
Wayne State University

Wayne State University Dissertations

1-1-2015

A Prediction Modeling Framework For Noisy
Welding Quality Data
Junheung Park
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Sciences Commons, Industrial Engineering Commons, and the Library
and Information Science Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Park, Junheung, "A Prediction Modeling Framework For Noisy Welding Quality Data" (2015). Wayne State University Dissertations.
Paper 1293.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/1293?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1293&utm_medium=PDF&utm_campaign=PDFCoverPages

A PREDICTION MODELING FRAMEWORK

FOR NOISY WELDING QUALITY DATA

by

JUNHEUNG PARK

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2015

MAJOR: INDUSTRIAL ENGINEERING

Approved By:

Advisor

Date

© COPYRIGHT BY

JUNHEUNG PARK

2015

All Rights Reserved

ii

ACHNOWLEDGEMENTS

I am grateful for the tremendous support I have been given by many amazing

people throughout my life and education. I highly appreciate my academic advisor, Dr.

Kyoung-Yun Kim, for his advice and support in completing this research work. I would

also like to acknowledge my appreciation for Drs. Evrim Dalkiran, Richard Darin Ellis,

Shiyoung Lu, and Qingyu Yang in providing invaluable advice and recommendations

throughout the process of developing and refining my dissertation. My sincere gratitude

goes to the entire faculty and staff of the Department of Industrial and Systems

Engineering at Wayne State University for their support.

Finally, I would like to thank my family for their endless love and support as I

worked to complete this research.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS …..…………………..……………………………… ii

TABLE OF CONTENTS ………..…………….………………………………… iii

LIST OF TABLES ………………………….……………………………………. vii

LIST OF FIGURES ……………………………………………………………… ix

CHAPTER 1 INTRODUCTION ……………………………………………….. 1

1.1. Motivation ……………………………………………………………… 1

1.2. Data challenges …………………………………………………………. 2

1.3. Machine learning in design and manufacturing ………………………... 3

1.4. Overview ………………………………………………………………... 5

1.5. Goals and objectives ……………………………………………………. 8

1.6. Organization ……………………………………………………………. 9

CHAPTER 2 CONSTRUCTING BOOTSTRAP AGGREGATING MODELS

WITH SUPPORT VECTOR REGRESSION …………………………………….

9

2.1. Support vector machine and support vector regression ………………... 9

2.1.1. Support vector machine ………………………………………….. 9

2.1.2. Support vector regression ……………………...………………… 14

2.2. Bootstrap aggregating ………………………………………………….. 16

2.2.1. Constructing bootstrap aggregating models ……………………… 16

2.2.2. Selection of base learning algorithm in bootstrap aggregating …… 18

2.3. Hyper-parameters selection approaches for single support vector machine

and support vector regression ……………………………………………………..

22

iv

2.4. Summary ……………………………………………………………….. 26

CHAPTER 3 META-MODELING FOR FITNESES FUNCTION

APPROXIMATION TO ASSIST EVOLUTIONARY COMPUTATION ……….

26

3.1. Introduction ……………………………………………………………. 26

3.2. Related work …………………………………………………………… 29

3.2.1. Meta-models for fitness function approximation …………………. 29

3.2.2. Data sampling and evolution control techniques for meta-modeling . 30

3.2.3. Meta-modeling with particle swarm optimization ………………... 34

3.3. Meta-modeling algorithms ……………………………………………... 35

3.3.1. Kriging ……………………………………………………………. 35

3.3.2. Polynomial regression ……………………………………………. 37

3.3.3. Radial basis function network ……………………………………. 37

3.3.4. Generalized regression neural network …………………………… 38

3.4. Meta-modeling using generalized regression neural network and particle

swarm optimization (MUGPSO) ……………………………………………..

40

3.5. Experimental results ……………………………………………………. 45

3.6. Summary ………………………………………………………………... 57

CHAPTER 4 META
2
 PREDICTION MODELING FRAMEWORK ………….. 58

4.1. Overview of Meta
2
 ……………………………………………………… 58

4.2. Problem formulation for Meta
2
 …………………………………………. 59

4.3. Experimental results ……………………………………………………. 61

4.3.1. Artificial datasets …………………………………………………. 62

v

4.3.2. RSW quality dataset ……………………………………………… 70

4.4. Integration of Meta
2
 with a design optimization and decision making

system ………………………………………………………………………..

76

4.5. Summary ………………………………………………………………... 81

CHAPTER 5 CONCLUSION AND FUTURE RESEARCH DIRECTION …… 82

APPENDICES …………………………………………………………………… 85

APPENDIX A. LIST OF GENERAL NOTATIONS ……………………….. 85

APPENDIX B. LIST OF SUPPORT VECTOR MACHINE AND SUPPORT

VECTOR REGRESSION RELATED NOTATIONS ………………………..

85

APPENDIX C. LIST OF BOOTSTRAP AGGREGATING RELATED

NOTATIONS ………………………………………………………………...

86

APPENDIX D. LIST OF KRIGING RELATED NOTATIONS …………… 86

APPENDIX F. LIST OF RADIAL BASIS FUNCTION NETWORK

RELATED NOTATIONS ……………………………………………………

87

APPENDIX G. LIST OF GENRALIZED REGRESSION NEURAL

NETWORK RELATED NOTATIONS ……………………………………...

87

APPENDIX H. LIST OF PARTICLE SWARM OPTIMIZATION RELATED

NOTATIONS …………………………………………………………………

87

APPENDIX I. STATISTICAL RESULTS OF SOLUTIONS OBTAINED BY

GPSO AND MUGPSO WITH A LIMIT OF 20,000 REAL FITNESS

FUNCTION EVALUATIONS ……………………………………………….

88

APPENDIX J. CONVERGENCE PROFILE OF GPSO AND MUGPSO ON

vi

F2, F3, F4, F8, F9, and F10 ………………………………………………….. 89

APPENDIX K. MATLAB SCRIPTS FOR META
2
 IMPLEMENTATION … 91

REFERENCES ………………………………………………………………...... 99

ABSTRACT …………………………………………………………………....... 113

AUTOBIOGRAPHICAL STATEMENT ……………………………………….. 115

vii

LIST OF TABLES

Table 2.1. Aggregating functions for regression (Polikar, 2012) ……….…..…… 17

Table 2.2. SVM ensembles related research on their objectives, results, and the

hyper-parameters selection approach ……………………………………………..

21

Table 2.3. Four typical kernel functions for SVM and SVR ………………….… 23

Table 3.1. Parameter settings of GPSO and MUGPSO …………………………. 42

Table 3.2. Statistical results of solutions obtained by GPSO and MUGPSO with a

limit of 10,000 real fitness function evaluations …………………………………..

49

Table 3.3. t-test results for the results from the ten repetitions of GPSO and

MUGPSO ………………………………………………………………………….

50

Table 3.4. Results of MUGPSO, SVR-DE, SVC-DE, FESPSO, and TLSAPSO on

the ten benchmark functions ……………………………………………………….

53

Table 4.1. Decision boundary for hyper-parameters ……………………………. 60

Table 4.2. Noisy artificial dataset characteristics ……………………………….. 62

Table 4.3. Final results obtained for single SVR on the three datasets ………….. 64

Table 4.4. Best results obtained for bagging SVR on dataset1 …………………. 66

Table 4.5. Best results obtained for bagging SVR on dataset2 …………………. 66

Table 4.6. Best results obtained for bagging SVR on dataset3 …………………. 66

Table 4.7. Best results obtained by grid search, GPSO, and Meta
2
 for the three

datasets …………………………………………………………………………….

67

Table 4.8. p-values for t-tests between GPSO and Meta
2
 in their solution quality

and computation time ……………………………………………………………...

69

viii

Table 4.9. Features for the welding quality dataset ……………………………... 71

Table 4.10. Final results obtained for single SVR on the welding quality dataset .. 73

Table 4.11. Best results obtained for bagging SVR on the welding quality dataset .. 73

Table 4.12. Best results obtained by grid search, GPSO, and Meta
2
 for the welding

quality dataset ……………………………………………………………………...

74

Table 4.13. p-values for t-tests between GPSO and Meta
2
 in their solution quality

and computation time for the welding quality dataset …………………………….

75

ix

LIST OF FIGURES

Figure 2.1. Example of a binary classification dataset and optimal hyperplane with

the maximum margin …..…………………………………………………………..

10

Figure 2.2. precision and slack variable in -SVR ………………………….. 15

Figure 2.3. Bagging Pseudo code ……………………………………………….. 18

Figure 3.1. An illustrative example of a central composite design for a two-

dimensional problem ………………………………………………………………

33

Figure 3.2. Schematic procedure of MUGPSO ………………………………….. 42

Figure 3.3. A pseudo code for MUGPSO ……………………………………….. 44

Figure 3.4. Convergence profile of GPSO and MUGPSO on F1 ……………….. 51

Figure 3.5. Convergence profile of GPSO and MUGPSO on F5 ……………….. 52

Figure 3.6. Convergence profile of GPSO and MUGPSO on F6 ……………….. 52

Figure 3.7. Convergence profile of GPSO and MUGPSO on F7 ……………….. 52

Figure 4.1. Illustration of the Meta
2
 framework …………………………………. 58

Figure 4.2. Overall procedure of Meta
2
 ………………………………………….. 59

Figure 4.3. Visualization of dataset1 ……………………………………………. 63

Figure 4.4. Visualization of dataset2 …………………………………………..... 63

Figure 4.5. Visualization of dataset3 ……………………………………………. 63

Figure 4.6. Mean number of fitness function evaluations for GPSO and Meta
2

(left) and mean elapsed time in minute (right) for dataset1 ……………………….

68

Figure 4.7. Mean number of fitness function evaluations for GPSO and Meta
2

(left) and mean elapsed time in minute (right) for dataset2 ……………………….

68

x

Figure 4.8. Mean number of fitness function evaluations for GPSO and Meta
2

(left) and mean elapsed time in minute (right) for dataset3 ……………………….

69

Figure 4.9. Illustration of noise in the RSW quality dataset ……………………. 72

Figure 4.10. Mean number of fitness function evaluations for GPSO and Meta
2

(left) and mean elapsed time in minute (right) for the welding quality dataset …...

75

Figure 4.11. Illustration of the integration process flow ………………………... 77

Figure 4.12. An example modeFRONTIER workflow for material selection using

prediction models constructed by Meta
2

…………………………………………..

78

Figure 4.13. Run analysis feature in modeFRONTIER …………………………. 79

Figure 4.14. Decision space explorer in modeFRONTIER ……………………... 80

Figure 4.15. Clustering analysis in modeFRONTIER ………………………….. 81

1

CHAPTER 1 INTRODUCTION

1.1. Motivation

The increasing availability of historical data provides various opportunities across

different industries. The spectrum of potential opportunities varies from conventional

decision support to highly complicated expert knowledge extraction. However, the

rapidly growing complexity of data hinders actual implementation of these opportunities.

In general, the causes of data complexity can be attributed to various different factors,

such as data incompleteness, inconsistency, heterogeneity, high-dimensionality, or rapid

change in volume and structure. Fortunately, there has been active research on these data

challenges. To achieve the desired outcomes from data, these data challenges should be

properly addressed using the right approach or method.

In particular with engineering design and manufacturing applications, during the

past few decades, significant efforts have been made to incorporate data into design

decision support systems using machine learning and data mining. There has been

extensive research conducted on both theoretical and practical aspects in machine

learning algorithms and the approaches attempting to resolve data challenges. Every other

application favors different types of machine learning algorithms as the data the

application faces has different characteristics and requirements. There is no single

machine learning algorithm that outperforms others on every possible data. Therefore, the

selection of proper machine learning algorithms for the given data is an important

problem. As for data challenges, the importance of selecting the right one is as important

as it is for the selection of machine learning algorithms.

2

1.2. Data challenges

Incomplete data, often referred to as missing values, can be classified into three

different mechanisms based on the cause of the missingness (Rubin, 1976; Little &

Rubin, 1987). The three mechanisms are missing completely at random (MCAR),

missing at random (MAR), and missing not at random (MNAR). Details on these

mechanisms are available in (Rubin, 1976; Schafer & Graham, 2002; Graham, 2009;

Enders, 2010). Missing values can be filled out by various methods, for example

maximum likelihood (ML) and multiple imputation (MI) with no bias as long as these

missing values are either MCAR or MAR. However, some methods produce biased

estimates in case of MNAR while making it difficult to choose the right imputation

method.

As for inconsistency, usually treated as noise, a typical approach is to remove or

alter them before constructing prediction model or conduct analysis. Anomaly or outlier

detection (Liu & Motada, 2002; Liu, 2010) and instance selection methods (Gamberger et

al., 1996; Olvera-López et al., 2010) are usually used for such purposes. However, the

cause of sources may vary in different applications so that it may not be appropriate to

simply eliminate or alter them in some cases. For instance, in a manufacturing

application, the process to acquire data can be complex to configure the desired process

environment. More specifically, resistance spot welding (RSW) is widely used in many

industries due to its advantages, such as high speed and high volume operations. It is

known that a significant inconsistency exists in RSW. Several research works consider

predicting welding quality in order to support decisions related to quality monitoring and

3

material selection (Kim et al., 2003; Pal et al., 2008). Removing or altering these data in

such an application may not be desirable since they can be used to extract additional

information about explaining the complex nature of the problem.

1.3. Machine learning in design and manufacturing

Machine learning has been applied to utilize available data and to support the

complex nature of decision making processes in engineering design and manufacturing

domains. These design tasks include conceptual design, design analysis, and design

optimization. Conceptual design is one of the early stages in product development, and it

is critical since this stage has a significant impacts on the downstream processes of

product development (e.g., manufacturing and assembly). There have been a number of

research works to support designers in completing certain tasks (Kusiak & Salustri,

2007). For instance, in Venugopal & Narendran (1992), multilayer perceptron (MLP) is

used to retrieve design solutions that consist of components used in previous designs

including geometric shapes and technological factors. Given these components as inputs,

the authors show that designers can retrieve a similar new design solution to improve a

final design concept.

Noticeable research works are also conducted in design analysis to discover,

understand, and standardize design solutions and processes. Park & Seo (2006) apply

MLP to support life cycle assessment of product design alternatives. The dataset include

product attributes, lifetime, mode of operations, and energy sources. The constructed

MLP model predicts the life cycle assessment of new designs. Sousa & Wallace (2006)

employ decision tree (DT) to approximate the life cycle assessment problem. They

4

consider a set of product attributes, such as energy source, chemicals, and recyclability as

input. Classification models are built to classify products into one of the predefined

groups and to support in analyzing the relationships between product attributes and their

environmental performance. Shieh & Yang (2008) and Yang (2011) present methods to

predict customer preference using product form features (e.g., volume, width, shape, and

style). SVM and SVR are used respectively for classification and regression to address

which customer preference is most satisfied and to predict costumer’s preference

response value.

