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CHAPTER 1 INTRODUCTION 

1.1. Motivation 

The increasing availability of historical data provides various opportunities across 

different industries. The spectrum of potential opportunities varies from conventional 

decision support to highly complicated expert knowledge extraction. However, the 

rapidly growing complexity of data hinders actual implementation of these opportunities. 

In general, the causes of data complexity can be attributed to various different factors, 

such as data incompleteness, inconsistency, heterogeneity, high-dimensionality, or rapid 

change in volume and structure. Fortunately, there has been active research on these data 

challenges. To achieve the desired outcomes from data, these data challenges should be 

properly addressed using the right approach or method.  

In particular with engineering design and manufacturing applications, during the 

past few decades, significant efforts have been made to incorporate data into design 

decision support systems using machine learning and data mining. There has been 

extensive research conducted on both theoretical and practical aspects in machine 

learning algorithms and the approaches attempting to resolve data challenges. Every other 

application favors different types of machine learning algorithms as the data the 

application faces has different characteristics and requirements. There is no single 

machine learning algorithm that outperforms others on every possible data. Therefore, the 

selection of proper machine learning algorithms for the given data is an important 

problem. As for data challenges, the importance of selecting the right one is as important 

as it is for the selection of machine learning algorithms.  
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1.2. Data challenges 

Incomplete data, often referred to as missing values, can be classified into three 

different mechanisms based on the cause of the missingness (Rubin, 1976; Little & 

Rubin, 1987). The three mechanisms are missing completely at random (MCAR), 

missing at random (MAR), and missing not at random (MNAR). Details on these 

mechanisms are available in (Rubin, 1976; Schafer & Graham, 2002; Graham, 2009; 

Enders, 2010). Missing values can be filled out by various methods, for example 

maximum likelihood (ML) and multiple imputation (MI) with no bias as long as these 

missing values are either MCAR or MAR. However, some methods produce biased 

estimates in case of MNAR while making it difficult to choose the right imputation 

method. 

As for inconsistency, usually treated as noise, a typical approach is to remove or 

alter them before constructing prediction model or conduct analysis. Anomaly or outlier 

detection (Liu & Motada, 2002; Liu, 2010) and instance selection methods (Gamberger et 

al., 1996; Olvera-López et al., 2010) are usually used for such purposes. However, the 

cause of sources may vary in different applications so that it may not be appropriate to 

simply eliminate or alter them in some cases. For instance, in a manufacturing 

application, the process to acquire data can be complex to configure the desired process 

environment. More specifically, resistance spot welding (RSW) is widely used in many 

industries due to its advantages, such as high speed and high volume operations. It is 

known that a significant inconsistency exists in RSW. Several research works consider 

predicting welding quality in order to support decisions related to quality monitoring and 
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material selection (Kim et al., 2003; Pal et al., 2008). Removing or altering these data in 

such an application may not be desirable since they can be used to extract additional 

information about explaining the complex nature of the problem.  

1.3. Machine learning in design and manufacturing 

Machine learning has been applied to utilize available data and to support the 

complex nature of decision making processes in engineering design and manufacturing 

domains. These design tasks include conceptual design, design analysis, and design 

optimization. Conceptual design is one of the early stages in product development, and it 

is critical since this stage has a significant impacts on the downstream processes of 

product development (e.g., manufacturing and assembly). There have been a number of 

research works to support designers in completing certain tasks (Kusiak & Salustri, 

2007). For instance, in Venugopal & Narendran (1992), multilayer perceptron (MLP) is 

used to retrieve design solutions that consist of components used in previous designs 

including geometric shapes and technological factors. Given these components as inputs, 

the authors show that designers can retrieve a similar new design solution to improve a 

final design concept. 

Noticeable research works are also conducted in design analysis to discover, 

understand, and standardize design solutions and processes. Park & Seo (2006) apply 

MLP to support life cycle assessment of product design alternatives. The dataset include 

product attributes, lifetime, mode of operations, and energy sources. The constructed 

MLP model predicts the life cycle assessment of new designs. Sousa & Wallace (2006) 

employ decision tree (DT) to approximate the life cycle assessment problem. They 
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consider a set of product attributes, such as energy source, chemicals, and recyclability as 

input. Classification models are built to classify products into one of the predefined 

groups and to support in analyzing the relationships between product attributes and their 

environmental performance. Shieh & Yang (2008) and Yang (2011) present methods to 

predict customer preference using product form features (e.g., volume, width, shape, and 

style). SVM and SVR are used respectively for classification and regression to address 

which customer preference is most satisfied and to predict costumer’s preference 

response value.  

Some researchers attempt to use manufacturing information for design decision 

making. Tang & Chen (2009) aim to achieve an optimal set of parameters for robust 

processes in sheet metal forming. SVM is used to classify the design space into either 

feasible or infeasible region being able to provide more accurate predictions compared to 

the traditional methods. Pan et al. (2010) apply SVR to a lightweight B-pillar design 

problem. Tailor-welded blank structure is used to minimize the weight subject to the 

constraints of vehicle roof crush and side impacts. SVR approximates the vehicle’s roof 

crush force. The optimal design solutions achieved by the proposed system are promising 

when compared to the finite element analysis results.  

As mentioned earlier, our approach is not to remove or alter noisy data obtained 

from the manufacturing processes. The presented Meta2 prediction framework aims to 

construct bagging SVR models, which improves the prediction accuracy on such noisy 

data with reduced computational cost. By doing so, we expect that the prediction results 

are more precise and can provide more reliable information about the process.  
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1.4. Overview 

As far as predictive modeling is concerned, the presence of noise in data creates 

issues, such as over-fitting, which decreases the prediction accuracy on unseen data. In 

this research, a novel prediction modeling framework, called Meta
2
, will be proposed. 

The aim of this framework is to improve the accuracy of prediction models constructed 

with the presence of noise in data. 

Ensembles, such as boosting and bootstrap aggregating (bagging), are known to 

improve prediction performance of a learning algorithm. Boosting is usually referred to 

as a bias reduction approach, whereas bagging can be used to reduce the variance of a 

learning algorithm. Due to this reason, bagging has been used with unstable learning 

algorithms, such as decision trees and multilayer perceptron neural network.  

In regards to noisy data, research on bagging has proven to improve the prediction 

accuracy with noisy data (Opitz & Maclin, 1999; Dietterich, 2000; Melville et al., 2004; 

Khoshgoftaar et al., 2011). Also, recent studies have identified that the prediction 

accuracy improvement and variance reduction properties of bagging still exist when used 

with a stable learning algorithm, such as support vector machine (SVM) (Chen et al., 

2009; Wang et al., 2009; Kim & Kang, 2012). Therefore, we assume that bagging SVM 

or support vector regression (SVR), an extension of SVM for regression problems, can 

improve the accuracy of prediction models on noisy data. To the best of our knowledge, 

no research has been conducted to identify the property of bagging on both noisy data 

and regression problems. We assume that bagging SVR will provide an improvement in 

the prediction accuracy when data used to construct the models consist of noise. 
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Therefore, the contribution of this research is that it will confirm the applicability of 

bagging with SVR for regression problems and the prediction accuracy improvement on 

noisy data. 

The prediction accuracy of a SVR model is highly dependent on the selection of 

its hyper-parameters. Such hyper-parameters usually include the penalty coefficient  , 

choice of kernel functions, and parameters for the kernel function. In the literature, 

evolutionary computation (EC) algorithms, such as genetic algorithm (GA) (Wu et al., 

2009), particle swarm optimization (PSO) (Lins et al., 2012), and ant colony optimization 

(ACO) (Zhou et al., 2012), are successfully applied to select the optimal hyper-

parameters for SVM and SVR.  Generally, they require a large number of candidate 

solution evaluations to obtain good solutions. The proposed framework employs PSO. 

Therefore, a candidate solution represents a set of hyper-parameters, whose evaluation is 

associated with constructing a bagging SVR model using the hyper-parameters. This 

makes the applicability of an EC algorithm intractable even more so as it increases the 

computational cost in evaluating (i.e., constructing bagging models for) a large number of 

candidate solutions. Regarding the previous research on bagging SVM, there has been no 

related research found in applying EC algorithms to select the hyper-parameters for SVM 

or SVR included in bagging. To that extent, this research contributes to identifying the 

applicability of EC algorithms in selecting optimal hyper-parameters.  

Meta-modeling, also referred to as surrogates, has been successfully applied to 

reduce the computational cost when an EC algorithm is associated with a computationally 

expensive task. For instance, in engineering design, the objective or constraint functions 
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are often associated with finite element analysis and/or computational fluid dynamic, 

which both are computationally intensive tasks. The proposed framework uses 

generalized regression neural network (GRNN) to construct meta-models. Meta-models 

will be constructed at each iteration of PSO to approximate the fitness function (i.e. 

objective function). Therefore, the number of candidate solution evaluations will lessen, 

which will also reduce the computational costs. Some particles in a swarm are re-

evaluated with the real fitness function (i.e., constructing bagging SVR) in order to 

prevent the swarm from moving to the wrong direction due to the approximation errors of 

these meta-models. 

The reasons why GRNN is selected are manifold. The model training process is 

instance-based. Therefore, we expect to reduce the overall computational requirement 

further, as long as the training data samples for GRNN are well maintained throughout 

the PSO iterations. The capability of GRNN has shown to be successful in high 

dimensional nonlinear problems (Gheyas & Smith, 2010). The only one parameter, called 

the smoothing factor, is not as sensitive and one can spend less effort in optimizing this 

smoothing factor value compared to other learning algorithms. Similarly, PSO is chosen 

due to its efficiency, capability of obtaining quality solutions (Chatterjee et al., 2005; 

Guo et al., 2008), and of avoiding over-fitting in a similar problem, called full model 

selection (Escalante et al., 2009). In addition, PSO has been successfully applied to 

hyper-parameters selection for a single SVM (Lin et al., 2008; Kapp et al., 2009) and 

SVR (Lins et al., 2012). 
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1.5 Goals and objectives 

Meta
2
 prediction modeling framework will be developed for noisy data where the 

noise cannot be removed or altered before constructing prediction models. The 

framework will include bagging prediction models using SVR as the base learning 

algorithm. The hyper-parameters for the SVRs in bagging models are determined by PSO 

assisted by meta-modeling. GRNN is used to construct the meta-models in the meta-

modeling approach. Using this framework, we attempt to construct a bagging SVR model 

that provides improved prediction accuracy on noisy data. Due to the approximation 

errors of meta-models, the final prediction model obtained by this framework may 

provide a lower prediction accuracy than using a regular PSO without meta-modeling. 

However, we expect to reduce the computational cost in finding such hyper-parameters 

that is comparable to that of a regular PSO. The main objectives of this research are as 

follows: 

1) Identify the prediction accuracy improvement property of bagging on noisy data 

using SVR as the base learning algorithm;  

2) Develop a computationally efficient meta-modeling approach to assist PSO by 

approximating the fitness function;  

3) Confirm the prediction accuracy of bagging SVR models obtained by Meta
2
 with 

respect to the computational efficiency; and  

4) Illustrate how the prediction models constructed by Meta
2
 can be used in design 

activities.  
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1.6 Organization 

For the rest of this report, Chapter 2 reviews bootstrap aggregating and support 

vector regression. Meta-modeling and our proposed meta-modeling approach will be 

discussed in Chapter 3 with experimental results. Meta
2
 prediction modeling framework 

will be discussed in Chapter 4 with experimental results. Chapter 5 will conclude this 

report with future research directions. 

 

CHAPTER 2 CONSTRUCTING BOOTSTRAP AGGREGATING MODELS 

WITH SUPPORT VECTOR REGRESSION 

2.1. Support vector machine and support vector regression 

2.1.1. Support vector machine 

SVM is a machine learning algorithm for classification problems. Given a training 

dataset, it seeks to find an optimal hyperplane that classifies data into either the positive 

or negative class. SVM is also referred to as maximum margin classifier because it aims 

to maximally separate the positive data samples from the negative. A dataset with   

number of samples is represented as   *(     )    (     )+, where each     is a real 

numbered vector,       for          . Each    has its corresponding class label 

   *     +.  

Figure 2.1. illustrates a linearly separable classification problem. Here,   and   

are coefficients that determine the hyperplane and     is the dot product. For any data 

sample   , the distance to the optimal hyperplane is 
  (      )

‖ ‖
. In standard SVM, the 
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objective is to find an optimal that maximizes the distance between the hyperplane and its 

closest data instance, which can be formulated as follows: 

        
   

(        
 

  (      )

‖ ‖
) 

 

(2.1) 

 

 

Figure 2.1. Example of a binary classification dataset and optimal hyperplane with the 

maximum margin 

For linearly separable datasets, SVM is an optimization problem of finding a 

hyperplane         with the maximum margin that equals 1 (i.e. support vectors). 

Therefore, the margin is   
 

‖ ‖
 since we have two classes. For example, the distance 

between data samples    on           and    on          is 
 

‖ ‖
. These data 
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samples closest to the hyperplane are called support vectors. In addition, for any data 

instance   , we know that          if     , otherwise          . This can 

also be written as   
(      )   . Now we can formulate this into an optimization 

problem as follows: 

         
   

  

‖ ‖
 

  

(2.2) 

 subject to   (      )   ,           

 

Maximizing 
 

‖ ‖
 is equivalent to minimizing 

 

 
‖ ‖ . Thus, Equation (2.2) can be 

converted to a minimization problem as follows: 

         
   

  

 
‖ ‖  

  

(2.3) 
 subject to   (      )    ,           

 

Equation (2.3) is a quadratic programming problem. In practice, Equation (2.3) is 

usually converted to its dual formulation using Lagrange multipliers. By doing so, one 

can reformulate the problem for linearly non-separable and nonlinear support vector 

machines (Ivanciuc, 2007). The Lagrange dual formulation of Equation (2.3) can be 

defined as follows: 

 (     )  
 

 
‖ ‖  ∑  (  (      )   )

 

   

 
 

 
‖ ‖  ∑    (      )

 

   

 ∑  

 

   

 
 

 
‖ ‖  ∑        

 

   

 ∑     

 

   

 ∑  

 

   

 

 

 

 

(2.4) 
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Then, using the Karuch-Kuhn-Tucker (KKT) conditions for the above Lagrange 

function and solving the Wolfe dual problem of Equation (2.4) to these KKT conditions, 

one can solve the SVM problem (Ivanciuc, 2007). The KKT conditions for Equation (2.4) 

are as follows: 

  (     )

  
     ∑      

 

   

 

  (     )

  
   ∑    

 

   

   

  (     )

   
   ( )      (  (      )   )            

             

 

(2.5) 

 

 

(2.6) 

 

 

(2.7) 

 

(2.8) 

 

By plugging in Equation (2.5) and (2.6) to the Lagrange function, Equation (2.4), 

the Lagrange dual problem can be defined as follows: 

         
 

 
∑  

 

   

 
 

 
∑∑             

 

   

 

   

 
  

 subject to     ,           

∑     
 
       

(2.9) 

 

Note that each data sample has its corresponding Lagrange multiplier   . Once the 

above SVM problem is solved, data samples with      are identified as support 

vectors. Now, one can compute the vector   and threshold   to obtain the optimal 

hyperplane using Equation (2.5) and (2.7). Using the hyperplane, a new data    can be 

predicted as class +1 if         , otherwise class -1. 
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So far, the SVM formulation has been reviewed for linearly separable datasets. In 

case of linearly non-separable datasets, the slack variable   is introduced to penalize data 

samples that are not correctly classified. After adding the slack variable   for each data 

sample and a penalty coefficient   to the objective function, Equation (2.3) can be 

modified for linearly non-separable datasets. Such modification with respect to support 

vector regression (SVR) is introduced in Section 2.1.2. Equation (2.11). Once the SVM 

optimization problem for linearly non-separable datasets is formulated, the optimization 

problem can be transformed to its Wolfe dual problem and used to achieve the support 

vectors. The transformation can be done in the same way described above for linearly 

separable cases. The SVM formulations for linearly separable and linearly non-separable 

are called hard margin and soft margin linear SVM respectively. The formulation of soft 

margin linear SVM is as follows: 

         
 

 
∑  

 

   

 
 

 
∑∑             

 

   

 

   

 
  

 subject to       ,           

∑     
 
       

(2.10) 

 

Similarly for nonlinear datasets, the Wolfe dual problem of either hard margin or 

linear margin linear SVM formulation can be used with a kernel function  ( ). The 

kernel function can be applied to the dot product       in the objective function of 

Equation (2.10). This is called the kernel trick. The formulations and proofs of soft 

margin linear, hard margin nonlinear, and soft margin nonlinear SVM are available with 
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in some of tutorial articles (Burges, 1998; Ivanciuc, 2007). Also, detailed description of 

the theory behind SVM and proofs can be found in Vapnik (1998). 

