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Abstract The human immune system is under great pathogen-mediated selective pressure. 

A combination of divergent infectious disease pathogenesis across human populations, and the 

overrepresentation of “immune genes” in genomic regions with signatures of positive selection 

suggests that pathogens have significantly altered the human genome. However, important 

features of the human immune system can confound searches for and interpretations of 

signatures of pathogen-mediated evolution. Immune system redundancy, immune gene 
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pleiotropy, host ability to acquire immunity and alter the immune repertoire of their offspring 

through “priming”, and host microbiome complicate evolutionary interpretations of host-

pathogen interactions. The overall promiscuity and sensitivity of the immune system to local 

environments can also muddy assumptions about the origins of a selective pressure on a given 

set of genes. This review addresses how features of the immune system, the primary buffer 

between a pathogen and the human genome, affect evolutionary signal. Here, considerations that 

must be made when assessing how pathogens have contributed to human diversification are 

addressed. 
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Introduction 

The human immune system is a complex and highly physiologically infiltrative 

organization of proteins, cells, tissues and organs that serves as the main interface between 

ourselves and the outside world. As such, it is under tremendous selective pressure mediated by 

pathogens and other micro-organisms (Barreiro and Quintana-Murci 2010; Filip and Mundy 

2004; Fumagalli et al. 2011; Nakajima et al. 2008; Nedelec et al. 2016; Novembre and Han 

2012; Sawyer et al. 2005). Genome-wide scans for evidence of natural selection in humans and 

other species have repeatedly found that immune genes are overrepresented in groups of genes 

associated with signatures of selection (Andersen et al. 2012; Cagan et al. 2016; Kosiol et al. 

2008; Pickrell et al. 2009; Sabeti et al. 2006; Voight et al. 2006). Importantly, humans exhibit 

highly divergent clinical manifestations of disease between populations, suggesting that the 

immune system is diversifying within the species (Culhane et al. 2002; Dabelea et al. 2014; 

Feldman et al. 2013; Gelfand et al. 2005; Genovese et al. 2010; Haldane 1949; Karlsson et al. 

2013; Nedelec et al. 2016; Richardson et al. 2016; Rubio-Tapia et al. 2012; Williams 2006). In 

the nearly 70 years since J.B.S. Haldane suggested that a microorganism may have strongly 

influenced the geographic distribution of human traits, distinct population level changes in 

immune genetic sequences have been paired with differences in immune responses to multiple 

major human pathogens (Dean et al. 1996; Haldane 1949; Johnson et al. 2007; Karlsson et al. 

2013; Maier et al. 2003; Ogus et al. 2004; Stephens et al. 1998). Host-pathogen conflicts, 

therefore, have played an important role in the evolution of humans.  

Given the strong evidence that pathogens have shaped the human genome, it is, perhaps, 

not surprising that human immune system evolution has, traditionally, been framed in precisely 

this way – pathogen-mediated selection on the genome that affects immune function. However, 
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some attributes of the human immune system can confound pathogen-mediated evolutionary 

signal. A host response to a pathogen involves a combination of strong and subtle expression 

alterations in many genes, as well as interactions between host and pathogen gene networks and 

the recruitment of circulating immune components (Schulze et al. 2015; Tierney et al. 2012). 

Very standard and powerful approaches for assessing pathogen-mediated diversification of the 

human genome, including highlighting genes physically proximal to a signature of selection, rely 

heavily on the definition of genes as “immune genes” (Deschamps et al. 2016; Prugnolle et al. 

2005). A healthy dose of agnosticism about gene function, however, is important in the 

assessment of pathogen-mediated selection on the human genome as host-pathogen conflicts are 

complex, and immune system function is cross-referenced in other physiological systems and 

can be difficult to define. Importantly, pathogens can be limited by a broad range of host genes, 

the primary function of which are not immediately identifiable as immune defense (Hill et al. 

1991; Sim et al. 1994; Verrelli et al. 2002). Moreover, human immune responses to pathogens 

are regulated by complex, multi-purpose and redundant gene networks, influenced by both 

evolutionary history and the multi-generational life experience of a population (Boscolo et al. 

2012; Dopico et al. 2015; Hanson et al. 2003; Rose et al. 2016). All of these factors complicate 

searches for and interpretations of genomic signatures of pathogen-mediated adaptation in the 

human genome. This review addresses considerations that must be made when interpreting 

evolutionary interactions between pathogens and the human genome, given the complex nature 

of host-pathogen conflict and human immunity. 

 

Infectious Diseases Have Shaped the Human Genome 

Pathogens represent a tremendous burden on the reproductive fitness of humans, and are 
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a major selective force in the evolution of our species (Fumagalli et al. 2011; Hill 2012; Soto et 

al. 2010). In the nearly seven decades since J.B.S. Haldane first suggested that the occurrence of 

malaria may have influenced the frequency of thalassemias, the pathogenesis of multiple 

infectious diseases have been found to be affected by diversified genetic loci in human 

populations (Dean et al. 1996; Frodsham et al. 2006; Haldane 1949; Johnson et al. 2007; 

Karlsson et al. 2013; Maier et al. 2003; Ogus et al. 2004; Stephens et al. 1998; Thomas et al. 