Some researchers attempt to use manufacturing information for design decision

making. Tang & Chen (2009) aim to achieve an optimal set of parameters for robust

processes in sheet metal forming. SVM is used to classify the design space into either

feasible or infeasible region being able to provide more accurate predictions compared to

the traditional methods. Pan et al. (2010) apply SVR to a lightweight B-pillar design

problem. Tailor-welded blank structure is used to minimize the weight subject to the

constraints of vehicle roof crush and side impacts. SVR approximates the vehicle’s roof

crush force. The optimal design solutions achieved by the proposed system are promising

when compared to the finite element analysis results.

As mentioned earlier, our approach is not to remove or alter noisy data obtained

from the manufacturing processes. The presented Meta2 prediction framework aims to

construct bagging SVR models, which improves the prediction accuracy on such noisy

data with reduced computational cost. By doing so, we expect that the prediction results

are more precise and can provide more reliable information about the process.

5

1.4. Overview

As far as predictive modeling is concerned, the presence of noise in data creates

issues, such as over-fitting, which decreases the prediction accuracy on unseen data. In

this research, a novel prediction modeling framework, called Meta
2
, will be proposed.

The aim of this framework is to improve the accuracy of prediction models constructed

with the presence of noise in data.

Ensembles, such as boosting and bootstrap aggregating (bagging), are known to

improve prediction performance of a learning algorithm. Boosting is usually referred to

as a bias reduction approach, whereas bagging can be used to reduce the variance of a

learning algorithm. Due to this reason, bagging has been used with unstable learning

algorithms, such as decision trees and multilayer perceptron neural network.

In regards to noisy data, research on bagging has proven to improve the prediction

accuracy with noisy data (Opitz & Maclin, 1999; Dietterich, 2000; Melville et al., 2004;

Khoshgoftaar et al., 2011). Also, recent studies have identified that the prediction

accuracy improvement and variance reduction properties of bagging still exist when used

with a stable learning algorithm, such as support vector machine (SVM) (Chen et al.,

2009; Wang et al., 2009; Kim & Kang, 2012). Therefore, we assume that bagging SVM

or support vector regression (SVR), an extension of SVM for regression problems, can

improve the accuracy of prediction models on noisy data. To the best of our knowledge,

no research has been conducted to identify the property of bagging on both noisy data

and regression problems. We assume that bagging SVR will provide an improvement in

the prediction accuracy when data used to construct the models consist of noise.

6

Therefore, the contribution of this research is that it will confirm the applicability of

bagging with SVR for regression problems and the prediction accuracy improvement on

noisy data.

The prediction accuracy of a SVR model is highly dependent on the selection of

its hyper-parameters. Such hyper-parameters usually include the penalty coefficient ,

choice of kernel functions, and parameters for the kernel function. In the literature,

evolutionary computation (EC) algorithms, such as genetic algorithm (GA) (Wu et al.,

2009), particle swarm optimization (PSO) (Lins et al., 2012), and ant colony optimization

(ACO) (Zhou et al., 2012), are successfully applied to select the optimal hyper-

parameters for SVM and SVR. Generally, they require a large number of candidate

solution evaluations to obtain good solutions. The proposed framework employs PSO.

Therefore, a candidate solution represents a set of hyper-parameters, whose evaluation is

associated with constructing a bagging SVR model using the hyper-parameters. This

makes the applicability of an EC algorithm intractable even more so as it increases the

computational cost in evaluating (i.e., constructing bagging models for) a large number of

candidate solutions. Regarding the previous research on bagging SVM, there has been no

related research found in applying EC algorithms to select the hyper-parameters for SVM

or SVR included in bagging. To that extent, this research contributes to identifying the

applicability of EC algorithms in selecting optimal hyper-parameters.

Meta-modeling, also referred to as surrogates, has been successfully applied to

reduce the computational cost when an EC algorithm is associated with a computationally

expensive task. For instance, in engineering design, the objective or constraint functions

7

are often associated with finite element analysis and/or computational fluid dynamic,

which both are computationally intensive tasks. The proposed framework uses

generalized regression neural network (GRNN) to construct meta-models. Meta-models

will be constructed at each iteration of PSO to approximate the fitness function (i.e.

objective function). Therefore, the number of candidate solution evaluations will lessen,

which will also reduce the computational costs. Some particles in a swarm are re-

evaluated with the real fitness function (i.e., constructing bagging SVR) in order to

prevent the swarm from moving to the wrong direction due to the approximation errors of

these meta-models.

The reasons why GRNN is selected are manifold. The model training process is

instance-based. Therefore, we expect to reduce the overall computational requirement

further, as long as the training data samples for GRNN are well maintained throughout

the PSO iterations. The capability of GRNN has shown to be successful in high

dimensional nonlinear problems (Gheyas & Smith, 2010). The only one parameter, called

the smoothing factor, is not as sensitive and one can spend less effort in optimizing this

smoothing factor value compared to other learning algorithms. Similarly, PSO is chosen

due to its efficiency, capability of obtaining quality solutions (Chatterjee et al., 2005;

Guo et al., 2008), and of avoiding over-fitting in a similar problem, called full model

selection (Escalante et al., 2009). In addition, PSO has been successfully applied to

hyper-parameters selection for a single SVM (Lin et al., 2008; Kapp et al., 2009) and

SVR (Lins et al., 2012).

8

1.5 Goals and objectives

Meta
2
 prediction modeling framework will be developed for noisy data where the

noise cannot be removed or altered before constructing prediction models. The

framework will include bagging prediction models using SVR as the base learning

algorithm. The hyper-parameters for the SVRs in bagging models are determined by PSO

assisted by meta-modeling. GRNN is used to construct the meta-models in the meta-

modeling approach. Using this framework, we attempt to construct a bagging SVR model

that provides improved prediction accuracy on noisy data. Due to the approximation

errors of meta-models, the final prediction model obtained by this framework may

provide a lower prediction accuracy than using a regular PSO without meta-modeling.

However, we expect to reduce the computational cost in finding such hyper-parameters

that is comparable to that of a regular PSO. The main objectives of this research are as

follows:

1) Identify the prediction accuracy improvement property of bagging on noisy data

using SVR as the base learning algorithm;

2) Develop a computationally efficient meta-modeling approach to assist PSO by

approximating the fitness function;

3) Confirm the prediction accuracy of bagging SVR models obtained by Meta
2
 with

respect to the computational efficiency; and

4) Illustrate how the prediction models constructed by Meta
2
 can be used in design

activities.

9

1.6 Organization

For the rest of this report, Chapter 2 reviews bootstrap aggregating and support

vector regression. Meta-modeling and our proposed meta-modeling approach will be

discussed in Chapter 3 with experimental results. Meta
2
 prediction modeling framework

will be discussed in Chapter 4 with experimental results. Chapter 5 will conclude this

report with future research directions.

CHAPTER 2 CONSTRUCTING BOOTSTRAP AGGREGATING MODELS

WITH SUPPORT VECTOR REGRESSION

2.1. Support vector machine and support vector regression

2.1.1. Support vector machine

SVM is a machine learning algorithm for classification problems. Given a training

dataset, it seeks to find an optimal hyperplane that classifies data into either the positive

or negative class. SVM is also referred to as maximum margin classifier because it aims

to maximally separate the positive data samples from the negative. A dataset with

number of samples is represented as *() ()+, where each is a real

numbered vector, for . Each has its corresponding class label

 * +.

Figure 2.1. illustrates a linearly separable classification problem. Here, and

are coefficients that determine the hyperplane and is the dot product. For any data

sample , the distance to the optimal hyperplane is
 ()

‖ ‖
. In standard SVM, the

10

objective is to find an optimal that maximizes the distance between the hyperplane and its

closest data instance, which can be formulated as follows:

(

 ()

‖ ‖
)

(2.1)

Figure 2.1. Example of a binary classification dataset and optimal hyperplane with the

maximum margin

For linearly separable datasets, SVM is an optimization problem of finding a

hyperplane with the maximum margin that equals 1 (i.e. support vectors).

Therefore, the margin is

‖ ‖
 since we have two classes. For example, the distance

between data samples on and on is

‖ ‖
. These data

11

samples closest to the hyperplane are called support vectors. In addition, for any data

instance , we know that if , otherwise . This can

also be written as
() . Now we can formulate this into an optimization

problem as follows:

‖ ‖

(2.2)

 subject to () ,

Maximizing

‖ ‖
 is equivalent to minimizing

‖ ‖ . Thus, Equation (2.2) can be

converted to a minimization problem as follows:

‖ ‖

(2.3)
 subject to () ,

Equation (2.3) is a quadratic programming problem. In practice, Equation (2.3) is

usually converted to its dual formulation using Lagrange multipliers. By doing so, one

can reformulate the problem for linearly non-separable and nonlinear support vector

machines (Ivanciuc, 2007). The Lagrange dual formulation of Equation (2.3) can be

defined as follows:

 ()

‖ ‖ ∑ (())

‖ ‖ ∑ ()

 ∑

‖ ‖ ∑

 ∑

 ∑

(2.4)

12

Then, using the Karuch-Kuhn-Tucker (KKT) conditions for the above Lagrange

function and solving the Wolfe dual problem of Equation (2.4) to these KKT conditions,

one can solve the SVM problem (Ivanciuc, 2007). The KKT conditions for Equation (2.4)

are as follows:

 ()

 ∑

 ()

 ∑

 ()

 () (())

(2.5)

(2.6)

(2.7)

(2.8)

By plugging in Equation (2.5) and (2.6) to the Lagrange function, Equation (2.4),

the Lagrange dual problem can be defined as follows:

∑

∑∑

 subject to ,

∑

(2.9)

Note that each data sample has its corresponding Lagrange multiplier . Once the

above SVM problem is solved, data samples with are identified as support

vectors. Now, one can compute the vector and threshold to obtain the optimal

hyperplane using Equation (2.5) and (2.7). Using the hyperplane, a new data can be

predicted as class +1 if , otherwise class -1.

13

So far, the SVM formulation has been reviewed for linearly separable datasets. In

case of linearly non-separable datasets, the slack variable is introduced to penalize data

samples that are not correctly classified. After adding the slack variable for each data

sample and a penalty coefficient to the objective function, Equation (2.3) can be

modified for linearly non-separable datasets. Such modification with respect to support

vector regression (SVR) is introduced in Section 2.1.2. Equation (2.11). Once the SVM

optimization problem for linearly non-separable datasets is formulated, the optimization

problem can be transformed to its Wolfe dual problem and used to achieve the support

vectors. The transformation can be done in the same way described above for linearly

separable cases. The SVM formulations for linearly separable and linearly non-separable

are called hard margin and soft margin linear SVM respectively. The formulation of soft

margin linear SVM is as follows:

∑

∑∑

 subject to ,

∑

(2.10)

Similarly for nonlinear datasets, the Wolfe dual problem of either hard margin or

linear margin linear SVM formulation can be used with a kernel function (). The

kernel function can be applied to the dot product in the objective function of

Equation (2.10). This is called the kernel trick. The formulations and proofs of soft

margin linear, hard margin nonlinear, and soft margin nonlinear SVM are available with

14

in some of tutorial articles (Burges, 1998; Ivanciuc, 2007). Also, detailed description of

the theory behind SVM and proofs can be found in Vapnik (1998).

2.1.2. Support vector regression

SVM can be applied to classification problems. However, there are many

applications where it is required to predict continuous values (i.e., regression problems)

instead of class labels. These applications include regression, time series analysis, etc.

Similar to classification datasets, suppose we have a dataset with number of samples

 *() ()+, +, where each represents each data sample (i.e.,
 for

) and each has its corresponding response value . The aim is to

construct a prediction function ̂() to approximate the original function (). Vapnik

(1995) develop so-called -support vector regression (SVR) by extending the notion of

the maximum margin hyperplane in SVM to regression problems.

Figure 2.2. precision and slack variable in -SVR

15

 -SVR attempts to minimize the errors between the target and prediction by

finding an optimal hyperplane such that the prediction error for each training data does

not exceed the precision. This allows errors that are less than . This assumption may

not be true in many datasets, meaning that the solution is not feasible. In many real-world

datasets, this is not possible due to the variability and noise. In order to address this issue,

the notion of soft margin can be used the same way as in SVM by introducing the slack

variable. Figure 2.2. illustrates these notions of precision and slack variable .

Accordingly, the hard margin and soft margin linear SVR can be formulated in the

same way as in SVM (Smola & Schölkopf, 2004).

‖ ‖

(2.11) subject to () ,

() ,

Equation (2.11) represents the hard margin linear SVR. The soft margin linear

SVR can be formulated as follows:

‖ ‖ ∑(

)

(2.12)
subject to () ,

()
 ,

 ,

These SVR optimization problems are usually transformed to the Wolfe dual

problem and the support vectors are obtained in the same manner in SVM. Equation

(2.13) represents the Wolfe dual formulation of Equation (2.12).

16

∑∑(

)(
)

 ∑(
)

 ∑ (
)

subject to
 ,

∑ (
)

(2.13)

Also, using the support vectors and KKT conditions, one can compute and to

predict new data. The kernel trick can be used to the dual problem in order to solve

nonlinear regression problems. Detailed proofs and derivation are available in a tutorial

on SVR in Smola & Schölkopf (2004).

2.2. Bootstrap aggregating

2.2.1. Constructing bootstrap aggregating models

Bagging (Breiman, 1996) is one of the popular ensemble methods along with

boosting. Suppose we are given a dataset *() ()+ where is either the

class label or continuous valued response corresponding to the ith data sample . The

aim is to construct a prediction function ̂ () . Bagging generates multiple

bootstrapped datasets from the original dataset by randomly drawing samples with

replacement. Let be the number of bootstrapped datasets. is the lth

bootstrapped dataset sampled with replacement from the original dataset . The size of

each of these bootstrapped datasets, , is usually the same as the original training dataset.

As a result of bootstrapping, some data samples can appear multiples times in each

bootstrapped dataset while some may not be included in it at all. The probability that each

17

training data sample is selected at least once is equal to .

 /

 (Bauer & Kohavi,

1999). Therefore, when , the probability is about 63.2%

Then, using a base learning algorithm such as decision tree (DT), neural network

(NN), and support vector machine (SVM), one can construct each prediction function

 ̂ () corresponding to the lth bootstrapped dataset. Once these prediction functions are

constructed the bagging prediction function ̂ () is obtained by combining the results

of ̂ () as follows:

 ̂ () (̂ ()) (2.14)

where () is an aggregating function. There are many number of different aggregating

functions proposed in the literature.

We report in Table 2.1. several aggregating functions introduced in Polikar

(2012), which are applicable to regression problems. For classification problems, the

results of these multiple prediction functions ̂ () can be aggregated, for example, using

a majority voting aggregating function, where the final class label is the one that wins the

most vote from ̂ (). Figure 2.3. shows the pseudo code of bagging.