2.1.2. Support vector regression 

SVM can be applied to classification problems. However, there are many 

applications where it is required to predict continuous values (i.e., regression problems) 

instead of class labels. These applications include regression, time series analysis, etc. 

Similar to classification datasets, suppose we have a dataset with   number of samples 

  *(     )    (     )+, +, where each    represents each data sample (i.e.,      
 for 

         ) and each    has its corresponding response value     . The aim is to 

construct a prediction function  ̂( ) to approximate the original function  ( ). Vapnik 

(1995) develop so-called  -support vector regression (SVR) by extending the notion of 

the maximum margin hyperplane in SVM to regression problems.  

 

Figure 2.2.   precision and slack variable   in  -SVR 
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 -SVR attempts to minimize the errors between the target and prediction by 

finding an optimal hyperplane such that the prediction error for each training data does 

not exceed the   precision. This allows errors that are less than  . This assumption may 

not be true in many datasets, meaning that the solution is not feasible. In many real-world 

datasets, this is not possible due to the variability and noise. In order to address this issue, 

the notion of soft margin can be used the same way as in SVM by introducing the slack 

variable. Figure 2.2. illustrates these notions of   precision and slack variable  . 

Accordingly, the hard margin and soft margin linear SVR can be formulated in the 

same way as in SVM (Smola & Schölkopf, 2004). 

        
   

  

 
‖ ‖  

  

 

(2.11) subject to    (      )    ,           

(      )       ,           

 

Equation (2.11) represents the hard margin linear SVR. The soft margin linear 

SVR can be formulated as follows: 

        
   

  

 
‖ ‖   ∑(     

 )

 

   

 
  

 

 

(2.12) 
subject to    (      )       ,           

(      )         
  ,           

     
   ,         

 

These SVR optimization problems are usually transformed to the Wolfe dual 

problem and the support vectors are obtained in the same manner in SVM. Equation 

(2.13) represents the Wolfe dual formulation of Equation (2.12). 
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subject to        
   ,           

∑ (     
 ) 

       

 

(2.13) 

Also, using the support vectors and KKT conditions, one can compute   and   to 

predict new data. The kernel trick can be used to the dual problem in order to solve 

nonlinear regression problems. Detailed proofs and derivation are available in a tutorial 

on SVR in Smola & Schölkopf (2004). 

2.2. Bootstrap aggregating 

2.2.1. Constructing bootstrap aggregating models 

Bagging (Breiman, 1996) is one of the popular ensemble methods along with 

boosting. Suppose we are given a dataset   *(     )    (     )+ where    is either the 

class label or continuous valued response corresponding to the ith data sample   . The 

aim is to construct a prediction function  ̂   ( ) . Bagging generates multiple 

bootstrapped datasets from the original dataset   by randomly drawing samples with 

replacement. Let         be the number of bootstrapped datasets.    is the lth 

bootstrapped dataset sampled with replacement from the original dataset  . The size of 

each of these bootstrapped datasets,   , is usually the same as the original training dataset. 

As a result of bootstrapping, some data samples can appear multiples times in each 

bootstrapped dataset while some may not be included in it at all. The probability that each 
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training data sample is selected at least once is equal to   .  
 

  /
  

 (Bauer & Kohavi, 

1999). Therefore, when     , the probability is about 63.2% 

Then, using a base learning algorithm such as decision tree (DT), neural network 

(NN), and support vector machine (SVM), one can construct each prediction function 

 ̂ ( ) corresponding to the lth bootstrapped dataset. Once these prediction functions are 

constructed the bagging prediction function  ̂   ( ) is obtained by combining the results 

of  ̂ ( ) as follows: 

 ̂   ( )   ( ̂ ( )) (2.14) 

where  ( ) is an aggregating function. There are many number of different aggregating 

functions proposed in the literature.  

We report in Table 2.1. several aggregating functions introduced in Polikar 

(2012), which are applicable to regression problems. For classification problems, the 

results of these multiple prediction functions  ̂ ( ) can be aggregated, for example, using 

a majority voting aggregating function, where the final class label is the one that wins the 

most vote from  ̂ ( ). Figure 2.3. shows the pseudo code of bagging. 

Input: training dataset  , learning machine  , number of bootstrap datasets L, size of a bootstrap 

dataset    

1: for l = 1 to L 

2:         = bootstrapped sample from   

3:       ̂  =  (  ) 

4:  ̂   (  )   . ̂ (  )/ 

Output: Bagging predictor  ̂    

Figure 2.3. Bagging Pseudo code 

 



18 

 

 
 

Table 2.1. Aggregating functions for regression (Polikar, 2012) 

Mean  

 
∑ ̂ ( )

 

   

 

Sum 

∑ ̂ ( )

 

   

 

Weighted sum 

∑   ̂
 ( )

 

   

 

, where    is the corresponding weight to  ̂ . 

Product 

∏ ̂ ( )

 

   

 

Maximum    
       

{ ̂ ( )} 

Minimum    
       

{ ̂ ( )} 

Median    
       

{ ̂ ( )} 

Generalized mean 

(
 

 
∑ ̂ ( ) 
 

   

)

   

 

      Minimum 

     Maximum 

     Geometric mean 

     Mean 
 

2.2.2. Selection of base learning algorithm in bootstrap aggregating 

In Breiman (1996), it is noted that the base learning algorithm has to be unstable, 

which means small changes in the training sets may result in a large difference in the 

final prediction function. Such unstable ones are DT and NN. In regards to noisy data,  

Dietterich (2000) conduct a series of experiments on 33 classification datasets to compare 

the prediction accuracy of bagging, boosting, and randomization. DT is used as the base 

learner. Boosting and randomization provide better results than bagging when there is 

little noise. Bagging is the best among these methods when classification noise is added 

while producing more diverse classifiers. Similarly, DT and Naïve-Bayes algorithms are 
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examined in Bauer & Kohavi (1999). They report that boosting outperforms bagging and 

its variant ensemble methods using both DT and Naïve-Bayes. Bagging does not seem to 

have a significant effect in improving the prediction accuracy with Naïve-Bayes. 

However, the conducted experiments do not address the prediction accuracy when noise 

is present in the dataset.  

In addition, bagging and boosting are evaluated for DT and NN in Opitz & 

Maclin (1999). It is noted that bagging DT or NN always outperforms a single base 

learner either DT or NN. Their experimental results also show bagging provides a more 

consistent prediction performance than boosting when noise is present in data. Melville et 

al. (2004) emphasize on the performance of ensemble methods when different types of 

imperfection including missing data and classification noise are present in data. In case of 

noise, different levels of noise are added to the datasets considered and bagging provides 

the best prediction accuracy. Note that DT is used as the base learning algorithm of the 

ensemble methods compared. A recent study (Khoshgoftaar et al., 2011) reveals that 

bagging is better than boosting when data contain both class imbalance and noise. The 

study also suggests to use bagging by sampling without replacement instead of sampling 

with replacement in that case. DT, Naïve-Bayes, and rule-based learner are considered 

the base learning algorithm in the study. 

The previous experiments mentioned above suggest that the base learning 

algorithm of bagging should be unstable. However, research has been conducted on 

identifying the effectiveness of bagging with SVM, which is not known as an unstable 

algorithm. The following Table 2.2. briefly summarizes these research in terms of their 
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objectives, results, and the hyper-parameters selection approach. All of the research 

focuses on classification problems, while most of them compare boosting and/or bagging 

SVM to a single SVM. Bagging SVM always improves a single SVM in all cases, which 

proves that SVM is not an inappropriate choice for bagging. On the other hand, boosting 

SVM does not always outperform a single SVM. A recent study in Kim & Kang (2012) 

attempts to select optimal classifiers in boosting and bagging called CO-boosting and 

CO-bagging respectively. DT, NN, and SVM are considered as the base learner. Regular 

bagging SVM does not outperform bagging DT or NN. However, CO-bagging, where 

optimal SVMs in a bagging are selected, provides the best results on the dataset 

considered.  

Regarding noise, Valentini (2005) reports that bagging and random aggregating 

(RA) perform similarly outperforming a single SVM. However, without noise in the 

dataset, RA SVM generally outperforms bagging SVM. We claim that previous research 

has paid less attention to regression problems than classification and noisy data as well. 

Again, these two areas are one of the objectives in this research. We assume the 

applicability of bagging SVM can be extended to bagging SVR since both SVM and SVR 

share the core theoretical properties in determining the maximum margin hyperplane 

explained in Section 2.1. 

As shown in Table 2.2., we focus on selecting the hyper-parameters in bagging 

SVR. As far as the hyper-parameters selection is concerned in a bagging model, one 

needs to decide whether all the SVRs in a bagging should use the same set of hyper-

parameters or not. Even though Chen et al. (2009) use different sets for each SVM and 
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show its effectiveness in the prediction performance, the majority of related research 

apply the same set of hyper-parameters to all the SVMs. We consider the latter approach 

in this research.  

 

Table 2.2. SVM ensembles related research on their objectives, results, and the hyper-

parameters selection approach 

Same hyper-parameters applied to all the learners in an ensemble 

Kim et al. (2002) 

 Single and bagging SVM with different aggregating functions on three datasets 

 Bagging SVM outperforms a single SVM 

 A predefine set of hyper-parameters 

 

Kim et al. (2003) 

 Single, bagging, and boosting SVM with different aggregating functions on three datasets 

 Bagging SVM outperforms a single SVM while boosting SVM slightly outperforms bagging 

SVM 

 A predefine set of hyper-parameters 

 

Valentini & Dietterich (2003) 

 Single, bagging, and new bagging SVM on seven datasets 

 Bagging is better than a single SVM while their proposed bagging outperforms both 

 Different sets of hyper-parameters are tested using a grid search 

 

Valentini (2005) 

 Single, bagging, and random aggregating (RA) SVM on seven datasets 

 Both bagging and RA SVM outperform a single SVM while RA SVM provides a larger 

improvement than bagging SVM. In case of noisy data, RA and bagging SVM provide a 

similar level of improvement 

 Different sets of hyper-parameters are tested using a grid search 

 

Pal (2008) 

 Single, boosting, and bagging SVM on land cover classification dataset 

 Bagging outperforms others 

 A set of hyper-parameters known to work well for the dataset in a previous research 

 

Wang et al. (2009) 
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 Single, bagging, and boosting SVM on 20 datasets and an industrial case of gear defect 

detection dataset 

 Bagging seems to be the most appropriate ensemble for the most datasets considered 

providing relatively better prediction accuracy 

 Several sets of predefined hyper-parameters are tested 

 

Kim & Kang (2012) 

 Single, bagging, boosting, and cover optimized bagging and boosting using DT, NN, and 

SVM on bankruptcy prediction dataset.  

 Bagging SVM outperforms single SVM but not boosting SVM while bagging other base 

learners outperform boosting.  

 Different sets of hyper-parameters are tested using a grid search 

 

Different hyper-parameters applied to each learner in an ensemble 

Chen et al. (2009) 

 Single, bagging, and boosting SVM on traffic incident detection dataset using different 

performance measures 

 Bagging outperforms others in several performance measures considered 

 Randomly generate hyper-parameters for each classifier in an ensemble 

 

2.3. Hyper-parameters selection approaches for single support vector machine and 

support vector regression 

The selection of hyper-parameters in SVM and SVR is crucial and directly related 

to the prediction accuracy of constructed models. In  -SVR, the value of   determines the 

level of accuracy as described earlier. If   is too large, the constructed models may under-

fit failing to include the target values in the   precision. On the other hand, a too small   

can over-fit the data. Typically, they hyper-parameters one should determine also include 

the penalty coefficient  , kernel function, and corresponding kernel parameters. This is 

called hyper-parameters or model selection problem in the literature. Table 2.3. below 

shows four commonly used kernels. 
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Table 2.3. Four typical kernel functions for SVM and SVR 

Linear  (     )    
    

Polynomial 
 (     )  . (  

     )/
 

 

Radial basis function  (     )       ‖     ‖
 

 

Sigmoid  (     )      (   
     ) 

 

In this section, we review the related literature and define a classification of 

approaches to the hyper-parameters selection problem. This is to identify advantages and 

disadvantages of the existing approaches. We define two different types of approaches 

based on our literature review; i) Computational approach and ii) Analytical approach. 

Grid search is one of the conventional approaches to the hyper-parameters 

selection problem. In grid search, each hyper-parameter is assigned with a search space 

(e.g., using a maximum, minimum, and interval). Then each candidate parameter is 

directly used to construct a prediction model using SVM or SVR. Finally, one can select 

the candidate hyper-parameters that provides the best prediction accuracy. The wider and 

finer search space, the better quality hyper-parameters one can obtain. Obviously, this 

comes at a higher computational cost. However, as far as the computational cost is not 

concerned, grid search is still being applied in many applications. For instance, 

Kavaklioglu (2011) employs SVR in order to model the electricity consumption of 

Turkey. The choice of kernel functions is limited to radial basis function kernel, which 

leaves less computational burden. Although the results of SVR are not compared in terms 

of the performance of grid search or prediction accuracy, it is concluded that SVR using 

grid search is sufficient for the electricity consumption of Turkey. 
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We list a number of related research and their summary in each category as 

follows: 

i) Computational approach: There has been research that employs evolutionary 

computation algorithms, including genetic algorithm (GA) and particle swarm 

optimization (PSO). Chen (2007) uses a real-valued GA in order to construct an 

optimal SVR for turbochargers reliability dataset. The constructed SVR model shows 

better prediction accuracy compared to several other machine learning algorithms such 

as multilayer-perceptron (MLP). In Lin et al. (2008), PSO is considered to find the 

optimal subset of features and hyper-parameters for classifiers constructed using 17 

classification datasets. The experimental results obtained by PSO are compared to that 

of grid search and GA and show that PSO provides better prediction accuracy. Kapp et 

al. (2009) modify PSO in order to further reduce its computational cost. The authors 

compare their proposed method with the results achieved by grid search and regular 

PSO on five classification datasets. The proposed method provides a comparable 

quality solution to the regular PSO with less computational requirements.  

Aforementioned research only considers the radial basis function (RBF) kernel. Wu et 

al. (2009) hybridize a real-valued and integer-valued GA so that it will be able to find 

the optimal kernel function and the hyper-parameters accordingly for SVR in an 

electrical daily load prediction application. The experimental results demonstrate 

improved prediction accuracy using their proposed GA compared to a regular GA with 

the selection of kernel functions set to the RBF only. Similarly, GA and PSO are 
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successfully applied to find the optimal hyper-parameters in a product form design and 

reliability application respectively in Yang & Shieh (2010) and Lins et al. (2012).  

Small world optimization (SWO) is coupled with tabu search called TSWO in Mao et 

al. (2012). It is claimed that PSO and GA can find the global optimum and yet they 

have a possibility of premature convergence when the optimization problem is 

complex. Their proposed method TSWO shows that it avoids premature convergence 

and provides better performance than PSO and GA when tested on several artificial 

datasets generated from multimodal functions including sine. Zhou et al. (2012) employ 

ant colony optimization (ACO) for NOx emission modeling using SVR. The hyper-

parameters found by ACO are used to construct SVR models and compared to that of 

grid search and MLP as well.  

In addition, other than evolutionary computation algorithms, a few computational 

approaches are proposed in Jeng (2005) and Huang et al. (2007) and demonstrate their 

capability of finding quality solutions in an efficient manner.  

ii) Analytical approach: One of the representative analytical approaches is gradient-

based. Such gradient-based approaches are developed in Bengio (2000), Chapelle et al. 

(2002), Ayat et al. (2005), Chang & Lin (2005), Moser & Serpico (2009). These 

proposed approaches have shown their capabilities in improving accuracy and 

computational efficiency. However, they require the objective function to be 

differentiable with respect to the hyper-parameters (Kapp et al., 2009), high chance of 

falling in a local minima (Huang et al., 2007; Kapp et al., 2009). Therefore, due to 
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these characteristics, it may not be trivial in many practical applications (Lins et al., 

2012). 

2.4. Summary 

A review on bagging and support vector regression is given in this section. 

Notations and equations are discussed. Also, related research on how to select the hyper-

parameters for SVR are introduced. Computational and analytical approaches are defined 

each of which includes EC algorithms and gradient-based optimization algorithms. 

Regarding bagging, selecting the base learning algorithm, bootstrapped dataset, and 

aggregating functions are reviewed. More importantly, we identify whether or not to use 

the same set of hyper-parameters for SVRs included in a bagging model. 