2009) (See Table 1).   Since anatomically modern humans emerged over 200 000 years ago, the 

species has undergone major behavioural shifts that have altered their exposure to infectious 

pathogens(White et al. 2003). Our species’ wanderlust and subsequent distribution across the 

globe has meant that humans have been subject to regionally-specific pathogens. While attempts 

to quantify the impact of local pathogen-mediated selection have had to rely on biased and 

incomplete recent records of detected pathogens to reconstruct a past pathogen-scape, innovative 

combinations of historical, immune function and selection data provide some evidence that 

particular broad types of micro-organisms have strongly affected regional genomic 

diversification and the health of humans (Cagliani et al. 2013; Fumagalli et al. 2010; Fumagalli 

et al. 2009; Fumagalli et al. 2011; Laayouni et al. 2014).  Technological and economic 

innovation, including the adoption of agricultural economies and animal domestication 

approximately 10 000 years ago and heightening of trans-national migration and trade in the last 

2500 years, has profoundly affected the pathogen exposure of humans as well. With these 

behavioural changes, human populations experience increases in size and continuity, 

consumption and physical association with animals and exposure to novel zoonotic pathogens 

including measles (rinderpest), smallpox and influenzas [reviewed in (Harper and Armelagos 

2010; Harper and Armelagos 2013)]. Moreover, with the adoption of agricultural and animal 
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domestication practices, humans have committed willful changes to their environment such as 

the clearance of forested regions and alterations in irrigation that improve disease vector access 

to hosts. Human contact with Plasmodium (malaria), and Trypanosoma (sleeping sickness), 

which appear to have altered the coding regions of multiple genes such as HBB, GYPA, GYPC 

and APOL1, are thought to have increased in just such this manner (Baum et al. 2002; Genovese 

et al. 2010; Kwiatkowski 2005; Tishkoff et al. 2001; Wilder et al. 2009). 

With the intensification of trans-national migration and trade over the last several 

hundred years, novel virulent pathogens emerged and distributed to new populations, helped 

along by the density and traffic of hosts in and out of urban centers. Indeed, pathogens at the 

center of some the deadliest pandemics in human history have been distributed to naïve 

populations via trade and military routes, including Yersinia pestis (plague), 1918 influenza, 

Vibrio cholerae (cholera), Treponema palladium (syphilis) and human immunodeficiency virus 

(Byerly 2010; Faria et al. 2014; Harper et al. 2011; Morelli et al. 2010)[reviewed in (Koch 

2014)]. The genomic impact of these recently emerged diseases is thought to be significant. As 

an example, Yersinia pestis (plague) is estimated to have killed 30-50% of the European 

population during the first five years of its second pandemic (1345- 1876) (Benedictow 2004; 

Cohn 2008; Gage and Kosoy 2005). Several studies of human molecular evolution and disease 

modeling have implicated the second plague pandemic in the uneven distribution of human 

immune alleles, including polymorphisms in the bacteria-detecting gene cluster TLR 1/6/10 and 

associated changes in peripheral blood mononuclear cell (PBMCs) cytokine responses to heat-

inactivated Y. pestis (Laayouni et al. 2014; Mukherjee et al. 2014). Alleles that may confer 

plague infection resistance and are found in high frequency in plague-affected regions have also 

been highlighted as potentially the outcome of plague-mediated selection including alleles in 
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genes associated with hereditary hemochromatosis (HFE, C282Y, H63D) and the H red blood 

cell antigen (type O blood group) [reviewed in (Anstee 2010)] (Moalem et al. 2002). Further 

research is needed as, as yet, these alterations have not been tested for conferring a different host 

response to plague. 

 

Genomic Changes Are the Outcome of Pathogens Matching Multiple Host Defenses for 

Successful Infection 

 The types of interactions that vertebrate hosts and microbial organisms may have are 

highly variable. Host-pathogen interactions, however, tend to be characterized by the occurrence 

or attempted avoidance of conflict.  Much of our understanding of host-pathogen co-evolution is 

based on this notion of an ongoing war between host and pathogen in which the stakes are host 

bodily integrity and protection from non-self, and the pathogen’s need for resources to replicate 

(Casadevall and Pirofski 1999). This image of battle is helped along by the ample tissue 

destruction often noted in symptomatic infections. One of the models of coevolution most 

frequently applied to host-pathogen interactions, the Red Queen Hypothesis (RQH), outlines the 

relationship between two closely associated species as one of intense competition or antagonism 

and speedy co-evolution, such that changes in one species produce a threat of survival to the 

other (Hamilton 1980; Van Valen 1973). Indeed, pathogens can restrict the reproductive fitness 

of a host and lead to quick changes in species phenotypes (Genovese et al. 2010; Ko et al. 2013; 

Thomson et al. 2014; Vilcinskas 2016). 

Central to how host-pathogen conflict leads to genome diversification is natural selection 

– a process wherein phenotypes and related genetic variants that are beneficial to reproductive 

fitness will increase in frequency in a population, while deleterious variants will decrease. For 
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long-lived species, with lengthy reproductive trajectories and complex immune systems, such as 

humans, conflict-mediated phenotypic changes are assumed to occur more slowly than in the 

shorter-lived pathogen, whose replicative success relies on surviving a myriad of immune 

assaults and is, therefore, under much stronger selective pressure. The nature of this 

asymmetrical conflict is complex, occurring at multiple loci across the host genome with every 

interaction. This multi-locus conflict plays out through the well noted tendency of detected 

pathogens to set off a series of immune alarms in humans via sensing that redundantly triggers 

particular inflammasome pathways (i.e. NFKB) (Hagar et al. 2013; Hayashi et al. 2001; 

