive skew at large particle 

sizes are seen. The modal radius is also indicated. Such a distribution was 

found to describe particle size distributions found in many different systems.(39)

Since the light scattering process depends on the relative size of the 

particles compared to the wavelength of light and not on the absolute size, 

the common practice is to use the relative sizes. Therefore, instead of
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f ( r ) »  ( r - r 0 ) { -  [ t  r - r 0 ) / $ } 5 J- r >  c0
= 0  r  < rn

W

r ro

F l9- 1.  The Exponen t ia l  D i s t r i b u t i o n  F unc t ion  used in  T h i s  
I n v e s t i g a t i o n

f
: V -
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using the absolute terms r, r , r , and s one uses the relative termso m
f39), p  , o< and 9 respectively. These terms are defined below.* M  9

oC = 2ffr/A (7)

p  = 2 TT rQ/ A  (8)

2 i r r « / A  <9 >

= 2fTs/\ (10)

Using these relative terms, one can calculate the integrated scattering 

intensity from the heterodisperse distribution given by equation 5.

L
I (p. ©) “ f P» <£> i(o<,t?)d« (11)

- 'P

where I(p, 0 ) is the intensity scattered at angle &  from a hetero

dispersion characterized by p and f

©  is the scattering angle measured from the forward direction
( 38 )i(<*,0) is the Mie scattering intensity ' at angle © f o r  a 

particle of size o< 

is the largest particle size of the distribution that contri

butes to the integrated scattering.

Since a computer performs the integration a summation is used instead of 

equation 11.

J=n
l (f>> if  > & )  -  £ 2  f(°<j, p, ^) i(e*., ©) W(<x.) 0  2)

where j is an integer representing the jth argument of the integration 

n is the number of arguments used in the integration and depends 

on the integration method 

W(°t\) is a weighting function that depends on the integration 

technique
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(35)Although the available code written by Yajnik et al used Simpson's 

rule to perform the integration, a fresh look at all of the possible integra

tion methods was considered important to reduce the computational costs. It 

is well known that Gaussian quadrature techniques are more accurate than 

integration techniques using equally spaced arguments.(34,40) However the 

Gaussian techniques dictate the location of the arguments to be used in the 

integration. The location and intervals between these arguments are such 

that different size distributions have a different set of arguments even if 

the two distributions overlap significantly.

In contrast, the integration techniques based on equally spaced argu

ments would allow different distributions to use the same arguments that

occur in overlapping size distributions with a tremendous saving in computer
(35)time. The integration method used by Yajnik et al thus proved to be the 

best choice for the present application. He used Simpson's rule, which has 

equally spaced arguments and better approximates sinusoidal type of functions
/  * j/ \

than other methods like the trapezoidal rule.

2. Selecting the Integration Limits and Integrand Intervals Based on Error 

Analysis

Having decided on Simpson's rule, the choices for the integration 

limits and the size of the integrand intervals had to be made. Normally the 

decision for the size of the interval is not required because computer codes 

using Simpson's rule reduce the interval size by half after every integration 

until two consecutive integrations differ by less than the desired accuracy.

i
;
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This approach was not satisfactory for the present investigation because

half of the integrand points are then used as an accuracy check on the integration.

If the number of integration arguments required for the desired accuracy were

known for a given integration, then the convergence test can be eliminated

and thereby reduce the integration arguments by half.

In most cases the saving in the number of integration agruments does not 

warrant the additional programming time required to determine the number of 

arguments needed for a desired accuracy. It is generally more efficient, 

considering the programmer's time and the computional time, to let the com

puter determine the integration accuracy for each case. However, the potential 

saving in the present investigation was substantial, thus making the additional 

accuracy checks worthwhile.
i

The number of integration arguments required to accurately determine the 

integrated scattering intensity from equation 12 is determined for the integrand, 

f(® , p, q ) i(« , 9) , which is the product of the size distribution function
j . j

of equation 5 and the Mie intensity function. The parameters p  , cj , and 9 will 

determine the number of integrand points that are needed to accurately determine 

the integration. Figures 2-4 show plots of the integrand versus the relative 

size a  for different parameter values. These graphs show the expected result 

that as the heterodispersion increases from = 0.2 in Figure 2 to Cj = 5.0 

in Figure 4 the integrand covers a larger a  range and becomes more oscillatory.

Note that Figure 2 has an expanded a  scale compared to Figures 3 and 4.

To maintain the same accuracy for integrating these curves will require a 

greater number of a  arguments for the larger values.
j

The effect of the parameter p on the integrand is seen in Figure 3 where
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integrands for p = 5 and p = 10 are plotted. Increasing the p value 

generally increases the magnitude of the integrand but not the basic 

oscillatory pattern. This follows from the approximately periodic

oscillations in the scattering functions with increasing a  shown in
(41)the study by Heller and Nakagaki. The number of arguments required 

to obtain a given integration accuracy depends on the oscillation pattern 

of the integrand, p is therefore expected to have little effect on the 

accuracy of integration for a given number of arguments.

Figure 3 also shows that increasing the angle 0 from 150° to 170° re

sults in a greater number of oscillations, thus requiring more <*. arguments 

to maintain a constant integration accuracy. Conversely, at a fixed number 

of arguments, the integration at 170° will be less accurate than the inte

gration at 150°.

A systematic study was then made to quantitatively assess the error 

due to the number of arguments used in the integration. The parameters used 

in this study were tj » 0.2, 1.0, 2.0 ; p  = 0(5)15 ; 0 - 30°(30°) 150°, 170°;

tt\ = 1.20 ; and vertical polarization. Each combination of parameters repre

sents a particular integrand similar to the ones drawn in Figures 2 and 3.

The error analysis consisted of integrating a particular integrand curve five 

different times using a larger number of arguments for each integration.

Twenty arguments were used for the initial integration with each subsequent 

integration using twenty additional points until 100 points were used to 

evaluate the final integration.

The results for all of the parameters having p  = 5 are shown in Figure 

5 where the relative error is plotted against the heterodispersion parameter (j.
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The relative error is defined as (1^ - *100^*100’ w^ere * represents the 

integrated intensity and the subscripts represent the number of arguments 

used in the integration. Line segments separate the regions where a different 

number of arguments were used to. evaluate the integral. The points shown 

on the graph correspond to the individual angles used in this study. Note 

the large variation in the relative error at a given value and constant

number of integrand points. This variation is due to the significant changes that

occur in the integrand curves for different angles. The accuracy of the integrated 

intensity is in general much better in the forward scattering direction than 

in other directions because the integrand curve has progressively fewer

oscillations as the angle 9 is reduced to 0°, Deviations from this trend occur

whenever the integrand curve at a given angle shows a less complicated curve 

than the corresponding integrands at smaller angles.

Figure 5 also shows the expected increase in the relative error with an 

increase in while maintaining the same number of integrand points. Note 

that the increase in the relative error from ^ ■ 0.2 to ^ B 2.0 for the 

angular range as a whole is approximately equal to the variation in relative 

error within the angular range at a constant . Moreover, the relative 

error does not increase uniformly for all angles as the heterodispersion is 

increased. This non-uniformity results in a periodic rearrangement of the 

general pattern where smaller angles exhibit smaller relative errors.

The most important feature in Figure 5 for the present investigation is 

the decrease in the relative error of the scattered intensity with an increase 

in the number of integrand points used in the integration. To obtain the 

desired accuracy for the integrated intensity the number of integrand points
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is adjusted for the different variables using the relative error informa

tion in Figure 5. Ideally the number of integrand points should be minimized 

as a function of the heterodispersion q and the angle 0 while maintaining a 

constant accuracy. Although minimizing the number of integrand points to 

provide a uniform accuracy for all angles will save a few points for indivi

dual angles, doing this will actually result in a tremendous increase in the 

total number of points required for all the angles. By using a different 

number of integrand points for each angle, the integrated intensity from 

different angles could not reuse the points from previous angles.

The problem is compounded since overlapping size distributions would 

not have any integrand points in common. Recall that Simpson's rule was 

chosen for the integration method rather than the more efficient Gaussian 

quadrature because of the tremendous savings that result in reusing the integrand 

points. Similarly the immediate-savings realized by minimizing the number of argu

ments for each angle is insignificant compared to the added number required 

for all the angles.

The number of points in the integrand for a given size distribution 

characterized by p  and tj were therefore selected on the basis that the relative 

error for all angles was equal to the greatest error. In addition, similar 

results for p a 0, 10 and 15 indicated that except for p  B 0, the relative 

error was approximately independent of p. The data for p ■ 0 showed a

i smaller error as expected because the integrand has not yet developed the
(41)oscillations seen at higher p  values.

Thus, for a given number > j, of aj points, (j is the only remaining variable 

in the integrand, P» ) i (or j „ 0) , of equation 12 that affects the relative

I
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error of the integrated intensity, X(p, 0). This relationship

allows one to calculate the number of integrand points required to obtain a 

desired accuracy for a given <| value. The accuracy of the integrated scatter

ing intensity to five decimal places was considered sufficient for the present 

study. The number of integrand points were then determined from Figure 5 

so that the relative error would be less than 10 ^ for every value considered, 

An additional restriction was placed on the number of integrand points because 

the size distribution parameters were changed in increments of 0.2. To enable 

overlapping size distributions to use all of the integrand points in common, 

the size increment between points had to be a fraction or multiple of 0.2.

Strictly speaking the integrand points, f(o^> p ,  8)* at

different o-j arguments can not be reused for overlapping size distributions 

or different angles having the same size distribution. This follows because

ffo., p, q )  changes with different size distributions and i(»., 0) changes J J
with different angles. The integrand points were said to be reusable for

different size distributions and different angles because the most time

consuming portion of the integrand points can be reused. The Mie intensity
(38)function is given by the following equation :

i (o', 0)
00
n£l A_ ( ̂  ) TT (0) + B (a) T (0) n=i n n n n (13)

where A (a) and B (a) are the Mie coefficients n n

tt (0) and t (0) are angular functions n n

The Mie coefficients An (a ) an^ B^Cor) are very complicated functions of Bessel 

functions and are responsible for most of the computational time in calculating 

Mie intensity functions. These Mie coefficients are- saved and reused in over-
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lapping size distributions and different angles. In addition, the size 

distribution function f(<*» p> tj) is reused when scattering intensities for 

the same distribution but different angles are calculated.

Table I shows the number of integrand points required for different ^ values 

when both the relative error of the integration and the restriction on the size 

increment A a  are .taken into account. The a  range for the integration and the 

size increment between the points are also shown. The upper size limit for 

the integration a  range shown in Table I represents the point at which 

the size distribution was truncated. The truncation value of the size distri

bution shown in equation 5 was 10 ^ for the present study. All of the scatter

ing intensities calculated in the present investigation used the number of inte

grand points shown in Table I for different values. Since the analysis 

was not extended to higher ^.values, the size increment was maintained at 0.1 

for those occasional calculations.

A very important feature in Table I is the dependence of the size incre

ment Affon i[. To maintain a given accuracy in the calculated scattering 

intensity, the size increment A o  must be greatly reduced as the particle size 

distribution becomes more monodisperse (lower Rvalues). The increased error 

at small values observed in the tabulations by Yajnik et a i " ^  resulted from

using a larger size increment A a  than recommended in the present study.
(42) ,Dave investigated the effect of using different size increments 

ranging from 0.1 to 2.0 to integrate scattering functions and concluded that 

size increments of 0.1 must be used to obtain accurate results. His study 

used only two very heterodisperse size distributions and consequently failed 

to observe the dependence of the integration accuracy on the heterodispersion

I
; V-f
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TABLE I

Number o f  In teg rand  P o in t s  Required  f o r  D i f f e r e n t  q Values

t o  Make th e  I n t e g r a t i o n R e l a t i v e E r r o r  Less than  10"

4 a  Range Aa No. P o in t s

. 2 0 .5 .0125 40

.4 1 . 0 .025 40

. 6 1 .5 .025 60

. 8 2 . 0 .05 40
1 . 0 2 .5 .05 50

1 . 2 3 .0 .05 60
1.4 3 .5 .05 70

1 . 6 4 .0 .1 40
1 . 8 4 .5 .1 45
2 . 0 5 .0 .1 50
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and scattering angle.

The preceding analysis allowed the number of integrand points required

for evaluating integrated light scattering intensities to be reduced by

approximately half when compared to the conventional application of Simpson's

rule. In the conventional method the number of integrand points are doubled

after each integration until two consecutive integrations agree to within the

desired accuracy. Additional computer savings were obtained by computing the

integrand points for only one size distribution at a time and storing only

that fraction that overlapped the next size distribution. Storing all of the
( 36 )integrand points as done previously until the desired computations were 

completed results in high computer memory costs.

The effect of the integration limits on the accuracy of the integrated 

scattering intensity was also investigated. The size distribution function 

used in the present study (equation 5) has a sharp cut off for small particles 

and therefore does not contribute to any error. However, the upper limit of 

the distribution function shows an exponential decay which continues to infinity. 

The error in the calculated intensity will increase as the exponential tail 

is truncated at smaller particle sizes or, equivalently, at larger values of 

the distribution function.

A series of intensity calculations were made to quantitatively measure the 

error due to truncating the size distribution at different values. The para

meters used in this study were ^ ° 0.2, 1.0, 2.0; f>= 0(5)15; 0 = 60°, 120°,

170°; rr\ =* 1.20; and vertical polarization. Each set of parameters represents 

one particular integrand. The relative error resulting from the truncated 

distribution is defined by (1^ - I_y) / where I represents the integrated

I
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intensity and the subscripts represent the base 10 logarithms of the 

distribution function at the truncation point. Thus represents the 

integrated scattering intensity from a size distribution that was truncated 

when its value dropped to 10 ^ .

Figure 6 shows the relative error of the scattered intensity for p  a 5 at 

different angles and degree of heterodispersions plotted against the truncated 

value of the distribution function. The expected decrease in the relative 

error for smaller truncation values is readily seen. In addition there is 

a trend, although not consistent, toward larger relative errors with larger 

<1 values. The behavior for the different angles is not clear.

Corresponding data for p  ■ 10 and 15 show approximately the same values as 

seen in Figure 6 for p =  5. However, the data for p  ** 0 shows a higher 

relative error than the larger P‘ values. This observation is expected because 

the scattering intensity increases very rapidly from the Rayleigh region at 

p = 0 and therefore magnifies any changes in the tail section of the distribu

tion. Based on these results the truncation value of the distribution was 

set at 10 ^ for the scattering calculations in the present study.

The investigations on the relative error due to the number of integrand 

points and the truncation of the distribution function were based on calcula

tions using m  ° 1.20 and incident light polarized perpendicular to the plane 

of observation. The optimum number of integrand points and the truncation 

values from these studies were then used on rn values ranging from 1.05 to 

1.333 and incident light that was unpolarized and polarized parallel and per

pendicular to the plane of observation. Based on the discussion earlier in 

this chapter, the relative error for the integrated intensities will increase
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as nrt increases from 1.20 to 1.333 and decrease as m  decreases from 1.20 to 

1.05. The primary factor that controls the relative error is the oscillation 

of the integrand which increases slightly with larger ryj values.

The relative error due to truncating the size distribution should remain 

approximately constant with changes in fh. This error depends on the relative 

scattering intensity for particle sizes at the tail of the distribution 

compared to the scattering intensity from the rest of the size distribution.

As the refractive index increases the two regions will change proportionately.

Changing the polarization of the incident light is expected to have a 

minimal effect on the relative error of the integrated scattering intensity. 

Since the scattering from unpolarized light is very similar to that for per

pendicular polarized light, the expected relative error would be similar.

The monodisperse scattering from* horizontally polarized light is generally 

less oscillatory than from vertically polarized light and should therefore 

also have lower relative errors for the integrated scattering.

C. Development And Evaluation Of Extrema Search Algorithms

The first algorithm used to determine the maxima and minima of
( 37 )angular light scattering intensities was the Fibonacci algorithm described 

earlier in this chapter. However, the number of intensity functions required 

to determine an extremum was far too great for this method to be considered.

An extensive study was then made of the numerical methods for obtaining light 

scattering extrema. These methods were restricted to those algorithms that 

do not require function derivatives.

1. Internal Halving

The next method investigated was an interval halving algorithm called
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(43)EXFIND obtained from the Ford Motor Company. This algorithm determines 

extrema in the following manner. Function values y(x), y(x+h) and y(x+2h) 

were calculated at three equispaced points, x, x+h and x+2h starting from 

an initial point x and the slopes of the two connecting line segments 

determined. If the slopes did not differ in sign then a new function value 

y(x+3h) was calculated at a point x+3h determined by adding the increment 

h to the last point. The slope from the new segment is then compared to the 

previous segment. If the slopes do not differ in sign again the preceding 

steps are repeated. However, if the slopes of the last two line segments

differ in sign, then a new increment h^ is obtained by halving the previous

increment and reversing its sign.

Now that an extremum has been detected a detailed search is undertaken 

using the same instructions from,the initial search but a new increment hj. 

Three new function values y(x), y(x+h^) and y(x+2h^) are then calculated at
<j|f

the three equidistant points x, x+hj and x+2h^ . The slopes for the line 

segments are then determined and the above procedure repeated. Note that this 

iteration search moves in the opposite direction using half the increment size 

compared to the initial search. When consecutive slopes in this first itera

tion differ in sign, a new increment h^ is obtained by halving the previous

increment hj and reversing its sign. Thus the extrema search in the second

iteration is in the same direction as the original search but with the search
2increment reduced by (1/2) . Higher iterations will search for the extremum 

first in one direction and then the other, using smaller increments each time.

*Although the EXFIND code recalculated the points y(x) and y(x+2h^), over 

50% savings can be obtained by storing these previous calculations.

I
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After n iterations the interval in which the extremum is located will be 

reduced by (1/2)°.

2. Generalized Interval Reduction

The concept of the interval halving method was then generalized to any 

reduction factor r. However using interval reduction factors much smaller 

than 0.5 presents the problem of where to begin the new search. Starting from 

the end point of the previous interval, as done in the interval halving method, 

would be very inefficient for most of the extrema determinations. The excep

tion would be those extrema that occur near the endpoint. However in the majority 

of cases the extrema lie in the central portion of the three point interval.

A number of different approaches could be used to locate the initial 

search area. The generalized interval reduction method uses points already calcu

lated by initially having the middle point of the larger interval be the 

first point of the reduced interval. Other approaches would use the points 

from the larger interval only to estimate the location of the extremum. The 

reduced interval would then be centered on this estimate. A possible method 

for estimating the extremum location would be to fit a parabola to the initial 

three points and determine the parabola extremum. This approach will be

discussed as the next extremum search method.

The generalized interval reduction method uses the same initial search

technique as in the interval halving method to initially locate an extremum.

Once the extremum is located within a three point region the increment h is

reduced by the factor r and the middle point x^ from the larger interval is

used as the middle point x^ in the reduced interval. Since it is possible

that the extremum will not lie within the interval x + h,, only one of them — 1 J
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new end points will be calculated for a preliminary test. This new end

point is calculated at x +h, in the direction of the steepest slope. Them l
steepest slope refers to the largest slope of the two line segments containing

the previous three points. The other end point is retained from the line

segment having the steepest slope.

A preliminary test is then made to see if the extremum is contained

within the region by comparing the sign of the two slopes corresponding

to the line segments in this new region. If the two slopes have the same

sign then the new end point has undershot the extremum. When this happens

a new point is calculated at x + 2h. and the slopes of the two line segmentsm l
in the interval x to x + 2 h. compared to see if the extremum has now m m  1 r

been enclosed. If not, additional points are calculated in the same direction

at increments of h^ until the extremum has been enclosed.

However if the two slopes in the preliminary test have opposite signs

then the new end point has correctly overshot the extremum. The other

end point is then calculated at x^ - hj and the sign of the two slopes of the

line segments from x^ - hj to + hj compared. If the slopes do not differ

in sign then the extremum is not contained within the region and a new point

is calculated at x - 2h,. Additional points as needed are calculated inm l  r
the same direction at increments of hj until the extremum is enclosed within 

the interval.

After the extremum has been enclosed within the interval a check is made 

to see if the interval were reduced to the desired level. If not, then the 

increment h^ is reduced by the factor r and the preceding sequence of steps

I
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repeated a second time. After n iterations the increment is reduced by 

( r )  .

3. Parabola Fitting

Another method for determining where to begin searching for an extremum 

already enclosed within an interval uses the extremum o.f a parabola fitted 

to the three points. In contrast, the interval halving method begins at the 

endpoint while the generalized interval reduction begins at the midpoint.

Once the points are found that enclose the extremum, a parabola is fitted, to 

these points. The extremum from the parabola will then serve as the midpoint 

x^ in the search of a reduced interval using smaller increments h. Except 

for this change in determining the middle point xm in the reduced interval, the 

parabola fitting and the interval reduction methods are identical.

4. Comparison of Extrema Search Algorithms

The preceding numerical methods for determining extrema locations were 

then tested on the light scattering curves shown in Figure 7. This figure 

shows the scattered intensity plotted against the angle of observation for the 

four different monodisperse particle size distributions characterized by 

p = 3, 5, 7 and 15 and = 0. The relative refractive index for the system 

is 1.20, and the incident light is polarized perpendicular to the plane of 

observation. The extrema from these scattering curves are typical of the ones 

encountered in the present investigation and will therefore be a realistic 

test of the relative performance of the numerical methods.

All of the numerical methods used the same initial search technique 

described earlier to locate the general region of each extremum. The initial 

search would scan one curve at a time using intensity data spaced every 5° and
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locate the extrema within a three point interval. Once the extrema were 

located within an interval of + 5° the numerical methods would resolve the 

extrema locations to _+ 0.005°. The total number of points required to 

determine all of the extrema from the curves in Figure 7 to an accuracy of 

_+ .005° was then determined for each numerical method. The initial points 

spaced every 5° were not counted in the total. Several repetitions of the 

extrema searches were required for the parabola fitting and interval re

duction methods to compare different reduction factors.

Although there are 43 extrema in Figure 7, three of the extrema were

missed by the initial search at 5° intervals. These extrema are indicated

in the curve for p  = 15. The two shallow extrema at 120.5° and 123.0° were

missed because the 5° spacing was too large. However, the minimum at 37.7°
»

was missed even though the initial search technique indicated the presence 

of an extremum. All of the different numerical methods calculated the 

adjacent maximum at 42.7° instead. This behavior occurs periodically when 

no restrictions are placed on the region of the detailed search.

The results of using the different numerical methods to find the 

extrema of the graphs in Figure 7 are shown in Figure 8. This figure shows 

the total number of points needed to determine the extrema locations from 

an initial uncertainty of + 5° to a final uncertainty of _+ 0.005° plotted as 

a function of the interval reduction factor. The Fibonacci search algorithm 

has only one point because the interval in which an extremum is located is 

reduced by a constant factor for each iteration. This factor is controlled 

by the Fibonacci numbers. Similarly, the interval halving method, by defini

tion, has a constant interval reduction factor of 0.5. Note that the Fibonacci
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and interval halving algorithms require approximately the same number of 

points to locate the extrema in figure 7 to + 0.005°. The generalized 

interval reduction algorithm was tested at a number of different reduction 

factors from 0.01 to 0.5. Although there is some scatter about the curve 

drawn through these different tests the curve shows a pronounced minimum 

for an interval reduction factor of about 0.1.

A minimum is expected from an analysis of the two opposing processes 

involved for reducing the initial interval in which an extremum is located 

to the desired interval. One process is dependent on the interval reduction 

factor r. The number of times n that the interval must be reduced to 

reach a final interval decreases with smaller reduction factors since the 

total reduction after n repetitions is rn . Each repetition of the interval 

reduction requires a minimum number of points. For the generalized interval 

reduction algorithm the minimum is two points while for the parabola fitting 

algorithm the minimum is three points. The total number of points is then 

n times this minimum.

The other process depends on the number of points required to enclose the 

extremum within an interval. As the interval initially containing an extremum 

is reduced to a smaller size, the extremum will frequently lie outside of the 

reduced interval. Additional points must then be calculated until an interval 

is found that encloses the extremum.

The two processes show the opposite trends as the interval reduction 

factor is reduced, thus resulting in a minimum. In the first process, the 

number of points required to reduce the interval decreases with r because
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fewer repetitions n will result in the same total reduction rn . However, 

as the interval reduction factor decreases, the extremum will not lie within 

the new interval and a greater number of points will be required to search 

for the extremum.

The extremes of these two cases require an infinite number of points 

to locate the extremum. For an interval reduction factor of 1.0 (i.e., no 

reduction at all) the interval will not be reduced regardless of how many 

attempts are made. Similarly an infinitesimal interval reduction factor 

will require an infinite number of points to locate the extremum since the 

consecutive points in the search move only in infinitesimal increments.

The criterion used for determining when a given extremum has been 

located to within jh 0.005° can make a large difference in the number of points
i

required. This criterion is based on the type of extremum search methods used.
(44)Murray has classified the linear search methods into two categories, one 

based on function comparison and the other based on function approximation.

The function comparison methods compare the values of the function at differ

ent points to reduce the interval in which an extremum has been located.

The difference in the various algorithms is how the location of the functions 

are to be determined. The Fibonacci, interval halving and interval reduction 

algorithms all fit in this category. In addition, the parabola fitting algo

rithm can also be placed in this category if the extremum from the parabola 

is used to calculate a point for a comparison test.

In the function comparison category the.parabola extremum is not 

assumed to be an approximation of the extremum to be determined. This

1
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point is used only to compute a function value for the function comparison test. 

The true extremum in these function comparison methods can never be assigned 

to a single point but rather to some interval. Thus the number of points 

required to determine an extremum to an accuracy of 0.005° is equal to the 

number which will reduce the interval in which the extremum is located to 

+ 0.005°.
(44)The category of linear search techniques based on function approximation 

use a simple function to approximate the function whose extremum is to be 

found. The simple function is often a polynomial generated from a fixed 

number of points calculated from the primary function. The extremum of the 

simple function serves as an approximation of the true extremum. More 

accurate approximations are obtained by determining the function value at the 

approximate extremum and using it to generate an improved simple function.

This process is continued until the approximate extrema from the last two 

consecutive simple functions agree within the desired accuracy. In contrast 

to the function comparison methods, the extremum in this approach may be very 

accurately determined with only a small reduction in the interval containing 

the extremum.

The parabola fitting algorithm can be interpreted as either a function 

comparison or a function approximation method. Since the two interpretations 

show a large difference in the number of points required to determine an 

extremum, the results for both interpretations are plotted in Figure 8. The 

interpretation of the parabola fitting algorithm as a function comparison 

method is shown as the dashed curve. Note that above the interval reduction 

factor of 0,09 the parabola fitting algorithm requires more points to deter
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mine the extremum than the interval reduction algorithm# The total number 

of points in this region of larger reduction factors is primarily due to the 

minimum number of points required to reduce the _+ 5° interval to + 0.005°.

Since the number of iterations are the same, the greater number of total points 

required for the parabola fitting algorithm is due to the minimum number of 

points for each iteration. The parabola fitting algorithm requires three 

while the interval reduction algorithm requires only two.

The opposite trend is seen in the region of smaller interval reduction 

factors where the parabola fitting algorithm requires fewer points to locate 

the extremum than the interval reduction algorithm. The number of points 

required to determine an extremum in this region of small reduction factors 

is dominated by the search for additional points to enclose the extremum.

Since the parabola fitting algorithm allows the search to be conducted near 

the extremum fewer points are required compared to the interval reduction 

algorithm.

If the parabola fitting algorithm were interpreted as a function approx

imation then the number of points required to determine the extrema is shown 

as the lowest curve in Figure 8. Although both interpretations used the 

same data points, the one based on the function approximation shows a con

siderable decrease in the number of points required. This decrease results 

from the ability of the function approximation method to predict the extremum 

location. The extremum in this approach is determined when two consecutive 

predictions agree within + 0.005° even though the interval of the data points 

is _+ 0.05° or even _+ 0.5°. In practical applications the parabola fitting algo

rithms would be interpreted as the more efficient approximation method.