 

CHAPTER 3 META-MODELING FOR FITNESES FUNCTION 

APPROXIMATION TO ASSIST EVOLUTIONARY COMPUTATION 

3.1. Introduction 

Evolutionary computation (EC) aims to find optimal solutions for various types of 

optimization problems. EC includes genetic algorithm (GA), genetic programming (GP), 

estimation of distribution algorithm (EDA), and swarm intelligence (SI). Examples of SI 

include particle swarm optimization (PSO) and ant colony optimization (ACO). The term 

EC is often treated as the same as evolutionary algorithm (EA) in the literature (Zhang et 

al., 2011). These EC algorithms have been applied in various optimization problems 

throughout different domains such as bioinformatics (Pal et al., 2006), machine learning 
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(Zhang et al., 2011), and engineering problems (Arciszewski & Jong, 2001; Fleming & 

Purshouse, 2002). 

EC algorithms in general require a large number of fitness function evaluations on 

candidate solutions as the population or generation evolves. In many applications, these 

fitness functions can be associated with a computationally expensive analysis or 

simulation. For instance, in a complex engineering design problem, such as an aircraft 

design optimization, the design simulation processes are computationally expensive 

where complex analyses such as finite element analysis and computational fluid 

dynamics are required (Wang & Shan, 2007). One of the approaches to improve the 

computational efficiency is meta-modeling, also called surrogates, where the fitness 

function can be approximated to reduce the number of fitness function evaluations. 

Meta-modeling can be defined as a model of the model (Kleijen, 1986). During 

the past decade, there has been a large number of meta-modeling research works 

proposed in the literature. These research works consider various types of meta-modeling 

algorithms, model construction schemes, and EC algorithms as well. Several review 

articles are available on the meta-modeling techniques in Jin et al. (2001), Jin (2005), and 

Jin (2011). The typical choice of meta-modeling algorithms includes polynomial 

regression (PR), multilayer perceptron (MLP) neural network, kriging, and radial basis 

function (RBF) network. A recent, related experiment was conducted on an aerodynamic 

design problem using evolutionary programming and support vector regression (Andrés 

et al., 2012). In regards to EC algorithms, GA (Dias et al., 2013), PSO (Sun et al., 2014), 

and differential evolution (DE) (Park & Lee, 2014) are considered in recent studies.  
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As far as the meta-modeling algorithm is concerned, the choice is not limited to 

those mentioned above. For instance, the capability of generalized regression neural 

network (GRNN) for meta-modeling is examined and shows promising results in Fang-

shu & Jian-Chao (2009). GRNN has several advantages to improving the efficiency in 

constructing meta-models. GRNN’s model training process is an instance-based 

approach. Therefore, one can expect to reduce the computational cost caused by the 

iterations, such as MLP, RBF network, and SVR. This is a considerable advantage over 

other algorithms such as kriging, which is known to have a high computational cost in the 

model construction. Updating kriging models with new data samples is not trivial (Jin, 

2011). In addition, GRNN requires only one parameter other than the selection of 

distance measure (e.g., Euclidean). This parameter is called the smoothing factor and 

known insensitive (Gheyas & Smith, 2010). As for the EC algorithm, PSO is chosen 

because of its advantages. Most of all, the implementation of PSO is straightforward, the 

number of parameters is less than many other EC algorithms, and efficiency with 

reasonable quality of solutions (Zhang et al., 2000; Mendes et al., 2002; Chatterjee et al., 

2005; Guo et al., 2008; Escalante et al., 2009).  

To the best of our knowledge, less attention has been given to meta-modeling 

using GRNN although it offers positive advantages applicable to meta-modeling as 

mentioned above. Therefore, we propose Meta-modeling Using GRNN and PSO (called 

MUGPSO) and aim to identify its capability as a meta-modeling algorithm in this 

research. For that purpose, we maintain the simplest possible meta-modeling scheme 

where one global meta-model constructed by GRNN is maintained and updated 
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throughout the run. The global meta-model is used to approximate the fitness function of 

candidate solutions (i.e., particles) in the entire swarm. MUGPSO is tested on various 

benchmark problems from the literature with different characteristics and compared with 

the performance of other recent meta-modeling algorithms. 

In this research, we employ MUGPSO to help improve the overall computational 

efficiency in selecting the optimal hyper-parameters for bagging SVR models. However, 

the applicability of meta-modeling in evolutionary computation is not limited to the 

fitness function approximation. Population initialization, cross-over, mutation, and local 

search can be replaced or assisted by meta-modeling (Jin, 2011). In this chapter, we 

introduce meta-modeling models, kriging, PR, RBF networks, and GRNN. Techniques 

related to meta-model training such as data sampling and evolution control are also 

included. 

3.2. Related work 

3.2.1. Meta-models for fitness function approximation 

Several previous research are available in relation to meta-modeling the fitness 

function approximation in evolutionary computation. Jin et al. (2001) study four meta-

modeling techniques, KG, PR, RBF, and Multivariate Adaptive Regression Splines 

(MARS). These meta-modeling techniques are tested on 14 different mathematical and 

engineering test problems where the degree of nonlinearity, dimension, and noise is 

different. Their performance are measured and compared in terms of accuracy, efficiency, 

transparency, and simplicity. RBF shows the best performance among the four meta-

modeling techniques in terms of accuracy. RBF has the lowest impact on the sample size 
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and noise. Another advantage of RBF is the simplicity to implement while KG and 

MARS are not due to their parameters. MARS does not perform well on difficult 

problems where the degree of nonlinearity is high, small number of samples are available 

to train, and the number of input features is high.  

Similarly in Lim et al. (2007), PR, KG, RBF and multilayer-perceptron (MLP) are 

considered. Meta-models are built using these four techniques and included in a memetic 

algorithm. Four test functions are tested in order to compare the performance of the meta-

modeling techniques. The results compared to that of a regular genetic algorithm (GA) 

reveal that PR and KG seem to provide more robust performance for the four test 

functions.  

We introduce kriging (KG), radial basis function (RBF), and polynomial 

regression (PR) for meta-modeling methods to approximate the fitness function. It should 

be noted that the selection of the approximation method is not limited to these three 

introduced here. Based on the complexity of fitness function, one can consider one of the 

simplest methods, such as k nearest neighbors. In Clark et al. (2005), support vector 

regression is compared to KG, RBF, and PR over a number of test problems showing a 

better performance.  

3.2.2. Data sampling and evolution control techniques for meta-modeling 

One of the main objectives of meta-modeling in evolutionary computation is to 

reduce the computational cost (e.g., the actual fitness evaluation of computationally 

expensive function for candidate solutions in EC). It is difficult to construct an 

approximation model that guarantees a global optimal due to several reasons such as the 
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high dimensionality and limited number of training samples (Jin, 2005). Therefore, the 

data samples from which the meta-model is constructed have to be carefully chosen in 

order for the approximate model to be accurate as much as possible.  

It is obvious that more data samples will be likely to result in a better approximate 

model. Hence, it provides EC algorithms with a higher chance of obtaining better quality 

solution (i.e., close to the global optimal). However, this requires more computational 

effort in evaluating them with the original fitness function, which is assumed to be an 

expensive one.  

The initial data samples can be generated and then need to be evaluated for their 

fitness function values in order to construct an initial approximate model. In some 

applications, domain expert or history data are available to provide such initial data 

samples. These cases fall into off-line sampling and training techniques. As the EC 

algorithm continues throughout the iterations, candidate solutions at each iteration are 

generated from the previous iteration using some sort of operators or rules. For instance, 

a GA generate new set of candidate solutions at each iteration applying operators called 

mutation and cross-over on the previous candidate solutions at the previous iteration. 

Then, these candidate solutions have to be either evaluated or approximated.  

Evolution control concerns managing which candidate solution to evaluate with 

the original fitness function and to approximate with the approximate model. Using the 

approximate model together with the original fitness function can improve the quality of 

final solution achieved by the EC algorithm. Obviously, the computational cost increases 

as more candidate solutions are needed to evaluate with the original fitness function. In 
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this process, new data samples that are evaluated with the original fitness function are 

obtained. Using these data samples, the initial approximate model can be retrained to 

improve its accuracy, which falls into on-line updating with evolution control. One can 

exclusively employ an off-line sampling and training technique or include an on-line 

updating with evolution control technique.  

One of the most popular off-line sampling and training techniques is design of 

experiments (DOE) based techniques. These DOE techniques include Latin hepercube 

(LH) and central composite design (CCD). Given the dimension of the problem   (i.e., 

the number of input features), LH splits each input feature range into   strata of equal 

probability     (McKay et al., 1979). Then   values are randomly distributed with one 

from each stratum and they are randomly permuted forming the final set of data samples. 

CCD, along with Box-Behnken design, is a widely used DOE technique to estimate a 

second-order polynomial approximation (Wang & Wan, 2009). A CCD consists of a   
 

factorial points, star points, and center points. An illustrative example for a two-

dimensional problem is shown in Figure 3.1. 

Detailed reviews on DOE techniques including LH and CCD are available in 

Robinson et al. (2004) and Hibbert (2012). Besides DOE techniques, off-line data 

sampling can be achieved by Monte-Carlo and active learning methods. 
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Figure 3.1. An example of a central composite design for a two-dimensional problem. 

(Circle, cross, square points indicate factorial, star, and center points respectively.) 

 

 

On the other hand, various approaches are available for on-line updating with 

evolution control. The most straightforward approach is to evaluate candidate solutions 

that may have a good fitness function value (Jin, 2011).  To this extent, the best candidate 

solution, or several good solutions, at each iteration can be evaluated with the original 

fitness function and the approximate model can be retrained with the data sample 

included. The best candidate solution can be assumed to be the one that has the best 

fitness function value approximated by the meta-model. These types of approaches are 

referred to as an individual-based approach. On the other hand, one can also consider 

generation-based approaches where all the candidate solutions in a fixed number of 

iteration are evaluated. In this research, we focus on individual approaches. 

Several research employ individual-based approaches by clustering the candidate 

solution in each generation and choosing ones that are close to the centers (Kim & Cho, 

2001; Jin & Sendhoff, 2004; Gomide, 2006) or the best ones in each cluster (Graning et 
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al., 2007). Instead of choosing the best candidate solution, randomly choosing a number 

of candidate solutions is also possible. However, this random approach has not shown to 

outperform the best approach (Jin, 2005). 

Besides choosing best ones and random selection, another criterion is the degree 

of approximation uncertainty (Jin, 2011). Because the accuracy of the approximate model 

constructed by meta-models greatly affects the success in finding a good optimal 

solution, such candidate solutions that have high degree of approximation uncertainty 

have more potential to improve the approximate model. 

3.2.3. Meta-modeling with particle swarm optimization 

Fitness function approximation using meta-modeling has been given much 

attention in the literature during the past decade. However, the use of meta-modeling for 

PSO is relatively less than other EC algorithms (Sun et al., 2013; Sun et al., 2014). Here, 

we focus on the related research to meta-modeling for PSO. Recent meta-modeling 

research for GA and DE include Dias et al. (2013) and Park & Lee (2014), respectively. 

Reyes-Sierra & Coello (2005) propose four different fitness approximation 

approaches based on the closest particles and apply in a multi-objective PSO. Hendtlass 

(2007) defines a reliability measure on each particle and estimate the fitness based on the 

fitness inheritance. GRNN is applied in Fang-shu & Jian-Chao (2009) to support PSO by 

approximating the fitness function evaluation. Praveen & Duvigneau (2009) propose 

using meta-models constructed by RBF network and examine the performance in an 

aerodynamic shape design application, where the real fitness function is associated with 
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CFD. Similarly, Bird & Li (2010) and Parno et al. (2012) consider meta-modeling using 

polynomial regression and kriging. 

More recently, Sun et al. (2013) propose a new fitness approximation approach 

for PSO based on fitness inheritance. An ensemble of RBF networks and polynomial 

regression is proposed in Tang et al. (2013) and tested on several benchmark functions 

and engineering design problems. In Ren et al. (2013), GRNN is considered for fitness 

function approximation and tested on a few benchmark functions. Regis (2014) develops 

a meta-modeling framework, which uses PSO and RBF network. In the framework, each 

particle in the swarm considers multiple trial positions and the most promising particle is 

chosen using the RBF meta-model. Sun et al. (2014) propose a meta-modeling 

framework called two-layer surrogate assisted particle swarm optimization (TLSAPSO). 

TLSAPSO employs two different types of meta-model constructed by RBF networks. 

They are called the global and local meta-models where the global meta-model is 

constructed based on the whole swarm and expected to smooth out the local optimum. 

The local meta-models are constructed for each particle and aim to approximate the local 

fitness landscape. These two types of models are selectively used throughout the 

iterations based on the accuracy. The aforementioned algorithms are compared with the 

presented MUGPSO and discussed later sections in this section. 

3.3. Meta-modeling algorithms 

3.3.1. Kriging 

A kriging model can be written to represent the original function as follows: 

 ( )   ( )   ( ) (3.1) 
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, where  ( ) is a kriging model,  ( ) is a global model of the original function, and  ( ) 

represents a local deviation from the global model  ( ), which is usually a Gaussian 

random function with zero mean and non-zero covariance (Jin, 2005). Assuming that the 

global model  ( ) is a polynomial, Equation (3.1) can be rewritten as follows: 

 ( )     ( ) (3.2) 

 

, where   represents the underlying coefficients of the polynomial. The covariance  ( ) 

can be represented as follows: 

   [ (  )  (  )]     (     ) (3.3) 

 

, where    is the process variance,   is the correlation between any two data samples    

and   . One of the commonly used correlation functions is Gaussian correlation function 

(Shi & Rasheed, 2010). Gaussian correlation function can be represented as follows: 

 (     )     [ ∑   |       |
 

 

   

] 
(3.4) 

 

, where   is the dimension of the problem,     and     are the  th element in the samples  

   and    respectively, and    is the Gaussian correlation function parameter. Finally, the 

original function  ( ) can then be approximated by kriging: 

 ̂( )   ̂    ( )   (   ̂ ) (3.5) 

 

, where  ̂( ) is the approximated value given the input   and   *       +,  ̂ is the 

estimated parameter for  ,   ( )  , (    )    (    )-
 , and   is a unit vector with a 

length of  . The parameters can then be obtained using least squares or maximum 

likelihood method (Jin, 2005).  
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3.3.2. Polynomial regression 

PR is capable of approximating nonlinear functions by introducing different 

degrees of order to the linear regression. For instance, a second-order polynomial 

regression model can be represented as follows: 

 ̂( )     ∑    

 

   

 ∑     
 

 

   

 ∑∑       

  

 
(3.6) 

, where the   terms are the coefficients. These coefficients can be computed using least 

squares methods. The number of coefficient terms in the polynomial regression model is 

equal to       (   )(   )  , where   is the dimension of the input space (i.e., the 

number of input features). In addition, for a second-order polynomial, it is recommended 

to include 1.5     , 3     , and 4.5      data samples to construct the polynomial 

regression models for problems with a dimension of 5-10, 10-20, and 20-30 input 

variables respectively (Jin et al., 2001). 

3.3.3. Radial basis function network 

RBF network is a type of neural network, which consists of an input layer, hidden 

layer, and output layer. The input layer consists of input neurons each of which represents 

each data sample. Each of hidden neurons in the hidden layer is associated with the radial 

basis function. The number of hidden neurons in a RBF network can be as many as the 

number of data samples  . In the output layer, there exists an output neuron or multiple 

output neurons depending on the number of features in the problem. A RBF network can 

be written as follows: 
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 ̂( )  ∑    ‖    ‖

 

   

    
(3.7) 

 

, where    is the radial basis function for the ith hidden neuron,    is the bias term,    is 

the weight coefficient associated with   . Note that the term   ‖    ‖  essentially 

computes the distance between   and   . In case the number of data samples is large, the 

number of hidden neurons also increases. This makes it difficult to implement on such a 

large dataset requiring more computational effort. Therefore one can utilize a generalized 

RBF network as follows: 

 ̂( )  ∑    ‖    ‖

 

   

    

 

(3.8) 

 

, where    is the center, which should be determined by the user. Then, it is a major task 

to determine how many number of centers and where to locate them. The most common 

RBF function is Gaussian kernel function (Jin, 2005), which can be represented as 

follows: 

  ‖    ‖     ( 
‖    ‖

   ) 
(3.9) 

 

Once the centers are determined, the bias and weight terms    and    can be 

calculated by minimizing the sum of squares (i.e., linear least squares). 