Kaparakis et al. 2010; Karlsson et al. 2013; Kayagaki et al. 2013; Kofoed and Vance 2011; 

Poltorak et al. 1998; Shimazu et al. 1999; Takeuchi et al. 1999; Zhao et al. 2011). Disease 

manifestation and resulting reduction in fitness in humans can, therefore, be thought of as the 

outcome of a pathogen’s ability to “match” the host response at multiple loci on an allele by 

allele basis, and to “unlock” and escape immune defense by such “matching” (matching allele 

model) (Frank 1993; Frank 1994; Klein and O'Huigin 1994). Under this rubric, the success of 

cancer causing Kaposi Sarcoma associated Herpes Virus (KSHV), for example, in a human host 

is due to the virus’ production of B cell lymphoma 1 protein (Bcl-2), which subsequently 

interacts with the human protein required to generate a common immune defense against viruses, 

autophagosomes (Atg6/Beclin-1), halting macroautophagy of the cell. This interaction allows the 

pathogen to escape destruction and subsequent MHC class I presentation (English et al. 2009; 

Pattingre et al. 2005). The resulting genomic signatures of host-pathogen conflict that arise in our 

species are, in part, dependent on how equally matched the host immune system is to the 

strategies of the pathogen in interactions just like this.  

 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final 
version. 

Genomic Hallmarks of Pathogen-mediated Adaptations in Humans 

There are a number of broadly accepted genomic hallmarks of host-pathogen conflict and 

subsequent host strategies to adapt to pathogen pressure (Table 2). Human strategies to cope with 

pathogen conflict generally fall into one of three partially overlapping categories of immune 

tactics: prevention (i.e. barriers, mucosa, transgenerational priming, adaptive immunity, 

behavioural immune system), recognition (i.e. non-self detection, receptor variation, antigen 

presentation, opsonization) and elimination (i.e. pore-forming proteins, cytotoxic effector cells, 

humoural responses, phagocytosis, apoptosis, inflammation). At the resolution of the genome 

these classic hallmarks of host-pathogen conflict can be detected near genes that directly or 

indirectly influence the efficacy of these strategies. Most famously, signatures of natural 

selection near “immune genes”, such as pattern recognition receptors, of various human 

populations have been cited as evidence of interactions between humans and a range of 

pathogenic bacteria (Barreiro et al. 2009; Karlsson et al. 2013; Laayouni et al. 2014; Zhernakova 

et al. 2010) [methods reviewed in (Karlsson et al. 2014). Similarly, changes in coding regions 

that confer differences in protein binding sites or gross structure of a protein product known to 

interact with a pathogen are often considered adaptive outcomes of host-pathogen interactions. A 

32 base pair deletion in the coding region of cc-motif chemokine receptor 5 (CCR5) that 

eliminates both its signaling domain and much of its extracellular domain, subsequently halting 

HIV-1 cellular infection, has been proposed to have risen in frequency in European populations 

due to a selective sweep hundreds of years ago by a prior pathogen (Galvani and Slatkin 2003). 

Expansions and narrowing of immune gene families and, more broadly, gene copy number 

variation of immune genes are often interpreted as gene replication and deletion events that are 

maintained because they are evolutionarily advantageous in the face of particular pathogens 
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(Grunhage et al. 2010; Hardwick et al. 2012; Krementsov et al. 2017; Polley et al. 2015). 

Increased copy number variation for the gene encoding salivary agglutinin in humans, for 

example, has recently been proposed as a response to an increased exposure to cariogenic 

bacteria with the adoption of agricultural-based diets (Polley et al. 2015). Inter-population 

differences in gene responses during cellular infection have been cited as evidence of pathogen-

mediated change in humans (Nedelec et al. 2016; Pai et al. 2016). Grand alterations in genomic 

structure may also be indicative of host-pathogen conflict. There is evidence, for example, that 

chronic infection can lead to heritable shortening of telomere length (Asghar et al. 2015). The 

incorporation of retroviral nucleic acids into the human genome is also a hallmark of prior 

conflict, but also seems to confer phenotypic change in the host. Such sequences represent 

approximately 8% of the human genome sequence, and may have altered the physiology of the 

human placenta (Bannert and Kurth 2006; Dunlap et al. 2006). While these genomic signatures 

suggest pathogen-mediated change in immune function, their actual impact on immune 

phenotype is not straightforward. Host genetic factors are thought to explain perhaps 20-40% of 

the immune variation witnessed between populations. The remaining variation is likely the 

outcome of intrinsic factors (Liston et al. 2016). Any interpretation of a potential host-pathogen 

conflict that has contributed to genome change is deeply complicated by the plasticity, 

complexity and physiological promiscuity of the human immune system.  

 

Phenotypes without a Genotype: How Immunity Affects Pathogens-mediated Change in 

Human Genomes 

Between a pathogen exerting selective pressure on a population and the human genome 

stands highly plastic immune phenotypes. Pathogen-mediated selection tends to be described in 
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terms of an infectious disease exerting selective pressure on a human population and a 

subsequent increased frequency of beneficial alleles present via standing genetic variation 

(Cagliani and Sironi 2013; Fumagalli et al. 2011; Karlsson et al. 2014; Laayouni et al. 2014). 