5. Repeated Polynomial Fitting Algorithm

Despite the significant reduction in the number of data points required

to accurately locate an extremum, the computer time requirements were still

excessive. A more thorough investigation of the function approximation methods

was then made. The parabola fitting algorithm calculated three new points

for every iteration to generate an improved parabola.* However an improved

parabola can be obtained by only calculating the function value at the extremum

of the parabola and using that point to generate an improved parabola. This

procedure results in significant savings compared to the already efficient

parabola fitting algorithm. A description and code listing of this type of
(37) ■extrema search method is given in the book by Kuester and Mize.

A number of approximation polynomials were investigated for the function 

approximation method. Since derivatives of the integrated Mie functions 

were not available the approximation polynomials had to be generated from 

the angular intensity data. Of the different possible approaches to generate 

polynomials from data points, the one based on collocation was selected. A 

collocating polynomial is one that coincides with the function to be approx

imated at certain specified p o i n t s . T h e  other approaches, like the

Chebyshev approximations, appeared to be very attractive for the present investi- 
(45 )gation. However, the collocating polynomials were selected because they

could make use of the large quantity of light scattering data already stored
(36 )on magnetic tape whereas the Chebyshev approximation could not.

♦Additional points were calculated to search for the extremum when the interval 
would no longer contain the extremum.
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Of the different collocating polynomials available, the ones based 

on Newton's formulas and Stirling's f o r m u l a s ^ ^  were used in this study. 

Newton's formulas are very useful to approximate data either at the begin

ning or the end of a tabulation. The Stirling's formulas are among the 

most frequently used forms of the collocation polynomial and use data spaced 

at both larger and smaller arguments. Since these polynomials have to 

accommodate the additional points from the extrema calculations, the formulas 

based on equispaced arguments can not be used. The parabola fitting algo

rithm was able to use equal spaced arguments in Stirling's formula of second 

degree because three new equal spaced points were calculated for each itera

tion. To allow new polynomials to be generated from unequal spaced data, as 

required in the function approximation methods, the divided difference versions

of Newton's formulas and Stirling's formulas were used. The lengthy equations
(45)are fully described in the book by Scheid.

The accuracy of the Stirling's polynomials in approximating the light 

scattering curves were then investigated. Since the polynomials using 

Newton's formulas were seldom required only the Stirling's formulas were 

used in the accuracy study. However, the conclusions from the accuracy study 

will apply to the Newton's formulas as well since both methods will 

generate the identical polynomial from a given set of data points. The methods 

differ only in the way that the polynomial is generated.

Since the scattering intensity pattern from 0° to 180° is repeated from 180° 

to 360°, the tabulations do not have a real beginning and end. The calculations 

in the present study were therefore able to use Stirling's formulas at the 

beginning and end of the table whenever the scattering intensities were 

tabulated to 0° and 180° respectively.

i
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Figure 9 shows a comparison of the second and fourth degree Stirling's 

polynomials used to approximate the scattering intensity curve about a minimum. 

The intensity of the scattered light is plotted against the angle of 

observation* This figure is a blow-up of the scattering curve taken from 

Figure 7 for the particle size distribution characterized by P * 5 and Q ° 0.

The true scattering curve and the two Stirling's polynomial approximations 

are shown by the solid curve and the data points respectively. The second 

degree polynomial, which collocates with the scattering curve at 85°, 90° and 

95° shows only an approximate agreement with the scattering curve within this 

angular interval. Outside of this interval the second degree approximation 

deviates significantly. In contrast, the fourth degree polynomial, which 

collocates with the scattering curve at 80° (5°) 100°, shows excellent agreement
i

with the scattering curve over the twenty degree interval.

The extrema of the two approximation polynomials are then determined 

and the corrresponding scattering intensities calculated. An improved poly

nomial approximation is then generated from a new set of points using the 

newly calculated point and discarding the point farthest from this poly

nomial extremum. Figure 10 shows the improved polynomial for the second 

and fourth degree Stirling's polynomials. The second degree polynomial 

collocates with the true scattering curve at 85°, 87.1° and 90° and shows very 

good agreement over this angular range. Outside of this range the approxima

tion polynomial becomes increasingly less accurate. The fourth degree poly

nomial collocates with the true scattering curve at 80°, 85°, 87.0°, 90° and 

95° and shows excellent agreement within this angular range. Note that the 

extremum from the less accurate second degree polynomial was 87.1° instead 

of 87.0 °.
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The relative error for each degree polynomial was then determined 

for the original and improved polynomials shown in Figures 9 and 10 respec

tively* Figure 11 shows the percent relative error of the second degree 

polynomials plotted as a function of angle. The three points in each 

curve for which there is zero error represent the collocation points. The 

initial approximation (solid curve) and the improved approximation (dashed 

curve) show the same general behavior of a cubic curve. In general, the 

error will oscillate between positive and negative values within the angular 

range of the collocation points. Outside of this range the error will mon- 

otonically increase. Figure 11 shows the dramatic decrease in the percent 

relative error for the improved polynomial using the extremum from the 

previous polynomial. The extremum location is indicated by the arrow.
i

The corresponding percent relative error for the two fourth degree 

polynomials is shown in Figure 12. Note that the scale for the percent 

relative error is one tenth as large as in Figure 11. Both the initial 

approximation (solid curve) and the improved approximation (dashed curve) 

show the same general pattern of oscillating positive and negative errors 

within the angular region of the collocation points. Outside of this 

region, the error increases monotonically. The improved polynomial shows a 

large decrease in the percent relative error in the vicinity of the extre

mum. This improvement in the accuracy results from using the extremum of 

the initial approximation polynomial to generate an improved polynomial.

As seen with the second degree polynomial, the improvement occurs primarily 

in the vicinity of the extremum.

Although both the second and fourth degree polynomials will provide

i
: Vj
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accurate extrema determinations, the fourth degree polynomial shows a much 

smaller relative error than the corresponding second degree polynomial.

Figure 13 shows a comparison of the percent relative error for the improved 

second and fourth degree polynomials taken from Figures 11 and 12. The fourth 

degree polynomial has a much lower percent relative error and extends over a 

much wider angular range than the second degree polynomial. Another very 

important aspect to be considered in the present evaluation is the ability 

of the fourth degree polynomial to much better approximate the more assy- 

metric extrema than considered in Figures 9-13. Based on these considerations, 

the light scattering extrema in the present investigation were determined 

by using the fourth degree Stirling's polynomial.

Unfortunately Stirling's polynomials were not used in the previous test 

which compared the number of points required to determine an extremum from 

an initial interval of + 5° to a final interval of + 0.005°. However, a 

large number of tests on many different particle size distributions did show 

that the Stirling's fourth degree polynomial required an average of 1.2 

points to determine an extremum from an initial interval of + 5° to a final 

interval of + 0.1°. Another set of tests showed that the extrema were deter

mined from an initial interval of + 2.5° to a final interval of + 0.01° using 

an average of 1.2 points per extremum. Based on these tests, the Stirling's 

fourth degree polynomial required about 80 points to determine the extrema in 

the comparison test in Figure 8. This represents a 90% reduction in the 

number of points required to determine the extrema compared to the Fibonacci 

method used initially.

D. Description of Computer Code and Accuracy of the Results

The preceding investigations on optimizing the light scattering



Pe
rc

en
t 

R
el

at
iv

e.
 

E
rr

or
□  D e g r e e

O 4 t l * D e g r e e

100075
Fig . 13. Comparison o f  th e  P e rc e n t  R e la t iv e  Error-From  th e  Second

Approximation o f  th e  S c a t t e r in g  I n t e n s i t y  Curve Using
S t i r l i n g ' s  Second and Fourth  Degree Polynomial



53

intensities and developing the extrema search algorithms were used to write 

a computer code that calculates the angular extrema from heterodisperse 

distributions. A description of the code which is illustrated in the flow 

chart shown in Figure 14 will be presented in this section. The flow chart 

shows only the general functions of the code to make it easier to follow.

1. Primary Features of the Code

The first step in obtaining angular light scattering extrema is to 

generate for a particular set of parameters ( m, p, tj , polarization) the 

angular intensity at a number of angles (FC-3)*. To reduce the number of Mie 

calculations, the angular region between Q  « 0°and the first minimum was 

skipped. Since there are no extrema in this region, one can begin the angular 

search close to the first minimum in the forward direction.
i

The interval A ®  for the equally spaced angles was 5.0° if p <  8.0 and 2.5° 

if p >  8.0. This decrease in AO at higher p values (i.e., higher particle 

sizes) was required because the number of extrema for a given angular range 

increased as the particle size increases.

The next step involved using five consecutive Mie intensities 1(0)'s 

centered about the angle 9  to generate the derivative of a fourth degreeJ

polynomial (FC-4). The derivative is used because the extremum can be found 

directly from the zeros of the resulting third degree polynomial. Although 

the primary angular data were initially equispaced (FC-3), the addition of 

extrema points to this data (FC-7) resulted in unequal spacing. The Stirling's 

divided difference polynomial could handle both equal and unequal spaced 

arguments.

*The FC numbers in parentheses refer to the appropriate section of the flow chart.
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The slope, P^CQj), of the polynomial generated at the angle 0^ is then 

compared to the slope of the preceding polynomial generated at the angle 

9j_l (FC-12). If there is no preceding polynomial then the polynomial slope 

at the next angle must first be determined. A difference in the sign of the
s .

two consecutive slopes (i.e., product of the slopes is negative) will indicate 

the presence of an extremum.

On rare occasions the slopes of two consecutive polynomials will have 

the same sign although a point-by-point comparison of consecutive intensity 

data indicates the presence of an extremum. Therefore, to catch these extrema 

missed by the slope comparison, consecutive intensity values were also compared 

to see if they did not steadily increase or decrease from 9j_| to 9j + j (FC-15). 

It should be noted that the number of extrema missed by the polynomial slope
i

method is much less than by the point-by-point comparison method. If both the 

slope comparison (FC-12) and the point-by-point comparison (FC-15) do not 

indicate the possibility of an extremum then the angle 0^ would be increased 

byA9(FC-20) and the extremum search continued at this new angle.

Once the possibility of an extremum was detected by either the slope 

comparison (FC-12) or the point-by-point comparison (FC-15), a detailed search 

was undertaken. The detailed extremum search consisted of repeatedly finding 

the extremum of a given polynomial (FC-11) and then using that extremum to 

generate a new, improved polynomial (FC-7). The extremum of the polynomial 

was determined using the Newton-Raphson method (FC-11) to find the zeros of 

the polynomial derivative. The Newton-Raphson method would be repeated until 

either two consecutive extrema for a given polynomial would differ by no more
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than 0.01° (FC-10) or the number of repetitions exceeded a predetermined 

limit (FC-14).

The extremum angle 0pE obtained in this manner pertains to the extremum 

of a given polynomial and not to the extremum of the angular light scattering 

function (0g)« The angular location of the polynomial extremum 0p£, will 

converge to the true extremum 0g as one of the five angular data used to gener

ate the polynomial converges to the true scattering extremum. However, it is 

not necessary for all of the angular points to converge to the extremum.

This convergence can be accdmplished by using the Mie intensity at the 

angular extremum 0pE from one polynomial to generate a new polynomial (FC-6 

and FC-7). Since the fourth order polynomial can only use five points, the 

point farthest from the extremum is discarded (FC-7). If the angular location 

of the extremum for two successive polynomials differed by no more than 0.1° 

then 0 pE obtained from the last polynomial would represent the angular loca

tion of the light scattering extremum 0g (FC-8). However, if 0 pE from two 

successive polynomials differed by more than 0.1° then another polynomial would 

be generated (FC-6 and FC-7) using the Mie intensity at the last extremum 

angle 0 pE and the sequence repeated. The extremum at 0g would then be desig

nated as a maximum or minimum depending on the sign of the second derivative 

of the polynomial (FC-13).

To economize on the number of Mie calculations required, the Mie intensity

1(0) was not calculated for the last angular location of the extremum. The
\

calculated intensity values will therefore not correspond to the associated 

extremum angle and thereby introduce an error into the intensity values.

j
1
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However, this type of error would occur even if the last Mie intensity were 

calculated since the extremum angles were rounded to 0.1°.

After inserting the extremum into the original table .(FC-16) the angle 

&  was checked to see if it were the last angle (FC-19). If the angle ©  wereJ J
not the last, then it would be increased by A 9  (FC-20) and the search for an 

extremum continued (FC-4). A table of the angular position and the intensity 

of the extremum for a given set of parameters would be written when the last 

angle is reached. By systematically varying the different parameters (FC-2) 

all of the extrema would be produced.
*

2. Special Cases

While the method described proved most satisfactory both with regard to 

precision of the results obtained and the speed of computation, it was recog

nized that under certain circumstances it could either fail or produce question

able results. Steps were taken to exclude such contingencies. The complica

tions which could present themselves under certain circumstances were (1) 

that extrema could be missed, or (2) that fake extrema were generated, or (3) 

that extrema were so shallow that their angular location could not be deter

mined with sufficient precision.
«

g Missing Extrema

Extrema can be missed only if the polynomial slope at 9  does not have anJ
opposite sign compared to the preceding polynomial slope at (FC-12) or if

the intensity I O )  steadily increases or decreases from to ^j+ i (FC-15).

The worst case occurs when a pair of shallow and closely spaced maximum and 

minimum are undetected by the above two checks (FC-12 and FC-15), since no 

subsequent test will detect them. In all cases these extrema can be detected 

by reducing the angular interval A6, .although the number of Mie calculations
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would then increase. However, in the majority of cases, one of the two 

extrema is detected and accurately located. The other extremum would then be 

detected in a subsequent check (FC-18) to insure that consecutive extrema 

alternate maximum and minimum. If this check reveals a missing extremum 

then an accurate search is undertaken in the appropriate angular range (FC-22) 

and the extremum located.

The alternating maximum and minimum check cannot indicate a missing 

extremum for either the first extremum in the forward direction or the last 

extremum in the backward direction. Since it is well established that the 

first extremum in the forward direction must be a minimum the calculated 

extrema were checked for this condition (FC-17). If the first extremum in the 

forward direction were not a minimum then a search was made in the appro

priate region (FC-21) until the missing extremum was found.

The last extremum in the backward direction is also a minimum. However, 

in certain cases, the minimum lies within 0.1° of the backscatter at 180°, 

making its detection extremely difficult. Moreover, detecting the first 

minimum in the backward direction is very difficult because of the absence 

of a large intensity increase from this minimum to 180°, in contrast to the 

large intensity increase in the forward direction from the first minimum 

to 0°. No test was therefore made to determine a missing minimum in the 

backward direction. However, to improve the detection of this minimum, the 

angular increment A O  was decreased by half in the region from 170° to 180°.

A small percentage of angular extrema were undetected by both the slope 

(FC-12) and the point-by-point (FC-15) comparison methods. These extrema 

were missed because the angular increment used to scan the intensity data 

would contain more than one extremum or be too large to detect the shallow

i
; V J
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minimum in the backward direction. Reducing the angular increment so that 

it contained only one extremum would insure that all extrema were detected 

but greatly increase the number of computations. The angular increments used 

in the present investigation represent a compromise between minimizing the 

number of computations and maximizing the number of extrema detected.

Undetected extrema occur as the first minimum in the backward direction 

or as a pair of shallow minima and maxima separated by less than one 

angular increment. It was already pointed out that if one of the closely 

spaced extrema pair were detected, then the other would also be found. Special 

tests conducted at smaller intervals indicated that as high as 3% of the total 

number of extrema went undetected. The majority of the missing extrema 

occurred in pairs of maxima and minima having an average separation of 

2.8° and a relative intensity difference of 0.74%. However, for practical 

purposes, the missing extrema are too shallow to be detected.

Fake Extrema

Fake extrema were generated in those extremely rare cases where the 

initial polynomial slope (FC-4) indicated the presence of an extremum (FC-12) 

although none actually existed. After determining the extremum of the poly

nomial using the Newton-Raphson method (FC-11), a new polynomial would be 

generated (FC-6 and FC-7) using the extremum £?pg from the original poly

nomial. This new polynomial, however, would not have an extremum within the 

region indicated by the initial polynomial. The second application of the 

Newton-Raphson method would therefore not converge after N attempts (FC-14) and
i

the extremum search would terminate. Since real extrema would sometimes con

verge so slowly that the number of attempts would also exceed N, there was 

no way of distinguishing between real and fake extrema by the convergence
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test (FC-14). Whenever the extrema search terminated in this manner, a 

diagnostic message was written and the program proceeded to the next step 

(FC-13).

Figure 15 illustrates the typical case in which fake extrema are detected. 

This figure shows the angular variation of the scattered intensity from a 

heterodisperse distribution characterized by rv\ “ 1.20 , p  =  5.0 and ^ ** 1.2 

in which the incident light is polarized parallel to the plane of observation. 

The solid curve represents the actual scattered intensity while the dashed 

curve represents the polynomial approximation generated from the collocation 

points at 135° (5°) 155°. Since the initial approximation indicates the 

presence of an extremum, a detail extremum search was undertaken although 

none was actually present.

After all of the computations were completed, the extrema listed in the 

diagnostic messages were reinvestigated in separate computations. The pro

gram performing these calculations was very similar to that shown in the 

flow chart except that angular increments A $ a s  small as 0.5° were used to 

search a 10° range about each questionable extremum. In about 75% of these

cases the failure of 0  to reach convergence after N attempts was due torb
fake extrema, while in the remainder of cases real extrema were detected.

C. Shallow Extrema

The third complication in the normal sequence of extrema calculations 

was due to shallow extrema. Preliminary computations indicated that very 

shallow extrema would not only require several additional Mie calculations 

but would sometimes produce extrema that are in error by as much as 1.0°.

A special check (FC-5) was therefore incorporated in the program to detect 

those extrema that were too shallow for accurate determination. If such a

I
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condition occurred, a diagnostic message was written, and the program proceeded 

to the next step (FC-12). After all of the computations were completed, the 

extrema listed in the diagnostic messages were reinvestigated using the same 

program used to investigate fake extrema. The occurrence of shallow and fake 

extrema were so infrequent that these reinvestigations proved to be more 

effective than trying to modify the computer code.

3. Accuracy of the Computations

The computer code just described was then used to perform a systematic 

study of the angular location of the intensity extrema as a function of re

fractive index, polarization of light and particle size distribution. The 

results of this study are presented in a book of light scattering tables

published by the Wayne State University P r e s s . A l s o  included in this 

book are 63 graphs that show the angular position of the intensity extrema 

plotted against the modal size for distributions having the same degree of 

heterodispersion. These graphs are a representative sample of the polariza

tion, refractive index and degree of heterodispersion considered in the 

tabulations. The values of the variables m, p, and q considered in the 

tables are:

m = 1.05 (0.05) 1.30, 1.333

p = 0.(0.2) 12.0

q = 0.(0.2) 2.0

These variables were computed for unpolarized incident light, Iu> for linearly 

polarized light with the electric vector vibrating perpendicular to the plane 

of observation, 1^, and for polarized light with the electric vector vibrating 

in the plane of observation, 1^.

\
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The method of computation described earlier had been perfected to
o

the point where an uncertainty in the extrema angles not in excess of + 0.1 

could be expected. In order to make certain that this objective had been 

reached, the extrema were recomputed for a representative sample of the 

p (4, 8, 12) and (0 (.4) 2.0) values and all of the polarization and m 

values used in the tables. These recomputations were made with a program 

identical to that shown in the flow chart with three exceptions. 1) The 

convergence for the extremum from a given polynomial was reduced from 0.01° 

to 0.001° (FC-10). 2) The convergence of the extrema from two consecutive

polynomials was reduced from 0.1° to 0.01° (FC-8). 3) The angular increment

A 0  used was throughout 2.5°. These change resulted in the angular location 

of extrema having an accuracy of .01°. Since no convergence tests were 

performed on the intensity values, similar accuracy values cannot be assigned 

to the extrema intensities. However, for obtaining the uncertainties of the 

intensity values in these tables, the recomputed intensities can, in the first 

approximation, be considered to have no error.

Subsequent comparison of these supplemental angular and intensity values

with those listed in the t a b l e s ^ ^  give, therefore, the absolute deviation

of the latter from the true values. The results are listed in Tables II and III.

Table II is concerned with the precision of the ©  and 0 .  values. Ther max min
first column identifies the value of the variable which is kept constant using 

all of the data in these Tables, the second column identifies the size, S, 

of the sample, the third column gives the percent of those cases where the 

uncertainty in the value of an extremum angle was less than _+ 0.1° and the 

fourth column gives the percentage of the total sample where the uncertainty 

amounted to + 0.1°, One asterisk (*) in the fifth column indicates that in



TABLE II

Accuracy o f  Maxima and Minima Angles

S <0.1°  ±0.1° >±0.1°

1.05 440 95 .5 4 .5 0
1 . 1 0 482 93.4 6 .4 **
1.15 547 94.3 5 .5 *
1 . 2 0 598 94.5 5 .5 0
1.25 642 94.9 5.1 0
1 .30 677 95.0 5 .0 0
1.333 664 96.1 3 .9 0

4
0 . 0 676 96.3 3.7 0
0 .4 713 95.5 4 .5 0
0 . 8 726 94.8 5 .2 0
1 . 2 733 94.7 - 5/2 *
1 . 6 661 93.5 6 .4 **
2 . 0 541 • 94.1 5 .9 0

P

4 428 94 .9 5.1 0
8 1304 90.1 9 .7 *. ** »

12 2318 97.5 2 .5 0

I f 1538 95.3 4 .7 0
1074 93.9 6 . 0 *

It... 1438 95.1 4 .8 **

TSTo
2180

95 .0
94 .7

T 7 5
5 .2

*
★*
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m

Accuracy o f  

S

TABLE I I I  

I n t e n s i t y  Values a t  Extrema

<1 >1

1.05 440 76 .8 21 . 6 1 . 6
1 . 1 0 482 87 .6 1 2 . 0 0 .4
1.15 547 86.1 13.7 0 . 2
1 . 2 0 598 86 .5 13.2 0 .3
1.25 642 86.3 13.4 0 .3
1 .30 677 80 .6 18.6 0 . 8
1.333 664 80 .3 18.9 0 . 8

%
0 . 0 676 81.8 16.7 1 .5
0 .4 713 83.9 14.7 1 .4
0 . 8 726 82.1 17.3 0 . 6
1 . 2 733 84 .9 15.1 0 , 0
1 . 6 661 83.1 16 .9 0 - 0
2 . 0 541 • 85 .6 14.4 0 - 0

P
4 428 97.7 2 .3 0 . 0
8 1304 83 .2 16.6 0 . 2

12 2318 81 .0 18.0 1 . 0

I , 1538 82.7 16.4 0 .9
Iz. 1074 84 .0 15.2 0 . 8

1438 83 .9 15.8 0 .3

1870 90.7 9 .3 0.0gNiaX 2180 77 .2 2 1 . 6 1 . 2
j m  n

» both 4050 83.5 15.9 0 . 6

I
P
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one instance the uncertainty was + 0.2°. Two asterisks (**) indicate 

that in one instance the uncertainty was + 0.3°. Thus, in 4050 cases 

more than 90% of all the results had an uncertainty of less than + 0.1° 

and in only one case was the uncertainty at most + 0.3°.

Table II indicates that p is the only parameter that affects the 

accuracy of the maxima and minima angles. The observed decrease in the 

accuracy as p  increases from 4 to 8 is explained by the angular increment 

used to initially locate the extrema. Since the angular intensity was fixed 

at 5° the extrema were more difficult to determine as the p values increased 

from 0 to 8. This occurs because the higher p values have more extrema at 

smaller angular intervals. The increase in the accuracy for p = 12 is due to 

the smaller angular increment that was used for p « 8.2 to p = 12.0.

Table III gives a corresponding survey for the precision of the intensity 

values associated with the angular values in Table II. Here the third, fourth 

and fifth columns give the percentage of the cases where the uncertainty of 

the theoretical intensity value corresponding to the extremum angle differed 

in the last digit given by less than 1, between 1-9, and greater than 9.

Table III shows that more than 75% of the intensity values given have more 

significant figures than the four given in the t a b l e s . W i t h  a few exceptions 

listed in the fifth column, the intensity data are accurate to three digits.

A survey of Table III confirms the qualitative judgement that the extrema 

showing greater intensity changes will have greater errors. Except for (ft = 1.05 

the accuracy of the intensity values tend to decrease as the relative refrac

tive index increases. This follows from the sharper and more intense extrema



that occur for the higher revalues. The reason for the unusually low accuracy 

at Kh * 1.05 is not known. As the heterodispersion increases the extrema 

become less intense with some extrema even disappearing. The increased 

accuracy as increases is especially pronounced in the column having less 

than three significant figures. The more intense and sharper extrema that 

occur for higher p values (see Figure 7) results in the lower accuracy seen 

in all the columns. Finally, Table III shows that the minimum intensities 

have a much lower accuracy than the maximum intensities. This trend occurs 

because, in general, the angular minima are very sharp while the angular 

maxima are quite broad. The difficulty encountered in determining the theo

retical minima will be even more pronounced for measurements of the experi

mental minima.
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IV. Study Of The Light Scattering Maxima and Minima

This chapter presents the results of a systematic study of the angular 

location of the intensity extrema as a function of relative refractive index, 

polarization of the incident light and particle size distribution. The com

puter code described in Chapter' III was used to perform this study.

A. Effect Of Particle Size Distributions On The Angular Scattering 

Intensity

1. Previous Studies

The effect of particle size on the angular scattering inten

sity has been previously investigated by a number of different authors.
(33)Penndorf has compiled an atlas of scattering diagrams showing the

intensity of scattered light plotted against the angle of observation for

different monodisperse particle sizes, relative refractive indexes and

polarizations of the incident light. Much more comprehensive data has been
(38)published in the tables by Denman et al for monodisperse spheres and 

(36 )Yajnik et al for heterodisperse spheres. A review of the basic trends

in the angular variation of the scattered intensity is found in Kerker's 
(3)book . In general, these previous investigations have shown that as the 

particle size increases, the number of maxima and minima increase and show 

a migration toward the forward direction. Heller and N a k a g a k i ^ ^  have 

explained these trends using arguments based on the RGD theory. However,

the complex pattern of the extrema in the backward direction did not fit
(33) (32)into this simple picture. Except for Penndorf and Patitsas the

scattering pattern in the backward direction was regarded as an unexplained

deviation from the simple picture.

The effect of the heterodispersion on the angular intensity



(and related quantities) was also previously investigated by other research-
(4 7)ers. Kerker et al have shown that the magnitude of the oscillations

in the polarization ratio* become obliterated as the distribution becomes

more heterodisperse. They pointed out that the angular location of the

maxima and minima of the polarization ratio remains approximately constant

as the breadth of the distribution increases and consequently provides an

average particle size which is independent of the width of the distribution.
(24)Wallace and Kratohvil have applied Kerker's observation to develop a 

method for determining particle size distributions.

This important observation was possible because the size 

distribution function that they used maintained a constant mode while the

width of the distribution increased. The extensive tabulations of hetero-
' ( 36 )disperse distributions by Yajnik et al also showed that the extrema in 

the angular intensities and scattering ratios** become washed out as the 

heterodispersion increases. However, the distribution function used in 

those tabulations (equation 5) does not maintain a constant mode (or any 

other average) as the breadth of the distribution increases. Consequently 

the angular location of the extrema would also shift as the heterodispersion 

increases.

This is illustrated in Figure 16,where the scattering ratio 

is plotted against the angle of observation for five heterodisperse distribu-

*The polarization ratio is defined as the ratio of the intensities of the 
two orthogonal components of light scattered by a sphere for incident 
unpolarized light.
** The scattering ratio is defined as the ratio of the scattered intensity 
from incident light polarized parallel to the plane of observation to that
from incident light polarized perpendicular to the plane of observation.^®^
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tions having a constant p and different values of q. The graphs were drawn 

using the tabulated data by Yajnik et al . The corresponding size dis

tributions are shown in the same figure. Note that as the heterodispersion 

increases the average particle size also increases and the first two extrema 

migrate toward the forward direction. The complicated pattern in the back

ward direction is also seen. If the modal size (see equation 6) were con

stant then the extrema would remain at the same angular position as the 

width of the distribution changes.