3.3.4. Generalized regression neural network 

GRNN was first introduced by Specht (1991). In this research, GRNN will be 

used to construct a meta-model at each iteration of PSO in order to approximate the 

fitness function value of particles. GRNN has several advantages to be used as a meta-
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modeling algorithm. GRNN is an instance-based learning algorithm, which can greatly 

reduce the meta-model training time, therefore, the overall computation cost of PSO as 

well. Its only one parameter, smoothing factor, is not very sensitive to its setting (Gheyas 

& Smith, 2010). In addition, due to the low sensitivity of the smoothing factor, the 

optimal selection of this parameter is not as much necessary as other algorithms including 

MLP and SVR. Some other advantages include its ability to avoid a local minima and 

over-fitting to the training data, and robustness against noise (Currit, 2002; Yagci et al., 

2005; Białobrzewski, 2008).  

GRNN considers each training data as a cluster. Once it takes a new input data   

for the prediction of the output value, it calculates the Euclidean distance between the 

input   and each training data   . The distance between   and    is calculated as follows: 

  
 (    )  (     )

  (     ) (3.10) 
 

, where each input data is defined as    (             ).   is the number of features in 

the problem. Note that, in case of PSO, we define the dimension of the problem as  , 

which should not be confused when GRNN is used as the meta-modeling algorithm for 

PSO. GRNN calculates the predicted output given an input,  ̂( ) , according to the 

equation below: 

 ̂( )  ∑
 (  ) 

( 
  

 

   )

∑  
( 

  
 

   ) 
   

 

   

 (3.11) 

 

where   is the number of training data and   is the smoothing factor. Note that the 

predicted output is a weighted average of the actual outputs of all training data where the 

weights are the Euclidean distance between   and each training data   . As mentioned 



40 

 

 
 

above, the smoothing factor is not very sensitive and also is not the main goal of this 

research, thus it is set to     unless specified otherwise. 

3.4. Meta-modeling using generalized regression neural network and particle swarm 

optimization (MUGPSO) 

 PSO can be used to solve an optimization problem. We briefly introduce a 

variant PSO, called global PSO (GPSO), proposed by Shi & Eberhart (1998a). First, we 

denote the number of particles in a swarm as    and refer a particle to as    for   

      . Each particle in a swarm is a candidate solution to the given optimization 

problem of dimension  . Let   
  (   

       
 ) denote the position vector of particle   at 

iteration t. Accordingly, a swarm with    number of particles is represented as    

(  
       

 ) at iteration t.  

At each iteration, PSO keeps track of the local best and global best particles. 

  
  (   

       
 ) is defined as the local best solution obtained over iterations   for particle 

 . Therefore, we have    local best solutions for each particle   at iteration  . Similarly, 

the global best solution at iteration   is represented as    (  
      

 ). 

Every particle in the swarm is moved by some portion of its local best and the 

global best solution at each iteration, so that the entire swarm can also move towards to 

the optimal solution. The particles are updated as follows: 

  
       

      (  
    

 
)      ( 

    
 
)  

  
      

    
   

 

(3.12) 

(3.13) 

where   is inertia weight,    and    are called acceleration coefficients for the local and 

global best solutions, and    and    are uniform random numbers distributed in [0,1]. The 
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particle update equation stochastically moves each particle around its local and global 

best solutions using the inertia weight and acceleration coefficients. The acceleration 

coefficients    and    are set to 2 in this research based on reported empirical studies 

(Clerc & Kennedy, 2002; Shi & Eberhart, 1998b). The inertia weight controls the extent 

to which the memory of the particle’s previous velocity influences the new velocity. It 

was reported in Van den Bergh & Engelbrecht (2006) that velocities quickly explode to 

large values in the early iterations, especially for particles far from the local and global 

best. This allows particles to move beyond the boundaries of the search space, which 

results in divergent solutions. Inertia weight helps prevent particles to diverge by 

controlling the contribution of previous movement direction by allowing bigger 

movements at the beginning and smaller movements towards to the end of the run, that is 

the inertia weight decreases as the iteration proceeds (Van den Bergh & Engelbrecht, 

2006). One can define the inertia weight as follows: 

             
(           ) 

    
 

 

(3.14) 
 

where      is the maximum number of iterations and        and      are the starting and 

end values of the inertia weight respectively. We set        and      set to 0.9 and 0.4 

respectively based on previous research conducted in (Shi & Eberhart, 1998b). 

Figure 3.2. describes the entire procedure of MUGPSO. In order to run a 

MUGPSO, one should initialize several parameters related to PSO mentioned in the 

previous section. These PSO parameters include the inertia weight, acceleration 

coefficients, maximum number of iterations, swarm size, etc. All the parameters used in 

this research are reported in Table 3.1. The selection scheme for particles to be re-
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evaluated with the real fitness function is inspired by the global model included in 

TLSAPSO (Sun et al., 2014). 

 
Figure 3.2. Schematic procedure of MUGPSO 

 

Table 3.1. Parameter settings of GPSO and MUGPSO 

Parameter Value 

Problem dimension ( ) 30 

Number of particles (  ) 60 

Acceleration coefficients (     ) 2 

Inertia weights (           ) 0.9 and 0.4 

Maximum number of iteration (    ) 166 for GPSO 

MUGPSO adaptively sets for each 

benchmark problem  

Maximum number of real fitness 

function evaluations 

10,000 

Storage threshold ( ) 0.001 

Smoothing factor Maximum number of 

iteration ( ) 

1 

Evaluate the swarm with
the real fitness function

Update velocity and particles

Update local and global best

Construct the meta-model 
using GRNN

Approximate the fitness 
function value of updated 

particles using the meta-model

Re-evaluate potential particles 
with the real fitness function

Store evaluated particles and 
their fitness function values

Potential 
particles 
exist?

Optimal solution

No

Yes

Stopping 
criterion met?

Yes

No

Generate the initial swarm 
using Latin hypercube design

Initialize parameters
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As shown in Figure 3.2., MUGPSO generates an initial swarm of particles by 

employing the Latin hypercube design method. Then, this initial swarm is evaluated with 

the real fitness function for its particles. The particles and their original fitness function 

values in the initial swarm are stored for constructing meta-models. The particles are 

updated using Equation (3.13). 

Throughout the iterations, MUGPSO, similar to PSO, updates the velocity and 

particles. A meta-model is then constructed using GRNN on the closest data in the 

storage from the current updated particles. The meta-model approximates the fitness 

function on these updated particles. As mentioned in the previous section, PSO aims to 

reach the global optimum by moving its particles by some portion of its local best and the 

global best solution at each iteration. For this reason, MUGPSO re-evaluates particles 

whose approximated fitness function values are better than their local best with the real 

fitness function. 

The particles re-evaluated with the real fitness function will be considered 

informative and stored for constructing meta-models in the later iterations. In the current 

version of MUGPSO, we define a particle is informative for PSO if the portion of 

improvement obtained by re-evaluated real fitness function value is larger than the 

approximated value by the meta-model. This can denote that we can expect to construct 

meta-models to approximate the real fitness function close enough using the information 

that have been stored. This approach is simple, however,  and showed promising results 

in (Park & Lee, 2014; Sun et al., 2014) since local and global best solutions are important 

for PSO to move toward the optimal solution region. 
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Obviously, as the iteration process proceeds, the number of particles and the 

fitness function values increases. Since MUGPSO uses the closest particle and its fitness 

function value to train the global meta-model at each iteration, the size of the particle 

storage affects the computational efficiency in calculating the distance from each particle 

to those in the storage. This is an important area to further research and improve the 

current version of MUGPSO. 

Pseudo code: MUGPSO 

1: t=0 

2: Swarm initialization    (  
       

 ) with Latin hypercube design 

3: Evaluate   with the real fitness function 

4: Define local best positions   
    

  

5: Define global best position       (       (  
 )) 

6: while (stopping criteria not met) 

7: Update velocities using Equation 1 

8: Update particles using Equation 2 

9: Construct a meta-model using GRNN with the closest data samples from the storage 

10: Estimate fitness function values of particles using the meta-model 

11: if at least one such particle   exists that  (  
 )   ̂(  

   ) 

12:  for each particle   

13:   if   (  
 )   ̂(  

   ) 

14:    Evaluate   
    with the real fitness function 

15:    if |( ̂(  
   )   (  

   ))  (  
   )|    

16:     Store   
   and  (  

   ) 

17:    end if 

18:   end if 

19:  end for 

20: else 

21:  Evaluate the whole swarm with the real fitness function 

22:  Store the whole swarm and fitness function values 

23: end if 

24: Update local best positions and global best position 

25: t=t+1 

26: end while 

Figure 3.3. A pseudo code for MUGPSO 
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The above steps are repeated until a stopping criterion is met. MUGPSO stops 

when the maximum number of iteration or the maximum number of real fitness function 

evaluations is reached. A pseudo code of MUGPSO is shown in Figure 3.3. 

3.5. Experimental results 

We examine the performance of MUGPSO on ten benchmark problems from 

Suganthan et al. (2005). Comparisons with other meta-modeling techniques reported in 

Sun et al. (2014) will also be discussed with these ten benchmark problems. They cover 

various characteristics of optimization problems as indicated for each problem below. 

The ten benchmark problems and their characteristics are listed as follows: 

(1) Shifted sphere 

  ( )  ∑  
 

  

   

     

Unimodal 

   ,        -  

       

      

  (  )        

          

 

 

 

(3.15) 

(2) Shifted Schwefels problem 1.2 

  ( )  ∑(∑   

 

   

)

 
  

   

     

Unimodal 

   ,        -  

       

      

  (  )        

          

 

 

 

(3.16) 
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(3) Shifted rotated high conditioned elliptic 

  ( )  ∑(   )
   
      

 

  

   

     

Unimodal 

   ,        -  

  (   )   

 : orthogonal matrix 

      

  (  )        

          

 

 

 

(3.17) 

(4) Noise is added to F2 

  ( )  (∑(∑   

 

   

)

 
  

   

)(     | (   )|)      

Unimodal  

Gaussian noise added from  (   ) 

   ,        -  

       

      

  (  )        

          

 

 

 

(3.18) 

(5) Schwefels problem 2.6 with global optimum on bounds 

  ( )     {|      |}      

Unimodal 

 :       matrix,     is a uniform random number from ,        - 

       , each    is a random number from ,        - 

   ,        -  

       

      

  (  )        

          

 

 

 

(3.19) 

(6) Shifted Rosenbrocks 

  ( )  ∑ .   (  
      )

 
 (    )

 
 /

    

   

     

Multimodal 

 

 

(3.20) 
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A very narrow valley around local optima 

   ,        -   

         

      

  (  )       

          

 

(7) Shifted rotated Griewanks without bounds 

  ( )  ∑
  

 

    

  

   

 ∏   (
  

√ 
)

  

   

       

Multimodal 

Initial swarm from    ,     -  

The global optimum locates outside of the range 

  (   )   

 : linear transformation matrix 

      

  (  )        

          

 

 

 

(3.21) 

(8) Shifted rotated Ackleys with global optimum on bounds 

  ( )        (    √
 

  
∑  

 

  

   

)     (
 

  
∑   (    )

  

   

)         

Multimodal 

Global optimum on the boundary  

Narrow region with many local optima around the global optimum 

   ,      -  

  (   )   

 : linear transformation matrix  

      

  (  )        

          

 

 

 

(3.22) 

(9) Shifted Rastrigins 

  ( )  ∑(  
       (    )    )

  

   

     

Multimodal 

Many local optima 

   ,    -  

 

 

(3.23) 
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(10) Shifted rotated Rastrigins 

   ( )  ∑(  
       (    )    )

  

   

     

Multimodal 

Many local optima 

   ,    -  

  (   )   

 : linear transformation matrix   

      

   (  )        

           

 

 

(3.24) 

 
Before we compare MUGPSO with other meta-modeling algorithms, each 

benchmark function is tested with GPSO (global PSO) and MUGPSO. GPSO is a variant 

of PSO and does not approximate the fitness function using meta-models. Therefore, 

every candidate solution throughout the entire run has to be evaluated with the real fitness 

function. Table 3.1. shows the parameter settings for GPSO and MUGPSO. In order to 

compare MUGPSO to others, most parameters are consistently set the same as in Sun et 

al. (2014). 

The maximum number of iterations for GPSO is set to 166, which allows 9,960 

real fitness function evaluations since the number of particles is 60. For MUGPSO, the 

maximum number of iterations      is adaptively set according to the maximum number 

of real fitness function evaluations allowed. The maximum number of real fitness 

function is set to 10,000, which is equivalent to the settings in Sun et al. (2014) for a 

comparison purpose. For instance, in order to set      for F1( ) , we ran MUGPSO 
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several times to see what iteration MUGPSO reaches around 10,000 real fitness function 

evaluations. MUGPSO roughly reached 400 iterations when the maximum number of real 

fitness function evaluations is used. Note that, in most of cases for every benchmark 

functions, MUGPSO stopped using less than 10,000 real fitness function evaluations (see 

Table 3.2.).  

Table 3.2. Statistical results of solutions obtained by GPSO and MUGPSO with a limit of 

10,000 real fitness function evaluations 

 Algorithms Global  

optimum 

Best Worst Mean SD Number of 

Evaluations 

F1 GPSO 

MUGPSO  

-4.50e+02 -3.88e+02 

-4.29e+02 

-1.28e+02 

-3.19e+02 

-2.49e+02 

-4.03e+02 

9.55e+01 

3.27e+01 

9960 

10016 

F2 GPSO 

MUGPSO 

-4.50e+02 6.44e+03 

2.21e+03 

1.76e+04 

1.59e+04 

1.34e+04 

8.70e+03 

3.63e+03 

4.35e+03 

9960 

9863 

F3 GPSO 

MUGPSO  

-4.50e+02 3.65e+07 

2.16e+07 

1.68e+08 

5.87e+07 

7.39e+07 

3.39e+07 

3.87e+07 

1.28e+07 

9960 

9649 

F4 GPSO 

MUGPSO  

-4.50e+02 8.30e+03 

9.66e+03 

4.58e+04 

3.20e+04 

2.92e+04 

2.17e+04 

1.04e+04 

8.39e+03 

9960 

9026 

F5 GPSO 

MUGPSO  

-3.10e+02 6.00e+03 

5.01e+03 

8.13e+03 

6.75e+03 

7.32e+03 

5.60e+03 

7.51e+02 

5.17e+02 

9960 

9441 

F6 GPSO 

MUGPSO  

3.90e+02 5.86e+05 

1.45e+04 

3.33e+06 

1.05e+05 

1.87e+06 

0.06e+06 

1.11e+06 

3.49e+04 

9960 

10016 

F7 GPSO 

MUGPSO  

-1.80e+02 -1.73e+02 

-1.76e+02 

-1.51e+02 

-1.67e+02 

-1.63e+02 

-1.71e+02 

6.47e+00 

3.21e+00 

9960 

10002 

F8 GPSO 

MUGPSO  

-1.40e+02 -1.18e+02 

-1.19e+02 

-1.18e+02 

-1.18e+02 

-1.18e+02 

-1.18e+02 

0.04e+00 

0.07e+00 

9960 

8380 

F9 GPSO 

MUGPSO  

-3.30e+02 -2.56e+02 

-2.87e+02 

-1.51e+02 

-1.95e+02 

-2.14e+02 

-2.51e+02 

3.30e+01 

3.03e+01 

9960 

8189 

F10 GPSO 

MUGPSO  

-3.30e+02 -1.37e+02 

-2.11e+02 

-8.18e+01 

-8.40e+01 

-1.07e+02 

-1.37e+02 

1.59e+01 

4.54e+01 

9960 

9692 

 

Each algorithm is independently run for ten times. The comparative results report 

the mean, standard deviation, best, and worst solution achieved from the ten repetitions 

for each benchmark function. In addition, the mean number of real fitness function 

evaluations is also reported. These results are shown in Table 3.2. We report the 
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statistical results obtained by GPSO and MUGPSO when the number of real fitness 

function evaluations is limited to 20,000 in Appendix I. 

Given that the number of real fitness function evaluations is limited to 10,000, 

one can claim (from Table 3.2.) that MUGPSO provides a quality optimal solution to all 

benchmark problems when compared to the results of GPSO. For benchmark problems 

F1, F3, F5, F6, F7, and F9, MUGPSO seems to outperform GPSO in terms of all the 

statistics used, mean, standard deviation, best, and worst solutions. It appears that 

MUGPSO provides a slight higher standard deviation and best solutions for F2, F4, and 

F10 respectively. For F8, MUGPSO only seems to outperform GPSO in terms of the best 

solution and the results do not seem to differ significantly. Note that F8 is known to have 

the global optimum on the boundary in a narrow region. Both GPSO and MUGPSO 

cannot seem to escape from local optimum.  