Input: training dataset , learning machine , number of bootstrap datasets L, size of a bootstrap

dataset

1: for l = 1 to L

2: = bootstrapped sample from

3: ̂ = ()

4: ̂ () . ̂ ()/

Output: Bagging predictor ̂

Figure 2.3. Bagging Pseudo code

18

Table 2.1. Aggregating functions for regression (Polikar, 2012)

Mean

∑ ̂ ()

Sum

∑ ̂ ()

Weighted sum

∑ ̂
 ()

, where is the corresponding weight to ̂ .

Product

∏ ̂ ()

Maximum

{ ̂ ()}

Minimum

{ ̂ ()}

Median

{ ̂ ()}

Generalized mean

(

∑ ̂ ()

)

 Minimum

 Maximum

 Geometric mean

 Mean

2.2.2. Selection of base learning algorithm in bootstrap aggregating

In Breiman (1996), it is noted that the base learning algorithm has to be unstable,

which means small changes in the training sets may result in a large difference in the

final prediction function. Such unstable ones are DT and NN. In regards to noisy data,

Dietterich (2000) conduct a series of experiments on 33 classification datasets to compare

the prediction accuracy of bagging, boosting, and randomization. DT is used as the base

learner. Boosting and randomization provide better results than bagging when there is

little noise. Bagging is the best among these methods when classification noise is added

while producing more diverse classifiers. Similarly, DT and Naïve-Bayes algorithms are

19

examined in Bauer & Kohavi (1999). They report that boosting outperforms bagging and

its variant ensemble methods using both DT and Naïve-Bayes. Bagging does not seem to

have a significant effect in improving the prediction accuracy with Naïve-Bayes.

However, the conducted experiments do not address the prediction accuracy when noise

is present in the dataset.

In addition, bagging and boosting are evaluated for DT and NN in Opitz &

Maclin (1999). It is noted that bagging DT or NN always outperforms a single base

learner either DT or NN. Their experimental results also show bagging provides a more

consistent prediction performance than boosting when noise is present in data. Melville et

al. (2004) emphasize on the performance of ensemble methods when different types of

imperfection including missing data and classification noise are present in data. In case of

noise, different levels of noise are added to the datasets considered and bagging provides

the best prediction accuracy. Note that DT is used as the base learning algorithm of the

ensemble methods compared. A recent study (Khoshgoftaar et al., 2011) reveals that

bagging is better than boosting when data contain both class imbalance and noise. The

study also suggests to use bagging by sampling without replacement instead of sampling

with replacement in that case. DT, Naïve-Bayes, and rule-based learner are considered

the base learning algorithm in the study.

The previous experiments mentioned above suggest that the base learning

algorithm of bagging should be unstable. However, research has been conducted on

identifying the effectiveness of bagging with SVM, which is not known as an unstable

algorithm. The following Table 2.2. briefly summarizes these research in terms of their

20

objectives, results, and the hyper-parameters selection approach. All of the research

focuses on classification problems, while most of them compare boosting and/or bagging

SVM to a single SVM. Bagging SVM always improves a single SVM in all cases, which

proves that SVM is not an inappropriate choice for bagging. On the other hand, boosting

SVM does not always outperform a single SVM. A recent study in Kim & Kang (2012)

attempts to select optimal classifiers in boosting and bagging called CO-boosting and

CO-bagging respectively. DT, NN, and SVM are considered as the base learner. Regular

bagging SVM does not outperform bagging DT or NN. However, CO-bagging, where

optimal SVMs in a bagging are selected, provides the best results on the dataset

considered.

Regarding noise, Valentini (2005) reports that bagging and random aggregating

(RA) perform similarly outperforming a single SVM. However, without noise in the

dataset, RA SVM generally outperforms bagging SVM. We claim that previous research

has paid less attention to regression problems than classification and noisy data as well.

Again, these two areas are one of the objectives in this research. We assume the

applicability of bagging SVM can be extended to bagging SVR since both SVM and SVR

share the core theoretical properties in determining the maximum margin hyperplane

explained in Section 2.1.

As shown in Table 2.2., we focus on selecting the hyper-parameters in bagging

SVR. As far as the hyper-parameters selection is concerned in a bagging model, one

needs to decide whether all the SVRs in a bagging should use the same set of hyper-

parameters or not. Even though Chen et al. (2009) use different sets for each SVM and

21

show its effectiveness in the prediction performance, the majority of related research

apply the same set of hyper-parameters to all the SVMs. We consider the latter approach

in this research.

Table 2.2. SVM ensembles related research on their objectives, results, and the hyper-

parameters selection approach

Same hyper-parameters applied to all the learners in an ensemble

Kim et al. (2002)

 Single and bagging SVM with different aggregating functions on three datasets

 Bagging SVM outperforms a single SVM

 A predefine set of hyper-parameters

Kim et al. (2003)

 Single, bagging, and boosting SVM with different aggregating functions on three datasets

 Bagging SVM outperforms a single SVM while boosting SVM slightly outperforms bagging

SVM

 A predefine set of hyper-parameters

Valentini & Dietterich (2003)

 Single, bagging, and new bagging SVM on seven datasets

 Bagging is better than a single SVM while their proposed bagging outperforms both

 Different sets of hyper-parameters are tested using a grid search

Valentini (2005)

 Single, bagging, and random aggregating (RA) SVM on seven datasets

 Both bagging and RA SVM outperform a single SVM while RA SVM provides a larger

improvement than bagging SVM. In case of noisy data, RA and bagging SVM provide a

similar level of improvement

 Different sets of hyper-parameters are tested using a grid search

Pal (2008)

 Single, boosting, and bagging SVM on land cover classification dataset

 Bagging outperforms others

 A set of hyper-parameters known to work well for the dataset in a previous research

Wang et al. (2009)

22

 Single, bagging, and boosting SVM on 20 datasets and an industrial case of gear defect

detection dataset

 Bagging seems to be the most appropriate ensemble for the most datasets considered

providing relatively better prediction accuracy

 Several sets of predefined hyper-parameters are tested

Kim & Kang (2012)

 Single, bagging, boosting, and cover optimized bagging and boosting using DT, NN, and

SVM on bankruptcy prediction dataset.

 Bagging SVM outperforms single SVM but not boosting SVM while bagging other base

learners outperform boosting.

 Different sets of hyper-parameters are tested using a grid search

Different hyper-parameters applied to each learner in an ensemble

Chen et al. (2009)

 Single, bagging, and boosting SVM on traffic incident detection dataset using different

performance measures

 Bagging outperforms others in several performance measures considered

 Randomly generate hyper-parameters for each classifier in an ensemble

2.3. Hyper-parameters selection approaches for single support vector machine and

support vector regression

The selection of hyper-parameters in SVM and SVR is crucial and directly related

to the prediction accuracy of constructed models. In -SVR, the value of determines the

level of accuracy as described earlier. If is too large, the constructed models may under-

fit failing to include the target values in the precision. On the other hand, a too small

can over-fit the data. Typically, they hyper-parameters one should determine also include

the penalty coefficient , kernel function, and corresponding kernel parameters. This is

called hyper-parameters or model selection problem in the literature. Table 2.3. below

shows four commonly used kernels.

23

Table 2.3. Four typical kernel functions for SVM and SVR

Linear ()

Polynomial
 () . (

)/

Radial basis function () ‖ ‖

Sigmoid () (
)

In this section, we review the related literature and define a classification of

approaches to the hyper-parameters selection problem. This is to identify advantages and

disadvantages of the existing approaches. We define two different types of approaches

based on our literature review; i) Computational approach and ii) Analytical approach.

Grid search is one of the conventional approaches to the hyper-parameters

selection problem. In grid search, each hyper-parameter is assigned with a search space

(e.g., using a maximum, minimum, and interval). Then each candidate parameter is

directly used to construct a prediction model using SVM or SVR. Finally, one can select

the candidate hyper-parameters that provides the best prediction accuracy. The wider and

finer search space, the better quality hyper-parameters one can obtain. Obviously, this

comes at a higher computational cost. However, as far as the computational cost is not

concerned, grid search is still being applied in many applications. For instance,

Kavaklioglu (2011) employs SVR in order to model the electricity consumption of

Turkey. The choice of kernel functions is limited to radial basis function kernel, which

leaves less computational burden. Although the results of SVR are not compared in terms

of the performance of grid search or prediction accuracy, it is concluded that SVR using

grid search is sufficient for the electricity consumption of Turkey.

24

We list a number of related research and their summary in each category as

follows:

i) Computational approach: There has been research that employs evolutionary

computation algorithms, including genetic algorithm (GA) and particle swarm

optimization (PSO). Chen (2007) uses a real-valued GA in order to construct an

optimal SVR for turbochargers reliability dataset. The constructed SVR model shows

better prediction accuracy compared to several other machine learning algorithms such

as multilayer-perceptron (MLP). In Lin et al. (2008), PSO is considered to find the

optimal subset of features and hyper-parameters for classifiers constructed using 17

classification datasets. The experimental results obtained by PSO are compared to that

of grid search and GA and show that PSO provides better prediction accuracy. Kapp et

al. (2009) modify PSO in order to further reduce its computational cost. The authors

compare their proposed method with the results achieved by grid search and regular

PSO on five classification datasets. The proposed method provides a comparable

quality solution to the regular PSO with less computational requirements.

Aforementioned research only considers the radial basis function (RBF) kernel. Wu et

al. (2009) hybridize a real-valued and integer-valued GA so that it will be able to find

the optimal kernel function and the hyper-parameters accordingly for SVR in an

electrical daily load prediction application. The experimental results demonstrate

improved prediction accuracy using their proposed GA compared to a regular GA with

the selection of kernel functions set to the RBF only. Similarly, GA and PSO are

25

successfully applied to find the optimal hyper-parameters in a product form design and

reliability application respectively in Yang & Shieh (2010) and Lins et al. (2012).

Small world optimization (SWO) is coupled with tabu search called TSWO in Mao et

al. (2012). It is claimed that PSO and GA can find the global optimum and yet they

have a possibility of premature convergence when the optimization problem is

complex. Their proposed method TSWO shows that it avoids premature convergence

and provides better performance than PSO and GA when tested on several artificial

datasets generated from multimodal functions including sine. Zhou et al. (2012) employ

ant colony optimization (ACO) for NOx emission modeling using SVR. The hyper-

parameters found by ACO are used to construct SVR models and compared to that of

grid search and MLP as well.

In addition, other than evolutionary computation algorithms, a few computational

approaches are proposed in Jeng (2005) and Huang et al. (2007) and demonstrate their

capability of finding quality solutions in an efficient manner.

ii) Analytical approach: One of the representative analytical approaches is gradient-

based. Such gradient-based approaches are developed in Bengio (2000), Chapelle et al.

(2002), Ayat et al. (2005), Chang & Lin (2005), Moser & Serpico (2009). These

proposed approaches have shown their capabilities in improving accuracy and

computational efficiency. However, they require the objective function to be

differentiable with respect to the hyper-parameters (Kapp et al., 2009), high chance of

falling in a local minima (Huang et al., 2007; Kapp et al., 2009). Therefore, due to

26

these characteristics, it may not be trivial in many practical applications (Lins et al.,

2012).

2.4. Summary

A review on bagging and support vector regression is given in this section.

Notations and equations are discussed. Also, related research on how to select the hyper-

parameters for SVR are introduced. Computational and analytical approaches are defined

each of which includes EC algorithms and gradient-based optimization algorithms.

Regarding bagging, selecting the base learning algorithm, bootstrapped dataset, and

aggregating functions are reviewed. More importantly, we identify whether or not to use

the same set of hyper-parameters for SVRs included in a bagging model.

CHAPTER 3 META-MODELING FOR FITNESES FUNCTION

APPROXIMATION TO ASSIST EVOLUTIONARY COMPUTATION

3.1. Introduction

Evolutionary computation (EC) aims to find optimal solutions for various types of

optimization problems. EC includes genetic algorithm (GA), genetic programming (GP),

estimation of distribution algorithm (EDA), and swarm intelligence (SI). Examples of SI

include particle swarm optimization (PSO) and ant colony optimization (ACO). The term

EC is often treated as the same as evolutionary algorithm (EA) in the literature (Zhang et

al., 2011). These EC algorithms have been applied in various optimization problems

throughout different domains such as bioinformatics (Pal et al., 2006), machine learning

27

(Zhang et al., 2011), and engineering problems (Arciszewski & Jong, 2001; Fleming &

Purshouse, 2002).

EC algorithms in general require a large number of fitness function evaluations on

candidate solutions as the population or generation evolves. In many applications, these

fitness functions can be associated with a computationally expensive analysis or

simulation. For instance, in a complex engineering design problem, such as an aircraft

design optimization, the design simulation processes are computationally expensive

where complex analyses such as finite element analysis and computational fluid

dynamics are required (Wang & Shan, 2007). One of the approaches to improve the

computational efficiency is meta-modeling, also called surrogates, where the fitness

function can be approximated to reduce the number of fitness function evaluations.

Meta-modeling can be defined as a model of the model (Kleijen, 1986). During

the past decade, there has been a large number of meta-modeling research works

proposed in the literature. These research works consider various types of meta-modeling

algorithms, model construction schemes, and EC algorithms as well. Several review

articles are available on the meta-modeling techniques in Jin et al. (2001), Jin (2005), and

Jin (2011). The typical choice of meta-modeling algorithms includes polynomial

regression (PR), multilayer perceptron (MLP) neural network, kriging, and radial basis

function (RBF) network. A recent, related experiment was conducted on an aerodynamic

design problem using evolutionary programming and support vector regression (Andrés

et al., 2012). In regards to EC algorithms, GA (Dias et al., 2013), PSO (Sun et al., 2014),

and differential evolution (DE) (Park & Lee, 2014) are considered in recent studies.

28

As far as the meta-modeling algorithm is concerned, the choice is not limited to

those mentioned above. For instance, the capability of generalized regression neural

network (GRNN) for meta-modeling is examined and shows promising results in Fang-

shu & Jian-Chao (2009). GRNN has several advantages to improving the efficiency in

constructing meta-models. GRNN’s model training process is an instance-based

approach. Therefore, one can expect to reduce the computational cost caused by the

iterations, such as MLP, RBF network, and SVR. This is a considerable advantage over

other algorithms such as kriging, which is known to have a high computational cost in the

model construction. Updating kriging models with new data samples is not trivial (Jin,

2011). In addition, GRNN requires only one parameter other than the selection of

distance measure (e.g., Euclidean). This parameter is called the smoothing factor and

known insensitive (Gheyas & Smith, 2010). As for the EC algorithm, PSO is chosen

because of its advantages. Most of all, the implementation of PSO is straightforward, the

number of parameters is less than many other EC algorithms, and efficiency with

reasonable quality of solutions (Zhang et al., 2000; Mendes et al., 2002; Chatterjee et al.,

2005; Guo et al., 2008; Escalante et al., 2009).