2. Survey of Ij Scattering Curves

The scope of the present investigation has allowed a more 

thorough examination of the effect of particle size distributions on the 

angular scattering intensity than was previously possible. A brief survey 

of these effects will be illustrated with graphs showing the intensity of 

scattered light plotted against the angle of observation. Although all of 

the graphs in this section of Chapter IV pertain to the relative refractive 

index m ■ 1.20, the conclusions and trends also apply to the other relative 

refractive indexes in the present study. The graphs shown in Figures 17-26 

illustrate the effect of particle size and the degree of heterodispersion 

on the resulting angular scattering intensity. These figures show the 

angular scattering intensities from particle size distributions having a 

constant mode* and various degrees of heterodispersion. Figures 17-21 

pertain to the light scattered 1  ̂ from incident light that is polarized

  -------------------------  (47
*A constant mode was used for each figure because previous investigators *
24 26) kave shown that this approach allows one to separate the effect on 
the angular scattering intensity due to the modal size and the distribution 
width. However very little data was presented in those studies to substanti
ate this separation and define the range of its validity.

I
. Vj



perpendicular to the plane of observation while Figures 22-26 pertain to 

the light scattered 1^ from incident light that is polarized parallel to

Scanning the 1^ graphs, one sees that the number of extrema 

steadily increase as the modal size OC increases and that the extrema become 

washed out as the heterodispersion increases. Figure 17 shows that there 

are no extrema for the particle size distributions h a v i n ® ^  ■ 1.0. This

constant intensity as a function of angle. Note that as the heterodispersion

nounced in the forward direction, thus indicating a larger average size. 

This apparent increase in size is due to the much greater scattering inten

sity of the large particle sizes in the size distribution. The integrated 

scattering intensity (equation 11) will therefore resemble the intensity 

from primarily the large size fraction.

As the modal size increases to O C  “ 3 in Figure 18 a minimum 

and maximum appear. Increasing the heterodispersion for a constant mode 

now has a more symmetric effect on the resulting angular scattering curve. 

The minimum remains at the same angular location as the heterodispersion 

factor q increases from 0.0 to 0.5 while the maximum shows a slight shift. 

At q = 1.0 the maximum and minimum have both moved closer together and are 

almost washed out. A new shallow minimum has also appeared in the backward 

direction. For q “ 2.0 the original extrema pair disappears completely

the plane of observation. All of the data for these graphs were obtained

in separate calculations using equation 14 to determine the different size

distribution parameters p and q to maintain a constant modal sizeot

(14)

very small size almost approximates Rayleigh scattering , which shows a

increases for the constant mode “ 1, the scattering becomes more pro
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while leaving the shallow minimum in the backward direction.

Proceeding to the next larger size,o^ = 5 shown in Figuren
19, one sees that the number of extrema have increased. There are now two 

maxima and minima pairs that show a systematic behavior as the degree of 

•heterodispersion increases. The two minima remain at approximately the same

angular position while the corresponding maxima migrate closer to the minima 

as the heterodispersion increases. Finally when q = 2.0 both extrema pairs 

disappear. The pattern in the backward direction is much more complicated. 

For a small increase in heterodispersion from q = 0.0 to q “ 0.5 the general 

pattern in this region remains about the same with the minimum at 150° 

shifting slightly. However as the heterodispersion increases to q * 1.0 

and larger, a new maximum and minimum appear. These new extrema remain at 

approximately the same angular position from q = 1.0 to q = 2.0 even after 

the extrema in the forward direction have disappeared.

The pattern of increasing number of extrema with increasing 

size is continued in Figures 20 and 21 where the scattering curves are 

plotted for 6^ “ 10 anc* ^(vf 1^ respectively. Several trends of the effect 

of increasing heterodispersion are seen in these figures. Looking at Figure

20, one sees that^in addition to the maxima and minima pairs in the forward 

direction, there are two pairs in the backward direction that also show a 

systematic behavior as the degree of heterodispersion increases. Note that 

the first maximum and minimum in the backward direction behave like the 

mirror image of the first maximum and minimum in the forward direction. In 

both cases the angular location and intensity of the maximum remains fixed 

while the minimum intensity increases. The second extrema pair in the 

backward direction also appears as a mirror image of the second extrema pair

»
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in the forward direction. However, compared to the corresponding extrema 

pairs in the forward direction, the extrema pairs in the backward direction 

show much sharper and deeper minima.

Another prominent feature in Figure 20 is the higher rate 

at which extrema in the central part of the scattering diagram become washed 

out as the heterodispersion increases. There is a gradual increase in the 

rate at which the extrema wash out as one compares successive extrema pairs 

beginning with the first pair in the forward direction. Figure 20 also 

shows a small region from 100° - 120° where the scattering curve has an 

irregular behavior as the heterodispersion increases. This region sepa

rates the regions in the forward and backward directions where the extrema 

show a systematic behavior. The analysis of the curves for 15 in

Figure 21 is very similar to the analysis just made for O/ «* 10 and therein
fore will not be repeated.

3. Survey of Ij Scattering Curves

The corresponding I2 light scattering curves are shown in

Figures 22-26. The two prominent features in these graphs are the strong

influence of the Rayleigh minimum for the small particle sizes and the very

shallow extrema compared to 1^. An interesting observation of the latter

item is that I2 from monodisperse particles in the forward direction looks

very similar to Ij from heterodisperse particles.

The light scattered from small particle size distributions
(3)shown in Figures 22 and 23 are dominated by the Rayleigh minimum . Figure 

22 shows that the scattered intensity is greater in the forward direction 

than in the backward direction and has a deep minimum dispaced at larger

I

:



Fig- 22.  S c a t t e r e d  I n t e n s i t y  I 2 as a Funct ion  o f  Angle f ' o r  S ize
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angles from the true Rayleigh minimum at 90°. As the heterodispersion 

increases the Rayleigh minimum moves toward larger angles and the scat

tering becomes much greater in the forward direction than in the backward 

direction. This occurs because the integrated scattering is predominantly 

due to the larger particle sizes of the distribution.

The scattering curves for of = 3 in Figure 23 show that 

the minimum has now moved more in the backward direction and is not as 

sharp as in the 1 graph. In addition, the curve for q =* 0 shows an

inflection point in the location where 1^ in Figure 18 has an extrema 

pair. As the heterodispersion increases this inflection point becomes 

less pronounced. from monodisperse distributions thus appears to be

have like 1  ̂ from more heterodisperse distributions.

Proceeding t6 5 in Figure 24, one sees a very weak maxi

mum and minimum in the forward direction for q ** 0. As the heterodisper

sion increases the extrema pair is washed out and leaves only an inflec

tion point. The corresponding region in Figure 19 for 1^ shows a very 

pronounced extrema pair. Comparing the same angular regions in Figures 

19 and 24 shows once again that 1 ^ from monodisperse distributions looks 

like 1^ from heterodisperse distributions. However, this behavior does 

not hold in the backward direction where Figure 24 shows a very pronounced 

minimum that is gradually damped out as the heterodispersion increases.

The trend for very shallow extrema in the forward direction 

is also seen in Figure 25 where the scattering curves for 10 are

plotted. In contrast^a very pronounced scattering pattern occurs in the 

backward direction for angles larger than 110°. There appears to be a 

natural division of the ^  curves into a forward and backward region as
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previously seen for the 1  ̂ curves.

Figure 26 for <y  f 15 shows a continuation of the same (A
trend. The scattering in the forward direction shows highly damped max

ima and minima while in the backward direction the scattering shows a 

very active oscillation pattern. An apparent exception to this trend is 

the first maxima and minima pair in the forward direction. This extrema 

pair for Ij appears to have the same amplitude of oscillation as the 

first extrema pair for 1^. However, this apparent similarity is mis

leading because the amplitude of oscillation changes very little with the 

degree of heterodispersion for this extrema pair. The Ij curves are, in 

fact, more damped than the corresponding 1  ̂ curves.

4. Effect of Particle Size Distributions on the Number of 

Extrema

The relationship between the number of angular intensity

extrema and the particle size (modal size for a distribution of particles)

was then determined for the parameters used in the present investigation.

Figure 27 shows the number of 1^ extrema from monodisperse systems having

relative refractive indexes of m ° 1.10 and m ** 1.30 plotted against the

modal size ca^ Both graphs show a step function relationship between the

number of extrema and the modal size. Note that the number of extrema for

m = 1.30 increases at a faster rate than for m ■ 1.10. Straight lines can

be drawn through the data to show the overall linear behavior of the data.

An important aspect of Figure 27 is the step size used to

increase the number of extrema. According to the Rayleigh-Gans-Debye 
(3)(RGD) theory, additional extrefua enter the scattering diagram only one
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Fig .  26.  S c a t t e r e d  I n t e n s i t y  I 2 a s  a Func t ion  o f  Angle f o r  S ize
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at a time as the particle size is increased. This can be seen in the

extrema contour plots for low refractive indexes in the next section or

in Figure 1 of the paper by Nakagaki and H e l l e r ^ ^ .  The fundamental

assumption in the RGD theory is that the optical phase shift correspon-
(3)ding to any point in the particle is small i.e. that

0 < (m “ 1) <T< 1. (15)

This means that neither the particle size , nor the relative refractive 

index m can become too large. Thus, if equation 15 holds, then the step 

size for increasing the number of extrema will be limited to one extremum.

Figure 27 shows that as the particle size increases for 

m " 1.10, the number of extrema increase in steps of one up to 9 .2

and in steps of two for larger sizes. This observation demonstrates the 

importance of equation 15 in assuming a negligible phase shift. At small 

values of . the phase shift is small and the RGD theory holds. However, 

as the size increases the phase shift becomes larger and the RGD theory 

no longer applies. For m ° 1.30 the phase shift is sufficiently large

even at small values of o ( that the number of extrema increases in steps
(33) (32)of two for all of the particle sizes. Penndorf and Rowell had

previously shown that all extrema after the first minimum enter the

scattering diagram as maxima and minima pairs. The present study shows

that this occurs only when the particle size or the relative refractive

index becomes too large and results in a sizable phase shift.

The step functions in Figure 27 can be represented by

straight lines if the discontinuous steps are averaged. This was done

for various relative refractive indexes ranging from I .00 to 1.333. The

step function for m “ I.00 was obtained from the RGD theory. Figure 28
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shows the resulting straight lines for the different relative refractive 

indexes. This figure represents the average number of extrema for dif

ferent relative refractive indexes as a function of size. All of the 

data pertain to 1^ extrema from monodisperse systems. Note that the lines 

all begin at approximately 2 and have greater slopes for the larger

m values. These slopes vary linearly with m as seen in Figure 29.

The preceding discussion on the number of extrema was 

based on monodisperse particle sizes. For heterodisperse distributions 

the pattern has to be modified to account for the extrema being washed 

out. Figure 30 shows the number of 1^ extrema plotted against the modal 

particle size for three distributions characterized by q “ 0 , 1, 2 and 

m ■ 1.20. To allow easier viewing, the data for different q values have 

been displaced slightly on the ordinate axis and the complete step func

tion drawn only for q = 0. One sees that all of the q values show a 

step function relationship between the number of extrema and modal size. 

Figure 30 shows that, with a few exceptions, the extrema for the different 

q values increase in steps of two as would be expected for the higher 

phase shift. The exceptions occur because the tabulated d a t a ^ ^  used to 

generate this figure had occassionally missed the minimum in the backward 

direction. The difficulty in detecting the first minimum in the backward 

direction was discussed previously in Chapter III.

Figure 30 shows that increasing q from 0 to 2 has only a 

minor effect on the number of 1^ extrema. The number of extrema remains 

constant from q = 0 to q = 1 and only decreases by one maxima and minima 

pair for q = 2. Note that the extrema disappear as the heterodispersion 

increases by the merging of a maxima and minima pair as seen in Figures
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17-26. Moreover, as the heterodispersion increases, the remaining extre

ma become more shallow and hence more difficult to detect.

A similar analysis of the number of I^ extrema reveals a 

more complicated pattern. Figure 31 shows the number of extrema plot

ted against the modal size in the same fashion as in Figure 30 for m = 

1.20 and q = 0, 1, 2. In general, the number of I. extrema both in-
i 2

creases and decreases in steps of two as the modal size increases. How

ever, the net change in the number of extrema shows an approximately 

linear increase with size. In addition, the number of extrema is greatly 

reduced when q is increased to 2.

The reason for the unusual behavior of the I^ extrema in

creasing and decreasing by two was then investigated. A detailed extrema 

search verified that no extrema had been missed and the pattern shown in 

Figure 31 is indeed correct. This detailed extrema search indicated that 

the cause of the increase and decrease in the number of extrema was due 

to the formation and disappearance of extrema pairs in the backward 

direction.

Figure 32 shows the contours of the I^ maxima and minima 

in the backward direction plotted on a graph having the size as the 

ordinate and the angle &  as the abscissa. The maxima and minima are 

shown by the dashed and solid lines respectively. As the particle size 

increases fromO(= 0, the Rayleigh minimum at 90° moves in the backward 

direction and undergoes a series of oscillations. New extrema pairs 

will then appear at the locations indicated by A and disappear at the lo

cations indicated by D. This alternate appearance and disappearance of 

extrema pairs is the cause of the observed number of extrema increasing

I
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and decreasing in steps of two. Since the number of extrema pairs that 

are formed exceed the number of pairs that disappear, the overall number 

of extrema increase with size. In addition, the I^ extrema pairs.in the 

forward direction enter the scattering diagram in a systematic fashion

and add to the cumulative total as seen in Figure 30 for the 1^ extrema.

When the particle size reaches 8 a very strange behav

ior is seen in Figure 32 for the first minimum in the backward direction.

This minimum moves rapidly toward f?= 180° and remains fixed at that angle 

until the particle size is greater than 15. Detailed calculations have 

shown that the minimum actually occurs at 179.9°. Because of the close 

proximity to 180° this minimum was missed in the calculations of the 

t a b l e s T h u s  Figure 31 shows an increase of only one extremum at 

8 .

The effect of increasing heterodispersion on the number of 

extrema is much more pronounced for than for 1  ̂ as seen by comparing 

Figures 30 and 31. The primary cause of the increased rate at which the 

I2 extrema wash out is due to the very shallow extrema initially present 

for even monodisperse distributions. As the heterodispersion increases 

from q ° 0 to q B 1 the number of extrema decrease by an average of one 

extrema pair. The oscillation in the data indicates that the appearance

and disappearance of extrema pairs is still occurring for q = 1.

However, as q increases to 2 one sees a more uniform increase in the

number of externa as the particle size increases. This indicates that the

pattern of alternating extrema appearance and disappearance has given way 

to a less complicated pattern involving only extrema formation. Illustra

tions of these patterns will be given in the next section of this chapter.
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The analysis of the number of extrema from the scattered 

intensity Iy using unpolarized incident light was also investigated. 

Figure 33 shows the number of Iu extrema plotted against the modal size 

for m ” 1.20 and q = 0, 1, 2. Since I has a very close resemblance to 

1^, the number of extrema should also be similar for the two uses. This 

is shown in Figure 33 where the number of I extrema for q » 0 and 1 are 

nearly identical with the 1^ data in Figure 30. The I data shows an 

additional extremum from the Rayleigh minimum at small sizes. Figure 33 

also shows that increasing the heterodispersion to q ■ 2 has a large 

effect on reducing the number of 1^ extrema compared to the 1  ̂ extrema.

dition to the number of extrema is the constant angular position of the 

extrema as the heterodispersion increases for a constant modal size.

Demonstrating this behavior on a quantitative basis is very complicated 

and would offer little improvement over a qualitative explanation. The 

problem is to show that the angular location of the extrema from mono

disperse intensities i(«d,©) is the same as the angular location from 

heterdisperse intensities in equation 11, rewritten below

The size distribution is assumed to have a constant mode equal to the 

size of the monodisperse distribution.

A qualitative demonstration that the angular location of 

the intensity extrema will remain constant can be made using Figure 34.

5. Constant Angular Location of Extrema with Increasing 

Heterodispersion

Another prominent characteristic in Figures 17-26 in ad-

(11)
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This figure shows the contours of the 1^ maxima and minima for mondisperse 

distributions with m 3 1.20 plotted on a graph having the mode Of for the 

ordinate and the angle Q  for the abscissa. The maxima and minima are 

designated by circles and triangles respectively. Figure 34 therefore 

describes the same scattering system shown earlier in Figures 17-21.

A series of line segments were drawn through the extrema 

for 5 and 10 to represent the size range of a heterodisperse distri- 

bution corresponding to q “ 1. A more heterodisperse distribution would 

increase the line segment while a less heterodisperse distribution would 

decrease the line segment. If one assumes that the intensity along an 

extremum contour is constant within the size range of the heterodisper

sion (line segment in Figure 34) then a relatively simple explanation 

can be made for the constant angular location of the extremum as the 

heterdispersion increases.

The explanation will be illustrated using the minimum at 

&  « 48° from the monodisperse distribution at 5. For a distribu

tion of particle sizes over the range indicated by the line segment, the

fraction of particles greater than 0 ( = 5 make the extremum angle smaller
r \

while the fraction of particles smaller than 0<s 5 make the extremumM
angle larger. The two effects will cancel thus leaving the extremum 

from the heterodispersion fixed at the same location as the monodisperse 

distribution.

In a more quantitative description, the heterodisperse 

distribution has approximately a zero average deviation of the extremum 

angle from the monodisperse extremum angle. The average deviation of 

the extremum angle is defined by

i
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a & a u e . - f t , )  f(<H)dc< ( i6)

where e * s the angle of the intensity extremum for size

£> is the angle of the intensity extremum for the monodisperse 

size c* M
f(«) is the number or particles having size o*- 

If the angular shift from larger and smaller particle sizes are to cancel, 

the heterodisperse distribution must have a characteristic moment that 

equals the monodisperse particle size. A few preliminary tests using 

both the average and the mode showed nearly identical behavior. The mode 

was therefore chosen since it is much easier to identify than the average.

If the intensity along the extrema contour were constant 

then equation 16 would allow one to calculate the angular shift for any 

heterodisperse distribution compared to the monodisperse distribution. 

Unfortunately, the intensity is not constant within the extrema contour 

and requires an additional weighting function in equation 16. The pro

blem must then be addressed in terms of the integrated intensities for 

heterodispersions in equation 11. However a qualitative interpretation 

of the extrema shift using equation 16 is satisfactory. Moreover, the 

equation becomes increasingly more accurate as the degree of heterodis

persion decreases and as the extrema move in the forward direction. Both

trends make the intensity along the contour more constant over the inte
gration limits.

6 . Other Trends in the Angular Scattering Intensity

The simple arguments used to explain the constant angular 

location of the extrema with increasing heterodispersion can also be used

I
i Vj
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to explain the other trends in the angular scattering intensity curves in 

Figure 17-26. In general, these trends are determined by the intersec

tion angle of the extrema contours with the vertical integration lines in 

Figure 34. If the integration line cuts across several extrema contours 

then the extrema in the resulting heterodispersion will rapidly wash out 

and disappear. However, if the integration line runs nearly parallel to 

the extrema contours then the extrema in the resulting heterodispersion 

will show only a small damping effect.

Figure 34 shows that for a given particle size, the extrema 

contours in the forward direction are more parallel to the integration 

lines than in the central portion of the scattering diagram. Moreover 

there is a continual change in the slopes of the extrema contours rela

tive to the integration lines from more vertical in the forward direction 

to more horizontal in the central portion. Thus, as the degree of 

heterodispersion is increased, the extrema in the forward direction will 

be slightly damped while the extrema at progressively larger angles will 

be increasingly damped and even disappear. These effects are illustrated 

in Figure 35, which is an enlargement of the first four extrema pairs 

taken from Figure 20. Figure 35 shows 1^ from different particle size 

distibutions having a constant mode of 10* Note that the hetero

dispersion has an increasingly greater effect on washing out the extrema 

for the higher orders* of extrema pairs.

This trend becomes more pronounced for the larger par

ticle sizes. Figure 36 shows 1^ from different heterodispersions having

*The order of an extrema pair is determined by counting the extrema 
pairs from the forward direction.
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t h e  Extrema P a i r s  in  t h e  Forward D i r e c t i o n  f o r  S ize  
D i s t r i b u t i o n s  Having a C o n s ta n t  Mode and
D i f f e r e n t  D i s t r i b u t i o n  Widths
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a constant mode of 15. This figure is an enlargement of Figure 21

and shows the first few extrema orders in the forward direction. One 

sees that increasing the heterodispersion has very little effect on the 

first two extrema orders and only a moderate effect on the third extremum 

order. However, the higher orders^which are continued in Figure 37^show 

an increasingly greater sensitivity to the heterodispersion.

The extrema in the backward direction have a more compli

cated pattern. Figure 34 shows that for smaller particle sizes the 

extrema in the backward direction appear to have little if any pattern. 

However, for larger particle sizes the extrema in the backward direction 

show a definite migration toward the backward direction. A more detailed 

picture of the extrema contours in the backward direction of Figure 34 

is shown in Figure 38. The formation of new extrema pairs with increasing 

particle size are shown on the graph with X's and numbered sequentially. 

This region is characterized by closely spaced maxima and minima and 

frequent reversals in the direction of the extrema contour migrations.

Note that the angular location where the new extrema pairs originate 

moves toward the forward direction as the particle size increases.

Increasing the heterodispersion in the regions where new 

extrema pairs are formed will frequently result in major changes in the 

angular intensity plots. An example of this type of change is given in 

Figure 19, where the monodisperse distribution in the backward direction 

has a minimum intensity at 146°. As the heterodispersion increases this 

minimum moves to 151° and becomes more shallow. Further increase in the 

heterodispersion, however, results in a new maxima and minima pair ap

pearing in the angular intensity diagram. The explanation for this addi-

|
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tional extrema pair is seen in Figure 38 in the region defined by o( = 5 + 

and 0 =  120° to 180°. As the heterodispersion increases the new extrema 

pair, indicated by the number 3 in Figure 38, will be included in the 

integration. When the heterodispersion has increased to q * 1 this new 

extrema pair dominates the angular range initially containing the mini

mum which has now been displaced to © =  120°.

Another example of this type of behavior is seen in Figure 

39 for the angular intensity curves having different heterodisperse dis

tributions and a constant mode of 10- This figure is an enlargement

of the intensity curves in the backward direciton shown earlier in Figure 

20. As the heterodispersion increases the intensity curves show the 

presence of a new maximum and minimum in the region from 110° to 

135° which initially contained only a single minimum. A similar analysis 

to the preceding example showed that the new extrema pair indicated by 

the number 8 in Figure 38 was responsible for the observed changes in the 

integrated scattering intensity.

Figure 39 shows that the primary effect of the increasing 

heterodispersion is to increase the intensities of the minima. However, 

as the particle size increases, the extrema in the backward direction 

are less affected by the degree of heterodispersion as was seen earlier 

for the extrema in the forward direction. Figure 40 shows the 1^ curves 

for different heterodispersions having a constant mode of 15. This

figure is an enlargement of the scattering curves in the backward direc

tion from Figure 21. The increasing heterodispersion has a much larger 

effect on the minimum than on the maximum. In addition the sensitivity 

of the extrema pairs to increasing heterodispersions becomes greater for
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the extrema pairs farther from the backward direction. A similar trend 

was seen in the forward direction where the extrema pairs become more 

sensitive to increasing heterodispersion as the extrema pairs are farther 

from the forward direction.

The most striking feature of the angular variation of Ij 

in Figures 22-26 is the very shallow extrema in the forward direction 

compared to 1^. Figure 41 shows the angular variation of 1^, I^ and Iy 

for monodisperse distributions having size 5. The curves for 1^ and 

I2 were shown earlier in Figures 19 and 24 respectively. Note that the 

first minimum for Ij is very shallow and the second minimum is completely 

washed out. This behavior would correspond to a very heterodisperse 

distribution for 1^.

For angles larger than 100° the scattering patterns 

for 1  ̂ and I2 no longer resemble each other which is not surprising in view 

of the large difference in the extrema contours shown in Figures 38 and 

32. However, I2 now shows a significant angular variation in the back

ward direction whereas in the forward direction the extrema are very 

shallow and even washed out. Figure 41 also includes the angular varia

tion of Ijj to show its close resemblance to the angular variation of 1 .̂

A  similar pattern is seen in Figure 42 for the angular 

variation of 1^, and 1^ for monodisperse distributions having a size 

= 10. Although the general pattern for the different curves in the for

ward direction are similar, the extrema from Ig are very shallow compared 

to those from 1^. In fact, the fourth extrema pair, counting from the 

forward direction, for the I2 curve is completely washed out and not seen. 

Once again the angular variation of Ij for the monodisperse distribution

I
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shows a close resemblance to the coresponding angular variation of 1  ̂

for a heterodisperse distribution. In contrast to the forward direction, 

the angular variation of Ij from approximately <9 = 100° to 180° becomes 

very large and exhibits pronounced extrema. The curve for 1^ was includ

ed in Figure 42 to show that the angular variation of 1^ and 1^ are very 

similar.

Based on the previous observations, a general pattern for 

the angular intensity curves can be developed. This pattern has the an

gular scattering intensity divided into a forward and backward region.

The angular location of the division is determined by the location of the 

new extrema pairs, which move from the backward direction toward the for

ward direction as the particle size increases. The new extrema pairs 

increase the total number of extrema in the scattering diagram. As the 

particle size increases, the extrema in the forward direction show a sys

tematic migration toward the forward direction while the extrema in the 

backward direction show a systematic migration toward the backward direc

tion. The extrema in both the forward and backward directions show a 

greater increase in damping as the heterodisperion increases for those 

extrema located close to the dividing region. This general pattern ap

plies to 1^, I2 and Iyalthough additional complications are seen for Ig 

due to the Rayleigh minimum.
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B . Effect of Particle Size Distribution, Relative Refractive

Index and Polarization of Incident Light on the Angular

Location of the Intensity Extrema

The previous section had been primarily concerned with inves

tigating the effects of various parameters on the intensity of the angu

lar scattering curves. This section will address the trends seen in the 

angular location of the intensity maxima and minima for a series of graphs 

having the angle of observation as the abscissa and the mode as the ordi

nate. The mode was chosen as the size parameter to be plotted because the 

angular location of the intensity minima remained approximately constant 

for a constant mode as the degree of heterodispersion increased. This 

allowed the effects due to the heterodispersion to be separated from the 

size effects. The graphs show the angular location of the maximum and 

minimum intensities plotted as circles and triangles, respectively. No 

curves were drawn through the points because,in those cases where lines 

would help interpret the pattern}there were an insufficient number of

points to define the trend. In the remainder of caseSjWhere there were a

sufficient number of points, the pattern was readily seen without drawing 

a curve through the points.

I 1. Effect of m and q on 1^ Extrema Contours

A brief survey of the angular location of the intensity 

extrema will now be made for each polarization of the incident light. 

Figures 43-52 show the effect of the relative refractive index and the 

degree of heterodispersion on the extrema location of 1^. The extrema 

contours for m = 1.05 are shown in Figures 43-45. This value of m is

i
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Fig .  43.
Angular Location of It Extrema Versus Modal Size for Distributions with m=L05 and q=0
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very close to the limiting value of m " 1.00 where the RGD theory rigor

ously applies. As expected the angular extrema contours shown in Figure 

43 for 1^ and q = 0 follows the RGD theory quite closely. No extrema 

are seen with increasing particle size until 0^ =  2.25, where the first 

minimum appears at 180°.* Additional extrema enter individually from the 

backward direction alternating maximum and minimum. These extrema are 

frequently designated by the numerical order in which they appear in the 

scattering diagram. The orders are indicated by the numbers shown adja

cent to the extrema contours.

Figure 43 shows that the first two orders of the maxima 

and minima extrapolate to the RGD values at 180°. However, the extra

polation for the third extrema order shows a small deviation for the mini

mum and a significant deviation for the maximum. Higher extrema orders 

show an even greater deviation and, beginning with the sixth order, the 

extrema contours no longer originate at 0  - 180°. These observations 

are in accord with the basic assumption in the RGD theory that the phase 

ot(m-l) 4X. 1. Thus, one would expect major deviations from the RGD theory 

for larger particles even for small m values.

Increasing the heterodispersion to q ° 1 has only a small 

effect on the extrema contours. Figure 44 shows that the pattern has 

washed out slightly in the backward direction for smaller sizes. A de

tailed comparison of Figures 43 and 44 also shows that for angles smaller 

than 140°, the minima remain constant while the maxima shift slightly 

toward the forward direction as the heterodispersion increases. The

*The extrema data shown at Q -  180° were obtained from the RGD theory.

i
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magnitude of the shift decreases with increasing particle size.