However, several extremely important mechanisms of human immunity confer heritable 

phenotypes that are not DNA encoded or marked but can still alter the impact a pathogen might 

have on a species’ genome. Such phenotypes are heavily influenced by environment and parental 

experience, and include acquired immunity from prior infections (and associated herd immunity) 

and trans-generational immune priming of offspring by parents for infections to which parents 

and grandparents have been exposed (i.e. transmission immunoglobulins across the placenta or 

via breast milk) [reviewed in (Hasselquist and Nilsson 2009)]. Variations in these mechanisms 

can be thought of as standing non-genetic variation. They are phenotypes without genotypes – 

they typically are not encoded and, if epigenetically marked, they are marked at a single cell 

level.  These immune variations are tailored to microorganisms present in local environments 

and can protect otherwise vulnerable young offspring from virulent pathogens (Gasparini et al. 

2001; Grindstaff et al. 2006). As such, these immune phenotypes can have a profound effect on 

how an infectious pathogen might reduce the reproductive fitness of individuals in a population. 

Acquired immunity to a prior pandemic influenza, for example, has been postulated to have 

significantly altered the mortality curve of the most severe infectious disease pandemic in 

recorded history, the 1918 influenza (Johnson and Mueller 2002).  Along with typical “flu” 

victims, such as infants and the elderly, the 1918 influenza mainly killed healthy young adults. 

Reviews of contemporary medical reports suggest that most of these young people shared two 

characteristics 1) they died of secondary pneumonia (and likely associated strong cytokine 

responses) and 2) they were of an age where they were likely to have acquired immunity to a 
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closely related virus, the Russian influenza of 1890 (Frost 1919; Shanks and Brundage 2012). 

Shanks and Brundage (2012) have hypothesized that circulating memory lymphocytes stemming 

from this prior infection pre-disposed 1918 flu victims to pneumonia and sepsis, a finding 

circumstantially supported by the highly reactive memory B and CD8+ T cells found in humans 

and swine exposed to the 1918 flu or other H1N1 strains (Heinen et al. 2002; Yu et al. 2008).   

Importantly, an individual or generation need not be exposed to a pathogen directly to 

experience altered immune responses and mortality as an outcome of acquired immunity. 

Parentally (often maternal) acquired immunity can be imprinted upon offspring T and B cell 

repertoires, affecting not just host responses to pathogens, but chronic inflammatory and 

autoimmune conditions in subsequent generations (Fink et al. 2008; Lemke et al. 2009; 

McKeever et al. 1997; Tanasa et al. 2010). Evidence of poor infant seroconversion in response to 

multiple vaccines while maternal antibodies remain in circulation suggests that trans-

generational immune priming can also lessen offspring initial adaptive responses to pathogens 

and possibly enhance seroconversion later in childhood (Aaby et al. 2014; Appaiahgari et al. 

2014; Faucette et al. 2015; Gans et al. 2001; Jones et al. 2014; Leineweber et al. 2004; Leuridan 

et al. 2010). As such acquired and transmitted immune phenotypes are pervasive and can diffuse 

or heighten the impact of a pathogen on reproductive fitness, they can readily be acted upon by 

natural selection and not necessarily leave an easily interpretable genomic signature (i.e. 

signature of selection associated with a particular immune locus). A pathogen can, therefore, 

affect the genomes of two human populations very differently if the very recent history of 

exposure to that pathogen or pathogens with similar recognized epitopes differs on a population 

basis.  
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Resident Microbiota Can Regulate Immune Responses Subject to Natural Selection 

 The microbiome can also contribute to immune phenotypes in ways that are both 

acquired and transgenerational. From conception on, humans are associated with microflora and 

microbial products. All body compartments, save, possibly, plasma and the central nervous 

system where microbial populations are more restricted, consists of billions of microhabitats in 

which well-developed ecological communities of micro-organisms reside(Costello et al. 2009). 

While acknowledgement that resident microbiota alter host immunity stretches back decades, in 

the last 15 years study of how the microbiome influences host immune response and health has 

intensified (Hagel et al. 1993; Kohashi et al. 1985; Lynch et al. 1983; Ownby et al. 2002). While 

much of the research on the resident microbiota of humans has been survey of what bacterial 

phyla and products are associated with immunological components, immune development, 

response and disease, there is sufficient functional information to conclude that microflora 

affects immune phenotypes that could be targeted by natural selection. 

Microbiota is required for normal immune development and function. Micro-organisms 

have a profound effect on the development of secondary lymphoid tissue and, therefore, 

lymphocyte development and education (Bouskra et al. 2008; Drayton et al. 2006; Wesemann et 

al. 2013). Most famously, examinations of leukocyte development and function in germ-free vs 

specific pathogen-free and wild-type mice found that germ-free mice have substantially 

underdeveloped gut-associated lymphoid tissue (GALT) and muscosa-associated lymphoid tissue 

(MALT) broadly, fewer local lymph nodes, a loss of luminal integrity and deficits in antibody 

production (Abrams et al. 1963; Bouskra et al. 2008; Contractor et al. 1998; Ismail et al. 2009; 

Jain et al. 2016; Shroff et al. 1995). Similarly, microbiota in primary lymphoid tissues appears to 

be required for normal immune function. Micro-organisms sensed by the bone marrow, for 
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example, influence the generation of leukocyte precursor cells(Clarke et al. 2010; Takizawa et al. 