Table 3.3. t-test results for the results from the ten repetitions of GPSO and MUGPSO 

Benchmark 

Problem 

(GPSO > MUGPSO)  

p-value 

F1 2.7088e-04* 

F2 0.0091* 

F3 0.005* 

F4 0.0468* 

F5 1.1067e-05* 

F6 3.0488e-04* 

F7 0.0019* 

F8 0.9118 

F9 0.0089* 

F10 0.0366* 

 

Additionally, we perform t-tests to identify the difference between GPSO and 

MUGPSO using the results achieved from the ten repetitions. The alternative hypothesis 

is that MUGPSO provides better solutions than GPSO when the number of real fitness 
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function evaluations is limited to 10,000. The significance level is set to    5% and 

variance is assumed to be unequal. Table 3 shows the t-test results and they suggest that, 

except for F8, MUGPSO is likely to provide better solutions than GPSO, while number 

of real fitness function evaluations is limited. 

Figures 3.4. through 3.7. show the convergence profile of GPSO and MUGPSO 

throughout the iterations. The mean fitness values displayed on the y-axis are calculated 

from the results obtained from the ten repetitions. The left hand figures are scaled to 

show all the optimal solution that GPSO and MUGPSO have visited at each iteration for 

each benchmark problem. Whereas in the right hand figures, they are scaled to zoom in 

so that the final solutions achieved by GPSO and MUGPSO can be shown better for 

comparison purposes. We have confirmed from the t-tests that MUGPSO is likely to 

obtain better solutions when the number of real fitness function evaluations is limited. 

We show these convergence profile figures for two of unimodal and multimodal 

problems that MUGPSO seems to excel more significant than in other problems, which 

are F1, F5, F6 and F7. The rest of convergence profile figures are in Appendix J. 

 
Figure 3.4. Convergence profile of GPSO and MUGPSO on F1. The mean solutions visited at 

every iteration (left) and mean solutions visited zoomed in near the end of iterations (right) 
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Figure 3.5. Convergence profile of GPSO and MUGPSO on F5. The mean solutions visited at 

every iteration (left) and mean solutions visited zoomed in near the end of iterations (right) 

 

 
Figure 3.6. Convergence profile of GPSO and MUGPSO on F6. The mean solutions visited at 

every iteration (left) and mean solutions visited zoomed in near the end of iterations (right) 

 

 

 
Figure 3.7. Convergence profile of GPSO and MUGPSO on F7. The mean solutions visited at 

every iteration (left) and mean solutions visited zoomed in near the end of iterations (right) 
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In addition to the above comparisons between GPSO and MUGPSO, we consider 

other meta-modeling techniques tested on the ten benchmark functions in the literature. 

We adopt the results reported in Sun et al. (2014) where a meta-modeling technique 

called two-layer surrogate-assisted particle swarm optimization (TLSAPSO) is proposed 

and compared with the results from other research. Their comparative results include the 

statistics of SVR-DE and SVC-DE (Lu et al., 2011), FESPSO (Sun et al., 2013), and 

TLSAPSO (Sun et al., 2014) Table 3.4. describes the results of each of the algorithms on 

the ten benchmark functions. 

 

Table 3.4. Results of MUGPSO, SVR-DE, SVC-DE, FESPSO, and TLSAPSO on the ten 

benchmark functions 

 Algorithms Global 

optimum 

Best Worst Mean SD 

F1 MUGPSO  -4.50e+02 -4.29e+02 -3.19e+02 -4.03e+02 3.27e+01 

SVR-DE  0.46e+00 0.86e+00 0.63e+00 0.09e+00 

SVC-DE  0.06e+00 0.22e+00 0.11e+00 0.04e+00 

FESPSO  4.78e+02 5.12e+03 2.40e+03 1.79e+03 

TLSAPSO  -4.50e+02 -4.49e+02 -4.50e+02 3.90e-03 

F2 MUGPSO -4.50e+02 2.21e+03 1.59e+04 8.70e+03 4.35e+03 

SVR-DE  6.72e+03 2.45e+04 1.64e+04 4.87e+03 

SVC-DE  1.72e+03 7.12e+03 3.54e+03 1.33e+03 

FESPSO  9.85e+02 6.01e+03 3.08e+03 1.71e+03 

TLSAPSO  3.57e+03 7.99e+03 5.75e+03 1.44e+03 

F3 MUGPSO  -4.50e+02 2.16e+07 5.87e+07 3.39e+07 1.28e+07 

SVR-DE  5.82e+07 1.68e+08 1.10e+08 2.75e+07 

SVC-DE  7.38e+06 3.42e+07 1.80e+07 5.75e+06 

FESPSO  8.33e+06 2.25e+08 5.59e+07 6.74e+07 

TLSAPSO  5.64e+06 3.01e+07 1.57e+07 7.72e+06 

F4 MUGPSO  -4.50e+02 9.66e+03 3.20e+04 2.17e+04 8.39e+03 

SVR-DE  1.20e+04 3.83e+04 2.70e+04 7.06e+03 

SVC-DE  3.67e+03 1.27e+04 7.71e+03 2.77e+03 

FESPSO  9.05e+03 2.91e+04 1.85e+04 7.24e+03 

TLSAPSO  1.04e+04 2.55e+04 1.75e+04 3.84e+03 

F5 MUGPSO  -3.10e+02 5.01e+03 6.75e+03 5.60e+03 5.17e+02 

SVR-DE  7.30e+02 3.28e+03 2.24e+03 5.69e+02 

SVC-DE  1.49e+03 3.27e+03 2.39e+03 5.71e+02 

FESPSO  7.95e+03 1.67e+04 1.20e+04 2.84e+03 

TLSAPSO  5.25e+03 1.54e+04 1.01e+04 2.93e+03 

F6 MUGPSO  3.90e+02 1.45e+04 1.05e+05 0.06e+06 3.49e+04 
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SVR-DE  5.11e+06 7.16e+07 2.32e+07 1.43e+07 

SVC-DE  1.08e+03 1.04e+04 2.54e+03 3.11e+03 

FESPSO  3.72e+06 1.47e+09 5.32e+08 4.74e+08 

TLSAPSO  5.82e+02 6.42e+03 1.57e+03 1.76e+03 

F7 MUGPSO  -1.80e+02 -1.76e+02 -1.67e+02 -1.71e+02 3.21e+00 

SVR-DE  1.02e+00 1.12e+00 1.06e+00 2.35e-02 

SVC-DE  1.17e-01 4.40e-03 4.03e-02 3.15e-02 

FESPSO  -1.79e+02 -1.74e+02 -1.77e+02 1.59e+00 

TLSAPSO  -1.79e+02 -1.75e+02 -1.78e+02 1.03e+00 

F8 MUGPSO  -1.40e+02 -1.19e+02 -1.18e+02 -1.18e+02 0.07e+00 

SVR-DE  2.09e+01 2.12e+01 2.11e+01 6.39e-02 

SVC-DE  2.09e+01 2.12e+01 2.08e+01 6.61e-02 

FESPSO  -1.19e+02 -1.19e+02 -1.19e+02 1.43e-01 

TLSAPSO  -1.19e+02 1.19e+02 -1.19e+02 4.93e-02 

F9 MUGPSO  -3.30e+02 -2.87e+02 -1.95e+02 -2.51e+02 3.03e+01 

SVR-DE  1.79e+02 2.17e+02 2.01e+02 1.14e+01 

SVC-DE  1.84e+02 2.27e+02 2.09e+02 1.31e+01 

FESPSO  -2.82e+02 -1.95e+02 -2.37e+02 2.93e+01 

TLSAPSO  -2.73e+02 -2.00e+02 -2.29e+02 2.39e+01 

F10 MUGPSO  -3.30e+02 -2.11e+02 -8.40e+01 -1.37e+02 4.54e+01 

SVR-DE  1.80e+02 2.34e+02 2.15e+02 1.29e+01 

SVC-DE  1.93e+02 2.38e+02 2.15e+02 1.37e+01 

FESPSO  -2.11e+02 -6.05e+01 -1.57e+02 5.06e+01 

TLSAPSO  -2.60e+02 -1.14e+02 -1.91e+02 4.96e+01 

 

Overall, MUGPSO outperforms others on F9 in terms of the mean and best 

solutions from the ten repetitions. As for other benchmark functions, TLSAPSO, SVR-

DE, and SVC-DE seem to provide better solutions. Comparing the results further, 

MUGPSO does not provide the worst solutions for any of the ten benchmark functions 

and yet the results obtained by MUGPSO are comparable to the best ones for every 

benchmark function. One should note that the current version of MUGPSO is designed to 

be as simple as possible, in order to identify the applicability of GRNN as a meta-

modeling algorithm. The computational cost of MUGPSO in constructing meta-models 

throughout the iterations is likely to be less than the other meta-modeling algorithms. In 

addition, RBF network, SVM, and SVR are employed respectively in TLSAPSO, SVR-
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DE, and SCV-DE. These algorithms require more parameters and iterations to construct a 

meta-model. The effort of optimizing parameters with GRNN is expected to be smaller 

than others, since its only one parameter is known insensitive. In the current version of 

MUGPSO, pre-defined smoothing factor is used for all the meta-models constructed 

throughout the iterations and the results are satisfactory. 

In order to compare the computational complexity in constructing the meta-

models, we analyze the complexity of MUGPSO and compared it to that of TLSAPSO 

(Sun et al., 2014), which provided superior results on eight benchmark problems 

considered. MUGPSO evaluates all the particles at the first iteration with the real fitness 

function, which takes  (   ). The initial particles and their real fitness function values 

are then stored for constructing meta-models. TLSAPSO performs the same task at the 

first iteration. 

Starting from the second iteration, a meta-model is constructed using the closest 

data samples in the storage to the particles in the current swarm. The distance calculation 

for one particle requires  ( ). It requires  (    ) to find the closest one in the storage, 

where     is the number of data samples in the storage. Therefore, we have  (      ) 

as the total complexity in calculating distances and finding the closest data samples in the 

storage for all the particles in a swarm. Once the closest data samples are obtained, 

GRNN can construct a meta-model and approximate the fitness function value for each 

particle. For GRNN to construct a meta-model, summations and multiplications in 

Equation (3.11) are required, which results in a linear time of  (  ) . Finally, the 

computational complexity of MUGPSO in constructing meta-models is  (         ). 
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Each particle is approximated using the meta-model, particles whose approximation is 

better than its local best are re-evaluated with the real fitness function. These particles are 

selectively stored and its corresponding space complexity is  (  ),       , where 

  is the number of informative particles (i.e., the meta-model provides better fitness 

function values than the previous local best.). However, in the worst case, MUGPSO re-

evaluates all the particles with the real fitness function, which makes the complexity 

 (   ) in storing. Finally, the overall time complexity of MUGPSO in constructing 

meta-models is  (             ) which is equivalent to  (  (        )). 

Similarly, TLSAPSO starts constructing meta-models from the second iteration. 

TLSAPSO maintains two types of meta-models called the global and local throughout the 

run. The global model represents an entire swarm whereas the local models are 

constructed for each particle. The global model uses the closest data samples from the 

global database to construct a meta-model using RBF networks. Similar to MUGPSO, 

this process requires the distance calculation to find the closest one in the storage which 

results in a complexity of  (       ), where      is the number of data samples in the 

global database. The average computational complexity of constructing RBF networks is 

 (                 ) (Oyang et al., 2005). The local model is constructed for each 

particle when the number of data samples in each local database exceeds a threshold. 

This requires  (  
      

    
       

  )  for each particle where   
 

 is an arbitrary 

number of data samples that the local model use to construct the meta-model. The 

number of data samples is different for each local model for each particle. In the worst 

case, TLSAPSO constructs local meta-model for every particle in the swarm, which 
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makes a total of  (  (  
      

    
       

 ))  for constructing local meta-models. 

Similar to MUGPSO, TLSAPSO re-evaluates particles with the real fitness function if the 

approximation is better than the previous local best. In the worst case, the whole swarm is 

re-evaluated with the real fitness function. This requires the same complexity of  (   ). 

The overall time complexity of TSLAPSO in constructing meta-models is then 

 .                           (  
      

    
       

 )/  

3.6. Summary 

A meta-modeling approach named MUGPSO is proposed. The main objective is 

to identify the capability of GRNN as a meta-modeling algorithm. For that purpose, the 

current version of MUGPSO employs the most basic meta-modeling construction and 

update scheme, where only one meta-model is maintained at each iteration. Regarding 

advantages of GRNN, the model construction does not require iterations. This can result 

in less computational costs in constructing meta-models if the size of storage is properly 

managed. Its only one parameter, called smoothing factor, is known insensitive, which 

requires less effort in optimizing the parameter.  

The results obtained by MUGPSO and GPSO are compared. Given the limitation 

on the number of real fitness function evaluations, MUGPSO provide better results than 

GPSO for every benchmark function considered except for a benchmark problem F8, 

where both seem to struggle to escape from local minimum. Also, compared with several 

other meta-modeling approaches proposed in the literature (i.e., SVR-DE, SVC-DE, 

FESPSO, and TLSAPSO), we have identified that MUGPSO can support PSO in finding 

comparable optimal solutions. For F9 where the function characteristic is multimodal 
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with many local optimum, MUGPSO achieved the best results in terms of the mean and 

best solutions. Additionally, we compare the computational cost in constructing meta-

models for MUGPSO and TLSAPSO and show how much computational cost can be 

reduced.  

 

CHAPTER 4 META
2
 PREDICTION MODELING FRAMEWORK  

4.1. Overview of Meta
2
 

 

Figure 4.1. Illustration of the Meta
2
 framework 

 
 

Meta
2
 consists of a modeling layer and optimization layer as shown in Figure 4.1. 

In the modeling layer, a prediction model is constructed using bagging with SVR as the 

base learning algorithm. The optimization layer aims to select the hyper-parameters for 

the bagging model in the modeling layer. The optimization problem is to select a set of 

hyper-parameters for SVRs that maximizes the prediction accuracy (i.e., minimizing the 

prediction error) given a number of SVRs in a bagging model. A bagging model uses the 

same hyper-parameters for its SVRs. PSO solves the optimization problem with meta-

modeling. The fitness function is the prediction accuracy of a bagging model whereas 

each candidate solution represents a set of hyper-parameters. Meta-models are 

constructed by GRNN and approximate the fitness function of PSO (i.e., MUGPSO) in 



59 

 

 
 

order to reduce the number of bagging model constructions for candidate solutions. 

Figure 4.2. describes the overall procedure of Meta
2
. 

 
Figure 4.2. Overall procedure of Meta

2
  

 
 

4.2. Problem formulation for Meta
2
 

We mentioned in Section 2.2.2. that the main focus of Meta
2
 is on the optimal 

hyper-parameter selection of SVRs in a bagging model. As for bagging, the size of each 

bootstrapped dataset is the same as the original dataset. The mean aggregating function is 

used in this research. The number of learning algorithms is a very important parameter to 

bagging in determining the prediction accuracy. However, as the number of learning 
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algorithms increases, the computational cost also dramatically increases. In Meta
2
, the 

number of learning algorithms is a user input. SVR is chosen a default as the learning 

machine. Given the number of SVRs, Meta
2
 applies the same hyper-parameters to all the 

SVRs in a bagging. The hyper-parameters selected by Meta
2
 are the one that maximizes 

the prediction accuracy. We consider the RBF kernel function for bagging SVR since it 

has been successful in various applications for a single SVM and SVR (Chen, 2007; Lin 

et al., 2008; Lins et al., 2012). 

Therefore, the hyper-parameters selection for bagging SVR is now formulated 

into a three dimensional optimization problem. The penalty coefficient  ,   precision, 

and   for the RBF kernel function correspond to each of the three continuous-valued 

decision variables. In the context of MUGPSO, a swarm   consists of    number of three 

dimensional particles   , each of which corresponds to a candidate solution of ( ,  ,  ). 

We assign the decision space on each of these three variables as shown in Table 4.1. 

 

Table 4.1. Decision boundary for hyper-parameters 

 Decision boundary Grid search 

  ,       - ,                - 

  ,      - ,               - 

  ,       - ,                   - 
 

The optimal hyper-parameters will be found within these decision spaces. In 

addition, to compare the performance of Meta
2
, we will also report the results of grid 

search. The grid search is designed as appeared in Table 4.1. Within each decision space 

for each hyper-parameter, the entire space is divided into ten points. This leaves 1,000 

different combinations of hyper-parameters to construct bagging SVR models with. Note 
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that it may happen when the optimal hyper-parameters locate between two of these ten 

points, in which case the grid search will not be able to find the optimal solution. This 

decision space is set up based on previous research works (Fan et al., 2005; Moser & 

Serpico, 2009; Kavaklioglu, 2011).  