As the heterodispersion increases to q ** 2 in Figure 

45?all of the central portion and most of the backward portion of the 

extrema contours has been washed out. The reason for the extrema washing 

out, as explained in the last section^is due to the integration lines 

crossing over successive maxima and minima. Figure 34 shows that the 

integration lines average the intensity over several maxima and minima 

in the central portion of the extrema plot. A similar integration in 

the forward direction or in the backward direction for large particle 

sizes averages the intensity over only one extremum. Although the extrema 

wash out faster with increasing heterodispersion in the central portion 

of the extrema plots, this does not mean that the extrema are more shallow

in this region. This is seen in Figures 17-21.

Increasing the heterodispersion to q = 2 also results in a 

more uniform pattern for the extrema in the backward direction for large 

particle sizes. Figure 45 shows a new maxima and minima pair originating 

at about 11 and 0 =  160°. With increasing size, the maximum remains 

at the same angular location while the minimum migrates toward the back

ward direction. This type of behavior is representative of reflection 

phenomena.

Figure 45 also shows that the extrema in the forward direc

tion wash out by merging the maximum and minimum of a given extrema order.

Detailed comparisons with the monodisperse case in Figure 43 show that the 

merging is primarily due to the shift of the maxima toward the forward 

direction. In order to see this behavior, a portion of the monodisperse 

contours from the first four extrema orders in Figure 43 have been added
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as dashed curves in Figure 45. Also note that the extrema pairs extend 

farther into the backward direciton for the larger particle sizes. This 

trend is a result of the increased slope of the extrema contours at a 

given angle for the larger particle sizes. Integrating over a given size 

range at that angle will therefore result in averaging over a fewer num

ber of maxima and minima.

The extrema contour graphs for higher relative refractive 

indexes show an increasing deviation in the backward direction from the 

pattern seen for m “ 1.05. This is not surprising since the scattering 

for m * 1.05 is very closely described by the RGD theory. Higher rela

tive refractive indexes show that an increasing fraction of the extrema 

diagram is due to a reflection phenomenon which is absent in the RGD 

theory. Although true Fresnel and Snell's law reflection does not apply 

until particles become very large, the migration of the extrema toward 

the backward direction with increasing size is the pattern expected from 

a reflection phenomenon.

The prominent feature of the scattering diagram will now 

be presented for m = 1.20 which represents the middle of the m range con

sidered in the present investigation. Figure 34 shows that the extrema con

tours in the forward direction appear very similar to those seen in Figure 

43 for m = 1.05 and can be approximately represented by the RGD theory. 

However, an exact comparison of Figures 34 and 43 show that the extrema 

for m = 1.20 have a faster rate of migration toward the forward direction 

than the extrema for m = 1.05. This higher migration rate toward the

forward direction with increasing m value had been previously incorporated
•  _  •  n j  n .  (10, 11, 13-16) ,into equations 2 and 3 by other investigators. Figures 34

I
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and 43 also show that for a given m and ^valuejthe rate at which extrema 

migrate toward the forward direction decreases with increasing order of 

the extrema.

Although increasing m shows a moderate effect on the ex

trema in the forward direction, the major effect is seen in the greatly 

increased region in the backward direction where reflection mechanisms 

control the scattering pattern. As a result of the reflection behavior 

in the backward direction, the sequence in which extrema appear in the 

scattering diagram differ considerably from the RGD theory. This theory 

predicts that the extrema will appear individually in the backward direc

tion alternating maxima and minima, and then migrate toward the forward 

direction. Since the number of extrema in Figure 34 are insufficient to 

define the extrema behavior'in the backward direction many additional 

calculations were made to resolve the pattern.

Figure 38 shows the extrema contours in the backward direc

tion from the additional calculations. The angular location of 1^ maxima 

and minima are given by the dashed and solid curves respectively. One 

sees that the first extremum enters the backward direction at 180° and 

(>(* 2.0 and moves rapidly toward the forward direction as the particle 

size increases. However, as the size increases, new extrema appear in 

the scattering diagram as pairs. These extrema are shown by x's in Fig

ure 38 and are numbered sequentially. As previously pointed out, the 

region where new extrema pairs originate are characterized by closely 

spaced maxima and minima and frequent reversals in the direction of the 

extrema contour migrations.

The migration pattern of the new extrema show one of two
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trends. Either both of the extrema from the pair move in one direction

or one extrema type moves in the forward direction while the other moves

in the backward direction. In addition, the angular location where new

extrema pairs originate moves in the forward direction as the particle

size increases. These trends have been previously pointed out by 
(33)Penndorf. The contour of the origin of these extrema pairs serves

as a boundary that divides the region of the scattering diagram where the 

extrema migrate in the forward direction from that where the extrema mi

grate in the backward direction. The region in the backward direction 

increases with size because the phase shift parametero<(nr*l) increases. 

These two regions will be discussed in greater detail in terms of dif

fraction and reflection.

The extrema dontours were then determined for particle 

sizes up to<X,= 30 to see what changes would occur in the scattering dia

gram as one approaches the size where Fraunhoffer diffraction and Fresnel 

reflection are used to describe the optical behavior. Figure 46 shows 

that the resulting extrema contours continue the trends already pointed 

out. The location where new extrema appear has gradually moved to approx

imately 0 a  90° a t O < =  30. Figure 46 also shows maxima and minima that

appear and disappear over a small size range thus resulting in the closed
(32)circles designated by x. Rowell had previously observed this beha

vior. These closed circles only occur in the region where new extrema 

form.

The most interesting feature of Figure 46 is the merging 

and disappearance of the first two extrema in the forward direction at 

<X = 20.8. This behavior was previously observed by Rowell^"^ and

I

:
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(21-23) (21-23)Patitsas. Patitsas has shown that the merging and disap

pearance of the extrema in the forward direction continues in a systematic 

fashion for higher extrema orders at larger particle sizes. Thus the 

first three extrema orders for m = 1.20 would disappear at 0(,= 21, 38

and 55. The disappearance of the extrema will be explained in the next

section in terms of the extrema pair in the forward direction merging 

into the main lobe of the Fraunhoffer diffraction pattern.

The description of the total light scattered by a particle

in terms of the diffraction of light passing near the particle and the

scattering (refraction, reflection, etc.) of light striking the particle 

is strictly not correct for the particle sizes considered in the present

study. Such a separation of the scattering process can only be used for
• (28) very large particles where the laws of geometric optics apply. How

ever for approximate solutions of the scattering from moderately sized 

particles 10) one can assume that the diffracted light and the light

striking the particle can be separated.
(49)Hodkinson and Greenleaves have shown that the scat

tering of light in the forward direciton up to 0 “ 40° from a particle 

size distribution of 0 ^= 10 to 15 can be approximated by the diffraction 

of light passing near the particle and the transmission and reflection of 

light striking the particle. H o d k i n s o n ^ ^  had also shown that the shape 

of the forward scattering lobe at 0 = 0 °  to 30° is closely approximated 

by Fraunhoffer diffraction for paticles as small as 2. In both of 

these cases the scattering was approximated by optical laws which are 

generally used for much larger particle sizes.

The effect of increasing the heterodispersion to q = 1 on

I
; Vj
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the extrema contours for m = 1.20 is seen in Figure 47. Compared with 

the monodisperse case in Figure 34, the region in Figure 47 where the ex

trema migrate toward the backward direction has increased significantly. 

Also note that the oscillations in the monodisperse curves have been 

damped out significantly, especially in the backward direction. Close 

inspection of the data also reveals that^compared to the monodisperse case, 

the minima in the forward direction remain constant while the maxima mi

grate slightly toward the forward direction. This migration is larger 

for the smaller particle sizes. One cannot say whether a similar trend 

occurs for the extrema in the backward direction because the monodisperse 

case in Figure 34 shows large osciLlations.

Increasing the heterodispersion to q ■ 2 in Figure 48 

shows that a large fraction*of the extrema that migrate toward the for

ward direction have been washed out. In contrast, the region where the 

extrema migrate toward the backward direction has increased considerably.

In fact, it now includes a portion of the region where the extrema for 

monodisperse distributions had migrated toward the forward direction.

This reversal in the direction of the extrema migration with increasing 

heterodispersion is due to the washing out of very shallow extrema 

that had migrated toward the forward direction. These shallow extrema 

had been superimposed over another extrema pattern migrating toward 

the backward direction.

Figure 48 also shows the extrema contours for the mono

disperse distribution added as dashed curves. One sees that increasing 

the heterodispersion causes the maxima to migrate toward the forward di

rection while the minima remain constant. This trend does not occur for 

the extrema migrations in the backward direction. Also note that the
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extrema that migrate toward the forward direction extend farther into the 

backward direction for the larger particle sizes. The same explanation 

used for m = 1.05 applies here as well.

The extrema contours for m = 1.333, which is the largest 

value considered in the present investigation, are shown in Figures 49-51. 

In general, these figures show an acceleration of the trends seen for 

m * 1.05 and m = 1,20 toward smaller particle sizes. The extrema con

tours for the monoddisperse distributions in Figure 49 show a larger re

gion where the extrema migrate toward the backward direction and extends 

to the smaller particle sizes. This behavior is expected from the in

crease in the relative refractive index which increases the fraction of 

light scattered due to reflection. Compared to smaller m values the ex

trema contours for the monodisperse case in Figure 49 show an increased 

oscillation in the forward direction and a decreased oscillation in the 

backward direction.

Increasing the heterodispersion to q = I in Figure 50 

smoothens out the oscillations in both the forward and backward direction 

and shows the scattering pattern clearly divided into the separate for

ward and backward region. In addition, the merging and disappearance of

the first extrema pair in the forward direction is now seen at<Y = 12.5.x rv\
I Increasing the relative refractive index from m * 1.20 to m = 1.333 has

decreased the size at which the first extrema pair disappears from 0(“

20.6 to <*= 12.5.
K

A further increase in the heterodispersion to q = 2 in 

Figure 51 shows that the extrema in the forward direction wash out while 

those in the backward direction become more pronounced. As seen in the 

previous cases the extrema in the forward direction wash out by the mi-



0 6 0 6 © 6 
0  6 0  6 O 6

^  O  f t  (5 _ 6 O 6 0 6
0  6 0  6 0 6
0  6  0  6  0  6  Q

0  6  0  6  O 6  O6 0 6 0 6 0 
0  6 0  6 0  6 
0  6  0  6  0  6 

0  6  0  6  0  6  6 0  6 0  6 
0  6 0  6 0 6 0 6 0 6 0 6 6 0  6 
6  O
6  O
6  O O 

O
§

° 6  ♦6 
6  6_o

rv\= 1.35 3r
u>o

^  M  I /vv rA Hv»-\

O 1*4 4 * \ w\ 4 <V\

-H---------- 1----------1----------1---------- 1----------1----------1----------1----------1
20. 10. 60. 80. 100. 120. 110. 160. 180.

©

Fig. 49 . A ngular L oca tion  o f  I i  Extrema Versus Modal S ize
o ^ f j - f o r  D i s t r i b u t i o n s  w ith  *4=1.333 and q=G



%

W \  -  I

0 0 0 CD 0 0)0 0 0 0 0
CD 0 0  0 010 $ © O ©
0 0 0 0  © 00 0 0 0 0 0 0 0 0 00 0 0 © O0 O © 0 0© 0 0 0 0 0 0  0 0
0  0  0  0  
0  0 0  0
® a ♦ m ° «T0  0  0  0
♦  © . 0  CD
♦ CD 0 CD0 0 0 0
0  © 0  CD
CD 0 CDCD © ©
$  ^  .♦0  0  0  0♦ CD *0 © 0
0  CD 0 
« CD 0

. 0  CD 0
O 0
0  0  O
O 0  O 0
CD 0 _  0 0

♦ J 3 ^(D 0
CO

O ('A»tr\irv\t4»v̂ 
O  I'Aux,crt\Uv̂

■H— :------- 1---------- 1---------- 1---------- 1----------1----------1----------1----------1
20. ‘ VO. £0. 80. 100. 120. 1V0. ISO. 180.

©

F ig . 50. A ngular L o ca tio n  o f  I i  Extrema Versus Modal S ize
c< M -for D i s t r i b u t i o n s  w ith  tn = l .333 and q=l



C %  C ©

\

c ©

rv-i =  1 . 3  % }

i
O N\t»U iArft 

O  WaX^fYi unr\

c © c © c o *  © cCO C O C O C (DC C O C O C CD C C <D C (DC (DC C O C O C © C C O C <Q C (DC C © C (DC (DC C Q C  O C  (DC C ( D C  O C  (DC (D C © C © C  © C  © C © C O C  © C  ©c © c © c © c © c © c © c © c © c © c © c © c ©c © c © c ©C ©  C ~ "C Q Cc © c c o c

©
§

Ccc© c© c© cG cO c

ccc

© c © cQ C© c© c
n° £© c© c© c© co c

cccccc

§
§©
§
§©©
&©

©©CD ©©© c © c © c© cC> cCD C© c © cCD C© cCD c © _c

cccccc

©©©Q
©

I©

ccc

c cc © cC J5 Cc © cc © c c © c c © cc c ♦c ©c _©♦ Qc ©C © <C Q Cc © c ©♦ © c O♦ ©c ©c o♦ ~©c ©c. _ ©c ©c ©c ©

c
c«cc

©©
©©©

©CD
iS*©©CD

§
#
#£>

cccccccccccccccccccccccc
c c c c c c c c c c c c c « c c c c c c c c c c

20. uo. 60. 80. 100. 120. 110. 160. 180.

Fig . 51. A ngular L oca tion  o f  I x Extrema Versus Modal S ize
< * M ‘f o r  D i s t r i b u t i o n s  w ith  m * l .333 and q=2 . .



133

gration of the maxima toward the fixed minima. Although this does not 

occur in the backward direction, both maxima and minima have shifted 

slightly toward the forward direction as q increased from 1 to 2.

Surveying the extrema contours for 1^ in Figures 43-51 

reveals several trends. Increasing the relative refractive index at a 

fixed degree of heterodispersion increases the region of the scattering 

diagram where extrema migrate toward the backward direction and decreases 

the region where extrema migrate toward the forward direction. In addi

tion, the larger m values compress the extrema contours to smaller parti

cle sizes. This suggests that a scheme may be devised for superimposing 

the extrema contours from different m values on a single graph as done 

for total extinction curves having different relative refractive indexes.* 

Attempts to plot the angular location of the extrema against o^(m-l) were 

not successful. However, the analogous scheme of plotting a number of 

different heterodispersions using the mode for the size parameter was 

very successful.

The general trends in Figures 43-51 also show that the ex

trema that migrate toward the forward direction are washed out with in

creasing heterodispersion. The disappearance of these extrema first 

occurs near the boundary of the forward and backward regions and then 

gradually moves toward the forward direction as the heterodispersion 

increases. Note that for an increase in the heterodispersion from 

q = 0 to q = 2 , the extrema in the forward direction are reduced to a

*Penndorf had shown that the total extinction curves for different 
m values can be approximately superimposed by plotting the extinction 
against the parameter<\(ra-l).
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smaller region as the m value increases. In contrast, the region where 

the extrema migrate toward the backward direction show a small increase 

as the heterodispersion increases.

2. Effect of m and q on Ij Extrema Contours

The extrema contours for Ij have a more complicated pattern 

than the corresponding contours for 1^ because of the additional Rayleigh 

minimum at 0  = 90°. Since this minimum carries over into the RGD theory, 

one expects that for low m values the minimum will affect the extrema 

contours for even large particle sizes. Figure 52 shows the very pro

nounced effect of the Rayleigh minimum on the Ij extrema contours from 

monodisperse distributions with m a 1.05. The solid lines have been 

added to Figure 52 to help interpret the observed pattern. These lines 

were taken from the corresponding extrema contours for 1^ in Figure 43.

The extrema contours for ^  can therefore be interpreted as the basic 

pattern for 1^ modified by superimposing a minimum at 90° for all sizes. 

This interpretation represents the RGD theory for Ij since

*2,RGD " 11,RGD C0S ®  (17)

Adding a minimum at 90° to the 1^ contours is easily accom

plished for small particle sizes up to the first extrema pair. Since the 

90° minimum (also called the Rayleigh minimum) must then cross the extrema 

pair, the normal extrema contours shown by the solid lines are consider

ably distorted. The effect of the Rayleigh minimum crossing the extrema 

contours resembles a "pinching" behavior where the maxima contours are 

squeezed onto the minima contours. Note that only the maxima have shifted
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from the solid lines while the minima remain constant. The maxima and 

minima contours would then intersect a t  &  a  90° forming an X over the 

Rayleigh minimum.

Figure 52 shows the general appearance of this intersec

tion for the first three extrema pairs. The extrema contours do not 

extend completely to the Rayleigh minimum as indicated by the dashed 

lines because of deviations from the RGD theory. Also note the bending 

of the Rayleigh minimum as it crosses the intersection. For scattering 

obeying the RGD theory, the Rayleigh minimum would appear as a straight 

line at 90° showing no deviation as it crosses the extrema contours.

This follows from equation 17 which shows that ^  goes to 0 at 90°. How

ever for scattering from systems having m values larger than 1.00 the 

intensity of the Rayleigh minimum has a finite value and will therefore 

shift when it approaches other extrema.

The description of the scattering pattern in terms of the 

intersection of the extrema contours becomes less accurate as the parti

cle size increases. Figure 52 shows that the maxima and minima in the 

forward direction merge and disappear before reaching the Rayleigh mini

mum. The merging and disappearance of the extrema for monodisperse 

systems show the same behavior as the Ij extrema for heterodisperse 

systems shown in Figures 45 and 48. Figure 52 also shows that the slope 

of the line segments representing the Rayleigh minimum approaches the 

slope of the extrema contours as the particle size increases. These 

line segments then merge with the minima contours in the backward direc

tion and form extrema pairs similar to those in the forward direction.

Increasing the heterodispersion to q - 1 in Figure 53
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shows the expected results from averaging over a given size range. The 

Rayleigh minimum now forms a continuous curve at the smaller particle 

sizes, and the extrema pairs in both the forward and backward direction 

wash out near the Rayleigh minimum. In addition, the first extrema pair 

in the backward direction has completely washed out. Further increase 

in the heterodispersion washes out nearly all of the structure in the 

backward direction. Figure 54 shows that the remaining extrema in the 

backward direction at large particle sizes migrate t o w ^  the backward 

direction. These extrema originate from a reflection phenomenon. The 

Rayleigh minimum for the heterodisperse system now forms nearly a straight 

line. Figure 54 also shows the familiar pattern of the extrema washing

out in the forward direction. The dashed lines which represent the mono-

disperse case in Figure 52 have been added for comparison.

As the relative refractive index increases to u  a 1.20 the

Rayleigh minimum is only seen for the very small particle sizes although

it greatly affects the extrema contours for even large particle sizes.

The most prominent and easily recognized influence of the Rayleigh minimum

is the absence of any extrema in the angular region slightly greater than

90° for small and moderate size particles. Figure 55 shows the extrema

contours for from monodisperse systems having m = 1,20. Note that the

Rayleigh minimum is readily seen only for particles smaller t h a n < X B 2.in
The rest of Figure 55 shows the behavior described earlier for the large 

particles having m = 1.05. In that description the Rayleigh minimum had 

merged witt^he minima contours in the backward direction to form extrema 

pairs. This behavior which was observed for the large particle sizes

having m = 1.05 is now seen for the small particle sizes having m * 1.20.
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Once again, similar scattering properties are observed by systems having 

similar values of iK(ni-l).

The extrema pairs in the forwad direction are similar to 

those described for m = 1.05 but now occupy a smaller portion of the 

scattering diagram. Dashed lines were added to Figure 55 in the forward 

direction to compare the extrema contours for Ij with the corresponding 

extrema contours for 1^ taken form Figure 34. As seen for m “ 1.05 the 

extrema contours for from a monodisperse system appear very similar to 

the heterodisperse curves for 1^. However, the minima contours for 1^ 

and Ij are no longer identical.

In contrast to the smooth extrema pairs seen in the back

ward direction for m ■ 1.05 the extrema pairs for m ■ 1.20 are highly 

oscillatory. Figure 55 also shows the pronounced migration of a maximum 

contour toward the backward direction for the large particle sizes.

These two observations are related to the increased contribution of re

flection to the scattering that occurs for m ■ 1.20. An enlargement of 

the backward region of Figure 55 is shown in Figure 32 where the dashed 

lines represent maxima contours and the solid lines represent minima con

tours. Except for the first extrema pair in the backward direction all 

of the extrema pairs in Figure 32 migrate toward the forward direction. 

This type of migration is characterized by diffraction.

A reflection pattern is superimposed over this forward 

migration and results in the oscillations seen in the extrema contours. 

These oscillations increase as the particle size increases until 

the maxima and minima contours make contact and form the closed circles 

indicated by x's in Figure 32. This pattern shows a continual increase

i
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in Che contribution to the total scattering due to reflection as the par

ticle size increases. Whenever the extrema contours show a closed circle 

the ref lectiot^nd diffraction systems make about equal contributions to 

the scattering pattern. These closed circles were seen previously in 

Figure 4 6  in the region where new extrema form.

The transformation of the scattering pattern in the back

ward direction from one dominated by diffraction to one dominated by re

flection is shown in Figure 56. As the particle size increases, the oscil

lations in the extrema contours increase until the curves are broken up 

into circles and closed loops. Further increase in the particle size 

show the circles opening up and forming oscillatory extrema contours that 

migrate toward the backward direction. These oscillations dampen out as 

the size increases and the diffraction contribuiton to the scattering 

pattern vanishes.

Figure 56 shows a very unusual effect for the first mini

mum in the backward direction. After a very rapid movement toward the 

backward direction around » 8 the minimum remains constant at 0  “

179.9° until the particle size has increased beyond C ( = 15. The reason 

for this behavior is not know although it may be related to the Rayleigh 

minimum. Note that for particle sizes larger than 15 the influence 

of the Rayleigh minimum has also disappeared in the scattering pattern.

Comparing the extrema contours for Ij in Figure 56 with

those for 1^ in Figure 46 shows that the extrema contours in the forward

direction are identical for particle sizes larger t h a n < ^ = 10. Note thefV\
disappearance of the first extrema pair for Ij in the forward direction. 

Similarly the corresponding extrema contours for 1^ and Ij in the back-
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ward direction are nearly identical for particle sizes larger than 0^  15. 

The maxima contours show better agreement than the minima contours because 

they have smoother curves. The minima contours tend to oscillate about a 

common curve.

Another interesting observation from comparing the extrema 

contours for 1  ̂ and shows that the region where extrema migrate toward 

the backward direction is much greater for ^  than for 1^. The boundary 

dividing the extrema contours into regions of forward and backward migra

tion for particle size of C>( = 30 occurs at ©•= 90° and 50° for 1  ̂ and I^ 

respectively. The boundary in both cases moves toward the forward direc

tion with increasing particle size.

Increasing the heterodispersion of the extrema contours to 

q * 1 in Figure 57 shows the typical pattern in the forward direction 

where the minima contours remain constant while the maxima contours shift 

toward the forward direction. This reduces the region in the forward di

rection that contain extrema. The increasing heterodispersion in the 

backward direction has washed out the pattern of the forward migration 

and formed a series of closed circles as well as extrema contours that 

migrate in the backward direction. These closed circles represent re- 

tions of the scattering diagram where approximately equal reflection and 

diffraction patterns are superimposed. The extrema contours for 1^ and 

m ** 1.20 had previously shown a tendency for reversing the extrema pat

tern from diffraction to reflection as the heterodispersion increased. 

However, this reversal only occurred near the boundary of the reflection 

and diffraction regions. Figure 57 also shows the Rayleigh minimum 

forming an oscillating curve that migrates toward the backward direction.
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Increasing the heterodispersion to q = 2 in Figure 58 

shows that most of the extrema contours have been wahsed out except for 

those in the backward and forward regions at large particle sizes. How

ever the backward region contains a greater number of extrema. Dashed 

lines have been added to the region in the forward direction to show the 

effect of increasing the heterodispersion from q ** 0 to q ■ 2. Note that 

the minima remain constant while the maxima shift toward the forward di

rection. Figure 58 also shows the pronounced migration of the Rayleigh 

minimum toward the backward direction.

As the relative refractive index is increased to ra ■ 1.333 

the previously observed pattern for m ■ 1.20 is now seen at smaller par

ticle sizes. Figure 59 shows that the extrema in the backward direction 

no longer have a clear pattern of migrating toward the forward direction. 

The extrema contours for particle sizes below 9 resemble a region 

where both diffraction and reflection patterns are superimposed. For

particles larger than ■ 9 the extrema contours show a definite migra-
|A

tion toward the backward direction as expected when the influence of the 

Rayleigh minimum has become negligible. The minimum close to 180° also

becomes measurable for sizes larger than ‘X  “ 9.N\
Figure 59 indicates that the fraction of the scattering 

diagram where the extrema migrate in the forward direction has been re

duced compared to smaller m values. Note that the second extrema pair 

shows an oscillation pattern and the third extrema pair has degenerated 

to a series of closed circles. These observations indicate that the 

reflection pattern extends into the forward direction up to the second 

extrema pair.
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Increasing the heterodispersion to q * 1 in Figure 60 

enhances the reflection pattern and the resulting migration of the extre

ma contours toward the backward direction. In contrast, the increase in 

the heterodispersion in the forward direction enhances the diffraction 

pattern and makes the forward migration more pronounced. The increase 

of either the diffraction or reflection pattern with an increase in the 

heterodispersion results from washing out the weaker pattern of the 

superposition of both patterns. Figure 60 also shows the disappearnace 

of the extrema between the regions where extrema migrate in the forward 

and backward directions. Also note the merging and disappearance of

the first extrema pair at 12.5. Increasing the heterodispersion
M

to q ■ 2 in Figure 61 shows the standard trends of smoothing the extrema 

contours and washing out the shallow extrema in the area between the 

reflection and diffraction regions.

The explanation for the Ij extrema in the forward direc

tion being so shallow appears to be closely related to the Rayleigh mini

mum. This explanation can be illustrated on a qualitative basis using 

the extrema contour plots for m “ 1.20 shown in Figures 48 and 55. Figure 

48 shows the extrema contours for 1^ from a heterodisperse size distribu

tion having q ■ 2, A very similar pattern is seen in Figure 55 which 

I shows the extrema contours for Ij from a monodisperse system. The extre

ma in the forward direciton in Figure 48 have been washed out because of 

the averaging effect of the scattered intensities from a distribution of 

particles. In contrast, the corresponding extrema in Figure 55 appear 

washed out because the Rayleigh minimum has forced the maxima and minima 

contours to cross over each other. This crossing over effect is clearly

I
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seen in Figure 52 for the scattering from monodisperse systems having 

m = 1.05.

A comparison of the angular intensity curves for 1^ from 

a heterodisperse distribution and Ij from a monodisperse distribution 

shows that increasing the heterodispersion has the same effect in washing 

out the diffraction extrema as the Rayleigh minimum. This comparison is 

shown in Figure 62 where the angular intensity curves in the forward di

rection are plotted for 1^ at q * 2 and at q “ 0. Similar results are

seen for other particle sizes and other relative refractive indexes.

A survey of the extrema contour for Xj in Figures 52-61 

reveals many of the same trends seen for Ij. Increasing the relative 

refractive index increases the region of the scattering diagram where
i

extrema migrate toward the backward direction. The region where the ex

trema migrate toward the forward direction is simultaneously reduced.

The larger m values also compress the extrema contours to smaller 

particle sizes. Thus, trends in the scattering pattern seen in large 

particle sizes for systems having low m values are seen in smaller

particle sizes for systems having larger m values.

The effect of increasing heterodispersion on the 1^ extrema 

contours in the forward direction is also very similar for the I2 extrema 

contours. In both cases the minima contours remain constant while the 

maxima contours shift toward the forward direction with increasing hetero

dispersion. However the extrema contours have a similar appearance to 

the Ij extrema contours for a more heterodisperse system.

The primary influence on the I2 extrema contours is the 

Rayleigh minimum. At low ra values the Rayleigh minimum is easily seen
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crossing the middle of the scattering diagram. For higher m values, 

segments of the Rayleigh minimum merge with other minima contours that 

migrate toward the forward direction. However this forward migration 

changes to a backward migration with increasing heterodispersion. The 

reversals in the direction of the extrema migration reveals the frequent 

superposition of both diffraction and reflection patterns. The Rayleigh 

minimum also creates a region extending into the forward direction from 

9  = 90° that contains no extrema. This region decreases in size as the 

relative refractive index increase.