To the best of our knowledge, less attention has been given to meta-modeling

using GRNN although it offers positive advantages applicable to meta-modeling as

mentioned above. Therefore, we propose Meta-modeling Using GRNN and PSO (called

MUGPSO) and aim to identify its capability as a meta-modeling algorithm in this

research. For that purpose, we maintain the simplest possible meta-modeling scheme

where one global meta-model constructed by GRNN is maintained and updated

29

throughout the run. The global meta-model is used to approximate the fitness function of

candidate solutions (i.e., particles) in the entire swarm. MUGPSO is tested on various

benchmark problems from the literature with different characteristics and compared with

the performance of other recent meta-modeling algorithms.

In this research, we employ MUGPSO to help improve the overall computational

efficiency in selecting the optimal hyper-parameters for bagging SVR models. However,

the applicability of meta-modeling in evolutionary computation is not limited to the

fitness function approximation. Population initialization, cross-over, mutation, and local

search can be replaced or assisted by meta-modeling (Jin, 2011). In this chapter, we

introduce meta-modeling models, kriging, PR, RBF networks, and GRNN. Techniques

related to meta-model training such as data sampling and evolution control are also

included.

3.2. Related work

3.2.1. Meta-models for fitness function approximation

Several previous research are available in relation to meta-modeling the fitness

function approximation in evolutionary computation. Jin et al. (2001) study four meta-

modeling techniques, KG, PR, RBF, and Multivariate Adaptive Regression Splines

(MARS). These meta-modeling techniques are tested on 14 different mathematical and

engineering test problems where the degree of nonlinearity, dimension, and noise is

different. Their performance are measured and compared in terms of accuracy, efficiency,

transparency, and simplicity. RBF shows the best performance among the four meta-

modeling techniques in terms of accuracy. RBF has the lowest impact on the sample size

30

and noise. Another advantage of RBF is the simplicity to implement while KG and

MARS are not due to their parameters. MARS does not perform well on difficult

problems where the degree of nonlinearity is high, small number of samples are available

to train, and the number of input features is high.

Similarly in Lim et al. (2007), PR, KG, RBF and multilayer-perceptron (MLP) are

considered. Meta-models are built using these four techniques and included in a memetic

algorithm. Four test functions are tested in order to compare the performance of the meta-

modeling techniques. The results compared to that of a regular genetic algorithm (GA)

reveal that PR and KG seem to provide more robust performance for the four test

functions.

We introduce kriging (KG), radial basis function (RBF), and polynomial

regression (PR) for meta-modeling methods to approximate the fitness function. It should

be noted that the selection of the approximation method is not limited to these three

introduced here. Based on the complexity of fitness function, one can consider one of the

simplest methods, such as k nearest neighbors. In Clark et al. (2005), support vector

regression is compared to KG, RBF, and PR over a number of test problems showing a

better performance.

3.2.2. Data sampling and evolution control techniques for meta-modeling

One of the main objectives of meta-modeling in evolutionary computation is to

reduce the computational cost (e.g., the actual fitness evaluation of computationally

expensive function for candidate solutions in EC). It is difficult to construct an

approximation model that guarantees a global optimal due to several reasons such as the

31

high dimensionality and limited number of training samples (Jin, 2005). Therefore, the

data samples from which the meta-model is constructed have to be carefully chosen in

order for the approximate model to be accurate as much as possible.

It is obvious that more data samples will be likely to result in a better approximate

model. Hence, it provides EC algorithms with a higher chance of obtaining better quality

solution (i.e., close to the global optimal). However, this requires more computational

effort in evaluating them with the original fitness function, which is assumed to be an

expensive one.

The initial data samples can be generated and then need to be evaluated for their

fitness function values in order to construct an initial approximate model. In some

applications, domain expert or history data are available to provide such initial data

samples. These cases fall into off-line sampling and training techniques. As the EC

algorithm continues throughout the iterations, candidate solutions at each iteration are

generated from the previous iteration using some sort of operators or rules. For instance,

a GA generate new set of candidate solutions at each iteration applying operators called

mutation and cross-over on the previous candidate solutions at the previous iteration.

Then, these candidate solutions have to be either evaluated or approximated.

Evolution control concerns managing which candidate solution to evaluate with

the original fitness function and to approximate with the approximate model. Using the

approximate model together with the original fitness function can improve the quality of

final solution achieved by the EC algorithm. Obviously, the computational cost increases

as more candidate solutions are needed to evaluate with the original fitness function. In

32

this process, new data samples that are evaluated with the original fitness function are

obtained. Using these data samples, the initial approximate model can be retrained to

improve its accuracy, which falls into on-line updating with evolution control. One can

exclusively employ an off-line sampling and training technique or include an on-line

updating with evolution control technique.

One of the most popular off-line sampling and training techniques is design of

experiments (DOE) based techniques. These DOE techniques include Latin hepercube

(LH) and central composite design (CCD). Given the dimension of the problem (i.e.,

the number of input features), LH splits each input feature range into strata of equal

probability (McKay et al., 1979). Then values are randomly distributed with one

from each stratum and they are randomly permuted forming the final set of data samples.

CCD, along with Box-Behnken design, is a widely used DOE technique to estimate a

second-order polynomial approximation (Wang & Wan, 2009). A CCD consists of a

factorial points, star points, and center points. An illustrative example for a two-

dimensional problem is shown in Figure 3.1.

Detailed reviews on DOE techniques including LH and CCD are available in

Robinson et al. (2004) and Hibbert (2012). Besides DOE techniques, off-line data

sampling can be achieved by Monte-Carlo and active learning methods.

33

Figure 3.1. An example of a central composite design for a two-dimensional problem.

(Circle, cross, square points indicate factorial, star, and center points respectively.)

On the other hand, various approaches are available for on-line updating with

evolution control. The most straightforward approach is to evaluate candidate solutions

that may have a good fitness function value (Jin, 2011). To this extent, the best candidate

solution, or several good solutions, at each iteration can be evaluated with the original

fitness function and the approximate model can be retrained with the data sample

included. The best candidate solution can be assumed to be the one that has the best

fitness function value approximated by the meta-model. These types of approaches are

referred to as an individual-based approach. On the other hand, one can also consider

generation-based approaches where all the candidate solutions in a fixed number of

iteration are evaluated. In this research, we focus on individual approaches.

Several research employ individual-based approaches by clustering the candidate

solution in each generation and choosing ones that are close to the centers (Kim & Cho,

2001; Jin & Sendhoff, 2004; Gomide, 2006) or the best ones in each cluster (Graning et

34

al., 2007). Instead of choosing the best candidate solution, randomly choosing a number

of candidate solutions is also possible. However, this random approach has not shown to

outperform the best approach (Jin, 2005).

Besides choosing best ones and random selection, another criterion is the degree

of approximation uncertainty (Jin, 2011). Because the accuracy of the approximate model

constructed by meta-models greatly affects the success in finding a good optimal

solution, such candidate solutions that have high degree of approximation uncertainty

have more potential to improve the approximate model.

3.2.3. Meta-modeling with particle swarm optimization

Fitness function approximation using meta-modeling has been given much

attention in the literature during the past decade. However, the use of meta-modeling for

PSO is relatively less than other EC algorithms (Sun et al., 2013; Sun et al., 2014). Here,

we focus on the related research to meta-modeling for PSO. Recent meta-modeling

research for GA and DE include Dias et al. (2013) and Park & Lee (2014), respectively.

Reyes-Sierra & Coello (2005) propose four different fitness approximation

approaches based on the closest particles and apply in a multi-objective PSO. Hendtlass

(2007) defines a reliability measure on each particle and estimate the fitness based on the

fitness inheritance. GRNN is applied in Fang-shu & Jian-Chao (2009) to support PSO by

approximating the fitness function evaluation. Praveen & Duvigneau (2009) propose

using meta-models constructed by RBF network and examine the performance in an

aerodynamic shape design application, where the real fitness function is associated with

35

CFD. Similarly, Bird & Li (2010) and Parno et al. (2012) consider meta-modeling using

polynomial regression and kriging.

More recently, Sun et al. (2013) propose a new fitness approximation approach

for PSO based on fitness inheritance. An ensemble of RBF networks and polynomial

regression is proposed in Tang et al. (2013) and tested on several benchmark functions

and engineering design problems. In Ren et al. (2013), GRNN is considered for fitness

function approximation and tested on a few benchmark functions. Regis (2014) develops

a meta-modeling framework, which uses PSO and RBF network. In the framework, each

particle in the swarm considers multiple trial positions and the most promising particle is

chosen using the RBF meta-model. Sun et al. (2014) propose a meta-modeling

framework called two-layer surrogate assisted particle swarm optimization (TLSAPSO).

TLSAPSO employs two different types of meta-model constructed by RBF networks.

They are called the global and local meta-models where the global meta-model is

constructed based on the whole swarm and expected to smooth out the local optimum.

The local meta-models are constructed for each particle and aim to approximate the local

fitness landscape. These two types of models are selectively used throughout the

iterations based on the accuracy. The aforementioned algorithms are compared with the

presented MUGPSO and discussed later sections in this section.

3.3. Meta-modeling algorithms

3.3.1. Kriging

A kriging model can be written to represent the original function as follows:

 () () () (3.1)

36

, where () is a kriging model, () is a global model of the original function, and ()

represents a local deviation from the global model (), which is usually a Gaussian

random function with zero mean and non-zero covariance (Jin, 2005). Assuming that the

global model () is a polynomial, Equation (3.1) can be rewritten as follows:

 () () (3.2)

, where represents the underlying coefficients of the polynomial. The covariance ()

can be represented as follows:

 [() ()] () (3.3)

, where is the process variance, is the correlation between any two data samples

and . One of the commonly used correlation functions is Gaussian correlation function

(Shi & Rasheed, 2010). Gaussian correlation function can be represented as follows:

 () [∑ | |

]
(3.4)

, where is the dimension of the problem, and are the th element in the samples

 and respectively, and is the Gaussian correlation function parameter. Finally, the

original function () can then be approximated by kriging:

 ̂() ̂ () (̂) (3.5)

, where ̂() is the approximated value given the input and * +, ̂ is the

estimated parameter for , () , () ()-
 , and is a unit vector with a

length of . The parameters can then be obtained using least squares or maximum

likelihood method (Jin, 2005).

37

3.3.2. Polynomial regression

PR is capable of approximating nonlinear functions by introducing different

degrees of order to the linear regression. For instance, a second-order polynomial

regression model can be represented as follows:

 ̂() ∑

 ∑

 ∑∑

(3.6)

, where the terms are the coefficients. These coefficients can be computed using least

squares methods. The number of coefficient terms in the polynomial regression model is

equal to ()() , where is the dimension of the input space (i.e., the

number of input features). In addition, for a second-order polynomial, it is recommended

to include 1.5 , 3 , and 4.5 data samples to construct the polynomial

regression models for problems with a dimension of 5-10, 10-20, and 20-30 input

variables respectively (Jin et al., 2001).

3.3.3. Radial basis function network

RBF network is a type of neural network, which consists of an input layer, hidden

layer, and output layer. The input layer consists of input neurons each of which represents

each data sample. Each of hidden neurons in the hidden layer is associated with the radial

basis function. The number of hidden neurons in a RBF network can be as many as the

number of data samples . In the output layer, there exists an output neuron or multiple

output neurons depending on the number of features in the problem. A RBF network can

be written as follows:

38

 ̂() ∑ ‖ ‖

(3.7)

, where is the radial basis function for the ith hidden neuron, is the bias term, is

the weight coefficient associated with . Note that the term ‖ ‖ essentially

computes the distance between and . In case the number of data samples is large, the

number of hidden neurons also increases. This makes it difficult to implement on such a

large dataset requiring more computational effort. Therefore one can utilize a generalized

RBF network as follows:

 ̂() ∑ ‖ ‖

(3.8)

, where is the center, which should be determined by the user. Then, it is a major task

to determine how many number of centers and where to locate them. The most common

RBF function is Gaussian kernel function (Jin, 2005), which can be represented as

follows:

 ‖ ‖ (
‖ ‖

)
(3.9)

Once the centers are determined, the bias and weight terms and can be

calculated by minimizing the sum of squares (i.e., linear least squares).

3.3.4. Generalized regression neural network

GRNN was first introduced by Specht (1991). In this research, GRNN will be

used to construct a meta-model at each iteration of PSO in order to approximate the

fitness function value of particles. GRNN has several advantages to be used as a meta-

39

modeling algorithm. GRNN is an instance-based learning algorithm, which can greatly

reduce the meta-model training time, therefore, the overall computation cost of PSO as

well. Its only one parameter, smoothing factor, is not very sensitive to its setting (Gheyas

& Smith, 2010). In addition, due to the low sensitivity of the smoothing factor, the

optimal selection of this parameter is not as much necessary as other algorithms including

MLP and SVR. Some other advantages include its ability to avoid a local minima and

over-fitting to the training data, and robustness against noise (Currit, 2002; Yagci et al.,

2005; Białobrzewski, 2008).

GRNN considers each training data as a cluster. Once it takes a new input data

for the prediction of the output value, it calculates the Euclidean distance between the

input and each training data . The distance between and is calculated as follows:

 () ()

 () (3.10)

, where each input data is defined as (). is the number of features in

the problem. Note that, in case of PSO, we define the dimension of the problem as ,

which should not be confused when GRNN is used as the meta-modeling algorithm for

PSO. GRNN calculates the predicted output given an input, ̂() , according to the

equation below:

 ̂() ∑
 ()

(

)

∑
(

)

 (3.11)

where is the number of training data and is the smoothing factor. Note that the

predicted output is a weighted average of the actual outputs of all training data where the

weights are the Euclidean distance between and each training data . As mentioned

40

above, the smoothing factor is not very sensitive and also is not the main goal of this

research, thus it is set to unless specified otherwise.

3.4. Meta-modeling using generalized regression neural network and particle swarm

optimization (MUGPSO)

 PSO can be used to solve an optimization problem. We briefly introduce a

variant PSO, called global PSO (GPSO), proposed by Shi & Eberhart (1998a). First, we

denote the number of particles in a swarm as and refer a particle to as for

 . Each particle in a swarm is a candidate solution to the given optimization

problem of dimension . Let
 (

) denote the position vector of particle at

iteration t. Accordingly, a swarm with number of particles is represented as

(

) at iteration t.

At each iteration, PSO keeps track of the local best and global best particles.

 (

) is defined as the local best solution obtained over iterations for particle

 . Therefore, we have local best solutions for each particle at iteration . Similarly,

the global best solution at iteration is represented as (

).