The fitness function (i.e., objective function) is measured by the mean square 

error from a K-fold cross validation to avoid over-fitting. The entire dataset is randomly 

split into K folds. One fold is held out for testing, while the rest is used as a training 

dataset to construct a bagging SVR model. Prediction values for the testing dataset are 

calculated using the constructed bagging SVR model. Then, the mean square error for the 

kth fold is measured and the fitness for a particle is as follows: 

     
 

  
∑. ̂   (  )   (  )/

 
  

   

   

       (  )       
∑    

 
 

 

(4.1) 

 

(4.2) 

 

where    is the number of testing data samples in the kth fold. This process continues for 

the rest of the folds. Finally, the mean square errors for every kth fold test datasets are 

averaged and represented as the fitness function value. Note that this fitness function can 

be replaced by other loss functions, depending on the requirement of the given problem. 

For instance, 0-1 loss function may be a better choice if this framework is applied to a 

classification problem. 

4.3. Experimental results 

We evaluate Meta
2
 on several noisy datasets. Three datasets are artificially 

generated from using the sinc function. Also, the results on a resistance spot welding 
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(RSW) quality dataset are discussed. We use LIBSVM (Chang & Lin, 2011) for the 

implementation of  -SVR. For PSO, a variant PSO, called global PSO (GPSO), is used 

(Shi & Eberhart, 1998a). The inertia weight for velocity vectors is employed with an 

initial value of 0.9 and end value of 0.4. The number of swarm is set to 30, which is 

10 3, the number of decision variables. Since the stochastic nature of PSO, both GPSO 

and our proposed framework are repeatedly for ten times with the same setting. As for the 

number of SVRs in a bagging model, we consider 5, 10, … , 50 to identify the optimal 

number of SVRs.  

4.3.1. Artificial datasets 

Three artificial datasets are generated using a univariate sinc function. Different 

levels of Gaussian noise are added. The three sinc functions are generated as follows: 

   ( )  
    ( )

 
 

 

 (4.3) 

where           . A predefined number of   values are samples on uniformly spaced 

grid   ,      -. Gaussian noise   with zero mean and standard deviation   is then 

added to each of the three functions such that    ( )   . Table 4.2. shows 

characteristics of the three datasets. Figure 4.3 through 4.5 illustrate these three datasets. 

Table 4.2. Noisy artificial dataset characteristics 

Dataset   Noise level   Sample space Number of   values 

1 1 0.2  

  ,      - 

 

37 2 10 2 

3 0.1 0.02 
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Figure 4.3. Visualization of dataset1 

 

 
Figure 4.4. Visualization of dataset2 

 

 
Figure 4.5. Visualization of dataset3 
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We describe the experimental procedure on three datasets. As mentioned in the 

previous section, the kernel function is RBF and hyper-parameters with their decision 

boundaries are shown in Table 4.1. The entire dataset consisting of (     ),          

is randomly split into five-folds for cross validation. The data samples in the first fold are 

left for testing, while the rest of the data samples are used for training a prediction model. 

Once a prediction model is constructed, the test dataset is presented to the model to 

calculate the prediction values. This process is repeated for the other four-folds and the 

mean square error for the predicted values. In case of grid search, every set of candidate 

hyper-parameters is used to construct five-fold cross validated single SVR or bagging 

SVR. As for PSO, each particle represents a candidate set of hyper-parameters and the 

objective function is associated with either the five-cross validated single SVR or 

bagging SVR. The maximum iteration for GPSO and Meta
2
 are set to 100 and 200 

respectively. Therefore, for a single run of GPSO, the number of SVRs required to be 

constructed is the product of the number of particles, number of folds, and maximum 

iteration, which is equivalent to 30 5 100=15,000. 

Table 4.3. Final results obtained for single SVR on the three datasets 

Dataset 

    

Grid search GPSO Meta
2
 

1 0.0428 0.0391 0.0391 

2 2.6854 2.2465 2.2466 

3 4.4047e-04 5.4901e-04 5.7443e-04 
 

We briefly report the results of grid search, GPSO, and Meta
2
 for single SVR in 

order to compare the performance improvement of bagging SVR. Table 4.3. reports the 

best prediction accuracy obtained by each of the approaches. Note that, for GPSO and 
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Meta
2
, the best results from the ten repetitions are reported. Regarding bagging SVR, 

GPSO seems to be able to select hyper-parameters that provide better prediction accuracy 

than grid search for dataset1 and dataset2. Meta
2
’s results indicate their MSEs are 

comparable to that of GPSO for the three datasets. 

Tables 4.4. through 4.6. report the results obtained by grid search, GPSO, and 

Meta
2
 for bagging SVR on dataset1, dataset2, and dataset3, respectively. Overall, the 

MSE obtained by GPSO and Meta
2
 seem to outperform grid search, while Meta

2
 provides 

comparable results to GPSO and better results in some cases (i.e., ten SVRs for dataset2). 

Comparing the results of bagging SVR to single SVR, all best bagging SVR models 

obtained by grid search, GPSO, and Meta
2
 outperform the single SVR for dataset1. When 

grid search is used for 50 SVRs in a bagging model, the MSE is higher than that of single 

SVR. For dataset2, the same (i.e., bagging SVR provides an improvement in prediction 

accuracy) holds except when GPSO is used for 30, 40, 45, and 50 SVRs for bagging. 

Also Meta
2
 for 25 SVRs through 50 doesn’t seem to provide a better result than single 

SVR. As for dataset3, GPSO and Meta
2
 do not perform better than grid search for single 

SVR. Also, for bagging SVR, the results obtained by GPSO and Meta
2
 do not outperform 

in many cases. For instance, Meta
2
 only outperforms grid search when the number of 

SVRs is 10 and 45. Similarly GPSO outperforms grid search only when the number of 

SVRs is 50. For GPSO or Meta
2
 to obtain better solutions than grid search for dataset3, 

one may need to consider using different PSO parameters. For instance, using a larger 

number of maximum iteration can lead them to obtain better solutions. Table 4.7 
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summarizes the best results obtained by grid search, GPSO, and Meta
2
 for both single 

SVR and bagging SVR on the three datasets.  

Table 4.4. Best results obtained for bagging SVR on dataset1 

Number of SVRs 

    

Grid search GPSO Meta
2
 

5 0.0419 0.0364 0.0367 

10 0.0416 0.0368 0.0361 

15 0.0408 0.0369 0.0365 

20 0.0405 0.0322 0.0367 

25 0.0423 0.0369 0.0359 

30 0.0399 0.0357 0.0366 

35 0.0424 0.0369 0.0366 

40 0.0412 0.0377 0.0382 

45 0.0423 0.0377 0.0367 

50 0.0442 0.0339 0.0371 

 

Table 4.5. Best results obtained for bagging SVR on dataset2 

Number of SVRs 

    

Grid search GPSO Meta2 

5 2.5463 2.1255 2.2465 

10 2.5131 2.1348 1.9885 

15 2.7190 2.2278 2.0934 

20 2.6148 2.2126 2.1262 

25 2.6814 2.3361 2.2653 

30 2.6597 2.2813 2.3530 

35 2.7923 2.2395 2.3256 

40 2.7122 2.3836 2.3115 

45 2.7646 2.3033 2.3139 

50 2.7893 2.3590 2.2465 

 

Table 4.6. Best results obtained for bagging SVR on dataset3 

Number of SVRs 

    

Grid search GPSO Meta
2
 

5 4.3496e-04 4.9450e-04 4.8398e-04 

10 4.4613e-04 4.7434e-04 4.3422e-04 

15 4.4736e-04 4.7887e-04 4.9765e-04 

20 4.3308e-04 4.4941e-04 4.8732e-04 

25 4.4186e-04 4.5668e-04 4.6098e-04 
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30 4.4316e-04 4.7753e-04 4.9705e-04 

35 4.3741e-04 4.5778e-04 4.3924e-04 

40 4.2295e-04 4.7684e-04 4.4853e-04 

45 4.3906e-04 4.4308e-04 4.3372e-04 

50 4.4372e-04 4.3526e-04 4.6839e-04 
 

Table 4.7. Best results obtained by grid search, GPSO, and Meta
2
 for the three datasets 

 Dataset1 Dataset2 Dataset3 

Number 

of SVRs 
    

Number 

of SVRs 
    

Number 

of SVRs 
    

Grid 

search 

Single SVR 1 0.0428 1 2.6854 1 4.4047e-04 

Bagging 

SVR 

30 0.0399 10 

2.5131 

40 4.2295e-04 

GPSO 

Single SVR 1 0.0391 1 2.2465 1 5.4901e-04 

Bagging 

SVR 

20 

0.0322 

5 

2.1255 

50 4.3526e-04 

Meta
2
 

Single SVR 1 0.0391 1 2.2466 1 5.7443e-04 

Bagging 

SVR 

25 

0.0359 

10 

1.9885 

45 4.3372e-04 

 

Remark that Meta
2
 aims to construct a bagging SVR model by finding an optimal 

set of hyper-parameters using PSO with meta-modeling. The meta-modeling approach 

approximates the objective function of the optimization problem to reduce the 

computational cost in constructing bagging SVR models for candidate solutions. Due to 

this reason, we aim to obtain a comparable result to GPSO with a reduced computational 

cost. Figures 4.6 through 4.8 show the mean number of bagging SVR model constructed 

and the mean elapsed time from the ten repetitions for both GPSO and Meta
2
. As 

mentioned earlier, 3,000 fitness function evaluations are performed for GPSO, which is 

indicated as a red line in the figures on the left. These 3,000 fitness function evaluations 

require to construct (3,000   K-folds   number of SVRs for bagging) SVR models. For 

example, the number of SVRs constructed for five SVRs in GPSO is equal to 75,000. On 
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the other hand, Meta
2
 performed about 2,200 through 2,400, 2,400 through 2,800, and 

2,000 through 2,300 fitness function evaluations for dataset1, dataset2, and dataset3, 

respectively. For example, the mean number of SVRs constructed for five SVRs in Meta
2
 

for dataset1 is about 55,000, which requires 20,000 less SVRs in the PSO run.  

On the right side of  Figures 4.6  through 4.8, the mean elapsed time in minute is 

shown. Solid bars and lines represent the results of GPSO and empty bars represent 

Meta
2
. Roughly speaking, the mean time increases for both GPSO and Meta

2
 with all 

three datasets as the number of SVRs increases.  

 
Figure 4.6. Mean number of fitness function evaluations for GPSO and Meta

2
 (left) and 

mean elapsed time in minute (right) for dataset1 

 
 

 
Figure 4.7. Mean number of fitness function evaluations for GPSO and Meta

2
 (left) and 

mean elapsed time in minute (right) for dataset2 
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Figure 4.8. Mean number of fitness function evaluations for GPSO and Meta

2
 (left) and 

mean elapsed time in minute (right) for dataset3 
 
 

In order to confirm that Meta
2
 provides comparable results with a reduction in the 

computation time to GPSO, which does not use meta-modeling, we conduct t-tests 

between the results obtained by the ten repetitions for GPSO and Meta
2
. The t-tests are 

performed on the prediction accuracy and computation time. Note, for each number of 

SVRs, GPSO and Meta
2
 construct bagging SVR models ten times and their prediction 

performance and computation times are used for the t-tests. The significance level for the 

t-tests is set to 5%. 

The alternative hypothesis for prediction accuracy, MSE, as   
   

, which is 

“given a number of SVRs for bagging the prediction accuracy obtained by GPSO and 

Meta
2
 are different”. As for the computation time, the alternative hypothesis   

    
 is “the 

time taken to complete Meta
2
 is less than GPSO.”  Both types of t-tests assume that the 

results from GPSO and Meta
2
 have unequal variances. The significance level used for the 

tests is 5%. Table 4.8. shows the p-values for these t-tests. Therefore, in an ideal case for 

Meta
2
, the t-tests should support to not reject the null hypothesis for prediction accuracy 

and to reject the null hypothesis for the computation time. That way, we will be able to 
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conclude Meta
2
 can provide comparable solutions compared to GPSO while reducing the 

computation time. 

 

Table 4.8. p-values for t-tests between GPSO and Meta
2
 in their solution quality and 

computation time 

Number 

of SVRs 

Dataset1 Dataset2 Dataset3 

  
      

       
      

       
      

     

5 0.9449 0.0101 0.9892 0.0000 0.2686 0.0000 

10 0.6588 0.2620 0.2521 0.0000 0.9965 0.0000 

15 0.6762 0.2633 0.1922 0.0000 0.2210 0.0000 

20 0.3863 0.1027 0.3902 0.0000 0.0588 0.0000 

25 0.2026 0.3843 0.5652 0.0031 0.7800 0.0022 

30 0.9149 0.0236 0.4232 0.0029 0.3805 0.0000 

35 0.8632 0.0275 0.5668 0.0000 0.1381 0.0000 

40 0.3105 0.0024 0.9948 0.0289 0.9607 0.0040 

45 0.2543 0.0338 0.6392 0.0012 0.7596 0.0067 

50 0.9762 0.0193 0.1187 0.0049 0.9970 0.0248 

  *bold letters indicate that the p-values are small enough to reject the null hypothesis 

In conclusion, we notice all the p-values for the t-tests on MSE do not reject the 

null hypothesis. Therefore, it is likely that the quality of solution obtained by Meta
2
 is 

comparable to GPSO for all the cases (i.e., different numbers of SVRs for the three 

datasets). On the other hand, the p-values for elapsed time reject the null hypothesis. In 

particular, Meta
2
 is likely to provide less computation time for dataset1 when the number 

of SVRs is 5, 30, 35, 40, 45, and 50. As for dataset2 and dataset3, Meta
2
 will likely 

provide less computation time for all cases. Note that the number of bagging SVR model 

constructed in Meta
2
 is less than GPSO as mentioned earlier. We claim that Meta

2
 is 

capable of providing comparable solutions with a reduced computational cost. 
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4.3.2. RSW quality dataset 

The RSW quality dataset consists of 1,280 data samples, each of which represents 

different welding parameters. Overall, there are two sets of weldment design-related 

features corresponding to two different materials and one set of welding process related 

features that describe the welding process performed on these two materials. The dataset 

consists of 16 input features. The welding quality is described by nugget width in this 

experiment. Particularly in this data set, three types of different materials are considered. 

The data are obtained by physical testing conducted by welding experts. Table 4.9. shows 

the welding design and process variables. 

Table 4.9. Features for the welding quality dataset 

Design features 

Material 

Thickness 

Coating EG 

Coating HDG 

Coating weight 

Surface class 

Process features 

Weld force 

Min button DIA of stack-up 

Weld current 

Weld time 

Response output 

Nugget width 
 

We construct bagging SVR models to predict the welding quality (i.e., nugget 

width) using the dataset. There is a large amount of noise interrupting the task of 

constructing a reliable prediction model. We briefly describe how the noise exists in the 

dataset. In this problem, we define noise as a data sample that represents the same 

welding parameters with different nugget width in millimeter.  

Figure 4.9. shows how noise is distributed in the dataset. The way that the plot is 

drawn is as follows. Firstly, we group the data samples based on the 16 welding 
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parameter features, so that in a group all the welding parameters are the same. This 

results in 262 different groups of welding parameters, which corresponds to the x-axis in 

Figure 4.9. The groups are sorted in an increasing order of their nugget width. The 

number of data samples in each group ranges from two to as many as 232. Secondly, the 

mean and standard deviation of nugget width are calculated for each group. 

 
Figure 4.9. Illustration of noise in the RSW quality dataset 

 

Then, the groups are ordered in ascending order of the mean nugget width. Blue, 

red, and green lines represent the variability within a group, mean nugget width, and 

approximate confidence interval. The confidence interval is calculated by assuming the 

nugget width within each group is normally distributed with a 95% significance level. 

Roughly speaking, the welding parameter groups from zero to 76 have no variability; in 

other words, there is no noise. These welding parameters may simply lead to a bad weld 

judging from the data. Groups from 77 to 103 are where the most significant noise exists 

in this dataset. The rest of groups from 104 to the end do not seem to have significant 
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noise. Most of the variations seem to be the random variations caused by the welding 

process.  