2012; Zeng et al. 2016). In particular, such microbiota appear to be an important factor in 

production of “emergency” granulocytes (i.e. neutrophils) and could, therefore, affect host 

recovery from bacterial and parasitic infections (Gorjifard and Goldszmid 2016; Karmarkar and 

Rock 2013). They also appear to affect cell death and, therefore, energy requirements for white 

blood cell homeostasis. The lifespan of phagocytic cells, in particular, is altered by circulating 

microbial products sourced from gut microbiota (Hergott et al. 2016).  Via regulation of immune 

cells, resident microbiota can impact reproductive fitness. 

Resident microbiota can also be seen to serve as an extension of the immune system. 

Colonization by commensal bacteria provides a body compartment a competitive environment in 

which many invading pathogens will struggle to establish themselves. The composition of this 

population influences reproductive fitness and is highly sensitive to human diet and activity 

(Becattini et al. 2017; Stecher et al. 2007). The bacterial composition of the gut microbiome, for 

example, can contribute to low-grade systemic inflammation, a condition that is associated with 

a range of chronic diseases including diabetes and heart disease (Kasahara et al. 2017). A well 

demonstrated increase in Firmicutes:Bacteriodetes ratio that occurs in the gut in response to high 

fat diets can also contribute to this inflammation, as such a diet is associated with increased 

translocation of pyrogenic microbial components across the gut barrier and, eventually, into 

plasma (Everard et al. 2013; Kim et al. 2012; Moreira et al. 2012). Similarly, dietary-fiber 

deprived diets shift gut microbiome composition such that the mucous barrier of the colon 

degrades and allows increased passage of pathogens(Desai et al. 2016). Both of these phenomena 

can increase disease susceptibility and decrease reproductive fitness.  
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Resident microbiota can have a profound effect on immune cell pathogen detection and 

signaling and, therefore, infection survival. One of the best functionally substantiated 

microorganism-mitigated immune responses is endotoxin tolerance and priming. In both 

tolerance and priming, prior exposure to small amounts of endotoxin [(lipopolysaccharide (LPS)] 

induces innate immune cells to develop blunted (tolerance) or potentiated (priming) pro-

inflammatory responses to a second challenge with LPS(Rocksen et al. 2004; Vaknin et al. 

2008). The cellular “decision making” required to either make an innate immune cell tolerant to 

very high doses of LPS, or primed to respond strongly to very small doses is not well 

understood, though the TRIF, and MyD88 genes in the toll-like receptor 4 (TLR4) pathways and 

anti- and pro-inflammatory pathway cross-talk appear to play important roles (Deguchi et al. 

2013; Vartanian et al. 2011). Tolerance and priming both matter in the grand scheme of human 

genome evolution, because they affect responses to Gram-negative bacterial infection. An 

individual primed for strong anti-LPS response may clear a Gram-negative bacterial infection 

effectively, but may also respond so overtly as to trigger deadly sepsis. Alternatively, an 

individual whose macrophages, for example, have been made LPS tolerant via prior contact with 

low-levels of LPS will require higher doses of that molecule to initiate a response to Gram-

negative bacteria that leads to infection clearance. This latter scenario could be an adaptation in 

individuals with pervasive endotoxin exposure to prevent an overt and dangerous pro-

inflammatory response typical of sepsis (Li et al. 2000). Endotoxin-induced alterations in 

immune response, likely contribute to persistent low levels of circulating LPS. Such levels of 

LPS in human blood have been associated with a number of conditions that impact reproductive 

fitness, including altered wound healing, diabetes, and atherosclerosis(Creely et al. 2007; Szeto 

et al. 2008; Yuan et al. 2016). Importantly, individuals maintaining blood and tissue 
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microbiomes with differing levels of Gram-negative bacteria could be differently primed or 

made tolerant to infection and, therefore, subject to different selection intensity by Gram-

negative pathogens. With resident microbiota as a factor in whether an anti-inflammatory or pro-

inflammatory pathway is triggered by a Gram-negative pathogen, for example, the microbiome 

can influence which pathway comes under selection. Moreover, host genetic variants that 

provision for resident microbiota that induce tolerance or priming may also undergo selection, 

which can make evolutionary signal difficult to interpret.  

 

Immune System Pleiotropy Means Pathogen-mediated Selection Can Affect Other 

Physiological Systems and Vice Versa 

Detecting and interpreting evolutionary signal stemming from pathogen-mediated 

adaptation in the human genome is further complicated by the redundancy and physiological 

promiscuity of the immune system. The human immune system is highly redundant. There are 

multiple receptor gene families, for example, that strongly overlap in the pathogens that they 

recognize. Multiple immune proteins can sense a given pathogen. Such is the case with major 

families of innate immune receptors, such as Toll-like receptors (TLRs), RIG-I-like receptors, 

Nucleotide Oligomerization Domains –like receptors (NODs) and Tumour-necrosis factor 

receptors. Staphylococcus aureus, for example, is sensed by TLR2/TLR1, NOD2, TNFR1 

(Gomez et al. 2006; Hruz et al. 2009; Ozinsky et al. 2000; Takeuchi et al. 2000). Two of these 

receptors (TLR2 and NOD2) detect S. aureus via the same pathogen-associated molecular 

pattern, peptidoglycan. Like many other pathogen-receptor interactions, these three receptors 

activate pro-inflammatory responses via the same transcription factors, including interferon 
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regulatory factor (IRF), nuclear factor kappa-B (NFκB), and activator protein (AP-1) [reviewed 

in (Lee and Kim 2007)]. 