Every particle in the swarm is moved by some portion of its local best and the

global best solution at each iteration, so that the entire swarm can also move towards to

the optimal solution. The particles are updated as follows:

 (

) (

)

(3.12)

(3.13)

where is inertia weight, and are called acceleration coefficients for the local and

global best solutions, and and are uniform random numbers distributed in [0,1]. The

41

particle update equation stochastically moves each particle around its local and global

best solutions using the inertia weight and acceleration coefficients. The acceleration

coefficients and are set to 2 in this research based on reported empirical studies

(Clerc & Kennedy, 2002; Shi & Eberhart, 1998b). The inertia weight controls the extent

to which the memory of the particle’s previous velocity influences the new velocity. It

was reported in Van den Bergh & Engelbrecht (2006) that velocities quickly explode to

large values in the early iterations, especially for particles far from the local and global

best. This allows particles to move beyond the boundaries of the search space, which

results in divergent solutions. Inertia weight helps prevent particles to diverge by

controlling the contribution of previous movement direction by allowing bigger

movements at the beginning and smaller movements towards to the end of the run, that is

the inertia weight decreases as the iteration proceeds (Van den Bergh & Engelbrecht,

2006). One can define the inertia weight as follows:

()

(3.14)

where is the maximum number of iterations and and are the starting and

end values of the inertia weight respectively. We set and set to 0.9 and 0.4

respectively based on previous research conducted in (Shi & Eberhart, 1998b).

Figure 3.2. describes the entire procedure of MUGPSO. In order to run a

MUGPSO, one should initialize several parameters related to PSO mentioned in the

previous section. These PSO parameters include the inertia weight, acceleration

coefficients, maximum number of iterations, swarm size, etc. All the parameters used in

this research are reported in Table 3.1. The selection scheme for particles to be re-

42

evaluated with the real fitness function is inspired by the global model included in

TLSAPSO (Sun et al., 2014).

Figure 3.2. Schematic procedure of MUGPSO

Table 3.1. Parameter settings of GPSO and MUGPSO

Parameter Value

Problem dimension () 30

Number of particles () 60

Acceleration coefficients () 2

Inertia weights () 0.9 and 0.4

Maximum number of iteration () 166 for GPSO

MUGPSO adaptively sets for each

benchmark problem

Maximum number of real fitness

function evaluations

10,000

Storage threshold () 0.001

Smoothing factor Maximum number of

iteration ()

1

Evaluate the swarm with
the real fitness function

Update velocity and particles

Update local and global best

Construct the meta-model
using GRNN

Approximate the fitness
function value of updated

particles using the meta-model

Re-evaluate potential particles
with the real fitness function

Store evaluated particles and
their fitness function values

Potential
particles
exist?

Optimal solution

No

Yes

Stopping
criterion met?

Yes

No

Generate the initial swarm
using Latin hypercube design

Initialize parameters

43

As shown in Figure 3.2., MUGPSO generates an initial swarm of particles by

employing the Latin hypercube design method. Then, this initial swarm is evaluated with

the real fitness function for its particles. The particles and their original fitness function

values in the initial swarm are stored for constructing meta-models. The particles are

updated using Equation (3.13).

Throughout the iterations, MUGPSO, similar to PSO, updates the velocity and

particles. A meta-model is then constructed using GRNN on the closest data in the

storage from the current updated particles. The meta-model approximates the fitness

function on these updated particles. As mentioned in the previous section, PSO aims to

reach the global optimum by moving its particles by some portion of its local best and the

global best solution at each iteration. For this reason, MUGPSO re-evaluates particles

whose approximated fitness function values are better than their local best with the real

fitness function.

The particles re-evaluated with the real fitness function will be considered

informative and stored for constructing meta-models in the later iterations. In the current

version of MUGPSO, we define a particle is informative for PSO if the portion of

improvement obtained by re-evaluated real fitness function value is larger than the

approximated value by the meta-model. This can denote that we can expect to construct

meta-models to approximate the real fitness function close enough using the information

that have been stored. This approach is simple, however, and showed promising results

in (Park & Lee, 2014; Sun et al., 2014) since local and global best solutions are important

for PSO to move toward the optimal solution region.

44

Obviously, as the iteration process proceeds, the number of particles and the

fitness function values increases. Since MUGPSO uses the closest particle and its fitness

function value to train the global meta-model at each iteration, the size of the particle

storage affects the computational efficiency in calculating the distance from each particle

to those in the storage. This is an important area to further research and improve the

current version of MUGPSO.

Pseudo code: MUGPSO

1: t=0

2: Swarm initialization (

) with Latin hypercube design

3: Evaluate with the real fitness function

4: Define local best positions

5: Define global best position ((
))

6: while (stopping criteria not met)

7: Update velocities using Equation 1

8: Update particles using Equation 2

9: Construct a meta-model using GRNN with the closest data samples from the storage

10: Estimate fitness function values of particles using the meta-model

11: if at least one such particle exists that (
) ̂(

)

12: for each particle

13: if (
) ̂(

)

14: Evaluate
 with the real fitness function

15: if |(̂(
) (

)) (
)|

16: Store
 and (

)

17: end if

18: end if

19: end for

20: else

21: Evaluate the whole swarm with the real fitness function

22: Store the whole swarm and fitness function values

23: end if

24: Update local best positions and global best position

25: t=t+1

26: end while

Figure 3.3. A pseudo code for MUGPSO

45

The above steps are repeated until a stopping criterion is met. MUGPSO stops

when the maximum number of iteration or the maximum number of real fitness function

evaluations is reached. A pseudo code of MUGPSO is shown in Figure 3.3.

3.5. Experimental results

We examine the performance of MUGPSO on ten benchmark problems from

Suganthan et al. (2005). Comparisons with other meta-modeling techniques reported in

Sun et al. (2014) will also be discussed with these ten benchmark problems. They cover

various characteristics of optimization problems as indicated for each problem below.

The ten benchmark problems and their characteristics are listed as follows:

(1) Shifted sphere

 () ∑

Unimodal

 , -

 ()

(3.15)

(2) Shifted Schwefels problem 1.2

 () ∑(∑

)

Unimodal

 , -

 ()

(3.16)

46

(3) Shifted rotated high conditioned elliptic

 () ∑()

Unimodal

 , -

 ()

 : orthogonal matrix

 ()

(3.17)

(4) Noise is added to F2

 () (∑(∑

)

)(| ()|)

Unimodal

Gaussian noise added from ()

 , -

 ()

(3.18)

(5) Schwefels problem 2.6 with global optimum on bounds

 () {| |}

Unimodal

 : matrix, is a uniform random number from , -

 , each is a random number from , -

 , -

 ()

(3.19)

(6) Shifted Rosenbrocks

 () ∑ . (
)

 ()

 /

Multimodal

(3.20)

47

A very narrow valley around local optima

 , -

 ()

(7) Shifted rotated Griewanks without bounds

 () ∑

 ∏ (

√
)

Multimodal

Initial swarm from , -

The global optimum locates outside of the range

 ()

 : linear transformation matrix

 ()

(3.21)

(8) Shifted rotated Ackleys with global optimum on bounds

 () (√

∑

) (

∑ ()

)

Multimodal

Global optimum on the boundary

Narrow region with many local optima around the global optimum

 , -

 ()

 : linear transformation matrix

 ()

(3.22)

(9) Shifted Rastrigins

 () ∑(
 ())

Multimodal

Many local optima

 , -

(3.23)

48

 ()

(10) Shifted rotated Rastrigins

 () ∑(
 ())

Multimodal

Many local optima

 , -

 ()

 : linear transformation matrix

 ()

(3.24)

Before we compare MUGPSO with other meta-modeling algorithms, each

benchmark function is tested with GPSO (global PSO) and MUGPSO. GPSO is a variant

of PSO and does not approximate the fitness function using meta-models. Therefore,

every candidate solution throughout the entire run has to be evaluated with the real fitness

function. Table 3.1. shows the parameter settings for GPSO and MUGPSO. In order to

compare MUGPSO to others, most parameters are consistently set the same as in Sun et

al. (2014).

The maximum number of iterations for GPSO is set to 166, which allows 9,960

real fitness function evaluations since the number of particles is 60. For MUGPSO, the

maximum number of iterations is adaptively set according to the maximum number

of real fitness function evaluations allowed. The maximum number of real fitness

function is set to 10,000, which is equivalent to the settings in Sun et al. (2014) for a

comparison purpose. For instance, in order to set for F1() , we ran MUGPSO

49

several times to see what iteration MUGPSO reaches around 10,000 real fitness function

evaluations. MUGPSO roughly reached 400 iterations when the maximum number of real

fitness function evaluations is used. Note that, in most of cases for every benchmark

functions, MUGPSO stopped using less than 10,000 real fitness function evaluations (see

Table 3.2.).

Table 3.2. Statistical results of solutions obtained by GPSO and MUGPSO with a limit of

10,000 real fitness function evaluations

 Algorithms Global

optimum

Best Worst Mean SD Number of

Evaluations

F1 GPSO

MUGPSO

-4.50e+02 -3.88e+02

-4.29e+02

-1.28e+02

-3.19e+02

-2.49e+02

-4.03e+02

9.55e+01

3.27e+01

9960

10016

F2 GPSO

MUGPSO

-4.50e+02 6.44e+03

2.21e+03

1.76e+04

1.59e+04

1.34e+04

8.70e+03

3.63e+03

4.35e+03

9960

9863

F3 GPSO

MUGPSO

-4.50e+02 3.65e+07

2.16e+07

1.68e+08

5.87e+07

7.39e+07

3.39e+07

3.87e+07

1.28e+07

9960

9649

F4 GPSO

MUGPSO

-4.50e+02 8.30e+03

9.66e+03

4.58e+04

3.20e+04

2.92e+04

2.17e+04

1.04e+04

8.39e+03

9960

9026

F5 GPSO

MUGPSO

-3.10e+02 6.00e+03

5.01e+03

8.13e+03

6.75e+03

7.32e+03

5.60e+03

7.51e+02

5.17e+02

9960

9441

F6 GPSO

MUGPSO

3.90e+02 5.86e+05

1.45e+04

3.33e+06

1.05e+05

1.87e+06

0.06e+06

1.11e+06

3.49e+04

9960

10016

F7 GPSO

MUGPSO

-1.80e+02 -1.73e+02

-1.76e+02

-1.51e+02

-1.67e+02

-1.63e+02

-1.71e+02

6.47e+00

3.21e+00

9960

10002

F8 GPSO

MUGPSO

-1.40e+02 -1.18e+02

-1.19e+02

-1.18e+02

-1.18e+02

-1.18e+02

-1.18e+02

0.04e+00

0.07e+00

9960

8380

F9 GPSO

MUGPSO

-3.30e+02 -2.56e+02

-2.87e+02

-1.51e+02

-1.95e+02

-2.14e+02

-2.51e+02

3.30e+01

3.03e+01

9960

8189

F10 GPSO

MUGPSO

-3.30e+02 -1.37e+02

-2.11e+02

-8.18e+01

-8.40e+01

-1.07e+02

-1.37e+02

1.59e+01

4.54e+01

9960

9692

Each algorithm is independently run for ten times. The comparative results report

the mean, standard deviation, best, and worst solution achieved from the ten repetitions

for each benchmark function. In addition, the mean number of real fitness function

evaluations is also reported. These results are shown in Table 3.2. We report the

50

statistical results obtained by GPSO and MUGPSO when the number of real fitness

function evaluations is limited to 20,000 in Appendix I.

Given that the number of real fitness function evaluations is limited to 10,000,

one can claim (from Table 3.2.) that MUGPSO provides a quality optimal solution to all

benchmark problems when compared to the results of GPSO. For benchmark problems

F1, F3, F5, F6, F7, and F9, MUGPSO seems to outperform GPSO in terms of all the

statistics used, mean, standard deviation, best, and worst solutions. It appears that

MUGPSO provides a slight higher standard deviation and best solutions for F2, F4, and

F10 respectively. For F8, MUGPSO only seems to outperform GPSO in terms of the best

solution and the results do not seem to differ significantly. Note that F8 is known to have

the global optimum on the boundary in a narrow region. Both GPSO and MUGPSO

cannot seem to escape from local optimum.

Table 3.3. t-test results for the results from the ten repetitions of GPSO and MUGPSO

Benchmark

Problem

(GPSO > MUGPSO)

p-value

F1 2.7088e-04*

F2 0.0091*

F3 0.005*

F4 0.0468*

F5 1.1067e-05*

F6 3.0488e-04*

F7 0.0019*

F8 0.9118

F9 0.0089*

F10 0.0366*

Additionally, we perform t-tests to identify the difference between GPSO and

MUGPSO using the results achieved from the ten repetitions. The alternative hypothesis

is that MUGPSO provides better solutions than GPSO when the number of real fitness

51

function evaluations is limited to 10,000. The significance level is set to 5% and

variance is assumed to be unequal. Table 3 shows the t-test results and they suggest that,

except for F8, MUGPSO is likely to provide better solutions than GPSO, while number

of real fitness function evaluations is limited.

Figures 3.4. through 3.7. show the convergence profile of GPSO and MUGPSO

throughout the iterations. The mean fitness values displayed on the y-axis are calculated

from the results obtained from the ten repetitions. The left hand figures are scaled to

show all the optimal solution that GPSO and MUGPSO have visited at each iteration for

each benchmark problem. Whereas in the right hand figures, they are scaled to zoom in

so that the final solutions achieved by GPSO and MUGPSO can be shown better for

comparison purposes. We have confirmed from the t-tests that MUGPSO is likely to

obtain better solutions when the number of real fitness function evaluations is limited.

We show these convergence profile figures for two of unimodal and multimodal

problems that MUGPSO seems to excel more significant than in other problems, which

are F1, F5, F6 and F7. The rest of convergence profile figures are in Appendix J.

Figure 3.4. Convergence profile of GPSO and MUGPSO on F1. The mean solutions visited at

every iteration (left) and mean solutions visited zoomed in near the end of iterations (right)

52

Figure 3.5. Convergence profile of GPSO and MUGPSO on F5. The mean solutions visited at

every iteration (left) and mean solutions visited zoomed in near the end of iterations (right)

Figure 3.6. Convergence profile of GPSO and MUGPSO on F6. The mean solutions visited at

every iteration (left) and mean solutions visited zoomed in near the end of iterations (right)

Figure 3.7. Convergence profile of GPSO and MUGPSO on F7. The mean solutions visited at

every iteration (left) and mean solutions visited zoomed in near the end of iterations (right)

53

In addition to the above comparisons between GPSO and MUGPSO, we consider

other meta-modeling techniques tested on the ten benchmark functions in the literature.

We adopt the results reported in Sun et al. (2014) where a meta-modeling technique

called two-layer surrogate-assisted particle swarm optimization (TLSAPSO) is proposed

and compared with the results from other research. Their comparative results include the

statistics of SVR-DE and SVC-DE (Lu et al., 2011), FESPSO (Sun et al., 2013), and

TLSAPSO (Sun et al., 2014) Table 3.4. describes the results of each of the algorithms on

the ten benchmark functions.