The experiment procedure remains the same as for the three artificial datasets in 

the previous section. However, for this dataset, three-fold cross validation is used. The 

maximum iteration is set to 30 and 100 for GPSO and Meta
2
 respectively. Table 4.10. 

reports the prediction accuracy obtained by grid search, GPSO, and Meta
2
 for single SVR 

respectively. Note that, for GPSO and Meta
2
, the best results from the ten repetitions are 

reported. The results show a slight improvement with both GPSO and Meta
2
 compared to 

grid search.  

Table 4.10. Final results obtained for single SVR on the welding quality dataset 
 Grid search GPSO Meta

2
 

    1.7704 1.7629 1.7637 
 

Table 4.11. Best results obtained for bagging SVR on the welding quality dataset 

Number of SVRs 

    

Grid search GPSO Meta
2
 

5 1.7364 1.7185 1.7218 

10 1.7269 1.7009 1.7111 

15 1.7317 1.7217 1.7169 

20 1.7431 1.7116 1.7185 

25 1.7291 1.7201 1.7091 

30 1.7264 1.7190 1.7209 

35 1.7290 1.7307 1.7174 

40 1.7302 1.7259 1.7259 

45 1.7285 1.7280 1.7209 

50 1.7328 1.7191 1.7199 
 

Similarly, Table 4.11. reports that the results for bagging SVR. GPSO and Meta
2
 

seem to outperform grid search similar to single SVR. As confirmed earlier for the three 

datasets, Meta
2
 seems to provide comparable results to GPSO with all different numbers 
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of SVRs. Better results are obtained for some cases (i.e., 15, 25, 35, and 45 SVRs). We 

also notice that bagging SVR improves the prediction accuracy of a single SVR for this 

dataset.  

 

Table 4.12. summarizes the best results obtained by grid search, GPSO, and Meta
2
 

for both single SVR and bagging SVR on the RSW quality dataset. As mentioned in the 

previous section for the three artificial datasets, due to the approximation procedure in 

meta-modeling, we expect comparable solutions to GPSO with a reduced computational 

cost by using Meta
2
. Figure 4.10. shows the mean number of bagging SVR models 

constructed and the mean elapsed time from the ten repetitions for both GPSO and Meta
2
. 

For this dataset, the number of fitness function evaluations is limited to 900 for GPSO, 

which is indicated as a red line in the figure on the left. The 900 fitness function 

evaluations require to construct (900   K-folds   number of SVRs) SVR models. For 

instance, when the number of SVRs in bagging is five, GPSO constructs 13,500 whereas 

Meta
2
 constructs about 12,000 SVRs. Also, the figures on the right show the mean 

elapsed time in minute. Solid bars and lines represent the results of GPSO and empty bars 

represent Meta
2
. 

 

Table 4.12. Best results obtained by grid search, GPSO, and Meta
2
 for the welding 

quality dataset 
 Number of SVRs     

Grid search Single SVR 1 1.7704 

Bagging SVR 30 1.7264 

GPSO Single SVR 1 1.7629 

Bagging SVR 10 1.7009 

Meta
2
 Single SVR 1 1.7637 

Bagging SVR 25 1.7091 
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Figure 4.10. Mean number of fitness function evaluations for GPSO and Meta
2
 (left) and 

mean elapsed time in minute (right) for the welding quality dataset 
 

To confirm that Meta
2
 provides comparable results to GPSO, t-tests are conducted 

using the final solutions obtained by GPSO and Meta
2
 from the ten repetitions. Again, the 

alternative hypothesis for prediction accuracy,    
   , is given a number of SVRs for 

bagging the prediction accuracy obtained by GPSO and Meta
2
 are different. The 

alternative hypothesis for the computation time,   
    

, is that the time taken for Meta
2
 is 

less than GPSO. Note, for each number of SVRs, GPSO and Meta
2
 construct bagging 

SVR models ten times and their prediction performance and computation times are used 

for the t-tests. We assume that the solutions obtained by GPSO and Meta
2
 have unequal 

variances. The significance level is 5%. The results of these t-tests are shown in Table 

4.13. As mentioned earlier for the three artificial datasets, it is ideal if the t-tests can 

support to not reject the null hypothesis for prediction accuracy and to reject the null 

hypothesis for the computation time.  

We conclude that all the p-values for the t-tests on MSE do not reject the null 

hypothesis. Therefore, it is likely that Meta
2
 can obtain comparable solutions to GPSO all 
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the cases (i.e., different numbers of SVRs). As for the computation time, the null 

hypothesis is rejected based on the t-test results for most of the cases, except that there 

seems to be no significant computation time reduction when the number of SVRs is equal 

to 5, 40, and 50. The t-test results indicate that Meta
2
 is likely to provide a reduction on 

the computation time. Therefore, these results show that Meta
2
 is capable of providing 

comparable solutions with a reduced computational cost for this welding quality dataset. 

 

Table 4.13. p-values for t-tests between GPSO and Meta
2
 in their solution quality and 

computation time for the welding quality dataset 
Number of SVRs   

      
     

5 0.2501 0.1660 

10 0.6164 0.0000 

15  0.8524 0.0000 

20 0.1780 0.0000 

25 0.9149 0.0121 

30 0.6595 0.0293 

35 0.0613 0.0402 

40 0.5497 0.0559 

45 0.7492 0.0011 

50 0.7201 0.1425 

*bold letters indicate the p-values are small enough to reject the null hypothesis 

4.4. Integration of Meta
2
 with a design optimization and decision making system 

We illustrate how Meta
2
 can be utilized to assist design activities using 

modeFRONTIER which is a design optimization and decision making tool. In general, 

multidisciplinary approaches and multi-objective decisions are involved in the design 

process. These multi-disciplinary approaches include computer-aided design and 

manufacturing (CAD/CAM), statistical analysis such as design of experiment (DOE) 

techniques, and visualization whereas multi-objective decisions can be accomplished by 

optimization and predictive modeling techniques. modeFRONTIER allows designers to 
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integrate these various activities into workflows where each activity can be examined 

investigated with the graphical user interface (GUI). That way, designers and engineers 

investigate the design solutions and the effects of conflicting objectives in order to 

identify the design process.  

 

Figure 4.11. Illustration of the integration process flow 

 

Fig 4.11. describes a process flow of our developed Meta2 framework integrated 

with the modeFRONTIER tool. Designers and engineers can use the tool to understand 

and work on their design space. modeFRONTIER provides the GUI to define various 

design alternatives as input in the entire design workflow. The prediction models 

constructed by Meta2 are obtained by running MATLAB scripts. These MATLAB scripts 

are connected to the modeFRONTIER workflow so that the prediction models can be 

used to analyze the design alternatives designers and/or engineers are interested in 

identifying further. One can summarize the results of the analysis and visualize the results 
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using a number of statistical analysis and visualization techniques included in 

modeFRONTIER.  

 

Figure 4.12. An example modeFRONTIER workflow for material selection using 

prediction models constructed by Meta
2
 

 

Figures 4.12. through 4.15. show screenshots taken from the modeFRONTIER 

tool. Figure 4.12. illustrates a workflow created in modeFRONTIER for the above 

process. The input features listed in Table 4.9. are defined as input variable nodes.  
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The DOE Sequence node can read the dataset from a file such as text or Excel. 

Also, as the name indicates, a number of DOE techniques are available to generate input 

data. Then, the workflow moves forward to the MATLAB script node where the 

MATLAB scripts for our Meta
2
 implementation are linked. Finally, the prediction values 

for input data are defined as an output variable named Predicted_NUGGETWIDTH. In 

addition, to illustrate the data analysis features included in modeFRONTIER, another 

output variable named Diff_Pred_Target is included in the workflow, which calculates 

the difference between the target and predicted values of an input data. 

 
Figure 4.13. Run analysis feature in modeFRONTIER 

 

Once a workflow is properly set up, one can run the workflow in the Run 

Analysis tab as shown in Figure 4.13. Essentially, using this feature, the workflow can 

repeat and also users can selectively run the workflow on certain input data (i.e., design 
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alternatives). After the run, the results can be viewed in the Design Space tab as shown in 

Figure 4.14. All the input and output data are listed in tables. For example, the Designs 

Table includes the input data and as well as the output. In addition, in the Design Space 

tab, users can apply statistical analysis, visualization, and other features included in 

modeFRONTIER.  

 

Figure 4.14. Decision space explorer in modeFRONTIER 

 

As an illustration, we apply clustering analysis on Diff_Pred_Target as mentioned 

earlier. The reason we take the difference between the target and predicted values is 

because as shown in Figure 4.9. noisy data are likely to have prediction values that are far 

away from the target value. Therefore, by looking at the difference, one can easily 

identify and examine noisy data in the dataset. Figure 4.15. shows the results of 

hierarchical clustering applied to the difference values. We cluster them into three 

clusters. Cluster0 is where the difference between the target and predicted values are the 

largest, which means these are most likely noisy data. Note that the within cluster 
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distance is the smallest for Cluster0 and as well as the number of data. This can be an 

indication that the variety of noisy data is closely distributed each other. 

 

Figure 4.15. Clustering analysis in modeFRONTIER 

 

4.5. Summary  

In this chapter, we consider constructing bagging prediction models for noisy 

manufacturing data with SVR as the base learning algorithm. The problem is examined 

using our proposed prediction framework called Meta
2
. The hyper-parameter 

optimization is solved using PSO with meta-modeling in Meta
2
 in order to obtain quality 

solutions with a reduction in the overall computational cost. The proposed approach is 
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performed on three different datasets artificially generated with noise and as well as on a 

noisy RSW quality dataset. The results obtained by Meta
2
 reveal that the solution quality 

is comparable to GPSO in all the cases. In most of the cases, Meta
2
 is likely to provide a 

significant computation time reduction. Also, the experimental results show that SVR is 

an appropriate choice as the base learning algorithm for bagging as it provides an 

improvement on the prediction accuracy. In addition, modeFRONTIER is used to 

integrate the prediction models constructed by Meta
2
. An illustration of how these 

prediction models can be integrated to support design decision makings using the features 

included in modeFRONTIER such as statistical analysis. 

 
CHAPTER 5 CONCLUSION AND FUTURE RESEARCH DIRECTION 

In this research, we consider the noisy data problems often found in 

manufacturing process data. Instead of removing noisy data, we aim to identify an 

approach to construct more precise prediction models without removing them. A novel 

prediction modeling framework, called Meta
2
, is proposed and examined a number of 

noisy datasets. The main contribution of using this framework is that one can construct 

prediction models for noisy data with improved prediction accuracy and less 

computational cost.  

The Meta
2
 prediction modeling framework can be used for noisy data where the 

noise cannot be removed before constructing prediction models. The prediction models 

are constructed using bagging SVR. We have identified related research to bagging 

models and SVRs. In regards to bagging, related issues discussed include selecting the 

base learning algorithm for bagging and number of learning algorithm. As for SVRs, 



83 

 

 
 

issues related to hyper-parameters selection are discussed, which includes the effect of 

hyper-parameters and kernel functions.  

The hyper-parameters for the SVRs in bagging models are selected using PSO 

and MUGPSO. The experiments conducted on datasets in this research reveal that using 

SVR to construct bagging models can improve the prediction accuracy on noisy data. 

Also, MUGPSO provides comparable quality solutions with reduced computational cost. 

As an illustration, we describe a scenario of how prediction models constructed by Meta2 

can be integrated with design activities using modeFRONTIER.  

The future research work is manifold. Regarding bagging, other ensembles such 

as boosting, over-bagging, and under-bagging can be examined for other types of data 

challenges. For example, imbalance classification problems are often seen. We assume 

the prediction performance can be improved using one of the ensemble methods. Meta
2
 

can be further expanded for such an approach. In this research, we also only consider 

SVR and RBF kernels. For classification with different kinds of data, SVM and other 

kernels may be necessary to include in the optimization layer. This will leave a more 

difficult optimization problem since the nature of decision variables include both integer 

and real values. Based on related research in the literature, we assumed that using a set of 

hyper-parameters for all the SVRs in bagging is appropriate. However, the choice is not 

limited to such an approach. Different or dynamic sets of hyper-parameters can be 

applied. Identifying different approaches to this extent and their results is a direction to 

continue this research. 
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In regards to MUGPSO, we will work on improving the quality of final solutions. 

This can be done by many different approaches. One of them is to add local meta-models. 

The effect of smoothing factor for GRNN can be also examined further. The current 

version of MUGPSO simply stores data samples by cutting off using a threshold. More 

sophisticated approaches in determining what data samples should be stored is also 

another area that can be studied in future research. Finally, the meta-modeling methods 

are compared to ten benchmark functions with only a 30-dimension. We leave a study on 

the performance on different dimensionalities as a future work. With respect to Meta
2
, it 

will be a valuable research direction to identify how many real fitness function 

evaluations (i.e., bagging model construction) can be replaced by meta-models in relation 

to maintaining comparable quality solutions. 

In this research, we consider the prediction performance in terms of the mean 

square error. We report that using bagging SVR on noisy data improves the prediction 

performance of a prediction model. However, in general, small changes in such noisy 

datasets have high effect on the prediction performance while affecting the data 

characteristic in the dataset. Therefore, considering the sensitivity or robustness of a 

prediction model to such changes in noisy datasets will be a valuable research area. 

Finally, an important area of future research is how to utilize the prediction 

models constructed by Meta
2
. As an illustration, we show modeFRONTIER integrates 

the MATAB scripts for Meta
2
. This should be further researched to elaborate so that 

design processes and activities can be aided. In addition, identifying the causes of such 

noisy data and approaches will be an interesting research topic. 
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APPENDIX A. LIST OF GENERAL NOTATIONS 

 : The number of data samples in a dataset. 

  : The number of data samples in the kth fold dataset. 

 : The dimensionality of input vector  . 

 : A set of input data samples. For example,   (          ) where each vector    

represents the ith data sample and      . 

  : The ith data sample 

   : The  th element in the sample    

  : ith class label or response value respectively for a classification and regression 

problem. 

 : A dataset which contains *(     ) (     )   (     )+. 

 ( ): The original function between   and  . 

 ̂( ): A prediction function to approximate  ( ). 

 

APPENDIX B. LIST OF SUPPORT VECTOR MACHINE AND SUPPORT 

VECTOR REGRESSION RELATED NOTATIONS 

 : The coefficient vector that determines a hyperplane. 

 : The threshold that determines a hyperplane. 

 : The margin between two classes. 

 : The slack variable for non-separable problems. 

 : The penalty coefficient. 

 :   precision for  -SVR.  
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 ( ): A kernel function 

 

APPENDIX C. LIST OF BOOTSTRAP AGGREGATING RELATED 

NOTATIONS 

  : The number of data samples in a bootstrapped dataset. 

  : The lth bootstrapped dataset. 

 : The number of bootstrapped datasets. 

 ̂ ( ): The prediction function constructed from the dataset   . 

 ̂   ( ): A prediction function constructed by bagging. 