3. Effect of m and q on I Extrema Contours    n______u___________________
The extrema contours for Iu are shown in Figure 63-71.

Since these contours are nearly identical to the extrema contours for 1^

a separate analysis of Figures 63-71 is not necessary. The previous

description of the 1^ curves will also apply for the 1^ curves. However

two additional features must be added to the previous discussion which

applies to I . These two features result from the definition of I which r u u
is the average of 1^ and Ij. In general this average is nearly equal to 

Ij. However since the I2 extrema are more shalLow than the corresponding 

extrema for the average of the two will also be more shallow than 1 .̂

Thus one of the primary differences between Iu and 1^ is 

the higher rate at which the Iu extrema wash out with increasing hetero

dispersion. A comparison of the extrema contours for 1^ and Iu for a 

system with m = 1.20 and q = 2.0 is shown.in Figure 68. The dashed curves 

in this figure represent the extrema contours for 1^. This figure shows 

that for the same degree of heterodispersion the extrema contours for Iu 

have washed out to a greater extent than the corresponding extrema con-
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tours for I,. The deviation between I, and I for the same m values1 1 u
are equal to or less than that shown in Figure 68. Also note the large

difference between the two curves for the first minimum in the backward 

direction, especially at small particle sizes. This difference is due 

to the Rayleigh minimum.

The second major difference between the extrema contours 

of 1^ and is the presence of the Rayleigh minimum in the Iu contour. 

Figure 66 shows the extrema contours for Iu with m a 1.20 and q a 0. The 

corresponding extrema contours for 1^ are superimposed on Figure 66 as 

dashed curves. Note that except for a few minor deviations in the back

ward direction, the two sets of extrema contours differ by the additional 

Rayleigh minimum for Iu> Figure 66 shows that this minimum shifts quickly 

to larger angles and then disappears with increasing size.

C. Interpretation of the Scattering Pattern in Terms of

Diffraction and Reflection Phenomena

The previous discussions have been concerned with the trends 

in the extrema contours considering each polarization of the incident 

light separately. However a common pattern is seen when the extrema con

tours from 1^, I2 and Iy are compared together. This pattern shows the 

approximate independence of the incident polarization on the diffraction 

and reflection systems in the scattering diagram. If one compares the 

extrema contours in the forward direction at a given m value for 1^, Ij 

and Iy and all q values then the extrema will fall within a small region 

of the scattering diagram. The boundary of this region is defined by the

I

t
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extrema contours for 1  ̂ at q = 0 .

This behavior is illustrated in Figure 55 which shows that the 

extrema contours for at q ° 0 fall within the boundary indicated by 

the dashed lines. Similarly, Figure 48 illustrates that the extrema con

tours for different q values will also fall within the boundary of the 1  ̂

extrema contours. In both cases the maxima and minima contours merge and 

wash out at large angles within the boundary of the 1  ̂ extrema contours.

If all of the extrema contours for m ■ 1.20 having different polarizations 

and q values were plotted in Figure 48, the entire region between the 

dashed lines would be filled with points. All of the m values show the 

same trend although the defining boundaries are different for each. An 

apparent exception to this trend is seen in Figure 45 for m ■ 1.05 where 

the extrema curves for q = 2 fall slightly outside of the defining bound

ary.

1. Forward Scattering Described in Terms of Diffraction

a. General Description

The common pattern of the extrema contours in the forward 

direction for 1^, and Iy at various q values provides a strong motiva

tion to consider the forward scattering in terms of a diffraction pheno

menon. This does not mean that the scattering in the forward direction 

is described by Fraunhoffer diffraction. Rather the forward scattering 

is described in terms of a diffraction phenomenon because it has very 

similar properties to the Fraunhoffer diffraction. Figure 72 shows the 

extrema contours of the angular maxima and minima intersities obtained 

from the Fraunhoffer diffraction theory. The difraction maxima and mini

ma are indicated by the dashed and solid lines respectively. Note that
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the extrema contours only extend from the forward direction to 0  = 90°. 

Figure 72 also shows the angular intensity of diffracted light normalized 

at 0 °  for three particle sizes as a separate graph.

In the limit of very large particle sizes the forward scat- 

tering merges into the Fraunhoffer diffraction. Although the forward 

scattering in the systems studied is approximately independent of the 

incident polarization it does depend on the relative refractive index.

In contrast, the Fraunhoffer diffraction is independent of both the in

cident polarization and the relative refractive index.
. . . . . „ tt • • _• (27,28,29-31,50)As stated in Chapter II previous investigators ’

had interpreted the scattering in the forward direction in terms of

diffraction. Although these investigators were well aware that the

Fraunhoffer diffraction theory only applies for very large particles

they still used that theory.to describe the light scattering behavior

in the forward direction. The scattering in the forward direction was

described as a diffraction phenomenon if the maxima and minima contours
( 2 7  2 8 )would have approximately constant 0 ( 9  values ’ or constant O ( s i n 0  

(29-31)values. These arguments were chosen because the angular maxima

and minima of the Fraunhoffer diffraction have constant values of < \ s i n 0 . 

For very small angles the term o^sin &  would then reduce to Al

though the extrema curves in those studies did not have constant values 

of °<&or ocsind, the curves did meander about the classical diffraction 

maxima and minima.

The present investigation uses an expanded definition of dif

fraction to describe any scattering process in which the maxima and minima 

contours migrate toward the forward direction with increasing particle 

size. The RGD theory is therefore considered basically a diffraction



theory under this expanded definition. This is not unreasonable, consid

ering the fundamental assumption of the RGD theory that the phase shift

parameter ocCm-1) <£<1. Physically this assumption implies that the inci

dent wave front passes through the particle without distortion or phase 

retardation. For very large particles one would say that the assumption 

implies no refraction or reflection. The strong similarity between the 

extrema contours for the RGD theory and the Fraunhoffer diffraction 

theory is seen by comparing Figures 43 and 72 in the region from 0  ** 0° 

to 90°.

The diffraction p a t t e r n  for the particle sizes used in the

present investigation are described much better by the RGD theory than by

the Fraunhoffer diffraction theory, which is the correct theory in the

limit of large particle sizes. The scattering patterns were therefore

described as a diffraction pattern if the maxima and minima contours have
( 21)approximately constant <Vsin(0/2) values. Patitsas had previously 

plotted the extrema contours in graphs of c*sin(6?/2) versus <y in order 

to obtain empirical improvements in equation 1 for the RGD theory. He 

found that these graphs show a series of curves that decrease approxi

mately linearly with increasing and have a sharp decrease at smaller ^  

values. To prevent the sharp decrease at small Rvalues, Patitsas used 

^(<9/2) in his plots instead of 0( sin(0/2). The present investigation 

will show that the series of extrema curves that decrease linearly with 

increasing are diffraction extrema and those with a sharp decrease at 

small c< are reflection extrema.

The extrema contours in Figures 43-71 were replotted in graphs 

of <xsin((9/2) versus oc to indentify the extrema that are characterized as
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diffraction extrema. Figure 73 shows the extrema contours for 1^ having 

m = 1.05 and q - 0.0. The maxima and minima are again designated by 

circles and triangles respectively. Note that all of the extrema data 

appears in a lower triangle defined by the line <X9in(^/2) =<K. This 

limiting line occurs because the largest value of sin(0/2) is 1. Numbers 

have been added identifying the orders of the extrema contours to allow 

comparisons with the same extrema contours plotted in Figure 43 as 

versus 0. The lines defining constant jangles are also shown on this 

graph.

Figure 73 shows that the extrema contours form straight hori- 

zontal lines at nearly constant «Xsin(0/2) values as expected from the RGD 

theory. The extrema contours can therefore be considered as diffraction 

extrema. However the lines'for the lower extrema orders show a small 

decrease for increasing o(values. The corresponding lines for m ° 1.00 

in the RGD theory would have no decrease with increasing size Fig

ure 73 also shows deviations from the horizontal lines in the backward 

direction ( 0 =  180°) for larger particle sizes. These deviations which 

are seen as an abrupt change in the slope from a constanto(sin(0/2) to 

an approximately constant 9  are due to reflection rather than diffraction 

phenomena. Increasing the heterodispersion to q = 2, as shown in Figure 

74, washes out the diffraction extrema at smaller particle sizes and en

hances the reflection extrema. Note the clear distinction between the 

diffraction extrema that lie nearly horizontal and the reflection extrema 

that slope at approximately constant dangles in the backward direction.

Increasing the relative refractive index to m 8 1.20 for 

the monodisperse system shown in Figure 75 has several effects on the 1^ 

extrema contours. All of the diffraction lines have shifted to smaller
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C(,sin(£^/2) values while maintaining the same spacing between the maxima 

and minima lines. Smaller values ofo(sin((?/2) cause the extrema contours 

to migrate toward the forward direction at a faster rate with increasing 

particle size. In addition to the downward shift, the lines for the 

lower extrema orders have a larger negative slope compared to the corres

ponding lines for smaller m values. The magnitude of this negative slope 

decreases for the higher extrema orders. Figure 75 also shows a consider

able increase in the number of extrema lines adjacent to the limiting 

diagonal. Note that the horizontal lines for the higher extrema orders 

show oscillations which indicate a contribution from the reflection 

system. When the heterodispersion is increased to q ■ 2 the diffractive 

extrema wash out at smaller particle sizes and the region corresponding 

to reflection increases. Ttiese trends are shown in Figure 76.

A similar analysis for m = 1.333 shows a continuation of 

the trends seen for m = 1.05 and m = 1.20. The Ij extrema contour plots 

for m * 1.333 and q “ 0 are shown in Figure 77. One can readily identify 

the first three extrema orders as diffraction extrema although the in

creasing orders show greater oscillations which indicate a reflection 

contribution. Beyond the third extrema pair (counting from the bottom) 

the oscillations are too great to identify the extrema as originating 

from diffraction. Note that the oscillations have a saw tooth pattern 

consisting of a series of small line segments. The slope of these line 

segments indicate that they originate from a reflection phenomenon.

These line segments gradually merge into continuous lines for large par

ticle sizes in the region close to the limiting diagonal (i.e., the 

backward direction).

In addition to the decreased region characterized

i Vj
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by diffraction^Figure 76 shows the shift of the three extrema pairs

toward smaller o(sin(&/2) values compared to the corresponding curves

from m “ 1.20. The lower extrema orders also show a larger negative

slope which drives the extrema even faster toward the forward direction.

Note that the diffraction extrema curves now have a slight downward

curvature. The curve for the lowest order minimum has, in addition,

an upward bend around 12 because it disappears with the first orderfA
maximum shortly after. Increasing the heterodispersion to q ■ 1 in 

Figure 78 smooths out the oscillations in the extrema curves and allows 

a better identification of the diffraction extrema. The disappearance 

of the first extrema pair is clearly seen. Figure 79 shows that a 

further increase in the heterodispersion to q B 2 washes out the diff

raction extrema at smaller particle sizes.

b. Empirical Extensions of the RGD Theory

Plotting the extrema contours on graphs of <xsin (d/2) 

versus (X also allows one to obtain empirical corrections to the RGD

theory in addition to readily identifying the diffraction extrema.
( 21)Patitsas had previously plotted Ij extrema in this fashion to obtain 

empirical equations for monodisperse distributions. He tried to fit all 

of the extrema to a series of straight lines. As seen in Figures 73, 75 

and 77 straight line fits are possible for the diffractive extrema. How

ever^ these lines would not fit the extrema in the backward direction. 

Patitsas found that replacing o<sin (d/2) with ot(f?/2) would prevent the 

extrema in the backward direction from turning downwards at small *< values 

and thereby allow a better fit of the data.

A more accurate approach to obtaining empirical equations 

from the extrema would treat the diffraction and reflection systems
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Ô®<DCWDOO0XDC)CX!X!X!>I)O
♦ a *  ♦0 «
- ^©OOOOOOOOOXD©^^
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separately. Based on the trends observed for the diffraction extrema 

from monodisperse systems one can write the following equation

C * s i n  (0/2) = k 0 . - Ku  (18)
t

where i is the order of the extrema

K . and K . . are empirical constant, oi li r
The constant increases with the order i and generally decreases with 

increasing m. In the limit of m 8 1.00, these constants equal the RGD 

values shown in the paper by Heller and N a k a g a k i ^ ^ .  The constant 

decreases with increasing i and increases with increasing m. A family 

of equations can therefore be described by specifying the constants Kq^ 

and Table IV shows the values of the constants for the first order

minima and maxima for m 8 1105, 1.20 and 1.333. The values of these 

constants were determined from Figures 73, 75 and 77.

More detailed calculations were then made using conven

tional least squares fitting techniques to determine the coefficients 

Kq^ and in equation 1&. The results of the calculations are shown 

in Figures 80 and 81 for the angular minima. Similar results are seen 

for the corresponding maxima. Figure 80 shows the value of the coefficients 

for the extrema orders from i 8 1 to 5 plotted against the relative 

refractive index. In general, the data shows a linear relationship with 

increasing m. However, there is an increasing scatter for the higher 

orders and larger relative refractive indexes that result from the larger 

oscillations in the extrema contours. Also note that the extrapolations 

to m = 1.00 have systematically smaller values than the RGD values. The 

The reason for this is not known.

»
V -
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TABLE IV

Empirical  C ons tan ts  f o r  Equat ion 18

Minimum Maximum

m K01 Kn K01 K11

1.05 2.38 .013 3 .00 .016

1.20 2.25 .031 2.88 .042

1.333 2.31 .093 2.81 .068



131

O
U

1.1 0I. t o1.0 0
m

Fig .  80.  Values  o f  t h e  C o e f f i c i e n t  K01- in  Equat ion  18 f o r  
I n t e n s i t y  Minima o f  Order i= l  t o  5 As a F unc t ion  
o f  m

I



102

Q

u

L O O rv\
Fig.  81. Values  o f  t h e  C o e f f i c i e n t  Kji in  Equat ion  1 8 -for  

I n t e n s i t y  Minima o f  Order i= l  t o  5 cts a F unc t ion  
o f  m



133

Figure 81 shows the coefficients for extrema orders 

from i a 1 to 5 plotted against the relative refractive index. This 

data shows a quadratic behavior and has a considerable amount of scatter 

for the higher extrema orders. Note that all of the curves extrapolate 

to zero as the relative refractive index approaches 1.00. This follows 

because the extrema in the RGD theory obeys equation 1 exactly. The 

values of the coefficients in Figure 81 were determined from the slope 

of the extrema contours when plotted as shown in Figures 73 - 79. How

ever, these extrema contours have a small curvature which can affect the 

slope of a linear approximation. Since the high extrema orders have a 

much smaller size range for obtaining an average slope, it is possible 

that the coefficient values for the higher orders in Figure 81 are too 

high.

To resolve this problem, equation 17 was modified by adding 

the term 1̂ . 0 ^  and performing a least squares fit on the extrema con

tours using the modified equation. Although the resulting equations fit 

the data much better, the behavior of the coefficients was complicated 

and did not lend itself to a general equation. The extrema contours 

would then be described by a large number of empirical equations. Alter

natively a series of coefficients could be tabulated as shown in Table

IV.

A theoretical explanation of the observed size dependence
(28)in equation 18 was then made using Van De Hulst's theory on anomalous 

diffraction. He had shown that the scattered intensity for values of 

OC (m - 1) that were larger than permitted in the RGD theory was given by



where Y = 2o( ((m - l)2 + sin2 (©/2) ]1/2 (20)

and J2j2 Bessel function of order 3/2. Equation 19 thus represents

the scattering from systems that show small deviations from the RGD theory. 

The RGD theory is given by equations 21 and 22.

i = 2 f T x 6 (m - l)2 J3/2 (U) (21)
U3

where U - 2o( sin (0/2). (22)

As shown previously by Heller and N a k a g a k i ^ ^ ,  the contours 

of the minimum intensities for the RGD theory occur at the zeros of the 

Bessel function while the contours of the maximum intensities occur at 

the zeros of the Bessel function derivative. In both 'Cases the extrema 

contours are determined by

U » K £ = 2o< sin (0/2) (23)

where the constant is the appropriate zero of the Bessel function or 

its derivative. In a similar fashion it can be shown that the extrema 

contours from equation 19 are determined by

Y = K. - 2 c< [(m - I)2 + sin2 (0/2)]1/2 (24)
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where has the same value as in equation 23. Rearranging equation 24 

one has

O tsin (0/2) - [K2/4 - o #  (m - 1)2]1/2 (25)

Comparing this theoretical equation with equation 18 obtained 

from empirical fits shows several common features. The most significant 

of these features is the decrease in Otsin {Of 2) with increasing »

Equation 25 also predicts the observed increase in the empirical constant 

with increasing m. However, it does not show the effect of the 

higher orders on Since in equation 25 is comparable to K q ^ in

equation 18, the two equations will also show similar trends for these 

parameters.

Although equation 25 shows many of the trends seen in 

equation 18, it does not give a quantitatively correct result.

Equation 25 predicts an extremum migration toward the forward direction 

with increasing particle size that is much greater than actually occurs. 

This can be seen by determining the size at which the right side of 

equation 25 goes to zero. Thus for m “ 1.20 and K,. —  2.25 the first

minimum will reach 0° when the particle size reaches 5.6. In 

contrast, equation 18 shows a slightly slower rate of forward migration 

with increasing particle size than actually occurs. For example, for 

m “ 1.20 at o(= 15^the first minimum has moved to Q  ■ 11.7° while equa

tion 18 predicts only 0 ®  13.6°. The agreement of equation 18 is much 

better at smaller particle sizes. At o(“ 5 and 10, equation 18 predicts

the first minimum to be at &  = 47.8° and 21.9° respectively. The exact

I
;
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Mie calculations predicts that the first minimum will be at & -  47.9° 

and 21.8° respectively.

c . Variation in Trends Due to Different Polarizations

The previous analysis of the diffraction extrema were all

based on the extrema contours for Ij. However, as pointed out in the

beginning of this Section the diffraction extrema from Ij, Ij and I

are very similar. The trends observed for Ij will therefore also apply

to the diffraction extrema for I„ and I . Recall that the I, maxima and2 u 1
minima contours for a given extrema order serve as a boundary in which 

the extrema for Ij and I are contained. The extrema for Ij have two 

additional features that affect the appearance of the diffraction extrema: 

the shallow extrema and the Rayleigh minimum. The very shallow Ij extrema 

from monodisperse systems have the appearance of 1  ̂ extrema that are washed 

out from heterodispersion. It was previously shown that the shallow I2 ex

trema were caused by the Rayleigh minimum.

These two features of the Ij extrema contours result in a 

deviation from the pattern seen previously in Figures 73-79 for the 

diffraction extrema. Figure 82 shows the I2 extrema for m ■ 1.05 and 

q “ 0 plotted as o<.sin(^/2) versus 04. The Rayleigh minimum is seen as a 

series of diagonal line segments close to the 90° line and divides the 

extrema pattern into two parts. The diffraction extrema in the bottom 

portion of the graph have the appearance of the corresponding Ij extrema 

shown in Figure 74 for q = 2. Note that the extrema in the upper portion 

of the graph are approximately horizontal lines indicating a contribution 

from diffraction. Increasing the heterodispersion to q * 2 in Figure 83
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shows the typical behavior seen previously for the Ij extrema except for 

the additional line from the Rayleigh minimum.

The Rayleigh minimum becomes less apparent for the higher 

relative refractive indexes and is generally seen only at the small parti

cle sizes. Figure 84 and 85 show the monodisperse Ij extrema contours for 

m 18 1.20 and ra “ 1.333 respectively. The diffraction extrema in both 

cases show the typical washed out pattern. Note that Figure 84 has 

several extrema pairs in the backward direction that behave like diffrac

tion extrema. However these extrema also show a strong reflection trend 

and wash out as the heterodispersion increases. The Ij extrema show the 

same general pattern for increasing heterodispersion as seen previously 

for the Ij extrema and therefore do not require separate figures. In 

addition, no separate figures will be shown for the Iu extrema contours 

because they are nearly identical to those seen for Ij in Figures 73-79.

d . Explaining the Disappearance of the Extrema Pairs in the 

Forward Direction

In classifying the RGD theory as a diffraction it is im

portant to note that the Fraunhoffer diffraction is only a portion of the 

total scattering process whereas the RGD theory (within its region of 

validity) describes the entire scattering process. Additional terms must 

therefore be included with the Fraunhoffer diffraction to describe the

total scattering. Using arguments based on geometric optics, Hodkinson 
(49)and Greenleaves have shown that the scattering of light m  the for

ward direction from a particle size distribution of 10 to 15 can be 

approximated by the diffraction of light passing near the particle and
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the transmission and reflection of light striking the particle. Al

though the Mie theory gives the correct light scattering results, it 

does not allow a separation of the total scattering into light diffracted 

by and incident on the particle.

However such a separation of the total light scattered can 

be approximated in a similar manner shown by Hodkinson and G r e e n l e a v e s ^ ^ . 

This approach describes the total light scattered as the sum of the light 

incident on the particle and the light diffracted by the particle. Since 

the diffracted light makes a negligible contribution to the total scat

tered light at larger angles, the total scattering is then approximated 

by the light incident on the particle. Instead of using geometrical optics 

for this scattering, a better approximation would be to use the RGD 

theory or an empirically improved RGD equation. The scattering in the 

forward direction would then be obtained by adding the Fraunhoffer dif

fraction term. %
This type of approximation was used to successfully pre

dict the merging and disappearance of the extrema in the forward direc

tion. The intensity of the light scattered by a particle is approxi- 
*

mated by

1 = 1  + In (26)s u

where I is the scattering from light striking the particle s
In is the light diffracted by the particle
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The scattering from the light striking the particle can be approxi

mated by the RGD theory while the light diffracted by the particle 

is described by Fraunhoffer diffraction.

Both the RGD theory and the Fraunhoffer diffraction 

theory show maxima and minima that migrate toward the forward direction 

as the particle size increases. However the extrema from the RGD theory 

migrate at a faster rate toward the forward direction than the corres

ponding extrema from the Fraunhoffer diffraction. A particle size is 

eventually reached where the extrema curve from the two systems inter

sect. Since this intersection occurs close to the forward direction, the 

diffracted light makes a significant contribution to the total light 

scattered. One can then use arguments related to the Rayleigh criterion 

for resolving two overlapping diffraction patterns to predict where the 

first extrema pair disappears. According to the Rayleigh criterion, two 

overlapping diffraction patterns are no longer resolvable when the 

center of one Airy disk falls on the first minimum of the other Airy 

pattern. A similar approach shows that the first extrema pair in the 

forward direction disappears when the first maximum of the RGD theory 

falls on the first minimum of the Fraunhoffer diffraction theory.

The gradual change in the total scattering intensity as 

the first maxima and minima pair disappear in the forward direction is 

seen in Figure 86. This figure shows the scattered intensity using Mie 

theory calculations plotted against the angle of observation for several 

different particle sizes ranging from °< * 15 to 21. The range of 

particle size and angular distribution corresponds to the region in 

Figure 46 where the first extrema pair disappears in the forward direc

tion. Assuming that equation 26 is a good approximation for interpre-
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ing the actual scattering curves, one can follow the migration of the first 

extrema pair toward the forward direction.

Figure 86 shows that as the particle size increases from 

OC = 15 to (X= 17 the first extrema pair shifts to smaller angles and the min

imum becomes much deeper. The very large decrease in the minimum occurs 

when the minimum for Ig coincides with the minimum for I^. Increasing the 

particle size to ©<= 20 shows the first minimum becoming very shallow. Note 

that the maximum has shifted 3.1° toward the forward direction while the 

minimum has only shifted 1°. These observations are consistent with the 

minimum for Ig moving past the minimum for 1^  and into the range where 1^  

has a very rapid rise in intensity. Increasing the particle size to 0( = 21

shows only an inflection point since the maximum of Ig now lies on the

minimum of Ip. Further increase in particle size gradually reduces the inflec

tion point to a small bend in the curve and then disappears as the first ex

trema pair moves into the first lobe of the diffraction pattern.

The explanation for the first extrema pair washing out 

was then tested using equation 18 to describe the extrema migration for I8
and the Fraunhoffer diffraction theory to describe the extrema migration 

for Ip. The first minimum contour for the Fraunhoffer diffraction theory is 

given by

C*sin0 = 3.83 (27)

combined with equation 1& one has two equation in two unknowns,

0 <sin (0/2) -  K . - K , . (IS)k oi li

Since the extrema pairs wash out very close to the forward direction one can 

approximate sin with its argument. Eliminating the angle &  from the two
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equations^one has

~ M a *  * <K0i - l - « 5 ) / K u  (

The values of and must correspond to the maxima contours.

Using the constants shown in Table IV in equation 28 one 

can predict that the first order extrema disappear at 67.8, 23.0 and 

13.2 for m “ 1.05, 1.20 and 1.333 respectively. The Mie calculations in the 

present study show that the first order extrema for m “ 1.20 and 1.333 dis

appear at 20.6 and 12.5 respectively. No calculations were available to 

determine the size at which the first order extrema disappear for m * 1.05. 

However, the close agreement between the predicted and actual disappearance 

of the extrema in the forward direction indicates that the proposed explana

tion represents a reasonable approximation.

A comparison of Figures 46 and 56 for m ■ 1.20 and 

Figures 50 and 60 for m = 1.333 indicate that the extrema disappearance

is independent of the polarization of the incident light. In addition 
(21-23)Patitsas has shown that the higher extrema orders also disappear

in the forward direction in a systematic fashion. The continued dis

appearance of the higher order extrema pairs is not surprising since the 

rate of migration of the Ig extrema pair toward the forward direction is 

faster than the migration of the diffraction extrema. A particle size is 

eventually reached where the Ig extrema overtake the diffraction extrema 

and disappear in the manner previously outlined.

2. Backward Scattering Described in Terms of Reflection

a . General Description

The interpretation of the extrema that migrate toward the

i
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backward direction in terms of a reflection phenomenon was first proposed 
(33) (3)by Penndorf . Kerker has reviewed a number of other investigations 

that have explained the scattering at 0 = 180° in terms of reflection using 
geometrical optics. These studies showed a remarkably good agreement between 

the backscatter from geometrical optics and that from the Mie theory even for 

the very small particle sizes where geometrical optics is generally not con

sidered applicable. However the investigations reviewed by Kerker did not 

consider the angular variation of the scattered intensity in the backward 

direction.
(33)Penndorf reasoned that a portion of the light scat

tered in the forward direction undergoes a reflection when crossing the 

particle surface. If the scattered intensity in the forward direction has 

a maximum characterized by a constant (Xsind value then there will also be 

an intensity maximum in the backward direction having a constant O^sin (IT̂  o) 

value. Increasing the particle size Ofwill then cause the maximum in the 

forward direction to move farther into the forward direction while the maxi

mum in the backward direction moves farther into the backward direction. 

Penndorf had shown that the diffraction extrema were seen in plots of c<sin(? 

versus Q( as curves having approximately constant <xsin@ values. In a 

similar fashion the reflection extrema were seen in plots of o(sin 

versus 0( as curves approximately constant 0( sin (ft-O) values.

The present investigation also interpreted the extrema 

that migrate toward the backward direction with increasing particle size 

in terms of a reflection phenomenon. However instead of using <Xsin (*T-fi) 

to describe the contours of these extrema the present investigation used 

OC sin[(r-0)/2]. This term was used because the diffraction extrema in the 

present study were described by the RGD theory where the extrema contours
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have constant © ( sin (0/2) values Instead of the Fraunhoffer diffraction 

theory where the extrema contours have constant C(sin& values. A reflec

tion of the diffraction extrema at the particle surface will therefore 

result in extrema having constant C\sin [(JT-Q)/!] or cos (0/2) values.

Reflection extrema will then be seen in plots of o<cos (0/2) versus as
(2 2)curves having constant values of Cs<cos (0/2). Patitsas had previously 

shown that the extrema contours in the backward direction for large particles 

having large relative refractive indexes can be described by constant values 

of oCsin [(f|i_£>')/2]. Unfortunately he treats this observation only as a 

convenient empirical relation for describing the extrema contours in the back

ward direction. He does not recognize the significance of constant values in 

terms of a reflection pehnomenon.