Within gene families there can also be considerable functional redundancy. Chemotaxic 

cytokines, or “chemokines”, and their receptors are the outcome of multiple copy events 

stemming from the emergence of an ancestral gene over 650 million years ago (DeVries et al. 

2006). Human chemokine and chemokine receptor genes are engaged in cell migration, 

activation and differentiation [reviewed in (Qidwai 2016). They share high identity, and many 

appear to be functionally redundant. There are, for 18 human chemokine receptors, 42 

chemokines. While some of these proteins are uniquely involved in the migration of particular 

cell types (i.e. CXCL8, CXCR2 cooperate to specifically traffic neutrophils; CCR7 is required 

for lymphocyte homing to secondary lymphoid tissues) many appear to be involved in precisely 

the same cell migration activities (DeVries et al. 2006; Forster et al. 1999; Laing and Secombes 

2004; Middleton et al. 1997; Rainger et al. 1997; Smith et al. 2004). How this redundancy affects 

pathogen-mediated selection on the human genome depends on the benefit of repetitive function 

to reproductive fitness. Multiple sensing mechanisms for the same molecular motif may act to 

initiate transcription factor activity at an optimal level not achievable via a single sensing 

mechanism and pathway [reviewed in (Nish and Medzhitov 2011)]. Redundancy may also act as 

a kind of insurance against the failure of pathway or gene to limit a pathogen. Chemokines are 

tasked with the extremely important business of trafficking leukocytes to sites of 

infection/inflammation (Oppenheim et al. 1991). Redundant chemokines and receptors may 

ensure cells are trafficked in the event of pathogen or mutation blocking the activity of a given 

chemokine. In either of these scenarios it is likely that pathogens exerting selective pressure on 

humans are targeting multiple genes that serve similar functions. Moreover, the multiple innate 
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immune pathways involved in sensing singular pathogen associated molecular motif means that 

target genes for a given pathogen are very likely to have been the target genes of any number of 

other pathogens. Attribution of diversified immune responses or signatures of selection in 

humans to a particular microbe is, therefore, very challenging, even with lengthy functional 

characterization of genetic variants to an extant proxy pathogen. 

 A much more complex wrinkle in interpreting how pathogens affect the human 

genome stems from the promiscuous manner in which the immune system has evolved in 

eukaryotic life – co-opting and “borrowing” genes and structures that serve other physiological 

functions [reviewed in (Dzik 2010)]. Human immune genes are very pleiotropic and are cross-

referenced in the development and maintenance of other physiological systems that are important 

to reproductive fitness, including the nervous and reproductive systems (Bhurke et al. 2016; 

Bussmann et al. 2011; Chen et al. 1999; Meng et al. 1999; Semple et al. 2010; Sharkey et al. 

1995; Stumm and Hollt 2007). Moreover, these highly multi-purpose genes engage in gene 

networks that are also pleiotropic and can be involved in multiple physiological activities 

simultaneously (Andreassen et al. 2015; Eagleson et al. 2017; Raj et al. 2013). This is the case 

for cytokines, which tend to be viewed as proteins governing important immune functions such 

as cell-to-cell communications, inflammation, cell differentiation and apoptosis within immunity, 

but are also key proteins in the maintenance of “non-immune” physiological processes that have 

a strong impact on reproductive fitness including ovulation, spermatogenesis, neurogenesis and 

neuronal function, lung development and bone development (Joyce et al. 2001; Marz et al. 1998; 

Ochsner et al. 2003; Sarkar et al. 2008) (Meola et al. 2013; Sabatini et al. 1988; Zhu et al. 2007). 

Chemokines also guide neural crest and neuronal cell migration during embryogenesis and 

regulate the development of the circulatory system [reviewed in (Mayor and Theveneau 
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2013)](Bussmann et al. 2011). Transcription factors JUN, FOS and STAT3, for example, are key 

to innate immune regulation of inflammation and apoptosis and also work in networks to 

regulate uterine epithelial proliferation and embryo implantation [reviewed in (Bhurke et al. 

2016). An examination of previously published data on human cell whole genome responses to 

one of three pathogens to which humans have had prolonged evolutionary exposure reveals that 

the reported five most strongly upregulated genes are highly pleiotropic (See Table 3) (Li et al. 

2016; Pacis et al. 2015; Thomas et al. 2014). These genes are not just involved in infection 

responses, but activities that can strongly impact reproductive fitness such as embryo 

implantation, spermatogenesis, menstruation, and intestinal organization. Key considerations 

regarding pathogen-driven diversification of the human genome, therefore, include that 1) factors 

exerting a selective effect on immune genes (i.e. chemokine CXCL8) could drive the evolution 

of other physiological systems (i.e. reproductive system) and vice versa and 2) the redundancy of 

the immune system may loosen any evolutionary constraint on a given gene to conform to roles 

in both the immune system and any other physiological systems. Importantly, functional 

redundancy in immunity may grant flexibility in the evolution of genes under demand in multiple 

systems. Factors exerting evolutionary pressure in another physiological system may alter 

genomic signatures around immune genes. 

 

Immunity Is Not Always the Target 

Important to the assessment of how infectious disease has affected the human genome is 

the acceptance that many analyses of genomic hallmarks of host-pathogen conflict may suffer 

from a less than agnostic approach to apparently affected genomic regions. When a signature of 

selection, for example, is found in a genomic region where well-established immune genes are 
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located, there may be an impulse to highlight those genes and exclude non-immune genes as 

potentially affected by a pathogen. Most of the time, this impulse is likely the correct action. 