 ( ): An aggregating function 

 

APPENDIX D. LIST OF KRIGING RELATED NOTATIONS 

 ( ): A global model of the original function 

 ( ): A local deviation from the global model  ( ) 

 : The underlying coefficients of the polynomial 

 ̂: The estimated parameter for   

  : The process variance  

 (     ): The correlation between any two data samples    and    

  ( )  , (    )    (    )-   

  : The Gaussian correlation function parameter 

 

APPENDIX E. LIST OF POLYNOMIAL REGRESSION RELATED NOTATIONS 



87 

 

 
 

 : The coefficient terms 

     : The number of coefficient terms 

 

APPENDIX F. LIST OF RADIAL BASIS FUNCTION NETWORK RELATED 

NOTATIONS 

  : The radial basis function for the ith hidden neuron  

  : The bias term 

  : The weight coefficient associated with    

  : The jth center 

 

APPENDIX G. LIST OF GENERALIZED REGRESSION NEURAL NETWORK 

RELATED NOTATIONS 

 : The smoothing factor 

  
 (    ): The distance between   and    

 

APPENDIX H. LIST OF PARTICLE SWARM OPTIMIZATION RELATED 

NOTATIONS 

  : The number of particles in a swarm 

 : The dimension of problem 

  : The lth particle 

  
 : The local best solution for the lth particle at iteration t 

  : The global best solution at iteration t 
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 : The velocity vector for the lth particle at iteration t 

 : Inertia weight  

   and   : Acceleration coefficients for the local and global best solutions respectively 

   and   : Uniform random numbers from [0,1] for the local and global best solutions 

respectively 

      : The starting value of the inertia weight 

    : The end values of the inertia weight 

 

APPENDIX I. STATISTICAL RESULTS OF SOLUTIONS OBTAINED BY GPSO 

AND MUGPSO WITH A LIMIT OF 20,000 REAL FITNESS FUNCTION 

EVALUATIONS 

 Algorithms Global  

optimum 

Best Worst Mean SD Number of 

Evaluations 

F1 GPSO 

MUGPSO  

-4.50e+02 -4.47e+02 

-4.49e+02 

-4.29e+02 

-4.28e+02 

-4.42e+02 

-4.49e+02 

5.30e+00 

0.62e+00 

19980 

19397 

F2 GPSO 

MUGPSO 

-4.50e+02 3.78e+03 

2.33e+02 

1.10e+04 

3.19e+03 

7.25e+03 

1.47e+03 

2.12e+03 

9.05e+02 

19980 

19587 

F3 GPSO 

MUGPSO  

-4.50e+02 1.24e+07 

1.05e+07 

5.04e+07 

2.61e+07 

3.26e+07 

1.69e+07 

1.15e+07 

5.18e+06 

19980 

18828 

F4 GPSO 

MUGPSO  

-4.50e+02 6.55e+03 

2.87e+03 

2.11e+04 

1.75e+04 

1.56e+04 

8.97e+03 

4.66e+03 

4.95e+03 

19980 

18727 

F5 GPSO 

MUGPSO  

-3.10e+02 4.59e+03 

3.03e+03 

6.33e+03 

6.38e+03 

5.54e+03 

4.32e+03 

5.78e+02 

9.60e+02 

19980 

18206 

F6 GPSO 

MUGPSO  

3.90e+02 5.08e+03 

5.58e+02 

8.57e+04 

1.48e+04 

3.10e+04 

2.65e+03 

2.48e+04 

4.46e+03 

19980 

19738 

F7 GPSO 

MUGPSO  

-1.80e+02 -1.78e+02 

-1.78e+02 

-1.75e+02 

-1.74e+02 

-1.77e+02 

-1.77e+02 

0.89e+00 

1.25e+00 

19980 

18920 

F8 GPSO 

MUGPSO  

-1.40e+02 -1.18e+02 

-1.19e+02 

-1.18e+02 

-1.18e+02 

-1.18e+02 

-1.18e+02 

0.04e+00 

0.04e+00 

19980 

18585 

F9 GPSO 

MUGPSO  

-3.30e+02 -2.97e+02 

-3.01e+02 

-2.58e+02 

-2.73e+02 

-2.81e+02 

-2.84e+02 

1.21e+01 

9.32e+00 

19980 

19252 

F1

0 

GPSO 

MUGPSO  

-3.30e+02 -1.37e+02 

-2.11e+02 

-8.18e+01 

-8.40e+01 

-1.07e+02 

-1.37e+02 

1.59e+01 

4.54e+01 

9960 

9692 
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APPENDIX J. CONVERGENCE PROFILE OF GPSO AND MUGPSO ON F2, F3, 

F4, F8, F9, and F10 

 
APPENDIX J-a.  Convergence profile of GPSO and MUGPSO on F2. The mean solutions visited 

at every iteration (left) and mean solutions visited zoomed in near the end of iterations (right). 

 

 
APPENDIX J-b. Convergence profile of GPSO and MUGPSO on F3. The mean solutions visited 

at every iteration (left) and mean solutions visited zoomed in near the end of iterations (right). 
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APPENDIX J-c. Convergence profile of GPSO and MUGPSO on F4. The mean solutions visited 

at every iteration (left) and mean solutions visited zoomed in near the end of iterations (right). 

 
APPENDIX J-d. Convergence profile of GPSO and MUGPSO on F8. The mean solutions visited 

at every iteration (left) and mean solutions visited zoomed in near the end of iterations (right). 

 

 
APPENDIX J-e. Convergence profile of GPSO and MUGPSO on F9. The mean solutions visited 

at every iteration (left) and mean solutions visited zoomed in near the end of iterations (right). 
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APPENDIX J-f. Convergence profile of GPSO and MUGPSO on F10. The mean solutions visited 

at every iteration (left) and mean solutions visited zoomed in near the end of iterations (right). 

 
 

APPENDIX K. MATLAB SCRIPTS FOR META
2
 IMPLEMENTATION 

clear; 

load('welddata.mat'); 

 

%Decision boundaries for C, epsilon, gamma (rbf kernel) 

lb = [2^-3 2^-8 2^-15]; 

ub = [2^15 2^1 2^3]; 

 

%Specify swarm size 

D = numel(lb); 

Nswarm = numel(lb) * 10; 

 

%Initialize variables to store results 

rep = 10; 

Allx=cell(1,numel(5:5:50)); 

Allfval=zeros(rep,numel(5:5:50)); 

Allelaptime=zeros(rep,numel(5:5:50)); 

Allfitcount=cell(rep,numel(5:5:50)); 

Allgbestvals=cell(rep,numel(5:5:50)); 

 

%Repeatedly run Meta2 different number of SVR 

j=1; 

for N_SVR=5:5:50, 
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tempAllx=zeros(rep,D); 

 

    for i=1:rep, 

        tic 

        [gbest,gbestval,allgbestval,fitcount] = MUGPSO(D, Nswarm, max_iter, lb, ub, 

input, target, artfdata.CVO, N_SVR); 

        Allelaptime(i,j) = toc; 

        Allgbestvals{i,j} = allgbestval; 

        Allfitcount{i,j} = fitcount; 

        tempAllx(i,:)= gbest; 

        Allfval(i,j)=gbestval; 

        fprintf('completed - dataset: %s, iteration: %d, rep: %d, N_SVR: %d, Time taken: 

%.2fmin.\n',datasetname, max_iter, i, N_SVR, Allelaptime(i,j)/60); 

 

    end 

    Allx{j} = tempAllx; 

    j=j+1; 

end 

     

%Save results to file     

save(strcat(datasetname,'_T',iter,'_MUGPSO_baggingSVR_result.mat'),'Allx','Allfval','Al

lelaptime','Allfitcount','Allgbestvals'); 

 

 

function [gbest,gbestval,gbest_values,allgbestval, fitcount]= MUGPSO(Dimension, 

Particle_Number, MUGPSOparam, VRmin, VRmax, input, target, CVO, N_SVR) 

 

%PSO parameter initialization 

ps = Particle_Number; 

D = Dimension; 

%Acceleration constants c1 and c2 

c = [MUGPSOparam.C1 MUGPSOparam.C2]; 

%inertia weight 0.9 to 0.5 

iwt = MUGPSOparam.wstart-

(1:MUGPSOparam.maxiter).*(0.5./MUGPSOparam.maxiter); 

%initialize velocities  

if length(VRmin)==1 

    VRmin=repmat(VRmin,1,D); 
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    VRmax=repmat(VRmax,1,D); 

end 

mv = 0.5*(VRmax-VRmin); 

VRmin = repmat(VRmin,ps,1); 

VRmax = repmat(VRmax,ps,1); 

Vmin = repmat(-mv,ps,1); 

Vmax = -Vmin; 

vel = Vmin+2.*Vmax.*rand(ps,D); 

 

%Initia swarm using Latin hypercube design 

pos = lhsdesign(ps, D); 

pos = icdf('unif', pos, VRmin, VRmax); 

 

%Evaulate fitness on the initial swarm 

e = zeros(ps,1); 

e_values = cell(ps,1); 

 

evalfuncname=str2func('fitness_baggingSVR'); 

for p = 1:ps, 

   [e(p,1) e_values{p}] = feval(evalfuncname, input, target, CVO, pos(p,:), N_SVR); 

end 

 

%Store some particles 

metamodel_input = pos; 

metamodel_target = e; 

metamodel_inputdb=[]; 

metamodel_targetdb=[]; 

spread=MUGPSOparam.smoothingfactor; 

 

%Count number of fitness evaluation on particles 

fitcount = ps; 

 

%Update local best and their fitness values 

pbest = pos; 

pbestval = e; 

pbestval_values = e_values; 

%Update global best and the fitness value 

[gbestval, gbestind] = min(pbestval); 
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gbest_values = pbestval_values{gbestind}; 

gbest = pbest(gbestind,:); 

gbestrep = repmat(gbest,ps,1); 

allgbestval=gbestval; 

 

%Iterate PSO process 

i=2; 

for i=2:MUGPSOparam.maxiter 

 

    %Update velocities 

    tempvel = c(1).*rand(ps,D).*(pbest-pos)+c(2).*rand(ps,D).*(gbestrep-pos); 

     

    vel = iwt(i).*vel + tempvel; 

    %limit velocities to the range 

    %velocities higher or lower than the range are replaced by the min max 

    %of the range 

    vel = (vel>Vmax).*Vmax + (vel<=Vmax).*vel; 

    vel = (vel<Vmin).*Vmin + (vel>=Vmin).*vel; 

     

    %update swarm 

    pos = pos+vel; 

    %particles higher or lower than the range are replaced by the min max 

    %of the range +- 0.25 to avoid particles placed on the boundary 

    pos = ((pos>=VRmin)&(pos<=VRmax)).*pos... 

        +(pos<VRmin).*(VRmin+0.25.*(VRmax-VRmin).*rand(ps,D))... 

        +(pos>VRmax).*(VRmax-0.25.*(VRmax-VRmin).*rand(ps,D)); 

     

    %use the nearest data samples from the db to construct the meta-model 

    if numel(metamodel_inputdb) >0 

        closestones = knnsearch( metamodel_inputdb, pos,'K',1); 

        globalinput = [metamodel_inputdb(closestones(:,1),:)]; 

        globaltarget = [metamodel_targetdb(closestones(:,1),:)]; 

    else 

        closestones=[]; 

        globalinput = metamodel_input; 

        globaltarget = metamodel_target; 

         

    end 
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    %construct a meta-model and evaluate current particles 

    metamodel = newgrnn(globalinput', globaltarget', spread );   

    e = sim(metamodel, pos')'; 

 

    %update the local best solution and fitness 

    tmp = (pbestval < e); 

    tempind = find(tmp==0); 

 

    if numel(tempind) >= 1  

        temppos = pos(tempind, :); 

        tempe = zeros(size(temppos,1),1); 

        tempe_values = cell(size(temppos,1),1); 

        if N_SVR==1  

            for p = 1:size(temppos,1), 

                [tempe(p,:) tempe_values{p}]= feval(evalfuncname, input, target, CVO, 

temppos(p,:)); 

            end 

        else 

            for p = 1:size(temppos,1), 

                 [tempe(p,:) tempe_values{p}] = feval(evalfuncname, input, target, CVO, 

temppos(p,:), N_SVR); 

            end 

        end         

        globaldb = abs( (e(tempind) - tempe)./tempe ); 

        globaldbind = find(globaldb>0.01); 

        metamodel_inputdb = [metamodel_inputdb; temppos(globaldbind,:)]; 

        metamodel_targetdb = [metamodel_targetdb; tempe(globaldbind)]; 

         

        e(tempind) = tempe; 

        for t=1:numel(tempind); 

            e_values{tempind(t)} = tempe_values{t}; 

        end 

        fitcount = [fitcount, fitcount(end)+ numel(tempind)]; 

    else 

        tempe = zeros(ps,1); 

        tempe_values = cell(ps,1); 

        if N_SVR==1  
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            for p = 1:ps, 

                [tempe(p,:) tempe_values{p}]= feval(evalfuncname, input, target, CVO, 

pos(p,:)); 

            end 

        else 

            for p = 1:ps, 

                [tempe(p,:) tempe_values{p}] = feval(evalfuncname, input, target, CVO, 

pos(p,:), N_SVR); 

            end 

        end 

        globaldb = abs( (e - tempe)./tempe ); 

        globaldbind = find(globaldb>0.01); 

         

        metamodel_inputdb = [metamodel_inputdb; pos(globaldbind,:)]; 

        metamodel_targetdb = [metamodel_targetdb; tempe(globaldbind)]; 

        numel(find(globaldbind ==1)); 

 

        e=tempe; 

        e_values = tempe_values; 

        fitcount = [fitcount, fitcount(end)+ numel(e)]; 

    end  

     

    tmp = (pbestval <e); 

    temp = repmat(tmp, 1, D); 

    pbest = temp.*pbest+(1-temp).*pos; 

    pbestval = tmp.*pbestval+(1-tmp).*e; 

    ind = find(tmp==0); 

    for t=1:numel(ind); 

        pbestval_values{ind(t)} = e_values{ind(t)};     

    end 

     

    %Update the global best solution and fitness 

    [gbestval,tmp]=min(pbestval); 

    gbest_values = pbestval_values{tmp}; 

    gbest=pbest(tmp,:); 

    gbestrep=repmat(gbest,ps,1); 

    allgbestval(i) = gbestval; 
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end 

 

end 

 

 

function [ fitness,cvOutput ] = fitness_baggingSVR( input, target, CVO, hyperparams, 

N_SVR ) 

 

%Candidate solution 

C = hyperparams(1); 

eps = hyperparams(2); 

gamma = hyperparams(3); 

 

%K fold cross validation 

K= CVO.NumTestSets; 

 

%Output variable to store target and prediction values 

testingoutputs=cell(K,1); 

testingtargets=cell(K,1); 

%Construct bagging models using K fold cross validation 

parfor k=1:K,  

    trIdx = CVO.training(k); 

    teIdx = CVO.test(k); 

     

    trinputs = input(trIdx,:); 

    trtargets = target(trIdx,:); 

    teinputs = input(teIdx,:); 

    tetargets = target(teIdx,:); 

     

    trainInd = find(trIdx==1); 

    testInd = find(teIdx==1); 

    opts = sprintf('%s %s %s %s %s %s %s','-q -s 3 -t 2','-p',num2str(eps),'-g', 

num2str(gamma),'-c',num2str(C)); 

     

    [testingoutputs{k}]=baggingSVR(trinputs,trtargets,teinputs,tetargets, N_SVR, opts); 

    testingtargets{k} = tetargets; 

end 

%Output variable: target and prediction values 
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cvOutput = [cell2mat(testingoutputs), cell2mat(testingtargets)]; 

    

%MSE    

fitness = mse(cvOutput(:,1)-cvOutput(:,2)); 

end 

 

function [ bagging_testoutput ] = baggingSVR( traindata, traintargetdata, testdata, 

testtargetdata, N_SVR, SVRopts ) 

%Generate bootstrapped datasets 

[bootstat, bootsam] = bootstrp(N_SVR,@mean, traindata); 

 

%Train SVR on each bootstrapped dataset 

parfor (i=1:N_SVR) 

    model(i) = svmtrain(traintargetdata(bootsam(:,i),:), traindata(bootsam(:,i),:), SVRopts); 

    testoutput(:,i) = svmpredict(testtargetdata, testdata, model(i),'-q'); 

end 

 

%Aggregate SVRs 

bagging_testoutput = mean(testoutput,2); 

 

end 
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Various research projects have been conducted to utilize historical manufacturing 

process data in product design. These manufacturing process data often contain data 

inconsistencies, and it causes challenges in extracting useful information from the data. In 

resistance spot welding (RSW), data inconsistency is a well-known issue. In general, 

such inconsistent data are treated as noise data and removed from the original dataset 

before conducting analyses or constructing prediction models. This may not be desirable 

for every design and manufacturing applications since every data can contain important 

information to further explain the process. In this research, we propose a prediction 

modeling framework, which employs bootstrap aggregating (bagging) with support 

vector regression (SVR) as the base learning algorithm to improve the prediction 

accuracy on such noisy data. Optimal hyper-parameters for SVR are selected by particle 

swarm optimization (PSO) with meta-modeling. Constructing bagging models require 
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more computational costs than a single model. Also, evolutionary computation 

algorithms, such as PSO, generally require a large number of candidate solution 

evaluations to achieve quality solutions. These two requirements greatly increase the 

overall computational cost in constructing effective bagging SVR models. Meta-

modeling can be employed to reduce the computational cost when the fitness or 

constraints functions are associated with computationally expensive tasks or analyses. In 

our case, the objective function is associated with constructing bagging SVR models with 

candidate sets of hyper-parameters. Therefore, in regards to PSO, a large number of 

bagging SVR models have to be constructed and evaluated, which is computationally 

expensive. The meta-modeling approach, called MUGPSO, developed in this research 

assists PSO in evaluating these candidate solutions (i.e., sets of hyper-parameters). 

MUGPSO approximates the fitness function of candidate solutions. Through this method, 

the numbers of real fitness function evaluations (i.e., constructing bagging SVR models) 

are reduced, which also reduces the overall computational costs. Using the Meta
2
 

framework, one can expect an improvement in the prediction accuracy with reduced 

computational time. Experiments are conducted on three artificially generated noisy 

datasets and a real RSW quality dataset. The results indicate that Meta
2
 is capable of 

providing promising solutions with noticeably reduced computational costs. 
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