Figures 87-9A show the 1^ extrema contours plotted on 

graphs of o^cos (0 /2) versus o(, for the range of m  and q values considered in 

the present investigation. The graphs are similar to those seen previously 

for the diffraction extrema in that the extrema data appears only in the 

lower triangle. However the limiting line is now defined as o^cos (0/2) 

and represents & m 0°. The lines representing other angles are shown in 

Figure 87. Note that the sequence of angles is now reversed for the reflec

tion plots compared to the diffraction plots. The diffraction extrema will 

now be seen as inclined lines while the reflection extrema will be seen as 

horizontal lines. Figure 8 7 shows that the extrema contours for m = 1.05 

and q ** I have no reflection extrema since all of the lines have large 

slopes and represent diffraction extrema. The lack of any reflection extrema 

is not surprising because of the low m value. Increasing the heterodisper

sion to q = 2 in Figure 88 washes out many of the diffraction extrema and 

shows the emergence of reflection extrema for the larger particle sizes.
I
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The reflection extrema become more pronounced as the 

relative refractive index increases. Figure 88 shows the definite 

appearance of several reflection extrema for m 8 1.20 and q * 0 at the 

larger particle sizes as indicated by the horizontal lines. Note that the 

minima contours for the reflection extrema show a much higher oscillation 

than the maxima contours. This trend is expectred since the reflection 

pattern is produced from finite intensities and not the lack of intensities. 

The reflection minima contours will therefore be strongly influenced by the 

diffraction system. Increasing the heterodispersion to q 8 2 in Figure 89 

greatly enhances the reflection extrema and washes out a portion of the 

diffraction extrema. Again note that the reflection maxima show very con

stant horizontal lines while the minima have smooth oscillations. Increas

ing the relative refractive index to m 8 1.333 shows a greater number of 

extrema characterized by reflection. Figures 90 and 91 show the reflection 

extrema as horizontal lines for q 8 0 and q 8 2 respectively.

The same trends in the reflection extrema are also seen

for the extrema from I« and I . However the I„ and I extrema have an addi-2 u 2 u
tional extremum due to the Rayleigh minimum. The Ij extrema for m 8 1.05

and q 8 0 in Figure 92 shows this Rayleigh minimum as a very pronounced

diagonal line. Since the Rayleigh minimum also appeared as a diagonal line

in the diffraction plots, one can say that the Rayleigh minimum is neither

a reflection nor a diffraction extremum. The other aspects of the I- and I2 u
reflection extrema are similar to those already discussed.

The physical interpretation of the reflection phenomenon 

in the previous discussions is made in the following manner. The incident 

radiation induces oscillating electric dipoles within the particle which 

radiates in the manner described by the RGD theory. A portion of this radia-
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tion crosses the particle surface and is seen as a diffraction pattern in 

the forward direction. The fraction of radiation that is transmitted is 

determined by Fresnel's equations. The remaining fraction of the radiation 

undergoes an internal reflection at the particle surface and consequently 

moves in the opposite direction. The reflected wave then travels through 

the particle in the opposite direction of the original wave and is trans

mitted across the particle surface in accord with Fresnel's equations.

This reflected wave is now observed in the scattering diagram at the angle 

if the original wave, as obtained from the RGD theory, were moving in 

the direction

One might naturally ask that if internal reflections are

possible then the particle should also exhibit external reflections from the
(49)incident radiation. Hodkinson and Greenleaves had indeed shown that ex

ternal reflections must be taken into account to describe the scattering 

in the forward direction for particles even as small a s “ 10. However 

the angular variation of this external reflection is very smooth and would 

not change the basic pattern of the reflected extrema as described in this 

Section. Figure 93 shows the intensity of the external reflection for Ij and 

12 plotted against the angle of observation. Note that both curves have a 

very smooth variation of the intensity in both the forward and backward 

direction and therefore would not introduce any additional extrema into the 

scattering pattern. The physical interpretation of the angular location of 

the intensity extrema in the backward direction can therefore neglect the 

external reflection.

b . Empirical Equations for Reflection Maxima

Empirical equations analogous to equation IS for the 

diffraction extrema can also be developed for the reflection extrema. These
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equations would be described by

( X  cos (0/2) - kQi - (29)

where kg^ and kj^ are empirical constants and i represents the order of the 

extrema counting from the backward direction. This equation, however, only 

applies to the reflection maxima because of the large oscillations in the 

minima. The constants kg^ and kj^ show very similar behavior to the corres

ponding constants in equation 18 for the diffraction extrema. The constant 

kg^ increases with increasing extrema order and decreases with increasing m 

value. Similarly the constant k ^  increases with increasing m although the 

values are much smaller than the corresponding values from the diffraction 

extrema. This can be seen in tlie nearly horizontal lines for the maxima in 

Figures 89 and 91.



V. Methods for Determining Particle Size

Distributions Using Angular Intensity Extrema

Chapter IV presented a detailed dicussion of several trends in the 

relationship between the angular intensity extrema and the particle size 

distribution for a given m and polarization of the incident light. This 

chapter will present several methods for using these trends to infer the 

particle size distribution from the angular intensity extrema. All of 

the methods require that the relative refractive index of the particle 

be known so that the proper relationship can be used.

A. Methods Based On Separating The Effect Of The Mode And The

Distribution Width

A common feature in most of the methods presented in this 

chapter is the assumption that the effect of heterodispersion can be 

separated from the intensity extrema. The complete determination of the 

unknown size distribution then requires two arguments. One argument 

determines the mode or an average size of the distribution while the 

other argument determines the width of the distribution. The error in 

the resulting size distribution increases as the separation of the mode 

and the width of the distribution becomes less distinct.

1. Determining the Distribution Mode From The Extrema Loca

tions

The present investigation used the angular location of the 

intensity minima to determine the mode of the distribution independent 

of the hetero^distribution. Kerker et a l ^ ^  had first pointed out
(24)this possibility which was later developed by Wallace and Kratohvil 

into an empirical method for determining particle size distributions. A 

qualitative explanation for the independence of the location of the

i

. y.,

“  "  f t *
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angular extrema from the degree of heterodispersion was given in Chap

ter IV. The fundamental requirement of removing the effect of the 

heterodispersion on the extrema locations is to maintain a constant mode 

or another measure of the distribution average. For heterodispersions, 

the particles larger than the mode will shift the extrema locations in 

one direction while the particles smaller than the mode will shift the 

extrema locations in the other direction. On the average the two shifts 

will cancel and result in the same extrema locations as the monodisperse 

distributions.

To test the validity of removing the effect of heterodispersion 

from the extrema location, a number of calculations were performed on a 

series of heterodispersions having a constant mode. The results of these 

calculations are shown in Figures 95-100 where the angular location 

of the extrema are plotted against the heterodispersion parameter q for 

m = 1.20. Each figure represents the extrema from heterodispersions 

having a constant mode. Figures 95, 96, and 97 show the 1^ extrema for 

= 5 ,  10 and 15 respectively. The maxima and minima are shown by the 

dashed and solid lines respectively.

Several trends are seen in these figures that define the region 

where the extrema locations are independent of q. In general, these 

regions occur in the angular scattering diagram where the diffraction and 

reflection extrema are well established. Thus, the extrema will be inde

pendent of q in both the forward and backward direction. However, in 

the forward direction, only the minima remain constant with increasing 

q while the maxima migrate toward the minima. This migration becomes 

less pronounced as the modal size increases. The minima also shifts 

toward the maxima shortly before the extrema pairs wash out.
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In the backward direction removing the effect of the heterodis

persion from the extrema location is only feasible for the larger parti

cle sizes where the reflection extrema are well established. Figure 95 

shows that for = 5 the extrema locations are not constant as q in

creases since the backward direction has not yet developed a pronounced 

reflection region. In fact, the appearance of a new extrema pair indi

cates that the region represents the boundary between the reflection and 

diffraction extrema.

Increasing the particle size to a 10 and 15 in Figures 96 and 

97 respectively results in a larger and more established reflection 

region with a resulting greater independence of q. Note that both the

maxima and minima in the backward direction are approximately indepen-
/

dent of q. A comparison of all the extrema in Figures 95-97 show that 

the reflection extrema in the backward direction can be used to deter

mine even for large q values where the diffraction extrema have been 

washed out. These figures also show that the extrema closer to the 

boundary separating the diffraction and reflection extrema wash out 

faster than those extrema farther removed.

The I^ extrema shown in Figures 98-100 have a similar trend as 

the 1  ̂ extrema except for a greater tendency of the diffraction extrema 

to wash out at lower q values. This is illustrated in Figure 98 where 

the first order diffraction extrema wash out before q = 0.5 while the 

second order extrema are not even seen at q = 0.0. The diffraction 

extrema for larger particle sizes do not wash out as rapidly with in

creasing q values. Figures 99 and 100 also show the pronounced trend 

whereby the extrema pairs wash out more rapidly with increasing q the 

closer they are to the boundary separating the reflection and diffrac-
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tion regions.

The mode of the distribution can be determined from the location 

of the extrema that are independent of the heterodispersion. These 

extrema occur in the well established regions of diffraction and reflec

tion as seen in Figures 95-100. Wallace and K r a t o h v i l ^ ^  had previous

ly used the minima in the forward direction to determine the mode. They 

showed that the minima remained approximately constant for a constant 

mode while the maxima shifted toward the minima as the heterodispersion 

increased. The present investigation indicates that both the maxima 

and minima in the backward direction also remain constant for larger 

particle sizes as the heterodispersion increases if the mode is kept 

constant.
(24)Wallace and Kratohvxl argued that since the minima angles 

were independent of q the mode of the heterodispersion would be equal

to the monodisperse particle size having the same angular location of 

the minima. The mode could then be rapidly determined by matching the 

minima locations from the heterodispersion with the extrema contour 

plots of c< versus Q  from monodisperse distributions having the same m 

value. The calculations in the present investigation have verified 

that the diffraction minima are approximately independent of the hetero

dispersion and can therefore be used to determine the mode of the distri

bution. However, the method begins to fail at larger q values where the

minima locations shift with increasing q.

2. Determination of the Distribution Width

The next step after finding the mode is to determine the

width of the distribution. Several methods have been investigated using
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the intensities and angular location of the extrema. These methods re

late the width of the distribution to the intensity ratio of the extrema

pair, the intensity slope between the extrema pair and the angular dif

ference between the extrema pair.

a # Intensity Ratio of Extrema Pair
(24)Wallace and Kratohvil had previously shown that 

the width of the distribution could be determined from the ratio of the 

intensity maximum to the intensity minimum. Although previous investi

g a t o r s ^ ^  had known that the extrema wash out with increasing hetero

dispersion, they did not attempt to develop a quantitative measure of
(24)this behavior. The technique developed by Wallace and Kratohvil was 

therefore the only way that the complete size distribution could be 

determined from angular extrema measurements. This technique required 

that the distribution mode must first be determined as described in the 

previous section. The heterodispersion is then separately determined by 

comparing the measured intensity ratio with the theoretical curve cor

responding to the same modal size. A different curve is used for each 

modal size and each extrema order.

Figure 101 shows several curves of I A  . versus q generated & max/ min n 6
from the angular variation of 1^. The Imax corresponds to the maximum

intensity of a given extrema pair while I . corresponds to the minimum J ** r min r
intensity of the same extrema pair. The upper graph represents the 

intensity ratio of the first extrema pair from distributions having a 

constant mode of 5, 7 and 10. One sees that the curves for the smaller 

modes have a higher intensity ratio for q = 0 and decrease more rapidly 

with increasing q than the corresponding curves for the larger modes. 

When the intensity ratio has decreased to the limiting value of 1.0 the
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extrema pair disappears. A similar pattern is seen for the intensity

ratio from the second extrema pair shown in the lower graph in Figure

101. However, the intensity ratios decrease much faster for the second

extrema pair than for the first extrema pair. The explanation for the

higher rate at which the intensity ratio decreases (i.e., extrema pairs

washing out) with increasing q for the higher extrema pairs and smaller

modal values was given earlier in Chapter IV.

The corresponding curves of I /I . versus q that are generated r 6 max min M 6
from the angular variation of 1^ are shown in Figure 102. These curves 

have ratios that are close to 1.0 even for monodisperse distributions 

due to the very shallow extrema. Figure 102 shows that, as in the 1^ 

case, the intensity ratio decreases with increasing q at a higher
i

rate for the higher extrema pairs and smaller modal values. Note that

the first extrema pair for a mode of 5 disappears before q = 0.5, and the

second extrema pair for modes of 5 and 7 are not even seen. In addition,

the trend of smaller modes having larger intensity ratios no longer holds.

Wallace et a l ^ ^  had previously computed the intensity ratio

for Ij, and 1̂  as well as the ratio of the maximum polarization ratio

to the minimum polarization ratio P  / P .  for m = 1.17 and m ■ 1.21 r ■'max ■'min
for a number of different modal sizes. In general, they found that for 

each type of ratio the smaller modal sizes had a larger ratio value than 

the larger modal sizes and the ratio values for a given modal size de

creased at a faster rate with increasing q for the larger orders than for 

the smaller orders. They also showed that very small ratio values are 

obtained for the I^ extrema as seen in Figure 102.

According to the Wallace-Kratohvil method, the width of the dis

tribution is determined from an intensity ratio curve corresponding to
1

: V->
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a particular modal size. Particle size distributions having a different 

mode would then require a different curve for the intensity ratios.

ones shown in Figures 101 and 102 which cover the desired range of modal 

sizes at sufficiently small size increments would be adequate to deter

mine the width of a distribution. The curveB representing intermediate 

modal values could be determined by interpolation. However, the detail

ed extrema calculations in the present investigation have revealed that 

the intensity ratio curves have considerable oscillations as a function 

of the mode which causes an error in the interpolation and destroys the 

systematic pattern in the family of intensity ratio curves. Figure 103 

shows the oscillations of the intensity ratio curves for the first three 

extrema orders plotted as a function of modal size. These curves cor

respond to the 1  ̂ scattering from a monodisperse distribution having 

m = 1.20. Note that the oscillations increase with increasing extrema 

order at a fixed modal size and decrease with increasing modal size 

at a fixed extrema order.

The loss of a systematic pattern and the difficulty in the inter

polation due to the oscillations seen in Figure 103 can be eliminated by 

normalizing the intensity ratio. This normalization is accomplished by 

dividing the intensity ratio from the heterodisperse distribution by the 

intensity ratio from the monodisperse distribution. However, the mode 

of the heterodisperse distribution must be equal to the monodisperse 

particle size. Thus, plots of

Wallace and Kratohvil U H ) suggested that a family of curves like the

( H  / i M' rain'q/ V min * q
versus q will provide
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a systematic pattern for determining the heterodispersion and allow 

interpolations.

The normalized intensity ratio for various heterodispersions

having a constant mode ranging from a „ = 3 to q-„ = 12 for the first,M M
second and third extrema pairs are shown in Figures 104, 105 and 106 

respectively. These curves were generated from 1^ data for spheres 

having m = 1.20. Each curve represents a size distribution that main

tains a constant modal size as the width of the distribution increases 

with increasing q. Note that the normalized intensity ratio changes 

from 1.0 at q = 0 to 0.0 at the q value where the extrema pair disap

pears. In contrast to the intensity ratios as proposed by Wallace and 

Kratohvil, the normalized intensity ratios allow quantitative compari

sons of different extrema pairs and different modal sizes. Figures 

104-106 show that for a given extrema pair the normalized intensity 

ratio decreases with increasing q at a faster rate for heterodispersions 

with a smaller mode than for heterodispersions with a larger mode. Note 

that the heterodispersions with smaller modes do not have higher extrema 

pairs.

Plots of the normalized intensity ratio for different extrema 

orders having a constant mode are shown in Figures 107 and 108 for ** 5 

and 10 respectively. One readily sees that the larger modes have more 

extrema orders than the smaller modes. These figures show that the 

normalized intensity ratio decreases at a faster rate with increasing 

q for the higher extrema orders than for the lower extrema orders. The 

explanation for the relative rates at which the normalized intensity 

ratio decreases with increasing q for different modal sizes and differ

ent extrema orders was given earlier in Chapter IV.
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Empirical equations can be generated to approximate the curves 

shown in Figures 104-108. These equations have the following form:

( H / l H  ■V min/q/ \ mm t q - 1 - c- «  - c <30)1 M 2

where c^ and c^ are empirical constants that depend on the extrema order, 

m and the polarization of the incident light.

b . Intensity Slope Methods

1) Finite Difference Slope

In addition to the normalized intensity ratio other 

techniques were investigated that use the intensity of scattered light 

to determine the degree of heterodispersion. These techniques were 

developed from the following variations of the incremental intensity 

change ^  applied to the intensity extrema:

I - I . - . . max m m
• 1 and n — n - . i 7 imax m m

The two cases differ only in the intensity value used for the denomin

ator. In the former case the minimum intensity is used while in the 

latter case the average of the maximum and minimum intensity is used.

The behavior of with increasing q at a c o n s t a n t i s  very
I

similar to that seen for ----  and need not be repeated. From the dis-
min

cussions in Chapter IV the major change that occurs in a given extrema 

pair with increasing q at a c o n s t a n t ^  can be represented by The
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angular separation A 9  of the extrema remains approximately constant 

until the extrema pair have nearly washed out. Examples of this be

havior were seen in Figures 35 and 37. Since A 0  remains approximately 

constant with increasing q one can normalize the incremental intensity

represents the slope of the line segment connecting the maximum and*
minimum intensity of an extrema pair.

The intensity ratio of light scattered at two different angles 

can be shown to be closely related to the slope of the angular scatter

ing curve. If the angular separation £ gbecomes very small the incre

mental change can be approximated by a derivative

Conversely, if intensity measurements are made over a finite angular 

range one has

change with respect to the angular separation yielding This term

A l  dl d In I
IA0 ~ IdG " d0 (3/)

d In I 
d 6

In I 
A 9 (33)

combining equations 32 and 33,

(3 3 )

I
i
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one sees that the logarithm of the intensity ratio divided by the

angular separation is equal to the normalized intensity slope.

Hodkinson^"*^ had previously used the intensity ratio of light

scattered at two different angles to measure the particle size. He had

shown that the intensity ratio of light scattered at two different

angles within the main lobe of the Fraunhoffer diffraction pattern would
( 52)provide a unique particle size measurement. Gravatt has recently 

developed an apparatus using Hodkinson's method to measure particle size 

distributions. Thus, the intensity ratio of light scattered at two dif

ferent angles provides a measure of the particle size if the angles are 

in the forward direction (main Fraunhoffer lobe) and a measure of the 

heterodispersion if the angles represent the location of intensity 

extrema. These techniques can be considered to be limiting cases of the 

intensity slope measurement which automatically provides both the size 

and heterodispersion of a given size distribution as will be seen later.

The intensity slopes were initially used as an alternative to the 

intensity ratio for finding the breadth of a given size distribution.

The mode of the distribution was, as before, determined from the angular
I

location of the intensity minima. As seen previously for the ----  curves,
AI m *nthe curves have considerable oscillations as a function of the mode.

These oscillations cause interpolation errors and destroy the systematic 

pattern of the family of versus q curves. Figure 109 shows the os

cillations of for the first three extrema orders plotted as a func- 

tion of modal size. These curves correspond to the 1^ scattering from 

a monodisperse distribution having m = 1.20 and represents the same data

seen in Figure 103 where — was plotted. The oscillations in1 . IA9min
increase with increasing extrema order at a fixed modal size and in-
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crease with increasing modal size at a fixed extrema order. This trend
1

is similar to that seen for -j  with respect to increasing extrema
min

order but is opposite to the trend seen for increasing a ... In addition,M
the values of generally increase with increasing in contrast to

which generally decreases with increasing O' .1 . Mmin j
* • • max ■ *A similar strategy used previously on the —---  curves will provideJ» ♦min

a systematic pattern in the slope curves and allow interpolation. This 

strategy involves normalizing the slope with its value at q “ 0 .

A series of graphs of the normalized slope,

, versus q were then plotted to show
q = 0

the systematic behavior with respect to and the extremum order. The 

normalized intensity slopes for various heterodispersions having con

stant modes ranging from = 3 to ® 12 for the first, second and

third extrema pairs are shown in Figures 110, 111 and 112 respectively.
I

The same data in these figures was previously plotted as ---  in
min

Figures 104-106. Comparing the graphs for the normalized slopes with 

the graphs for the normalized intensity ratio shows that they have a 

very similar behavior. Both functions decrease with increasing q at a 

faster rate for smaller modal sizes at a fixed extrema order and for 

higher extrema orders at a fixed modal size. Graphs of the normalized 

slopes for different extrema orders having a constant mode are shown in 

Figures 113 and 114 for = 5 and 10 respectively. Again note the 

greater number of extrema pairs for the larger mode.

Empirical equations can be developed to approximate the normal

ized intensity curves shown in Figures 110-114. These equations have
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the following form:

\ 21 i------ 3------ (3H)
^ / q  = 0 cl ® M  “ C2

where and are empirical constants that depend on the extrema order, 

m and the polarization of the incident light. Note that equation 35 for 

the normalized slope has the same form as equation 30 for the normalized 

intensity ratio. The equivalence of the two equations is not surprising 

because of the close relation between intensity ratios at two angles and 

the intensity slopes. Although equations 30 and 35 are reasonable ap

proximations of the actual data, they can be considerably improved by 

using a more complicated expression of and q. However, this would 

make them less attractive because of the additional calculations 

required. The accuracy of the empirical equation in approximating the 

data is illustrated in Figure 110 where the solid lines were drawn from 

equation 35. The constants c^ and in this case are 0.9 and 1,4 re

spectively. Note that a significant deviation between the empirical 

equation and data points only occur;at the largest modal size and lar

gest heterodispersion.

Using the normalized slopes to determine the breadth of a distri

bution is equivalent to using the normalized intensity ratio if the 

slopes are calculated from the intensity extrema. The same experimental 

measurements and errors of the intensity extrema would be used in both 

cases. As will be shown in Chapter VI, accurate measurements of the 

intensity minima are very difficult and will cause a significant error 

in the determination of the distribution width. One minor advantage of
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the normalized slope method over the normalized intensity ratio is the pos

sible elimination of the background scattering from the solvent and optical 

cell. If the angular variation of the scattered intensity due to the back

ground is much smaller than the angular variation due to the particles, then 

the background intensity will be eliminated in the slope calculations.

2) Differential Slope

The primary advantage of the normalized slope method results when 

intensity measurements are made over a very small angular increment in

stead of the angular separation between the intensity extrema. If the 

angular increment is sufficiently small the slope then approximates a 

derivative and intensity slopes can be determined over the entire scat

tering range. These differential slopes can be experimentally measured 

while the finite slopes calculated from the extrema do not correspond 

to a physical measurement. Moreover, the slope calculated from the 

intensity extrema is significantly smaller than the actual intensity 

slope between the extrema even if the extrema intensities were measured 

with no error. However, in practice there is a significant error in the 

extrema measurements which reduces the calculated slope even further.

The major source of this error is due to multiple scattering and a large 

solid angle in the detector. Both of these sources of error are great

est at the intensity extrema locations. Measuring the differential 

slope between the extrema instead of the finite slope calculated from 

the extrema minimizes this error.

A series of calculations were then made to determine the angular 

derivative of the scattered light from different particle size distri

butions having a constant mode. These derivatives were obtained from

the Stirling's polynomials used to approximate the angular scattering

!
i  Vj



data. Figures 115-118 show the results of some of these calculations

for and ra = 1,20. The same distributions had been previously plotted

as the scattered intensity versus the angle of observation in Figures

18-21. Each figure shows the normalized angular derivative i  4 ^  of theX at?
scattered intensity plotted against the angle 0 for several heterodis

persions having the same mode but different distribution widths. Note 

that the derivatives can have positive, negative or zero values. When 

the derivative is zero at a given angle the angular intensity curve has 

an extremum at that position.

Figure 115 shows the angular derivative curves for particle size 

distributions having a constant mode of = 3 and heterodisperse para

meters of q = 0.0, 0.5 and 1.0. This figure shows the common features 

present in all of the derivative curves. As the angle 6 increases from 

0° the slope becomes more negative, reaches a minimum and then rapidly 

increases. This region corresponds to the forward scattering lobe. The 

slope then crosses 0 , reaches a maximum value and then decreases again 

to a zero slope. The angle at which the slope first crosses through 0 

represents the first minimum while the second crossing represents the 

first maximum. Note that the slope changes very rapidly in the first 

crossing which represents a deep minimum and gradually in the second 

crossing which represents a shallow maximum. All three curves have a 

zero slope value at 0 = 85° as expected from previous discussions show

ing that the minima remain constant with increasing heterodispersion. 

However, the angles at which the slope crosses through zero the second 

time decreases with increasing heterodispersion. This migration of the 

angular location of zero slope with increasing q corresponds to the mi

gration of the maximum location toward the minimum as seen in Figure 18,
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The intensity slope has a maximum value between the two angles 

of zero slope and is shown by the number 1. Note that the angular 

location of this maximum slope remains approximately constant while the 

magnitude of the slope decreases with increasing heterodispersion. The 

angular location of this maximum slope is very close to the intensity 

minimum. Figure 115 thus illustrates a new method that can be used to 

determine particle size distributions. The mode is determined from the 

angular location of the maximum slope while the width of the distribu

tion is determined from the value of the maximum slope. This approach 

assumes that the angular location of the maximum slope is independent 

of the distribution width. The previous techniques in this chapter used 

the intensity minima to find the mode and had assumed that the angular 

location of the intensity minima was independent of the distribution 

width. Although the mode of the distribution can also be determined 

from the location of the intensity minima (zero slope) the maximum slope 

method is applicable to much wider distributions. This is possible be

cause the maximum slope remains long after the minimum intensity has 

been washed out.

The differential slope method was developed as an extension of 

the method discussed previously where the slope of the line segment 

connecting the intensity extrema was used to determine the width of the 

distribution. The important differences between the two methods should 

be pointed out. The differential slope seen in Figure 115 increases 

from zero at the intensity minimum to a maximum value and then decreases 

to zero again at the intensity maximum. In contrast, the line segment 

connecting the maximum and minimum intensity has a constant slope over
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the angular range between the extrema. This constant slope value 

is the average of the differential slope values in Figure 115 taken 

over the angular range defined by the maximum and minimum intensity.

One sees that both the maximum slope value and the average slope value 

decreases with increasing heterodispersion. However, the average slope 

method is no longer applicable when the heterodispersion increases to 

the point where the extrema pair are washed out. The differential slope 

can still be used to determine both the mode and width of the distribu

tion long after the extrema have washed out.

Very similar patterns are seen for angular derivative curves 

from particle size distributions with larger modes. Since larger 

particle sizes have a greater number of intensity extrema than smaller 

particle sizes the angular derivative curves will also show a greater 

number of derivative maxima. Figure 116 shows the angular derivative 

curve for particle size distributions having a constant mode of “ 5 

and various degrees of heterodispersion ranging from q “ 0.0 to 2.0 .

This figure shows that there are now two derivative maxima shown by the 

numbers 1 and 2, that can be used to determine the mode and width of the 

distribution. Note that the angular location of the maximum slopes 

remain constant with increasing heterodispersion while the value of the 

slopes decrease. As seen previously with the intensity ratio and the 

normalized slopes, the values of the differential slopes decrease at a 

faster rate for the higher extrema pairs.

Figure 116 shows that at q a 2.0 the first two extrema pairs have 

disappeared completely. This size distribution could not be detected 

by any of the previous techniques discussed. However, the derivative
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curve has a well defined maximum at 1 which a l l ™ *  both the mode and 

the width of the distribution to be determined. Note that the deriva

tive has a zero value at the maximum for q = 2.0. Distributions with 

larger q values would have negative values at the maximum slope. With 

increasing het°rodispersion, a limiting negative value of the slope is 

eventuallv reached. This limiting value is approximately the average 

of the maximum and minimum slope values of the curve representing a 

monodisperse distribution. The second maximum slope in Figure 116 

has nearly reached this limiting value.