However, not only are immune system genes often redundant and highly pleiotropic, but they are 

sometimes not the target of pathogen-mediated selection at all. The most famous examples of 

genetic variants that confer infectious disease resistance in human populations occur in genes 

whose primary function is concerned with non-immune activities. Variations in red blood cell 

structure are known to lend Plasmodium (malaria) resistance to hosts, but have little to do with 

the immune system directly. The HbS allele of the hemoglobin subunit beta gene (HBB), for 

example, confers changes in charge and folding of haemoglobin that then changes the overall 

structure of red blood cells to a sickle shape (Gouagna et al. 2010; Williams et al. 2006). 

Similarly, deletions of α –globin genes confer thalasemmia microcytic anemia (Wambua et al. 

2006). Alterations to these features, however, have knock on effects that engage immune system 

components. Plasmodium resistance stemming from these mutations seems to be at least partially 

the outcome of increased splenic clearance of unusually shaped red blood cells [reviewed 

in(Kwiatkowski 2005)]. Neither red blood cell shape nor splenic blood filtering is typically 

included in the canonical perception of immunity. When considering pathogen-mediated 

selection on human genomes, therefore, it becomes important to consider that either changes in 

non-immune genes have functional consequences for immunity, or that our current perception of 

what constitutes the immune system is not broad enough. If shifts in a gene conformation or 

function lead to a change in response to a pathogen, is that sufficient to consider the gene and the 

affected tissues part of the immune system? Most importantly, such changes in traditionally non-

immune genes suggest that an agnostic approach to interpreting apparently affected genomic 
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regions is very important until animal model-based functional confirmation of a locus’ 

involvement in pathogenesis can be attained. 

 

Conclusions 

The human immune system is under great selective pressure by pathogens. As such, it is 

expected that pathogen-mediated selection has modified the human genome. As a bulwark 

between pathogens and host genomes, the human immune system and its phenotypic variations 

directly inform the impact a pathogen will have on the human genome. When assessing how 

pathogens have affected human evolution care must taken as host-pathogen conflicts are 

complex and features inherent to the human immune system, such as adaptive immunity, trans-

generational immune priming, microbiome, immune protein redundancy and pleiotropy can 

diffuse or heighten evolutionary signal. As such, assessments of how pathogens shape host 

genomes requires a carefully curated assemblage of genomic, immune function, immune 

phenotyping information and, when possible, historical information. Recent approaches to 

pathogen impact on human variation have included the use of serotyping in surviving 

populations (Yu et al. 2008), recovery of ancient pathogen genomes(Bos et al. 2016; Feldman et 

al. 2016), pathogen-stimulation of immune cells recovered from a population showing evidence 

of selection(Laayouni et al. 2014) and could involve gene editing to assess the functional impact 

of polymorphisms thought to be associated with an infectious disease. All such multi-

disciplinary/multi-technique approaches to determining how infectious pathogens have 

contributed to the diversification of the human genome are worthy of exploration, as they can 

help us clarify the gene networks engaged in disease progression, identify therapeutic targets for 

current infectious disease and help explain disease disparities in modern populations. 
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Table 1. Example putative pathogen-mediated alterations of the human genome and the extant 

pathogens affected by them 

 

Pathogen Disease Putative alteration Evidence 

(association/experimental) 

Hepatitis B Virus Hepatitis B - IFN-AR2-F8S and 

IL-10RB-K47E 

- major haplotypes associated 

with HBV clearance (Frodsham 

et al. 2006) 

Hepatitis C Virus Hepatitis C - rs12979860 C/C 

genotype near IL28 

- enhances spontaneous 

clearance of HCV (Thomas et al. 

2009) 

Influenza A Influenza - IFITM3 

- rs12252 C/C 

genotype near 

IFITM3 

- expression is associated with 

viral restriction.  

- associated with increased 

infection severity (Brass et al. 

2009; Everitt et al. 2012) 

Plasmodium sp.  Malaria - HbS allele of HBB 

gene, DARC 

mutation 

 

- SLC4A1 band 3 

deletion 

- α –globin deletions 

and G6PD-deficiency 

- ABO group O 

- associated with malaria 

resistance (Gouagna et al. 2010; 

Miller et al. 1976; Williams 

2006) 

- protects against parasitemia 

(Genton et al. 1995) 

- associated with malaria regions 

(Ruwende et al. 1995; Wambua 

et al. 2006) 

- associated with decreased 

susceptibility to severe infection 

(Fry et al. 2008) 

Mycobacterium 

leprae 

Leprosy - HLA-DR/DQ 

rs9271366 variants 

 

- TLR1 I602S S 

mutation 

- C13orf31 

rs3764147 and 

rs10507522 variants 

- CCDC122 

rs9533634 and 

rs3088362 variants 

- associated with susceptibility 

and resistance (Zhang et al. 