Table 3.4. Results of MUGPSO, SVR-DE, SVC-DE, FESPSO, and TLSAPSO on the ten

benchmark functions

 Algorithms Global

optimum

Best Worst Mean SD

F1 MUGPSO -4.50e+02 -4.29e+02 -3.19e+02 -4.03e+02 3.27e+01

SVR-DE 0.46e+00 0.86e+00 0.63e+00 0.09e+00

SVC-DE 0.06e+00 0.22e+00 0.11e+00 0.04e+00

FESPSO 4.78e+02 5.12e+03 2.40e+03 1.79e+03

TLSAPSO -4.50e+02 -4.49e+02 -4.50e+02 3.90e-03

F2 MUGPSO -4.50e+02 2.21e+03 1.59e+04 8.70e+03 4.35e+03

SVR-DE 6.72e+03 2.45e+04 1.64e+04 4.87e+03

SVC-DE 1.72e+03 7.12e+03 3.54e+03 1.33e+03

FESPSO 9.85e+02 6.01e+03 3.08e+03 1.71e+03

TLSAPSO 3.57e+03 7.99e+03 5.75e+03 1.44e+03

F3 MUGPSO -4.50e+02 2.16e+07 5.87e+07 3.39e+07 1.28e+07

SVR-DE 5.82e+07 1.68e+08 1.10e+08 2.75e+07

SVC-DE 7.38e+06 3.42e+07 1.80e+07 5.75e+06

FESPSO 8.33e+06 2.25e+08 5.59e+07 6.74e+07

TLSAPSO 5.64e+06 3.01e+07 1.57e+07 7.72e+06

F4 MUGPSO -4.50e+02 9.66e+03 3.20e+04 2.17e+04 8.39e+03

SVR-DE 1.20e+04 3.83e+04 2.70e+04 7.06e+03

SVC-DE 3.67e+03 1.27e+04 7.71e+03 2.77e+03

FESPSO 9.05e+03 2.91e+04 1.85e+04 7.24e+03

TLSAPSO 1.04e+04 2.55e+04 1.75e+04 3.84e+03

F5 MUGPSO -3.10e+02 5.01e+03 6.75e+03 5.60e+03 5.17e+02

SVR-DE 7.30e+02 3.28e+03 2.24e+03 5.69e+02

SVC-DE 1.49e+03 3.27e+03 2.39e+03 5.71e+02

FESPSO 7.95e+03 1.67e+04 1.20e+04 2.84e+03

TLSAPSO 5.25e+03 1.54e+04 1.01e+04 2.93e+03

F6 MUGPSO 3.90e+02 1.45e+04 1.05e+05 0.06e+06 3.49e+04

54

SVR-DE 5.11e+06 7.16e+07 2.32e+07 1.43e+07

SVC-DE 1.08e+03 1.04e+04 2.54e+03 3.11e+03

FESPSO 3.72e+06 1.47e+09 5.32e+08 4.74e+08

TLSAPSO 5.82e+02 6.42e+03 1.57e+03 1.76e+03

F7 MUGPSO -1.80e+02 -1.76e+02 -1.67e+02 -1.71e+02 3.21e+00

SVR-DE 1.02e+00 1.12e+00 1.06e+00 2.35e-02

SVC-DE 1.17e-01 4.40e-03 4.03e-02 3.15e-02

FESPSO -1.79e+02 -1.74e+02 -1.77e+02 1.59e+00

TLSAPSO -1.79e+02 -1.75e+02 -1.78e+02 1.03e+00

F8 MUGPSO -1.40e+02 -1.19e+02 -1.18e+02 -1.18e+02 0.07e+00

SVR-DE 2.09e+01 2.12e+01 2.11e+01 6.39e-02

SVC-DE 2.09e+01 2.12e+01 2.08e+01 6.61e-02

FESPSO -1.19e+02 -1.19e+02 -1.19e+02 1.43e-01

TLSAPSO -1.19e+02 1.19e+02 -1.19e+02 4.93e-02

F9 MUGPSO -3.30e+02 -2.87e+02 -1.95e+02 -2.51e+02 3.03e+01

SVR-DE 1.79e+02 2.17e+02 2.01e+02 1.14e+01

SVC-DE 1.84e+02 2.27e+02 2.09e+02 1.31e+01

FESPSO -2.82e+02 -1.95e+02 -2.37e+02 2.93e+01

TLSAPSO -2.73e+02 -2.00e+02 -2.29e+02 2.39e+01

F10 MUGPSO -3.30e+02 -2.11e+02 -8.40e+01 -1.37e+02 4.54e+01

SVR-DE 1.80e+02 2.34e+02 2.15e+02 1.29e+01

SVC-DE 1.93e+02 2.38e+02 2.15e+02 1.37e+01

FESPSO -2.11e+02 -6.05e+01 -1.57e+02 5.06e+01

TLSAPSO -2.60e+02 -1.14e+02 -1.91e+02 4.96e+01

Overall, MUGPSO outperforms others on F9 in terms of the mean and best

solutions from the ten repetitions. As for other benchmark functions, TLSAPSO, SVR-

DE, and SVC-DE seem to provide better solutions. Comparing the results further,

MUGPSO does not provide the worst solutions for any of the ten benchmark functions

and yet the results obtained by MUGPSO are comparable to the best ones for every

benchmark function. One should note that the current version of MUGPSO is designed to

be as simple as possible, in order to identify the applicability of GRNN as a meta-

modeling algorithm. The computational cost of MUGPSO in constructing meta-models

throughout the iterations is likely to be less than the other meta-modeling algorithms. In

addition, RBF network, SVM, and SVR are employed respectively in TLSAPSO, SVR-

55

DE, and SCV-DE. These algorithms require more parameters and iterations to construct a

meta-model. The effort of optimizing parameters with GRNN is expected to be smaller

than others, since its only one parameter is known insensitive. In the current version of

MUGPSO, pre-defined smoothing factor is used for all the meta-models constructed

throughout the iterations and the results are satisfactory.

In order to compare the computational complexity in constructing the meta-

models, we analyze the complexity of MUGPSO and compared it to that of TLSAPSO

(Sun et al., 2014), which provided superior results on eight benchmark problems

considered. MUGPSO evaluates all the particles at the first iteration with the real fitness

function, which takes (). The initial particles and their real fitness function values

are then stored for constructing meta-models. TLSAPSO performs the same task at the

first iteration.

Starting from the second iteration, a meta-model is constructed using the closest

data samples in the storage to the particles in the current swarm. The distance calculation

for one particle requires (). It requires () to find the closest one in the storage,

where is the number of data samples in the storage. Therefore, we have ()

as the total complexity in calculating distances and finding the closest data samples in the

storage for all the particles in a swarm. Once the closest data samples are obtained,

GRNN can construct a meta-model and approximate the fitness function value for each

particle. For GRNN to construct a meta-model, summations and multiplications in

Equation (3.11) are required, which results in a linear time of () . Finally, the

computational complexity of MUGPSO in constructing meta-models is ().

56

Each particle is approximated using the meta-model, particles whose approximation is

better than its local best are re-evaluated with the real fitness function. These particles are

selectively stored and its corresponding space complexity is (), , where

 is the number of informative particles (i.e., the meta-model provides better fitness

function values than the previous local best.). However, in the worst case, MUGPSO re-

evaluates all the particles with the real fitness function, which makes the complexity

 () in storing. Finally, the overall time complexity of MUGPSO in constructing

meta-models is () which is equivalent to (()).

Similarly, TLSAPSO starts constructing meta-models from the second iteration.

TLSAPSO maintains two types of meta-models called the global and local throughout the

run. The global model represents an entire swarm whereas the local models are

constructed for each particle. The global model uses the closest data samples from the

global database to construct a meta-model using RBF networks. Similar to MUGPSO,

this process requires the distance calculation to find the closest one in the storage which

results in a complexity of (), where is the number of data samples in the

global database. The average computational complexity of constructing RBF networks is

 () (Oyang et al., 2005). The local model is constructed for each

particle when the number of data samples in each local database exceeds a threshold.

This requires (

) for each particle where

 is an arbitrary

number of data samples that the local model use to construct the meta-model. The

number of data samples is different for each local model for each particle. In the worst

case, TLSAPSO constructs local meta-model for every particle in the swarm, which

57

makes a total of ((

)) for constructing local meta-models.

Similar to MUGPSO, TLSAPSO re-evaluates particles with the real fitness function if the

approximation is better than the previous local best. In the worst case, the whole swarm is

re-evaluated with the real fitness function. This requires the same complexity of ().

The overall time complexity of TSLAPSO in constructing meta-models is then

 . (

)/

3.6. Summary

A meta-modeling approach named MUGPSO is proposed. The main objective is

to identify the capability of GRNN as a meta-modeling algorithm. For that purpose, the

current version of MUGPSO employs the most basic meta-modeling construction and

update scheme, where only one meta-model is maintained at each iteration. Regarding

advantages of GRNN, the model construction does not require iterations. This can result

in less computational costs in constructing meta-models if the size of storage is properly

managed. Its only one parameter, called smoothing factor, is known insensitive, which

requires less effort in optimizing the parameter.

The results obtained by MUGPSO and GPSO are compared. Given the limitation

on the number of real fitness function evaluations, MUGPSO provide better results than

GPSO for every benchmark function considered except for a benchmark problem F8,

where both seem to struggle to escape from local minimum. Also, compared with several

other meta-modeling approaches proposed in the literature (i.e., SVR-DE, SVC-DE,

FESPSO, and TLSAPSO), we have identified that MUGPSO can support PSO in finding

comparable optimal solutions. For F9 where the function characteristic is multimodal

58

with many local optimum, MUGPSO achieved the best results in terms of the mean and

best solutions. Additionally, we compare the computational cost in constructing meta-

models for MUGPSO and TLSAPSO and show how much computational cost can be

reduced.

CHAPTER 4 META
2
 PREDICTION MODELING FRAMEWORK

4.1. Overview of Meta
2

Figure 4.1. Illustration of the Meta
2
 framework

Meta
2
 consists of a modeling layer and optimization layer as shown in Figure 4.1.

In the modeling layer, a prediction model is constructed using bagging with SVR as the

base learning algorithm. The optimization layer aims to select the hyper-parameters for

the bagging model in the modeling layer. The optimization problem is to select a set of

hyper-parameters for SVRs that maximizes the prediction accuracy (i.e., minimizing the

prediction error) given a number of SVRs in a bagging model. A bagging model uses the

same hyper-parameters for its SVRs. PSO solves the optimization problem with meta-

modeling. The fitness function is the prediction accuracy of a bagging model whereas

each candidate solution represents a set of hyper-parameters. Meta-models are

constructed by GRNN and approximate the fitness function of PSO (i.e., MUGPSO) in

59

order to reduce the number of bagging model constructions for candidate solutions.

Figure 4.2. describes the overall procedure of Meta
2
.

Figure 4.2. Overall procedure of Meta

2

4.2. Problem formulation for Meta
2

We mentioned in Section 2.2.2. that the main focus of Meta
2
 is on the optimal

hyper-parameter selection of SVRs in a bagging model. As for bagging, the size of each

bootstrapped dataset is the same as the original dataset. The mean aggregating function is

used in this research. The number of learning algorithms is a very important parameter to

bagging in determining the prediction accuracy. However, as the number of learning

60

algorithms increases, the computational cost also dramatically increases. In Meta
2
, the

number of learning algorithms is a user input. SVR is chosen a default as the learning

machine. Given the number of SVRs, Meta
2
 applies the same hyper-parameters to all the

SVRs in a bagging. The hyper-parameters selected by Meta
2
 are the one that maximizes

the prediction accuracy. We consider the RBF kernel function for bagging SVR since it

has been successful in various applications for a single SVM and SVR (Chen, 2007; Lin

et al., 2008; Lins et al., 2012).

Therefore, the hyper-parameters selection for bagging SVR is now formulated

into a three dimensional optimization problem. The penalty coefficient , precision,

and for the RBF kernel function correspond to each of the three continuous-valued

decision variables. In the context of MUGPSO, a swarm consists of number of three

dimensional particles , each of which corresponds to a candidate solution of (, ,).

We assign the decision space on each of these three variables as shown in Table 4.1.

Table 4.1. Decision boundary for hyper-parameters

 Decision boundary Grid search

 , - , -

 , - , -

 , - , -

The optimal hyper-parameters will be found within these decision spaces. In

addition, to compare the performance of Meta
2
, we will also report the results of grid

search. The grid search is designed as appeared in Table 4.1. Within each decision space

for each hyper-parameter, the entire space is divided into ten points. This leaves 1,000

different combinations of hyper-parameters to construct bagging SVR models with. Note

61

that it may happen when the optimal hyper-parameters locate between two of these ten

points, in which case the grid search will not be able to find the optimal solution. This

decision space is set up based on previous research works (Fan et al., 2005; Moser &

Serpico, 2009; Kavaklioglu, 2011).

The fitness function (i.e., objective function) is measured by the mean square

error from a K-fold cross validation to avoid over-fitting. The entire dataset is randomly

split into K folds. One fold is held out for testing, while the rest is used as a training

dataset to construct a bagging SVR model. Prediction values for the testing dataset are

calculated using the constructed bagging SVR model. Then, the mean square error for the

kth fold is measured and the fitness for a particle is as follows:

∑. ̂ () ()/

 ()
∑

(4.1)

(4.2)

where is the number of testing data samples in the kth fold. This process continues for

the rest of the folds. Finally, the mean square errors for every kth fold test datasets are

averaged and represented as the fitness function value. Note that this fitness function can

be replaced by other loss functions, depending on the requirement of the given problem.

For instance, 0-1 loss function may be a better choice if this framework is applied to a

classification problem.

4.3. Experimental results

We evaluate Meta
2
 on several noisy datasets. Three datasets are artificially

generated from using the sinc function. Also, the results on a resistance spot welding

62

(RSW) quality dataset are discussed. We use LIBSVM (Chang & Lin, 2011) for the

implementation of -SVR. For PSO, a variant PSO, called global PSO (GPSO), is used

(Shi & Eberhart, 1998a). The inertia weight for velocity vectors is employed with an

initial value of 0.9 and end value of 0.4. The number of swarm is set to 30, which is

10 3, the number of decision variables. Since the stochastic nature of PSO, both GPSO

and our proposed framework are repeatedly for ten times with the same setting. As for the

number of SVRs in a bagging model, we consider 5, 10, … , 50 to identify the optimal

number of SVRs.

4.3.1. Artificial datasets

Three artificial datasets are generated using a univariate sinc function. Different

levels of Gaussian noise are added. The three sinc functions are generated as follows:

 ()
 ()

 (4.3)

where . A predefined number of values are samples on uniformly spaced

grid , -. Gaussian noise with zero mean and standard deviation is then

added to each of the three functions such that () . Table 4.2. shows

characteristics of the three datasets. Figure 4.3 through 4.5 illustrate these three datasets.