Increasing the modal size to = 10 results in a greater number 

of derivative maxima. Figure 117 shows that there are notf five deri

vative maxima designated by the numbers 1-5 that can b® used to deter

mine the particle size distributions. The increasing rate at which the 

value of the derivative maxima decrease with increasing q for the higher 

orders can be used as a Vernier scale to obtain accurate distribution 

mode and width measurements. Figure 117 shows that the derivative 

slopes have reached their limiting value for the derivative maxima de

signated as 2-5. Note that these limiting values are the average o r t^e 

maximum and minimum values of the monodisperse curve. The size distri

bution can still be accurately determined using the first derivative 

maximum for the q = 5 curve. None of the previously discussed methods 

will work for the large heterodispersions since the intensity extrema 

disappear at much lower q values.

Figure 117 also shows the very pronounced derivative in the 

backward direction. The scattering curves in this region were previ

ously shown to originate from a reflection phenomenon. Note that the

i
I V'



H OZ D too t z o
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differential slopes in the backward direction are much less affected 

by the increasing heterodispersion than are the corresponding slopes 

in the forward direction. This behavior was previously pointed out for 

the angular intensity curves. Figure 117 also shows the boundary 

between the regions characterized by diffraction in the forward direc

tion and reflection in the backward direction. A similar behavior is 

seen for a ^ =/5 in Figure 118. The ordinate scale in this figure is 

greatly reduced.

The corresponding graphs for the differential slopes, from ^  are 

very similar to those seen from 1  ̂ except for the modifications result

ing from the Rayleigh minimum and the very shallow extrema in the for

ward direction. The Rayleigh minimum was shown to shift from 9 =  90° 

to larger angles as the particle size increased from “ 0. This 

shift allows one to use the differential slope method to determine par

ticle size distributins for particle sizes in the Rayleigh region 

(smaller thance^ ■ 0.5). Figure 119 shows the differential slope of 

I2 plotted against the angle 0 for different distributions having a 

constant mode a  ̂  3 1.06 and heterodispersions of q ■ 0.0, 0.5 and 1.0. 

Since the intensity curve has only one minimum close to 90° the dif

ferential slope crosses through zero only once. As expected, the 

curves for all of these distributions cross through zero at the same 

angle. The derivative maximum, designated by 1, is also located at 

a fixed angular position for all three distributions. Thus, either 

the location of the derivative zero or the derivative maximum can be 

used to determine the modal size.

The smallest modal size that can be measured depends on the
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accuracy of the angular range of the measurement. For example, if 

one can measure the light scattered at angles within 0.1° then one 

can determine distribution modes to within a ^ = 0.4. Smaller angles 

will allow even smaller modal sizes to be determined. The graphs in 

Figure 119 also show that the width of the distribution can reliably 

be determined from the value of the maximum slope. The value of the 

maximum slope decreases with increasing degree of heterodispersion.

In addition to the Rayleigh minimum, the second dominating 

feature in the differential slope is the very shallow extrema in 

the forward direction. Figure 120 shows the differential slope 

for different heterodispersions having a constant mode of O' = 5.0.

Note that even for the monodisperse case the maximum derivative 

designated by 1 barely crosses the zero slope line while the maximum 

derivative designated by 2 is far removed from the line. This behavior 

differs considerably from the 1^ curves shown in Figure 116. As 

pointed out earlier, the differential slope method can still be effec

tively used to determine particle size distributions even when there are 

no intensity extrema present. Thus the first maximum derivative in 

Figure 120 can still be used to determine to mode and width of the dis

tribution. Figure 120 also shows a very pronounced derivative minimum 

and maximum in the backward direction that quickly washes out with 

increasing heterodispersion. This pattern is very similar to that seen 

in Figure 119 and is due to the Rayleigh minimum. The differential 

slopes for distributions havingo .. = 10 and 15 are shown in Figures 

121 and 122 respectively. Except for the effect from more shallow 

extrema in the forward direction, the differential slopes appear very
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similar to the corresponding curves seen for 1 .̂

The differential slope method can therefore be used to determine 

particle size distributions for much smaller particle sizes and much larger 

heterodispersions than possible for the other techniques based on the 

intensity extrema. Very small particle sizes can be determined using 

the differential slope of I^. This determination is possible because of 

of the angular shift of the Rayleight minimum with increasing particle 

size. For very wide particle size distributions the techniques based on 

the intensity extrema are useless since the extrema wash out. However, 

the differential slope method has derivative maxima that allow particle 

size distributions to be determined for extremely wide distributions where 

all of the intensity extrema are washed out.

c , Angular Difference Between Extrema Pairs

The previous techniques used to determine the width of a 

distribution in this section were based on intensity measurements. These 

techniques were developed from the major effects seen in the angular inten

sity plots due to increasing heterodispersion. Increasing the heterodisper

sion for distributions having a constant mode results in a dampening of 

the intensity extrema which remain at approximately the same angular loca

tion.

A more detailed examination of the less prominent effects showed

that increasing the heterodispersion results in a shift of the intensity
. (24)maximum toward a fixed intensity minimum. Wallace and Kratohvil had 

previously observed that the intensity minima remain relatively constant 

while the maxima shift toward the minima with increasing heterodispersion at 

a constant mode. They therefore recommended that the location of the minimum 

intensity be used for determining the distribution mode. This section of



Chapter V will explore the possibility of using the angular difference 

between the intensity maximum and minimum of a given extremum pair to 

determine the distribution width.

The general approach for obtaining the size distribution using 

this method is, as before, divided into two parts. The first part 

uses the angular location of the intensity minima to determine the 

distribution mode. The distribution width is then determined in a second 

step from the angular difference between the intensity maximum and minimum 

of a given extremum pair. This method was tested on the light scattered 

from a series of particle size distributions having a constant mode and 

different heterodispersions.

Figures 123-125 show the angular difference between the 

1  ̂ extrema plotted against q for different particle size distributions 

having M = 1.20. The solid curves represent the angular difference^© 

of the extrema locations while the dashed curves represent the relative 

angular shift in the minima locations. A horizontal dashed line would 

mean that the minimum location has not shifted. Higher £ &  values for 

the dashed line implies a shift in the minimum location away from the 

maximum while lower values imply a shift toward the maximum.

The curves representing the minima locations were arbitrarily 

superimposed over the angular difference curves at q = o to show the 

relative shift of the minima compared to the angular difference of 

the extrema pair. Subtracting the value of the minimum curve from the 

angular difference curve will give the relative shift of the maximum 

extremum. If the minimum curve (dashed curve) is a horizontal line, 

then the entire change in the angular difference A 6 with increasing q
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261

is due to the shift of the maximum. However, if the minimum curve shifts 

with increasing q then only a portion of the total change in A® is due

to the maximum shift. Figure 123 for = 3 shows that almost all of the

shift in AB with increasing q is due to the shift of the maximum. Thus 

one can use the minimum position to determine the distribution mode and 

6 6  to determine the distribution width. Since the extrema pair disappears 

at q values slightly larger than q = 1, both curves will bend sharply 

toward zero A® values.

Increasing the modal size to = 5 in Figure 124 shows two 

sets of curves that represent the first and second extrema pairs.

Note that A8 for the second extrema pair is much larger than A® for the 

first extrema pair. The second extrema pair also shows a larger shift 

in both the angular differende AS and the minimum location for increasing 

q than the first extrema pair. This trend, where higher higher extrema 

orders wash out at a faster rate with increasing q than lower extrema

orders, has been seen in all previous techniques.

An optimum approach would use the minimum location of the lowest 

order minimum to determine the distribution mode and the highest order 

angular difference to determine the distribution width. This method 

begins to break down at the high q values since the minimum location 

also shifts with increasing q thus making the mode determination uncertain. 

However, at low q values the shift in the angular difference A® is very 

small which makes the determination of the distribution width more 

difficult. A comparison of Figures 123 and 124 shows that the angular 

resolution of the extrema location must be much greater for the larger 

modal sizes.

Larger modal sizes have a greater number of extrema orders

: V '
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D i s t r i b u t i o n s  Having m = l .20 and
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to determine the particle size distributions but require very precise 

measurements of the extrema locations. Figure 125 shows the angular 

difference between the extrema and the relative minima locations for the 

first four extrema orders for distributions having a constant mode of 

« 10. Below q = 0.5 one needs angular extrema measurements with 

accuracies much better than 0.1° to determine the distribution width.

Even the higher extrema orders do not have a sufficient change in the 

A ©  values to allow accurate q determinations. At higher q values the 

distribution width can be adequately determined with extrema measurements 

accurate to 0.1°. When the change in the angular difference of the 1^ 

extrema is too small to permit accurate measurements of the distribution 

width one can generally use the extrema. Figure 126 shows the angular 

difference of the extrema for the first four extrema orders having 

oCj ~ 10. N-te that the third and fourth extrema pairs have a sufficiently 

large A 0  shift to permit accurate measurements of the distribution width. 

Since the extrema have the appearance of much more heterodisperse 1^ 

extrema, one can use this behavior to accurately measure the distribution 

width.

The angular difference for a given extrema pair and modal size can

be normalized with respect to its value at q = o so that different modal

sizes and extrema orders can be compared. Figure 127 shows plots of

(Ai3)q/(A9)q _ Q versus q for the first extrema pair in distributions having

a constant mode ranging from ̂  = 3 to ot » 12. One sees that the smaller 
modal sizes have a larger change in _ Q with increasing q than

the larger modal sizes. The same trend is seen in Figure 128 for the second

extrema pair.
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Fig .  125. Angula r D i f f e re n c e  Between t h e  I i  Maximum
and Minimum o f  t h e  F i r s t  Four Extrema Orders  
a s  a Funct ion  o f  q - f o r  H e t e r o d i s p e r s e  
D i s t r i b u t i o n s  Having nv=K20 and c<^=10
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Ffg. 126. A ngula r  D i f f e r e n c e  Between t h e  I 2 Maximum
and Minimum o f  t h e  F i r s t  Four Extrema Orders  
as  a Func t ion  o f  q - f o r  H e te r o d i s p e r s e  
D i s t r i b u t i o n s  Having =1.20 and ° * m=10
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Empirical equations can be developed to approximate the curves 

seen in Figures 127 and 128. These equations have the following 

form:

(fl©) 2
_ = 1 ~ c A  (35)q - o 1 M 2

where and are empirical constants that depend on m  and the incident

polarization. Higher extrema pairs also show a similar trend but have

some irregularities with different curves crossing over each other. At a

fixed modal size the higher extrema orders have a larger change in

(A8 ) /(A0) with increasing q than the lower extrema orders. Thisq q - o
is seen in Figure 129 where the normalized angular difference for the

first three extrema orders are plotted for distributions having a constant

mode CL = 7 .
JM

The angular difference of the extrema locations is a very attrac

tive approach to measuring the width of a distribution because of 

the relatively easy task of measuring extrema locations rather than 

the scattered intensity. However, except for the size distributions 

having very small modes, this approach requires angular measurements 

accurate to 0.1°. This angular resolution necessitates that a laser be 

used for the incident radiation.

B. General Methods For Determining Particle Size Distribution 

The previous methods discussed in this chapter to measure 

particle size distributions were based on separating the effects of the 

mode and the distribution width. Except for the differential slope 

method, the mode of the distribution was determined from the angular 

location of the intensity minima. The differential slope method used

/
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the location of the maximum derivative to determine the distribution mode.

However at a large heterodispersion the angular location of the intensity

minima and, to a lesser extent, the maximum derivative would shift while

maintaining a constant mode. This shift causes an error in the mode deter-
(53)tarnation. Professor Heller has recently developed a technique that 

allows one to determine the complete size distribution using angular ex

trema measurements without separating the effect of the distribution mode 

from the distribution width. He has kindly permitted a summary of this 

technique to be included here prior to publication.

1. Simultaneous Equation Method

The previous methods for determining particle size distribu

tions in this chapter were based on determining the distribution mode and 

width in two separate light shattering measurements. Eac' measurement was 

either a function of the distribution mode or the distribution width, but 

not both. If a light scattering measurement had a dependence on both the 

mode and width of the distribution, then errors would occur. It had been 

previously shown that at high q values, the intensity minimum is both a 

function of the mode and width and therefore caused an error in the deter

mination of the size distribution.

The technique proposed by Professor Heller also uses two light 

scattering measurements as arguments for determining particle size distribu

tions. However, in this method each light scattering measurement is allowed 

to be a function of both the distribution mode and width. The solution is 

then obtained by solving the set of two simultaneous equations in two 

unknowns. Since no analytical equations are used for the complicated 

curves in this method, the simultaneous equations are solved either 

graphically or numerically by a computer. Among the different light
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scattering arguments that one may use are (1) the angular location of an

extremum, (2) the angular difference between successive extrema and (3)

the mid-value of I,, i.e., (1 + I . )/2 which should be almost independentl max min
of solid angle and concentration as long as neither exceeds reasonable limits

which are easily ascertained for a given system. Any combination of two 

types of measurements can be used in this method.

An example will illustrate how this simultaneous equation method 

yields a particle size distribution. The two arguments used in this ex

ample are the angular location of the third maximum and (I . + I . „)/2max2 min3
which is half of the sum of intensities at the second maximum and third 

minimum. All of the data in this example refers to 1^ and rq = 1.20. A 

curve is then generated in the versus q plane for each argument. The

curve representating the third maximum is generated in the following manner.

A family of curves for various q values are plotted in Figure 130 to show

how the angular location of the third maximum varies with p. The data for 

these diagonal curves were taken from tables of light scattering e x t r e m a ^ * ^ . 

The vertical line indicates the experimental angle &  at which the third 

maximum is observed. The points of intersection of these curves with 

the vertical line furnish (see equation 14) the various ^  and q values 

that define the curve for the third maximum. A similar procedure is 

i used to generate a curve for the average intensity of the second maximum

and third minimum.

The two curves are then plotted in Figure 131 where curve I 

represents the third maximum and curve II the average intensity of the 

second maximum and third minimum. Their point of intersection uniquely 

defines the quantities and q (and also p using equation 14) which, in 

turn^defines the size distribution. There are, of course, instances

■ Vj
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where the assymetry in the variation of the two light scattering 

quantities with increasing width of the distribution at constant ^  

is not sufficiently different to lead to an intersection as shown in 

Figure 131. In that case consideration of one or two other available 

experiment criteria will resolve the problem.

2. Inverting The Scattering Matrix

The techniques for measuring particle size distributions 

discussed in the preceding sections were all based on comparing experi

mental measurements to theoretical calculations for a number of different 

size distributions. When a suitable agreement between the experimental 

measurement and theoretical calculations are found then the size distribu

tion of the experimental system is assumed to be the same as in the 

theoretical system. The size distribution used in these comparisons is 

generally a positively skewed unimodal function in which two parameters 

determine the distribution width and modal size. The present investiga

tion used the distribution shown in equation 3 to perform theoretical

scattering calculations. Other distributions used in theoretical calcula-
(3)tions are discussed by Kerker. The difficulty m  these comparison 

techniques is that one is limited to a particular distribution type and 

the increment and range of the parameters defining the distribution.

Thus, particle size distributions not covered in the calculations, like 

multimodal distributions, could not be determined using the various 

comparison techniques. In addition, these approaches have only a limited 

number of size distributions that can be reasonably stored and searched 

within a computer system.

An approach having a much greater potential, at least theoretically, 

for determining particle size distributions is the inversion of the
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scattering integral. This approach is very appealing because any particle' 

size distribution can be theoretically determined since no assumptions 

are made of the distribution. The inversion of the scattering integral is 

accomplished by determining the particle size distribution f(o<) from 

measurements of I(£>) defined by

I(o) -  jL  f(*> i (<*.©) (36)

where is the smallest particle present 

is the largest particle present 

i(<x,G) is the theoretical scattering intensity from a single 

particle of size cx at angle Q .

Equation 36 shows that the angular variation of the scattered intensity 

is used to determine the size distribution. One could also use the wave

length or polarization of the incident light as the experimental variable.

If the function describing the scattered intensity from a single 

particle is sufficiently simple then the inversion can be accomplished 

by an analytical transformation. Since small angle x-ray scattering 

from polydisperse systems can be described by the Rayleigh-Gans-Debye

(RGD) theory, one can perform an integral transform on the scattered
(3)intensity to obtain the particle size distribution. Kerker describes 

the procedure for performing this transform. The other theoretical 

scattering function that can be inverted in the scattering integral is 

the Fraunhoffer diffraction which is applicable for very large particle 

sizes. Chin, et al.,^'*^’ have developed a technique that performs 

a Mellin transformation on the angular variation of diffracted light 

to obtain the desired particle size distribution. A very similar trans-

: V-.
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formation technique was developed by S h i f r i n ^ ^ ’ to measure particle

size distributions using Fraunhoffer diffraction theory- Unfortunately 

the RGD and Fraunhoffer diffraction theories can be used in only a 

limited number of practical cases.

The majority of cases involving particle size determinations from 

light scattering measurements require the complicated Mie theory. The 

approach most frequently used for this case transforms the integral equa

tion into a vector matrix equation and then numerically inverts the scat

tering matrix to obtain the particle size distribution. If the integral in 

equation 36 is approximated as a summation over fixed size intervals & <  one 

has

I(ej) * f f(V  i(er V
K«1

(37)

where is the average particle size in the k size interval 

0 j is the Jth angle measured.

If the scattering at n different angles is measured then the 

resulting n equations would allow up to n intervals of the size distri

bution to be determined. The equations are shown below in the expanded 

form.

K © ^  * ffe^) i(eL + f<*2) + f (otn ) i(G^ ,

I(S2 ) * f ^ )  i(G2 ,o<1 ) + f(<*2 > i(&2 , oij)
i • i

\

1( e )  - f« 0  i(0 »<\,) + f(«9 ) i<en . * 9> -----------n l n 1 1 n I

* fftV
+ f (oc ) i(& , ex. ) n n n

(38)
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Writing this set of equations in a vector matrix equation and abbreviating the 

variable identification one has

" Jl" *1,2 ---- h , n

X2
1 a *2.11

CMCM -----*2,0
i

1i
1
1 1

i
I
l

I 1 i i
In V i

CMc c 
*

c11

or I = SF

(39)

where I is the experimental intensity vector

S is the theoretical scattering matrix

F if the size distribution vector to be determined

The unknown size distribution vector can then be found by inverting the

scattering matrix S.

F = S-1 I (40)

A number of different numerical techniques have been used to 

invert the scattering matrix. Unfortunately, direct inversion techniques

using least squares yield wildly oscillating solutions as well as negative
(58 59) (59)number densities in some size intervals ’ , Mallove and Hinds

have used a non-negative least squares technique that prohibits unrealistic 

negative solutions of the size distribution with moderate success. The 

most successful of the inversion techniques^® perform smoothing opera

tions on the derived size distribution, the extent of the smoothing being 

varied until the desired smoothness is obtained. However, these techniques 

suffer because (1) there is no criterion for the degree of smoothness 

necessary and (2) true variations in the particle size distribution will
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be washed out. Despite these objections, the methods are vastly superior 

to the direct inversion of the scattering matrix.

The results of the present investigation on the angular extrema of 

scattered light have suggested a new solution to the problem of inverting 

the scattering equation. This solution is based on the fundamental rela

tionship between particle size and the light scattering patterns. Figure 

132 shows the angular scattering patterns for three different sized particles. 

The left half of this figure shows the relative size of the three particles 

superimposed over the electric component of the electromagnetic wave. The

right half of this figure shows the corresponding angular scattering diagrams
>\ 0with the angle 0  measured from the forward direction (o'0 0). The scatter

ing diagrams are not to scale since the intensity increases considerably 

with size.

The intensity of scattered light is proportional to the length of 

the radius from the center of the particle to the contour of the scatter

ing pattern. Note that as the angle is changed from 0° to 0 ,  the intensity 

of the scattered light remains constant for the small particle, decreases

moderately for the intermediate particle, and decreases considerably for
.  0the large particle. For a very small angular change from 0 °  0 only the 

large particle would show any change in intensity. As the angle is further 

increased the intermediate size particle would also begin to show a change 

in the intensity.

If the angular derivative of the intensity were measured instead 

of the intensity I, then only those particles that show a change in intensity 

are measured. Thus a scan of the derivative of the angular intensity from 

0 =  O^will measure initially only the largest particles present and, as the 

angle 9 is increased, will measure progressively smaller particles. Each
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Fig.  132. Angular  S c a t t e r i n g  P a t t e r n s  f o r  Three  D i f f e r e n t  
S ized  P a r t i c l e s

.V -*
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particle size oL has a characteristic angle $<. below which the angular deriva

tive of the scattering pattern is not detectable. As the angular scan is 

made at increasing the 9  intensity derivative measurement will represent 

the sum of the intensity derivatives from an increasing number of particles.

The necessary equations for obtaining particle size distributions 

from the derivative of angular intensity measurements will now be developed. 

The derivative at the first angle away from the forward direction measures 

only the largest particle present.. Since the value of the intensity and 

derivative vary over many orders of magnitude the derivative is normalized 

with respect to the intensity yielding.

i ( d ? ) g  T  ̂  ( l(8i’ otn)') f((Zn) (4,)

The derivative at the next larger angle will include a smaller size particle

■ T « V l >  + I  * ( « * » • = * > )  E ( in> « «

The process is continued until we have reached an angle where all particle 

sizes are detected.

T ( §  )  g -  T  £  ( « « „ *  * 1>) « * ! > --------------------------------------------

+ T & ( 1(V  *_!>) *«„-!> * I

Abbreviating the variable identification one can write the set of n equations as 

a vector-matrix equation.
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One sees that the derivative has effectively produced a diagonal matrix 

which can be easily inverted to yield the size distribution.

The increments of the size distribution and the values of the matrix 

elements are a function of the angles at which the derivative measurements 

are made. A resolution of the particle size distribution into small size 

increments will require many closely spaced angular measurements. In 

addition the value of the matrix elements must be averaged over the solid 

angle of the intensity measurement and over the appropriate size increment.

It is important to emphasize that the complete theoretical and 

experimental evaluation of the angular derivative method must still be 

performed. Tests must be conducted to determine the performance of the 

angular derivative method under a variety of different size distributions 

using angular intensity measurements having various degrees of error.

Such tests can be readily performed on the angular derivative method as 

were done on various other methods^** for obtaining particle size

distributions from angular intensity measurements.

; V-f
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VI. Experimental Determination of Particle Size Distributions

This chapter will illustrate how different techniques presented in 

Chapter V are used to determine particle size distributions in experi

mental systems of polystyrene latex spheres. The experimental data used
f 62 )in this chapter was kindly furnished by Jack P. Witeczek . He had 

previously used this data to calculate scattering ratios that were 

published in his Ph.D. thesis

A, Experimental Procedure

Angular light scattering measurements from several colloidal suspen

sions of polystyrene latex in water were carried out on a Brice-Phoenix 

light scattering photometer (Phoenix Precision Instrument Co., Philadelphia, 

Pennsylvania). This instrument used a high pressure mercury vapor lamp 

coupled with appropriate filters and a Glan-Thompson prism to provide 

monochromatic incident light that was plane polarized with vacuum wave

lengths of l̂o = 546.1 nm and 435.8 nm. The incident light beam passed 

through the center of a scattering cell specially designed by Heller and 

W i t e c z e k ^ ^  to eliminate reflections. Scattered light from the cell was 

then measured by a photomultiplier tube that was mounted on a rotating 

arm calibrated to provide the scattering angle (3.

The experiment consisted of measuring the photomultiplier output 

from the scattered light at 5° intervals from & -  35° to 145°. Four 

measurements of the photomultiplier output were made at ~ea“ctnrfc’a t ter ing 

angle corresponding to incident radiation polarized parallel and 

perpendicular to the plane of observation and having a vacuum wavelength
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of = 546.1 nm and 435.8 nm. Since these measurements were originally 

intended to be used for measuring the scattering ratio (i.e. ^2^ 1^

at a given angle, no attempt was made to obtain absolute intensities.

The experimental scattering data obtained from Witeczek there

fore represents a quantity that is proportional to the scattered in

tensity in which the proportionality constant is unknown. Moreover, 

this proportionality constant differs from sample to sample because of

different light intensities and photomultiplier sensitivities. These 
changes in the proportionality constant were not important for measuring

the scattering ratio since they affected I ^and I ^equally and would

cancel in the scattering ratio Th*-S cancellation of instrumental

variations is one of the attractive features of using the scattering

r a t i o ^ ^ ^ . However, for angular intensity measurements one must correct

for these changes.

The background scattering from the stabilizer solution* and stray

light was also measured so that it could be subtracted from the scattering

measurements of the colloidal suspension. If the instrument constants

are not the same for the background scattering and the scattering from

the colloidal suspensions then experimental errors will result if the

appropriate corrections are not made. Since the instrument constants

were not known for Witerzek's data, a small error is present in both
(651the scattering ratios and the intensities. Kratohvil and Smart 

have shown how absolute angular intensity measurements can be obtained 

using instrument calibration factors.

*A soap solution was added to the suspension of latex spheres to prevent 
coagulation.

I
v-



Two systems of polystyrene latex spheres were used having different 

distribution widths and approximately the same model diameter. One 

system, referred to here as Latex-11, represented a monodisperse size 

distribution. The manufacturer (Dow Chemical Co.) specified that the 

system had an average diameter of 0.894/tm and a standard deviation of

0.0044^m. The scattering data from this system was obtained in experi

ments using a double horn c e l l ^ ^  that did not require any reflection 

corrections.

The other system, referred to as Blend A, represented a heterodisperse 

size distribution. This system was made by blending known quantities of 

different monodisperse latexes to yield the desired heterodispersion.

The angular scattering data for this sytem was obtained in experiments

using a wide angle horn c e l l ^ ^  that required a reflection correction. 

Experimental details of the apparatus and procedure can be found in 

Witeczek's thesis^"^.

B. Data Reduction

A number of numerical corrections had to be applied to the photo

multiplier output data before it could be used in the present investiga

tion. These corrections were necessary to allow comparisons of the
( 661experimental and theoretical intensity data. Heller has introduced 

a convenient way of presenting angular scattering data so that it can

be directly compared to theory. He showed that the experimental specific

the theoretical intensity i*"*160 eqUat£on 45
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where

C is the concentration of the latex spheres

A is the wavelength of the incident beam

and d ^  are the densities of the latex particle 

and solution, respectively.

The experimental data from the photomultiplier output therefore had to 

be converted into the specific intensity. This conversion required several 

corrections to the experimental data.

The first correction involved subtracting the background scattering 

from the scattering of the heterodisperse system of latex spheres. Ideally,

Since the P measurements were not available for either the solution or o
solvent, they were assumed to be equal and combined with the instrument 

constants.

The data from the Blend A system required an additional correction 

because of the reflection of the incident light in the wide-angle horn 

cell. Part of the incident light passing through the cell is reflected 

back from the exit window and acts as a secondary incident beam. This

the relative photomultiplier output Y  woud be determined from equation 46
Po

V V o  Solution I V o / !Solvent
(46)

where
F represents the transmission of the neutral density filters

inserted to attenuate the incident beam

P represents the photomultiplier output

and the subscripts represent the angles © a n d  0°
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secondary beam gives rise to scattering at the complimentary angle 

180° - 8 and must be subtracted from the calculated intensity in equa

tion 46. The correction for the reflection is given by equation 47.

V  . ( f t
o B(1 - 4A )

where A and B are the Fresnel coefficients.

This correction was not required for Latex 11 because the cell used to 

obtain the data had two Rayleigh horns to trap the reflected light.

P ' p ..
■jj— r for Latex 11 is therefore equal to .
o o

The experimental data was also corrected for variations in the 

scattering volume with angle ft Since the optically effective volume in 

the experimental apparatus is inversely proportional to sin©, the 

photomultiplier measurements will also vary as 1/sin©. The solvent and 

reflection corrected data from equation 47 was therefore multiplied by 

sinO to correct for changes in the optically effective volume. This 

product was then divided by the concentration C to yield a quantity 

proportional to the specific intensity.

The proportionality constant K relating experimental measurements to 

specific intensities depends on a number of instrumental variables and can be 

determined using a procedure described by Kratohvil and Smart^"*^. Since the 

data used in the present investigation was intended for scattering ratios and 

not for intensities, the constant K was not determined. Not having a value 

for K did not pose a serious problem in the present investigation because 

an arbitrary scale could be used to bring the theoretical and experimental

«



287

intensities into coincidence at a particular angle. This is a common prac

tice and has been used by a number of investigators^^>68)^ However the 

lack of the incident intensity Iq was very serious and prevented the inten

sity data from being used to determine the width of the distribution.