2009)                                         

- protective against leprosy 

(Wong et al. 2010)                              

- associated with susceptibility 

(Zhang et al. 2009)  

 

- associated with  susceptibility 

(Zhang et al. 2009) 

Mycobacterium 

tuberculosis 

Tuberculos

is 

- IRGM 261TT 

 

- SLC11A1 multiple 

polymorphisms 

- TLR2 T597C C 

mutation 

 

- resistant against MTBC lineage 

4 (Intemann et al. 2009) 

- associated with pulmonary 

tuberculosis (Li et al. 2006) 

- associated with increased 

infection by MTBC lineage 2 

(Caws et al. 2008) 
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Norovirus Norovirus - FUT2 null mutation 

homozygosity 

- protects against some strains of 

virus (Lindesmith et al. 2003; 

Nordgren et al. 2010) 

Trypanosoma 

brucei 

Sleeping 

Sickness 

-APOL1 variants 

342G and 3384M 

- confer resistance to sleeping 

sickness (Genovese et al. 2010) 

Variola virus Smallpox -Multiple population-

specific loci 

- associated with success of 

seroconversion (Ovsyannikova 

et al. 2012) 

Vibrio cholerae Cholera  - Five genomic regions of 

selection in resistant population 

(Karlsson et al. 2013) 

Yersinia pestis Plague -TLR10/TLR1/TLR6 

locus 

- under strong selection, and 

polymorphisms in this region 

confer different in vitro 

responses to Y. pestis stimulation 

(Laayouni et al. 2014) 
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Table 2. Classic genomic hallmarks of pathogen-host conflict  

 

Hallmark type Example hallmarks (affected extant pathogen) 

Signatures of natural selection - TLR10/TLR1/TLR6 region under positive 

selection in European populations (Barreiro 

et al. 2009; Laayouni et al. 2014)(Gram-

positive bacteria, Yersinia pestis) 

- Five genomic regions under selection in 

cholera resistant Bangladeshi people (Vibrio 

cholera)(Karlsson et al. 2013) 

Coding region mutations - CCR5Δ32 deletion (HIV-1) (Dean et al. 

1996) 

- HbS allele of HBB gene (Plasmodium 

falciparium) (Gouagna et al. 2010; Williams 

2006)   

Gene family expansion and 

narrowing 

- Species-specific expansion of chemokine  

receptor family (unknown)(DeVries et al. 

2006; He et al. 2004; Laing and Secombes 

2004) 

Changes in copy number variation - Increased CNV of DMBT1 gene (cariogenic  

bacteria)(Polley et al. 2015) 

Population differences in genetic 

response to infection 

- European and African Americans generate  

different whole genome responses to Listeria 

monocytogenes and Salmonella typhimurium 

(Nedelec et al. 2016) 

Telomere shortening - Heritable shortening of telomere length  

occurs in a wild vertebrate chronically 

infected with malaria (Asghar et al. 2015) 

Host genomic incorporation of 

pathogen nucleic acids 

- Retroviruses represent approximately 8% of  

the human genome sequence and may have 

altered human placental development 

(Bannert and Kurth 2006; Dunlap et al. 2006) 
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Table 3. The immune and non-immune functions of the top five upregulated genes in response to 

three major infectious pathogens: Mycobacterium tuberculosis, Influenza A virus and 

Trypansoma cruzi (fdr <0.1). 
 

Pathogen 

(host cell type) 

Time  

point 

Upregulated 

gene 

Immune function Non-immune function 

Mycobacterium 

tuberculosis 

(monocyte-derived 

dendritic cells) 

(Pacis et al. 2015) 

 

18 

hours 

BAALC-AS2 

(C8orf56) 

- - 

SERPINB4 Natural killer cell activity(de Koning 

et al. 2011) 

Implicated in menstruation(Paiva et al. 2016) 

SERPINB7 -  Kidney development and function(Miyata et 

al. 1998) 

IL36RN Anti-inflammatory(Mulero et al. 

1999) 

Skin homeostasis [reviewed in (Gresnigt and 

van de Veerdonk 2013)] 

CSF3 Granulocyte and monocyte 

differentiation and 

development(Metcalf 1985; Numata et 

al. 2005) 

Embryo implantation enhancement (Root 

and Dale 1999; Uzumaki et al. 1989) 

Osteogenesis(Ishida et al. 2010) 

H1N1 Influenza A 

virus  

(plasmacytoid 

dendritic cells) 

(Thomas et al. 2014) 

6 hours CXCL10 Monocyte and T-cell activation and 

chemotaxis(Loos et al. 2008; Taub et 

al. 1996) 

Muscle development(Wang et al. 1996) 

Angiogenesis(Angiolillo et al. 1995; Bodnar 

et al. 2006) 

CXCL11 Activated T cell chemotaxis(Loos et 

al. 2008) 

Bone 

development/osteoclastogenesis(Coelho et al. 

2005)  

IFNA17 Antiviral activity(Isaacs et al. 1957) - 

IFNA4 Antiviral activity(Isaacs et al. 1957) - 

IFNA1 Antiviral activity(Isaacs et al. 1957) - 

Trypansoma cruzi 

(human foreskin 

fibroblasts) 

(Li et al. 2016) 

4 hours CDH17(LI) Cell adhesion(Dantzig et al. 1994) Liver and intestine organization(Angres et al. 

2001) 

SLC2A5 Macrophage differentiation(Fu et al. 

2004; Malide et al. 1998) 

Fructose metabolism(Burant et al. 1992) 

Spermatogenesis (Burant et al. 1992) 

Adipose differentiation(Du and Heaney 

2012) 

CXCL8 Neutrophil trafficking(DiVietro et al. 

2001) 

 

Trophoblast implantation [reviewed in 

(Sharma et al. 2016)] 

IL4I1 Macrophage polarization(Yue et al. 

2015) 

Antibacterial activity (Puiffe et al. 

2013)  

- 

AK4 - GTP:ATP phosphotransferase activity(Noma 

et al. 2001) 
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