Table 4.2. Noisy artificial dataset characteristics

Dataset Noise level Sample space Number of values

1 1 0.2

 , -

37 2 10 2

3 0.1 0.02

63

Figure 4.3. Visualization of dataset1

Figure 4.4. Visualization of dataset2

Figure 4.5. Visualization of dataset3

64

We describe the experimental procedure on three datasets. As mentioned in the

previous section, the kernel function is RBF and hyper-parameters with their decision

boundaries are shown in Table 4.1. The entire dataset consisting of (),

is randomly split into five-folds for cross validation. The data samples in the first fold are

left for testing, while the rest of the data samples are used for training a prediction model.

Once a prediction model is constructed, the test dataset is presented to the model to

calculate the prediction values. This process is repeated for the other four-folds and the

mean square error for the predicted values. In case of grid search, every set of candidate

hyper-parameters is used to construct five-fold cross validated single SVR or bagging

SVR. As for PSO, each particle represents a candidate set of hyper-parameters and the

objective function is associated with either the five-cross validated single SVR or

bagging SVR. The maximum iteration for GPSO and Meta
2
 are set to 100 and 200

respectively. Therefore, for a single run of GPSO, the number of SVRs required to be

constructed is the product of the number of particles, number of folds, and maximum

iteration, which is equivalent to 30 5 100=15,000.

Table 4.3. Final results obtained for single SVR on the three datasets

Dataset

Grid search GPSO Meta
2

1 0.0428 0.0391 0.0391

2 2.6854 2.2465 2.2466

3 4.4047e-04 5.4901e-04 5.7443e-04

We briefly report the results of grid search, GPSO, and Meta
2
 for single SVR in

order to compare the performance improvement of bagging SVR. Table 4.3. reports the

best prediction accuracy obtained by each of the approaches. Note that, for GPSO and

65

Meta
2
, the best results from the ten repetitions are reported. Regarding bagging SVR,

GPSO seems to be able to select hyper-parameters that provide better prediction accuracy

than grid search for dataset1 and dataset2. Meta
2
’s results indicate their MSEs are

comparable to that of GPSO for the three datasets.

Tables 4.4. through 4.6. report the results obtained by grid search, GPSO, and

Meta
2
 for bagging SVR on dataset1, dataset2, and dataset3, respectively. Overall, the

MSE obtained by GPSO and Meta
2
 seem to outperform grid search, while Meta

2
 provides

comparable results to GPSO and better results in some cases (i.e., ten SVRs for dataset2).

Comparing the results of bagging SVR to single SVR, all best bagging SVR models

obtained by grid search, GPSO, and Meta
2
 outperform the single SVR for dataset1. When

grid search is used for 50 SVRs in a bagging model, the MSE is higher than that of single

SVR. For dataset2, the same (i.e., bagging SVR provides an improvement in prediction

accuracy) holds except when GPSO is used for 30, 40, 45, and 50 SVRs for bagging.

Also Meta
2
 for 25 SVRs through 50 doesn’t seem to provide a better result than single

SVR. As for dataset3, GPSO and Meta
2
 do not perform better than grid search for single

SVR. Also, for bagging SVR, the results obtained by GPSO and Meta
2
 do not outperform

in many cases. For instance, Meta
2
 only outperforms grid search when the number of

SVRs is 10 and 45. Similarly GPSO outperforms grid search only when the number of

SVRs is 50. For GPSO or Meta
2
 to obtain better solutions than grid search for dataset3,

one may need to consider using different PSO parameters. For instance, using a larger

number of maximum iteration can lead them to obtain better solutions. Table 4.7

66

summarizes the best results obtained by grid search, GPSO, and Meta
2
 for both single

SVR and bagging SVR on the three datasets.

Table 4.4. Best results obtained for bagging SVR on dataset1

Number of SVRs

Grid search GPSO Meta
2

5 0.0419 0.0364 0.0367

10 0.0416 0.0368 0.0361

15 0.0408 0.0369 0.0365

20 0.0405 0.0322 0.0367

25 0.0423 0.0369 0.0359

30 0.0399 0.0357 0.0366

35 0.0424 0.0369 0.0366

40 0.0412 0.0377 0.0382

45 0.0423 0.0377 0.0367

50 0.0442 0.0339 0.0371

Table 4.5. Best results obtained for bagging SVR on dataset2

Number of SVRs

Grid search GPSO Meta2

5 2.5463 2.1255 2.2465

10 2.5131 2.1348 1.9885

15 2.7190 2.2278 2.0934

20 2.6148 2.2126 2.1262

25 2.6814 2.3361 2.2653

30 2.6597 2.2813 2.3530

35 2.7923 2.2395 2.3256

40 2.7122 2.3836 2.3115

45 2.7646 2.3033 2.3139

50 2.7893 2.3590 2.2465

Table 4.6. Best results obtained for bagging SVR on dataset3

Number of SVRs

Grid search GPSO Meta
2

5 4.3496e-04 4.9450e-04 4.8398e-04

10 4.4613e-04 4.7434e-04 4.3422e-04

15 4.4736e-04 4.7887e-04 4.9765e-04

20 4.3308e-04 4.4941e-04 4.8732e-04

25 4.4186e-04 4.5668e-04 4.6098e-04

67

30 4.4316e-04 4.7753e-04 4.9705e-04

35 4.3741e-04 4.5778e-04 4.3924e-04

40 4.2295e-04 4.7684e-04 4.4853e-04

45 4.3906e-04 4.4308e-04 4.3372e-04

50 4.4372e-04 4.3526e-04 4.6839e-04

Table 4.7. Best results obtained by grid search, GPSO, and Meta
2
 for the three datasets

 Dataset1 Dataset2 Dataset3

Number

of SVRs

Number

of SVRs

Number

of SVRs

Grid

search

Single SVR 1 0.0428 1 2.6854 1 4.4047e-04

Bagging

SVR

30 0.0399 10

2.5131

40 4.2295e-04

GPSO

Single SVR 1 0.0391 1 2.2465 1 5.4901e-04

Bagging

SVR

20

0.0322

5

2.1255

50 4.3526e-04

Meta
2

Single SVR 1 0.0391 1 2.2466 1 5.7443e-04

Bagging

SVR

25

0.0359

10

1.9885

45 4.3372e-04

Remark that Meta
2
 aims to construct a bagging SVR model by finding an optimal

set of hyper-parameters using PSO with meta-modeling. The meta-modeling approach

approximates the objective function of the optimization problem to reduce the

computational cost in constructing bagging SVR models for candidate solutions. Due to

this reason, we aim to obtain a comparable result to GPSO with a reduced computational

cost. Figures 4.6 through 4.8 show the mean number of bagging SVR model constructed

and the mean elapsed time from the ten repetitions for both GPSO and Meta
2
. As

mentioned earlier, 3,000 fitness function evaluations are performed for GPSO, which is

indicated as a red line in the figures on the left. These 3,000 fitness function evaluations

require to construct (3,000 K-folds number of SVRs for bagging) SVR models. For

example, the number of SVRs constructed for five SVRs in GPSO is equal to 75,000. On

68

the other hand, Meta
2
 performed about 2,200 through 2,400, 2,400 through 2,800, and

2,000 through 2,300 fitness function evaluations for dataset1, dataset2, and dataset3,

respectively. For example, the mean number of SVRs constructed for five SVRs in Meta
2

for dataset1 is about 55,000, which requires 20,000 less SVRs in the PSO run.

On the right side of Figures 4.6 through 4.8, the mean elapsed time in minute is

shown. Solid bars and lines represent the results of GPSO and empty bars represent

Meta
2
. Roughly speaking, the mean time increases for both GPSO and Meta

2
 with all

three datasets as the number of SVRs increases.

Figure 4.6. Mean number of fitness function evaluations for GPSO and Meta

2
 (left) and

mean elapsed time in minute (right) for dataset1

Figure 4.7. Mean number of fitness function evaluations for GPSO and Meta

2
 (left) and

mean elapsed time in minute (right) for dataset2

69

Figure 4.8. Mean number of fitness function evaluations for GPSO and Meta

2
 (left) and

mean elapsed time in minute (right) for dataset3

In order to confirm that Meta
2
 provides comparable results with a reduction in the

computation time to GPSO, which does not use meta-modeling, we conduct t-tests

between the results obtained by the ten repetitions for GPSO and Meta
2
. The t-tests are

performed on the prediction accuracy and computation time. Note, for each number of

SVRs, GPSO and Meta
2
 construct bagging SVR models ten times and their prediction

performance and computation times are used for the t-tests. The significance level for the

t-tests is set to 5%.

The alternative hypothesis for prediction accuracy, MSE, as

, which is

“given a number of SVRs for bagging the prediction accuracy obtained by GPSO and

Meta
2
 are different”. As for the computation time, the alternative hypothesis

 is “the

time taken to complete Meta
2
 is less than GPSO.” Both types of t-tests assume that the

results from GPSO and Meta
2
 have unequal variances. The significance level used for the

tests is 5%. Table 4.8. shows the p-values for these t-tests. Therefore, in an ideal case for

Meta
2
, the t-tests should support to not reject the null hypothesis for prediction accuracy

and to reject the null hypothesis for the computation time. That way, we will be able to

70

conclude Meta
2
 can provide comparable solutions compared to GPSO while reducing the

computation time.

Table 4.8. p-values for t-tests between GPSO and Meta
2
 in their solution quality and

computation time

Number

of SVRs

Dataset1 Dataset2 Dataset3

5 0.9449 0.0101 0.9892 0.0000 0.2686 0.0000

10 0.6588 0.2620 0.2521 0.0000 0.9965 0.0000

15 0.6762 0.2633 0.1922 0.0000 0.2210 0.0000

20 0.3863 0.1027 0.3902 0.0000 0.0588 0.0000

25 0.2026 0.3843 0.5652 0.0031 0.7800 0.0022

30 0.9149 0.0236 0.4232 0.0029 0.3805 0.0000

35 0.8632 0.0275 0.5668 0.0000 0.1381 0.0000

40 0.3105 0.0024 0.9948 0.0289 0.9607 0.0040

45 0.2543 0.0338 0.6392 0.0012 0.7596 0.0067

50 0.9762 0.0193 0.1187 0.0049 0.9970 0.0248

 *bold letters indicate that the p-values are small enough to reject the null hypothesis

In conclusion, we notice all the p-values for the t-tests on MSE do not reject the

null hypothesis. Therefore, it is likely that the quality of solution obtained by Meta
2
 is

comparable to GPSO for all the cases (i.e., different numbers of SVRs for the three

datasets). On the other hand, the p-values for elapsed time reject the null hypothesis. In

particular, Meta
2
 is likely to provide less computation time for dataset1 when the number

of SVRs is 5, 30, 35, 40, 45, and 50. As for dataset2 and dataset3, Meta
2
 will likely

provide less computation time for all cases. Note that the number of bagging SVR model

constructed in Meta
2
 is less than GPSO as mentioned earlier. We claim that Meta

2
 is

capable of providing comparable solutions with a reduced computational cost.

71

4.3.2. RSW quality dataset

The RSW quality dataset consists of 1,280 data samples, each of which represents

different welding parameters. Overall, there are two sets of weldment design-related

features corresponding to two different materials and one set of welding process related

features that describe the welding process performed on these two materials. The dataset

consists of 16 input features. The welding quality is described by nugget width in this

experiment. Particularly in this data set, three types of different materials are considered.

The data are obtained by physical testing conducted by welding experts. Table 4.9. shows

the welding design and process variables.

Table 4.9. Features for the welding quality dataset

Design features

Material

Thickness

Coating EG

Coating HDG

Coating weight

Surface class

Process features

Weld force

Min button DIA of stack-up

Weld current

Weld time

Response output

Nugget width

We construct bagging SVR models to predict the welding quality (i.e., nugget

width) using the dataset. There is a large amount of noise interrupting the task of

constructing a reliable prediction model. We briefly describe how the noise exists in the

dataset. In this problem, we define noise as a data sample that represents the same

welding parameters with different nugget width in millimeter.

Figure 4.9. shows how noise is distributed in the dataset. The way that the plot is

drawn is as follows. Firstly, we group the data samples based on the 16 welding

72

parameter features, so that in a group all the welding parameters are the same. This

results in 262 different groups of welding parameters, which corresponds to the x-axis in

Figure 4.9. The groups are sorted in an increasing order of their nugget width. The

number of data samples in each group ranges from two to as many as 232. Secondly, the

mean and standard deviation of nugget width are calculated for each group.

Figure 4.9. Illustration of noise in the RSW quality dataset

Then, the groups are ordered in ascending order of the mean nugget width. Blue,

red, and green lines represent the variability within a group, mean nugget width, and

approximate confidence interval. The confidence interval is calculated by assuming the

nugget width within each group is normally distributed with a 95% significance level.

Roughly speaking, the welding parameter groups from zero to 76 have no variability; in

other words, there is no noise. These welding parameters may simply lead to a bad weld

judging from the data. Groups from 77 to 103 are where the most significant noise exists

in this dataset. The rest of groups from 104 to the end do not seem to have significant

73

noise. Most of the variations seem to be the random variations caused by the welding

process.

The experiment procedure remains the same as for the three artificial datasets in

the previous section. However, for this dataset, three-fold cross validation is used. The

maximum iteration is set to 30 and 100 for GPSO and Meta
2
 respectively. Table 4.10.

reports the prediction accuracy obtained by grid search, GPSO, and Meta
2
 for single SVR

respectively. Note that, for GPSO and Meta
2
, the best results from the ten repetitions are

reported. The results show a slight improvement with both GPSO and Meta
2
 compared to

grid search.

Table 4.10. Final results obtained for single SVR on the welding quality dataset
 Grid search GPSO Meta

2

 1.7704 1.7629 1.7637

Table 4.11. Best results obtained for bagging SVR on the welding quality dataset

Number of SVRs

Grid search GPSO Meta
2

5 1.7364 1.7185 1.7218

10 1.7269 1.7009 1.7111

15 1.7317 1.7217 1.7169

20 1.7431 1.7116 1.7185

25 1.7291 1.7201 1.7091

30 1.7264 1.7190 1.7209

35 1.7290 1.7307 1.7174

40 1.7302 1.7259 1.7259

45 1.7285 1.7280 1.7209

50 1.7328 1.7191 1.7199

Similarly, Table 4.11. reports that the results for bagging SVR. GPSO and Meta
2

seem to outperform grid search similar to single SVR. As confirmed earlier for the three

datasets, Meta
2
 seems to provide comparable results to GPSO with all different numbers

74

of SVRs. Better results are obtained for some cases (i.e., 15, 25, 35, and 45 SVRs). We

also notice that bagging SVR improves the prediction accuracy of a single SVR for this

dataset.

Table 4.12. summarizes the best results obtained by grid search, GPSO, and Meta
2

for both single SVR and bagging SVR on the RSW quality dataset. As mentioned in the

previous section for the three artificial datasets, due to the approximation procedure in

meta-modeling, we expect comparable solutions to GPSO with a reduced computational

cost by using Meta
2
. Figure 4.10. shows the mean number of bagging SVR models

constructed and the mean elapsed time from the ten repetitions for both GPSO and Meta
2
.