C. Minimizing Effects of Multiple Scattering

Experimental light scattering measurements are complicated by the 

multiple scattering* that occurs for finite partcle concentrations.

Heller and W i t e c z e k ^ ^  have shown that the experimental complications 

due to multiple scattering can be eliminated by measuring the scattering 

at several different particle concentrations and extrapolating the mea

surements to zero concentration. However, the experimental measurements 

must a finite value at zero concentration for the extrapolation to be 

meaningful. Thus, the scattering ratio ^ ^ i  and i-nten8i-ty ratio I max/

I min can be extrapolated to zero concentration while the intensity I can

not. Since the scattered intensity approaches zero at zero particle con-
r©centration, one has to extrapolate the specific intensity to obtainX c  0

experimental intensities free from multiple scattering. Unfortunately, 

this extrapolation was not possible since the incident intensity I was 

not determined in the experiments by Witeczek.

In contrast to the intensity extrapolation, the lack of the incident 

intensity was not important for the extrapolation involving intensity 

ratios. This follows because the incident intensity occurs both in the 

numerator and denominator of the ratio and will cancel. For example, 

the ratio of the maximum intensity to the minimum intensity equals the

*Multiple scattering refers to a particle rescattering the light 
previously scattered by another particle.
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desired ratio of the specific intensities.

max
(4  *)

Similar cancelations occur for 777, and the scattering ratio I„/I, .*ia*9 Id0 e 2 1
These ratios of intensities at different angles, polarizations and wave

lengths have the additional advantage of not requiring any instrumental 

constants to relate the experiments to theory.

1. Angular Derivative Curves at Different Particle Concentrations

The extrapolation of the angular derivative were the mostIdO
useful in the present investigation because they provide information on

the distribution mode and width without requiring intensity extrema. The

other two functions I /I . and only provide the distribution widthmax min I£0
once the mode is determined from the location of the intensity minima.

In addition, these two functions are only useful in the presnce of inten

sity extrema. All three functions were used whenever possible to determine

the particle size distribution for the two suspensions of PSL spheres.
*■*

Figure 133 shows several curves of -jjg, versus Q  for Latex 11 using 

incident light having a wavelength of 546 nm. The derivatives were 

obtained from the derivatives of the Stirling's polynomial used to fit 

the experimental intensity data. Each curve represents a different 

particle concentration and has an increasing amplitude of oscillation 

as the concentration decreases. The first four curves, in order of

( 63)*Witeczek used extrapolations of the scattering ratio to remove 
effects due to multiple scattering.

**Since all of the experimental data presented in this chapter used 
incident light polarized perpendicular to the plane of observation, 
the subscripts denoting the polarization were dropped for clarity.

I
; VJ
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increasing amplitude of oscillation, represent concentrations of 

1.25 X 10 ^ gm/gm, 0.75 X 10 ^ gm/gm, 0.45 x 10 ^ gm/gm and 

0.19 x 10 5 gm/gm respectively. The final curve, which has the 

greatest amplitude of oscillation, represents the extrapolation to 

zero concentration. Figure 133 also shows the extrema pairs counting 

from the forward direction as numbers above the derivative maxima. The 

intensity extrema occur at the zeros of the derivatives with the minimum 

of a given extrema pair at the smaller angle and the maximum at the 

larger angle. Note that if the derivative curves do not cross through 

zero then there will be no intensity extrema. However the derivative 

curves still show significant oscillation patterns which allow particle 

size determinations long after the extrema have been washed out.

Extrapolating light scattering measurements to zero concentration 

is very important to obtain accurate particle size distributions. A 

comparison of Figures 133 with Figures 116 and 117 shows that increasing 

particle concentration has a very similar appearance to increasing 

heterodispersion. If multiple scattering is not successfully removed 

by extrapolating light scattering measurements to zero concentration, 

then the calculated size distibution will have an erroneously high degree 

of heterodispersion. However a more detailed comparison reveals a 

significant difference in the trend of increasing multiple scattering 

seen in Figure 133 and the trend of increasing heterodispersion seen 

in Figures 116 and 117. Increasing the degree of heterodispersion at 

a constant mode results in the higher extrema pairs (counting from the 

forward direction) washing out faster than the lower extrema pairs.

However increasing the particle concentration at a fixed size distribution

; V-'
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washes out the lower extrema pairs faster than the higher extrema pairs.

One should therefore use experimental light scattering data furthest 

from the forward direction to obtain accurate particle size distributions.

The stronger effect of multiple scattering in the forward direction 

compared to other directions can be explained on a qualitative basis. This 

explanation is based on the increasing intensity of the primary scattered 

light toward the forward direction. The primary scattered light then acts 

as a source of incident light to produce secondary scattered light. It 

follows that since the primary scattered light is strongest in the forward 

direction, the secondary scattering will also be greatest in the forward 

direction. A detailed analysis of secondary and higher order scattering 

in the multiple scattering problem is very complicated and beyond the scope 

of this investigation.

Experimental tests on the same concentrations of Latex 11 using 

incident light with a wavelength of 436 nm produced similar results seen 

previously in Figure 133. The curves representing the four concentrations 

and the extrapolation to zero concentration are shown in Figure 134 where 

dl/IdOis plotted against 61 However, there are now a greater number of 

oscillations in the curves since the smaller wavelength increases the 

relative particle size The numbers above the derivative maxima identify 

the extrema pairs counting from the forward direction. Figure 134 also 

shows the greater effect of increasing multiple scattering (i.e. increas

ing concentration) in the forward direction compared to the backward 

direction.

A similar analysis was performed on Latex-A using incident light 

having wavelengths of 546 nm and 436 nm shown in Figures 135 and 136
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respectively. These figures show three curves of increasing amplitude of

oscillation and represent particle concentrations of 0.44 x 10 gm/gm,
-50.264 x 10 gm/gm and the extrapolation to zero concentration. Since only 

two concentrations were available to extrapolate the scattering to zero con

centration, the extrapolations have a lower value (and hence a higher degree 

of heterodispersion) than would occur with more concentrations. The beha

vior of the curves in Figures 135 and 136 for Latex-A is the same as des

cribed earlier for Latex-11 and need not be repeated. However, the derivative 

curves for Latex-A show a much smaller amplitude of oscillation than the 

corresponding curves for Latex-11. This smaller amplitude of oscillation 

indicates that Latex-A is more heterodisperse than Latex-11.

2. Extrapolation of Light Scattering Measurement to Zero Concentration 

One of the most critical' steps in determining particle size distribu

tions is to obtain accurate extrapolations of light scattering measurements. 

These extrapolations are very difficult in regions of local maxima or 

minima for the measurement used. However the regions of local maxima 

or minima are precisely the regions that vary the most with particle size 

distribution and must be accurately determined. Figure 137 illustrates 

a typical extrapolation of dl/ld0 to zero concentration. The data in 

this figure represents values of 4  44 at 100° and the stated concentra-1 at#
tions for Latex-11 using incident light with a wavelength 436 nm. The 

extrapolated curves in Figures 133-136 were obtained from curves similar 

to that in Figure 137. Note that the extrapolation to zero concentration

I j
*Witeczek used four concentrations of Latex-A to extrapolate scattering 
ratios to zero concentration. Unfortunately he was only able to find the 
two lowest concentrations for use in this investigation.
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is not definite and may differ considerably from the curve drawn. The

universe of this function was also extrapolated to zero concentration as

recommended by Heller and Witeczek*^ for those cases where the normal

extrapolations are uncertain.

All of the other experimental light scattering quantities used in

this investigation were also extrapolated to zero concentration. Figure

138 shows a curve extrapolating I /I . to zero concentration for the° max m m
third extrema pair of Latex-11 with incident light of wavelength 546 nm. 

Note that the extrema pair disappears when the ratio equals 1.0. The 

inverse of this ratio was also extrapolated to zero concentration.

Figure 139 shows the same extrema pair from Figure 138 replotted as

The angular separation between the maximum and minimum of an extrema 

pair must also be extrapolated to zero concentration. Figure 140 shows 

the angular separation A 0  for the third and fourth extrema pairs from 

Latex-11 using incident light with a wave length of 436 nm. Note that 

the third extrema pair has a much larger change in the angular separation 

with a change in concentration than the fourth extrema pair. This behavior 

is consistant with the previous observation that multiple scattering has 

an increasing effect on the scattering measurements in the forward direc

tion. In addition, most of the change in A 0  is due to a shift in the 

position of the minimum location. This shift presents a serious problem 

since many of the techniques discussed in this investigation use the 

minimum location to identify the distribution mode.

The angular separation of the extrema was not used in this investiga

tion to determine particle size distributions since the initial scattering 

data was obtained at 5° intervals and the extrapolation of the extrema
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.olocations were only accurate to approximately + 1 . To be useful in

determining particle size distributions, the angular separation of the

extrema should be determined to within + 0.1°*

Once again a quantity (the angular location of the minimum) that is

the least sensitive to variations in the degree of heterodispersion is the
Xmax AImost sensitive to multiple scattering. The intensity ratios and

dl ®*nwere previously shown to be relatively insensitive to heterodispersion

in the forward direction but very sensitive to multiple scattering. In con

trast to the minimum location, the location of the maximum intensity is 

relatively insensitive to multiple scattering but sensitive to changes in 

heterodispersion.

D. Experimental Error Due to the Finite Solid Angle of the Detector 

The other experimental parameter that should be extrapolated to a 

zero value is the solid angle of the detection system. Unfortunately 

this was not done for Witeczek's data. A large solid angle will measure 

the scattered light averaged over a range of angles and yield an apparent 

distribution that is more heterodisperse than actually exists. The ex

tent to which the heterodispersion is overestimated depends on the varia

tion of the angular intensity as well as the solid angle of the detector. 

Thus large variations in the scattered light over a small angular range, 

as occur for monodisperse distributions of large particles, will appear 

to be heterodisperse unless a very small solid angle is used. However, 

heterodisperse distributions in which the intensity varies gradually

with angle can be accurately measured with relatively large solid angles.
-3The solid angle used in Witeczek's experimental data was 5.5 X 10 

steradians which corresponds to a projected planer angle of + 2.4°. Since 

the scattering measurements at each angle were averaged over a 4.8° range



the data representing the monodisperse Latex-11 will have an erroneously 

high heterodispersion. Latex-A, however, should not be affected by the 

large solid angle because the intensity varies slowly with angle.

Since multiple scattering from high particle concentrations and

intensity averaging from large solid angles combine to give erroneously

large heterodispersions, both variables must be extrapolated to zero

values. Extrapolation of only one variable to its zero value will still

yield a high estimate of the heterodispersion if the scattered intensity

varies rapidly with angle. This difficulty is illustrated using data

on Latex-11 published previously by Heller and W i t e c z e k ^ ^ .  Figure 7

of reference 67 shows that extrapolating the solid angle of the detector

to zero for a number of angles does not change the scattering ratio.

However, the concentration used to perform the solid angle extrapolation 
—6was 5.45 X 10 gm/gm and has a considerable amount of multiple scattering 

that washes out the large angular intensity variation. Figure 5 of refer

ence 64 shows the large change in the scattering ratios at several angles 

when the concentration is extrapolated to zero concentration compared to 

5.45 X 10 ^ gm/gm. Thus the independence of the scattering ratio to the 

solid angle was misleading because of the large particle concentration used. 

Heller and Witeczek^^^ were aware of this problem and stated "that the 

effect of changes in the solid angle is apt to be masked by multiple 

scattering if the concentration is not sufficiently small."

The desired extrapolations to zero concentration and zero solid angle 

were not possible with the Brice-Phoenix photometer used to perform the 

experiments. This instrument, which used a mercury arc lamp and a IP21 

photomultiplier tube for the light source and detector respectively, was
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not capable of accurately measuring the scattered light at low particle con

centrations and small solid angles. Future experiments should be conducted 

with a larger incident intensity using a laser and a more sensitive photo

multiplier tube. However, when using a laser for the source, precautions 

must be taken to remove the coherence of the beam. The resulting speckel

pattern would otherwise introduce an intolerable noise in the scattering
„ (69) measurements

E. Results and Discussion
j  ^  A I ^

After extrapolating the functions and —  to zero concentra-
min

tion, they were used to determine the particle size distribution. The size 

distributions were obtained using the methods based on finding the distribu

tion mode and the distribution width in separate steps. The experimental 

data was not suitable for testing the more general methods presented in this 

investigation. Inverting the scattering matrix would require scattering 

measurements over the angular range from 0° to 180° instead of the smaller 

range of the present data. Heller's simultaneous equation method would re

quire precise locations of the extrema rather than interpolating between 5° 

intervals.

1. Determination of the Distribution Mode

The first step in obtaining the particle size distribution is the deter

mination of the distribution mode. This is accomplished by matching the ex

perimental locations of the intensity minima with theoretical curves that 

show the variation of extrema location with particle size. The location of 

the minimum intensities was previously shown to be insensitive to changes 

in heterodispersion if a constant mode is maintained. Thus one figure showing 

the extrema locations versus relative particle size for monodisperse systems 

would be sufficient for each polarization and ra value to determine the modal
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diameter for any heterodispersion. Since all of the experimental data pre

sented in this investigation pertains to 1  ̂ scattering with m = 1.20* the 

corresponding extrema curves for monodisperse systems are shown in Figure 31.

The angular locations of the intensity extrema were obtained from 

the derivative curves extrapolated to zero concentration shown in 

Figures 133-136. The zeros of the derivative curves determined the 

angular location of the intensity extrema which are tabulated in Table V. 

Figure 31 was then used to find the correspoding o( values which are also 

shown in Table V. In general, the < \ values corresponding to the intensity 

minima are constant while those corresponding to the intensity maxima are 

larger and tend to vary. If the four data sets in Table V represented 

true monodisperse systems then all of the angular extrema would have the 

same c< value. The difference'between the value corresponding to the 

angular minima and maxima results from the shift in the angular location 

of the maxima intensities with increasing heterodispersion. Note that 

the difference between the o values for the maxima and minima is signif

icantly larger for Latex-A than for Latex-11 and suggests that Latex-A 

is more heterodisperse than Latex-11. Table V also shows the modttl 

diameter oc averaged from the c< values corresponding to the intensity 

minima.

2. Determination of the Distribution Width

Once the modcil diameters were obtained for the four data sets, the 

associated distribution widths could be determined. This was accomplished

*The small change in the relative refractive index due to dispersion at 
two different wavelengths is ignored.

i
i Vj



TABLE V

D eterm ina t ion  o f  Modal Diameter From Extrema Loca t ions  

Latex - 11 Latex -  A

546nm 436nm 546nm 436nm
£ a £ a £ a £ a

41.0* 7.10 48.7 8 .40 36.0 6 .50 50.0 8 . 2 0

63 .0 6.63 56.2* 8 .6 0 43.0* 6 .85 55.0* 8 .75
72.8* 6 .85 71.2 8 .4 0 64 .0 6 .50 73.0 8 . 1 0

92.6 6 .70 80.8* 8 .50 74.8* 6 .70 81.5* 8 .4 0
108.3* 6 .78 94.7 8 .40 95.0 6 .50 97.5 8 .15

128.4 6 .70 107.8* 8 .35 111.5* 6 .60 109.0* 8 . 2 0

1 2 1 .0 8 .15 130.5 6 .50 1 20 .0

131.0*

8 .50

9 .00

iia 6 .70 8 .40 6 .50 8 . 2 0

*Loca t ions  o f  maximum i n t e n s i t y
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by using the procedure discussed in detail in Chapter V, where an experi

mental light scattering quantity was compared to the corresponding theore

tical curve plotted against increasing heterodispersion at a constant 

mode. For example, if the experimental quantity were y - ^  for the

second extrema pair from a distribution having a mode = 10, one could
PA

find the heterodispersion q directly from the curve forO(^ 10 in Figure

111. Although it is possible to interpolate between the values used
fA

in Chapter V, new theoretical curves were generated for the four modal
I » - i _

values shown in Table V. The experimental quantities .̂ma* , y ^ - a n d
min

were then compared to the appropriate theoretical curves and the hetero

dispersion determined.

Table VI shows the resulting q values determined from each of the 

three experimental quantities for Latex-11 with \  = 546 nm. The exper

imental data for _E£2L ( .AZ'and and the corresponding inverses were
rain ^

extrapolated to zero concentration as shown in Figures 138, 139 and 137

respectively. In general the q value obtained from the extapolation of

the light scattering function and its inverse agree very well. Table VI
*max A  Talso shows that the q values obtained from -j  and for the lower
min ^

extrema orders are larger than those obtained for the higher extrema

orders. Similarly the q values obtained for smaller dangles areid y
also higher than at larger angles. This apparent increase in the hetero

dispersion toward the forward direction had been discussed earlier in 

terms of the increased effect of multiple scattering.

To reduce the effect of the multiple scattering, the distribution 

width was determined by only using the functions that were furthest from 

the forward direction. These values are indicated by an asterisk (*) in



Determinat ion  o f  t h e  H e te r o d i sp e r s io n  f o r  Latex-11 w i th  A = 546nm and a  = 6 .70M

Extrema
Order

2

3*

I max Al d l
I min IA6 Tde

q E x t r a p o l a t i o n  Extrema q E x t r a p o l a t i o n  q E x t r a p o la t io n
Normal Inve rse  Order Normal Inve rse  £  Normal Inve rse

1-08 1 . 1 0  2 1.01  —  65 1,09  1.07

0 .72  0 .70  3* 0.65 0.65 95* 0 .73 0.65

100* 0 .67  0.67

135 0 .52  0.57

*Data used t o  de termine  th e  average  q (q = 0 .68 )
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Table VI. The q values derived from both the normal and inverse extra

polations were averaged for each of the three functions tabulated. Note 

that the q values derived from extrapolations at two different angles 

were used in computing the average q. These two angles were used because 

they are the closest to the derivative maximum at 97° in Figure 133. 

Ideally, the extrapolations of should be made at the angular location 

of the derivative maxima to obtain the most accurate q values. The q 

values at 135° were not used because the angle falls within the reflection 

region of the scattering diagram rather than the diffraction region.

After an average q value is obtained for each of the three tabulated 

functions, a total average is obtained giving equal weights to each of the 

three functions. The average q for the data in Table VI is 0.68. A 

similar procedure is used to determine the average q value for Latex-11 

with = 436 nm and Latex-A w i t h A =  546 nm and 436 nm. The data used in

these determinations are shown in Tables VII, VIII and IX. Note that in
1 a A lTable IX the q values from the fourth extrema order of -2I5ZS and - n ^ w e r eI . I A Qmin

used instead of the fifth extrema order. This was done because the fourth 

extrema order is the last order in the diffraction region and all higher 

orders fall in the reflection region.

Theoretical curves of were then generated for the particle size 

distributions obtained from Tables V-IX and compared to the experimental 

data extrapolated to zero concentration. Figure 141 shows the theoretical 

curve of — ^ver s u s  £  for a distribution w i t h * ^  = 6.7 and q = 0.68. The 

circles represent the extrapolations to zero concentration in Figure 133. 

One sees that the best fit occurs at the third derivative maximum, as 

expected, since the experimental measurements near the third derivative



Extrema
Order

3

4*

TABLE VII

Determinat ion  o f  th e  H e te r o d i sp e r s io n  f o r  Latex-11 w i th  X = 436nm and = 8 .40

I max AI dl
I min IA0 Id0

q E x t r a p o l a t i o n  Extrema q E x t r a p o la t io n
Normal Inve rse Order Normal Inve rse 6 Normal Inverse

1.05 1.08 3 1.30 0.90

0.79 0 .8 8 4* 0.79 0.74 75 1.13 1 .1 0

100* 0.85 0.77

125 1.04 0.81

*Data used t o  de termine  th e  average  q (q = 0 .81)



Extrema
Order

2
3*

TABLE VIII

Determinat ion  o f  t h e  H e te r o d i sp e r s io n  f o r  Latex-A w i th  A= 546nm and a u = 6.50M

I max Al dl
I min IA0 Id0

q E x t r a p o l a t i o n  Extrema q E x t r a p o l a t i o n  q E x t r a p o l a t i o n
Normal Inve rse  Order Normal Inve rse  0  ̂ Normal Inve rse

1 .40  1 .39  2 1 .39  — - 70 1 .42

1 .26  1.22 3* 1 .23  0.96 100* 1.21

*Data used to  dete rmine  th e  average  q (q = 1.18)



I max Al
I min IA9

Extrema q E x t r a p o l a t i o n  Extrema
Order Normal In v e rse  Order

4* 1 .49  1.48 4*

5 2 .50  2 .49  5

=  8.20

dl
Id 0

q E x t r a p o la t io n  
Normal Inverse

1.51 1.41 50 1.62 —

1.96 2 .0 0 75 1.46 —

80 1.50 —

100* 1.56 1.41

TABLE IX

Determinat ion  o f  th e  H e te r o d i sp e r s io n  f o r  Latex-A w i th  A= 436nm and aM

q E x t r a p o la t io n  
Normal Inverse

*Data used t o  de termine  th e  average  q (q = 1 .49)
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maximum were used to determine the heterodispersion q. Note that the 

deviation between the theoretical curve and experimental curve increases 

toward the forward direction. The apparent increase in the heterodis

persion for the experimental data, which is seen by a dampening of the 

amplitude of oscillation, was attributed to Che increasing multiple 

scattering. Similar comparisons of the theoretical curve with experi-

are shown in Figures 142, 143 and 144 respectively.

A good fit between experimental and theoretical light scattering 

curves do not necessarily imply that the particle size distribution of 

the experimental system is the same as that of the theoretical system. 

Complications in the experimental measurements such as multiple scattering 

or a large solid angle of detection would give an appearance of a much 

wider distribution than actually exists. These complications are espe

cially difficult because they affect the light scattering pattern in a 

very similar fashion as increasing heterodispersion. The only satisfactory 

method of evaluating the performance of a light scattering technique for 

measuring particle size distributions is to verify the experimental dis

tribution using an independent measurement technique such as electron 

microscopy. Such a comparison was performed for the two latex systems 

studied.

3. Comparison of Particle Size Distributions Obtained from Light

Figure 145 shows the comparison of the particle size distribution 

for Latex-11 obtained from electron microscopy, shown as the histogram, 

and light scattering measurements, shown as the smooth curves. The major 

features of this comparison indicate that the light scattering measurements

mental data for Latex-11 at 546nm and 436 nm

Scattering and Electron Microscope Measurements
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have a slightly larger mode and a much larger heterodispersion than the 

the electron microscopy measurements. The mode of the electron microscope 

measurements is about 3% smaller than the mode for the light scattering 

measurements (0.85^m instead of 0.87ytfra). However, electron microscope 

measurements from the manufacturer, Dow Chemical Co., specified an 

average diameter of 0.89 m for the sample, which is 3% larger than the 

light scattering measurements. This small variation in electron micro

scope measurements suggest that the mode obtained from light scattering 

represents the actual mode better than the electron microscope measure

ments .

The second and more serious discrepancy between the light scattering 

and electron microscope results is the determination of distribution widths. 

Here the light scattering measurements predict erroneously large distribu

tion widths compared to electron microscopy*. The source of this error 

is believed to be primarily due to the large solid angle of the detector 

which integrates the scattering measurements over 4.8°.

Large detector solid angles are especially serious for angular 

scattering curves that have large intensity changes over small angular 

ranges. Such scattering curves are typical of particle size distribu

tions having narrow widths and large model diameters like Latex-11. The 

averaging effect of the large solid angle produces an apparent angular 

scattering pattern that varies slowly with a change in angle and hence an 

apparent greater heterodispersion.

*Even if the electron microscope had a small error in the absolute size 
measurement, the relative size of one particle to another, and hence the 
distribution width, is extremely accurate.

: jj
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Multiple scattering may also make a small contribution to the erro

neously large distribution width. The attempt to eliminate multiple 

scattering by extrapolating the light scattering function to zero con

centration's shown in Figures 137-139^is very uncertain and may have a 

small contribution from multiple scattering. This is possible even 

though the heterodispersion was determined from the appropriate scattering 

measurements farthest from the forward direction.

The three distribution curves in Figure 1457derived from light scat

tering measurements^illustrate the good agreement between a number of 

different techniques on Latex-11. This is not surprising considering 

that the same experimental data was used for the different techniques.

The two curves designated by the wavelength of the incident light were 

determined by first finding the distribution mode and then the distribution 

width in two separate steps discussed previously. Note that the two 

experiments at N -  546 nm and ^ = 436 nm have nearly identical distri

butions despite large differences in the angular scattering pattern (com-
f 63 )pare Figures 133 and 134). The other curve was obtained by Witeczek 

using the angular variation of the scattering ratio, This

curve represents the average results for the two wavelengths 546 nm and 

436 nm.

The procedure for determining particle size distributions from the

angular variation of the scattering ratio is similar to that presented

in this investigation for • Angular measurements of I. and I„ areL a O  l l
made for a number of different concentrations and the ratios ^ / ^ l  

extrapolated to zero concentration. An extensive computer search was then 

made through a library of theoretical 1 ^ / 1 ^  versus ©curves that correspond

: V->
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to many different size distributions. Each theoretical curve was com

pared to the experimental data using least squares to evaluate the fit.

The size distribution corresponding to the theoretical curve having the 

best fit was then chosen to represent the experimental system. Figure 

146 shows the comparison of the experimental data f°r Latex-11

at 546 nm extrapolated to zero concentration and the theoretical curve 

representing the least square deviation.

The comparison of the size distribution curves in Figure 147 obtained 

from light scattering and electron microscopy measurements on Latex-A 

indicate fairly good agreement for both the distribution mode and width.

The two curves designated by the wavelength of the incident light were 

obtained from the techniques presented in this investigation and show 

good agreement. However, these distribution curves are shifted slightly 

toward a smaller particle size compared to the distribution curve obtained 

by Witeczek using 1 ^ ( 1 ^ . This shift is believe to be due to the difference 

in the extrapolation of the light scattering data to zero concentration. 

Witeczek extrapolated his I j ^ i  data t0 zaro concentration using four 

different concentrations. However, only the lowest two concentrations 

were available for this investigation and consequently required a linear 

extrapolation.

The distribution width determined from electron microscopy and light 

scattering measurements agree very well for Latex-A. Since the scattered 

intensity for this system varies slowly with angle, the large solid angle 

of the detector does not have the effect of increasing the apparent 

distribution width seen for Latex-11 in Figure 145. The electron micro

scope measurements in Figure 147 also indicates a bimodal distribution.
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Unfortunately, the uncertainty of the experimental data (caused primarily 

from the extrapolation to zero concentration and the large solid angle of 

the detector) was too large to attempt to match with bimodal theoretical 

data.

A survey of the size distributions for Latex-11 and Latex-A as

determined from the various experimental techniques are shown in Table X.

The mode or and heterodispersion q for wavelengths of 436 nm were normalized K
to their equivalent values at 546 nm for easier comparison. One sees that 

the size distribution parameters for all of the techniques give nearly 

identical results except for a slightly lower value of Of discussed pre-
IA

viously for Latex-A.

The difference between the various techniques thus reduces to the

amount of work required to obtain the size distribution parameters from

the same experimental measurements. In principle all of the techniques

require matching an experimental measurement of unknown size distribution

with a corresponding theoretical quantity of known size distribution.

However, in pratctice, the techniques based on determining the distribution

mode and width in two separate steps provide a systematic approach to the

matching of experimental data which is not available in the standard library

search methods. It should be noted that the ^unct^on can also be
(25)used in the two step apprach as shown by Wallace . Of the different 

techniques listed in Table X, the most versatile method is the one based 

on since the technique is still able to provide size distribution in

formation even when all of the intensity extrema have disappeared.



TABLE X

Sample

Latex-11

Latex-A

Comparison o f  Techniques f o r  Determining P a r t i c l e  S ize  D i s t r i b u t i o n s

Imax Al d l
Imin,  IA0, Id6 

U
Ii

“ m  q
Technique 546nm 436nm* 546nm 436nm*

Imax AJ d l _  6 .70  6.71 0 .68  0.65
Imin, IA0 , Id0

U  6 .65  6 .72  0 .80  0.72
Ii

6 .50  6.55 1 .18  1 .19

6.66 6.68 1.10 1.12

♦The a  and q va lues  were normal ized  to  546nm
M
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