For this dataset, the number of fitness function evaluations is limited to 900 for GPSO,

which is indicated as a red line in the figure on the left. The 900 fitness function

evaluations require to construct (900 K-folds number of SVRs) SVR models. For

instance, when the number of SVRs in bagging is five, GPSO constructs 13,500 whereas

Meta
2
 constructs about 12,000 SVRs. Also, the figures on the right show the mean

elapsed time in minute. Solid bars and lines represent the results of GPSO and empty bars

represent Meta
2
.

Table 4.12. Best results obtained by grid search, GPSO, and Meta
2
 for the welding

quality dataset
 Number of SVRs

Grid search Single SVR 1 1.7704

Bagging SVR 30 1.7264

GPSO Single SVR 1 1.7629

Bagging SVR 10 1.7009

Meta
2
 Single SVR 1 1.7637

Bagging SVR 25 1.7091

75

Figure 4.10. Mean number of fitness function evaluations for GPSO and Meta
2
 (left) and

mean elapsed time in minute (right) for the welding quality dataset

To confirm that Meta
2
 provides comparable results to GPSO, t-tests are conducted

using the final solutions obtained by GPSO and Meta
2
 from the ten repetitions. Again, the

alternative hypothesis for prediction accuracy,
 , is given a number of SVRs for

bagging the prediction accuracy obtained by GPSO and Meta
2
 are different. The

alternative hypothesis for the computation time,

, is that the time taken for Meta
2
 is

less than GPSO. Note, for each number of SVRs, GPSO and Meta
2
 construct bagging

SVR models ten times and their prediction performance and computation times are used

for the t-tests. We assume that the solutions obtained by GPSO and Meta
2
 have unequal

variances. The significance level is 5%. The results of these t-tests are shown in Table

4.13. As mentioned earlier for the three artificial datasets, it is ideal if the t-tests can

support to not reject the null hypothesis for prediction accuracy and to reject the null

hypothesis for the computation time.

We conclude that all the p-values for the t-tests on MSE do not reject the null

hypothesis. Therefore, it is likely that Meta
2
 can obtain comparable solutions to GPSO all

76

the cases (i.e., different numbers of SVRs). As for the computation time, the null

hypothesis is rejected based on the t-test results for most of the cases, except that there

seems to be no significant computation time reduction when the number of SVRs is equal

to 5, 40, and 50. The t-test results indicate that Meta
2
 is likely to provide a reduction on

the computation time. Therefore, these results show that Meta
2
 is capable of providing

comparable solutions with a reduced computational cost for this welding quality dataset.

Table 4.13. p-values for t-tests between GPSO and Meta
2
 in their solution quality and

computation time for the welding quality dataset
Number of SVRs

5 0.2501 0.1660

10 0.6164 0.0000

15 0.8524 0.0000

20 0.1780 0.0000

25 0.9149 0.0121

30 0.6595 0.0293

35 0.0613 0.0402

40 0.5497 0.0559

45 0.7492 0.0011

50 0.7201 0.1425

*bold letters indicate the p-values are small enough to reject the null hypothesis

4.4. Integration of Meta
2
 with a design optimization and decision making system

We illustrate how Meta
2
 can be utilized to assist design activities using

modeFRONTIER which is a design optimization and decision making tool. In general,

multidisciplinary approaches and multi-objective decisions are involved in the design

process. These multi-disciplinary approaches include computer-aided design and

manufacturing (CAD/CAM), statistical analysis such as design of experiment (DOE)

techniques, and visualization whereas multi-objective decisions can be accomplished by

optimization and predictive modeling techniques. modeFRONTIER allows designers to

77

integrate these various activities into workflows where each activity can be examined

investigated with the graphical user interface (GUI). That way, designers and engineers

investigate the design solutions and the effects of conflicting objectives in order to

identify the design process.

Figure 4.11. Illustration of the integration process flow

Fig 4.11. describes a process flow of our developed Meta2 framework integrated

with the modeFRONTIER tool. Designers and engineers can use the tool to understand

and work on their design space. modeFRONTIER provides the GUI to define various

design alternatives as input in the entire design workflow. The prediction models

constructed by Meta2 are obtained by running MATLAB scripts. These MATLAB scripts

are connected to the modeFRONTIER workflow so that the prediction models can be

used to analyze the design alternatives designers and/or engineers are interested in

identifying further. One can summarize the results of the analysis and visualize the results

78

using a number of statistical analysis and visualization techniques included in

modeFRONTIER.

Figure 4.12. An example modeFRONTIER workflow for material selection using

prediction models constructed by Meta
2

Figures 4.12. through 4.15. show screenshots taken from the modeFRONTIER

tool. Figure 4.12. illustrates a workflow created in modeFRONTIER for the above

process. The input features listed in Table 4.9. are defined as input variable nodes.

79

The DOE Sequence node can read the dataset from a file such as text or Excel.

Also, as the name indicates, a number of DOE techniques are available to generate input

data. Then, the workflow moves forward to the MATLAB script node where the

MATLAB scripts for our Meta
2
 implementation are linked. Finally, the prediction values

for input data are defined as an output variable named Predicted_NUGGETWIDTH. In

addition, to illustrate the data analysis features included in modeFRONTIER, another

output variable named Diff_Pred_Target is included in the workflow, which calculates

the difference between the target and predicted values of an input data.

Figure 4.13. Run analysis feature in modeFRONTIER

Once a workflow is properly set up, one can run the workflow in the Run

Analysis tab as shown in Figure 4.13. Essentially, using this feature, the workflow can

repeat and also users can selectively run the workflow on certain input data (i.e., design

80

alternatives). After the run, the results can be viewed in the Design Space tab as shown in

Figure 4.14. All the input and output data are listed in tables. For example, the Designs

Table includes the input data and as well as the output. In addition, in the Design Space

tab, users can apply statistical analysis, visualization, and other features included in

modeFRONTIER.

Figure 4.14. Decision space explorer in modeFRONTIER

As an illustration, we apply clustering analysis on Diff_Pred_Target as mentioned

earlier. The reason we take the difference between the target and predicted values is

because as shown in Figure 4.9. noisy data are likely to have prediction values that are far

away from the target value. Therefore, by looking at the difference, one can easily

identify and examine noisy data in the dataset. Figure 4.15. shows the results of

hierarchical clustering applied to the difference values. We cluster them into three

clusters. Cluster0 is where the difference between the target and predicted values are the

largest, which means these are most likely noisy data. Note that the within cluster

81

distance is the smallest for Cluster0 and as well as the number of data. This can be an

indication that the variety of noisy data is closely distributed each other.

Figure 4.15. Clustering analysis in modeFRONTIER

4.5. Summary

In this chapter, we consider constructing bagging prediction models for noisy

manufacturing data with SVR as the base learning algorithm. The problem is examined

using our proposed prediction framework called Meta
2
. The hyper-parameter

optimization is solved using PSO with meta-modeling in Meta
2
 in order to obtain quality

solutions with a reduction in the overall computational cost. The proposed approach is

82

performed on three different datasets artificially generated with noise and as well as on a

noisy RSW quality dataset. The results obtained by Meta
2
 reveal that the solution quality

is comparable to GPSO in all the cases. In most of the cases, Meta
2
 is likely to provide a

significant computation time reduction. Also, the experimental results show that SVR is

an appropriate choice as the base learning algorithm for bagging as it provides an

improvement on the prediction accuracy. In addition, modeFRONTIER is used to

integrate the prediction models constructed by Meta
2
. An illustration of how these

prediction models can be integrated to support design decision makings using the features

included in modeFRONTIER such as statistical analysis.

CHAPTER 5 CONCLUSION AND FUTURE RESEARCH DIRECTION

In this research, we consider the noisy data problems often found in

manufacturing process data. Instead of removing noisy data, we aim to identify an

approach to construct more precise prediction models without removing them. A novel

prediction modeling framework, called Meta
2
, is proposed and examined a number of

noisy datasets. The main contribution of using this framework is that one can construct

prediction models for noisy data with improved prediction accuracy and less

computational cost.

The Meta
2
 prediction modeling framework can be used for noisy data where the

noise cannot be removed before constructing prediction models. The prediction models

are constructed using bagging SVR. We have identified related research to bagging

models and SVRs. In regards to bagging, related issues discussed include selecting the

base learning algorithm for bagging and number of learning algorithm. As for SVRs,

83

issues related to hyper-parameters selection are discussed, which includes the effect of

hyper-parameters and kernel functions.

The hyper-parameters for the SVRs in bagging models are selected using PSO

and MUGPSO. The experiments conducted on datasets in this research reveal that using

SVR to construct bagging models can improve the prediction accuracy on noisy data.

Also, MUGPSO provides comparable quality solutions with reduced computational cost.

As an illustration, we describe a scenario of how prediction models constructed by Meta2

can be integrated with design activities using modeFRONTIER.

The future research work is manifold. Regarding bagging, other ensembles such

as boosting, over-bagging, and under-bagging can be examined for other types of data

challenges. For example, imbalance classification problems are often seen. We assume

the prediction performance can be improved using one of the ensemble methods. Meta
2

can be further expanded for such an approach. In this research, we also only consider

SVR and RBF kernels. For classification with different kinds of data, SVM and other

kernels may be necessary to include in the optimization layer. This will leave a more

difficult optimization problem since the nature of decision variables include both integer

and real values. Based on related research in the literature, we assumed that using a set of

hyper-parameters for all the SVRs in bagging is appropriate. However, the choice is not

limited to such an approach. Different or dynamic sets of hyper-parameters can be

applied. Identifying different approaches to this extent and their results is a direction to

continue this research.

84

In regards to MUGPSO, we will work on improving the quality of final solutions.

This can be done by many different approaches. One of them is to add local meta-models.

The effect of smoothing factor for GRNN can be also examined further. The current

version of MUGPSO simply stores data samples by cutting off using a threshold. More

sophisticated approaches in determining what data samples should be stored is also

another area that can be studied in future research. Finally, the meta-modeling methods

are compared to ten benchmark functions with only a 30-dimension. We leave a study on

the performance on different dimensionalities as a future work. With respect to Meta
2
, it

will be a valuable research direction to identify how many real fitness function

evaluations (i.e., bagging model construction) can be replaced by meta-models in relation

to maintaining comparable quality solutions.

In this research, we consider the prediction performance in terms of the mean

square error. We report that using bagging SVR on noisy data improves the prediction

performance of a prediction model. However, in general, small changes in such noisy

datasets have high effect on the prediction performance while affecting the data

characteristic in the dataset. Therefore, considering the sensitivity or robustness of a

prediction model to such changes in noisy datasets will be a valuable research area.

Finally, an important area of future research is how to utilize the prediction

models constructed by Meta
2
. As an illustration, we show modeFRONTIER integrates

the MATAB scripts for Meta
2
. This should be further researched to elaborate so that

design processes and activities can be aided. In addition, identifying the causes of such

noisy data and approaches will be an interesting research topic.

85

APPENDIX A. LIST OF GENERAL NOTATIONS

 : The number of data samples in a dataset.

 : The number of data samples in the kth fold dataset.

 : The dimensionality of input vector .

 : A set of input data samples. For example, () where each vector

represents the ith data sample and .

 : The ith data sample

 : The th element in the sample

 : ith class label or response value respectively for a classification and regression

problem.

 : A dataset which contains *() () ()+.

 (): The original function between and .

 ̂(): A prediction function to approximate ().

APPENDIX B. LIST OF SUPPORT VECTOR MACHINE AND SUPPORT

VECTOR REGRESSION RELATED NOTATIONS

 : The coefficient vector that determines a hyperplane.

 : The threshold that determines a hyperplane.

 : The margin between two classes.

 : The slack variable for non-separable problems.

 : The penalty coefficient.

 : precision for -SVR.

86

 (): A kernel function

APPENDIX C. LIST OF BOOTSTRAP AGGREGATING RELATED

NOTATIONS

 : The number of data samples in a bootstrapped dataset.

 : The lth bootstrapped dataset.

 : The number of bootstrapped datasets.

 ̂ (): The prediction function constructed from the dataset .

 ̂ (): A prediction function constructed by bagging.

 (): An aggregating function

APPENDIX D. LIST OF KRIGING RELATED NOTATIONS

 (): A global model of the original function

 (): A local deviation from the global model ()

 : The underlying coefficients of the polynomial

 ̂: The estimated parameter for

 : The process variance

 (): The correlation between any two data samples and

 () , () ()-

 : The Gaussian correlation function parameter

APPENDIX E. LIST OF POLYNOMIAL REGRESSION RELATED NOTATIONS

87

 : The coefficient terms

 : The number of coefficient terms

APPENDIX F. LIST OF RADIAL BASIS FUNCTION NETWORK RELATED

NOTATIONS

 : The radial basis function for the ith hidden neuron

 : The bias term

 : The weight coefficient associated with

 : The jth center

APPENDIX G. LIST OF GENERALIZED REGRESSION NEURAL NETWORK

RELATED NOTATIONS

 : The smoothing factor

 (): The distance between and

APPENDIX H. LIST OF PARTICLE SWARM OPTIMIZATION RELATED

NOTATIONS

 : The number of particles in a swarm

 : The dimension of problem

 : The lth particle

 : The local best solution for the lth particle at iteration t

 : The global best solution at iteration t

88

 : The velocity vector for the lth particle at iteration t

 : Inertia weight

 and : Acceleration coefficients for the local and global best solutions respectively

 and : Uniform random numbers from [0,1] for the local and global best solutions

respectively

 : The starting value of the inertia weight

 : The end values of the inertia weight

APPENDIX I. STATISTICAL RESULTS OF SOLUTIONS OBTAINED BY GPSO

AND MUGPSO WITH A LIMIT OF 20,000 REAL FITNESS FUNCTION

EVALUATIONS

 Algorithms Global

optimum

Best Worst Mean SD Number of

Evaluations

F1 GPSO

MUGPSO

-4.50e+02 -4.47e+02

-4.49e+02

-4.29e+02

-4.28e+02

-4.42e+02

-4.49e+02

5.30e+00

0.62e+00

19980

19397

F2 GPSO

MUGPSO

-4.50e+02 3.78e+03

2.33e+02

1.10e+04

3.19e+03

7.25e+03

1.47e+03

2.12e+03

9.05e+02

19980

19587

F3 GPSO

MUGPSO

-4.50e+02 1.24e+07

1.05e+07

5.04e+07

2.61e+07

3.26e+07

1.69e+07

1.15e+07

5.18e+06

19980

18828

F4 GPSO

MUGPSO

-4.50e+02 6.55e+03

2.87e+03

2.11e+04

1.75e+04

1.56e+04

8.97e+03

4.66e+03

4.95e+03

19980

18727

F5 GPSO

MUGPSO

-3.10e+02 4.59e+03

3.03e+03

6.33e+03

6.38e+03

5.54e+03

4.32e+03

5.78e+02

9.60e+02

19980

18206

F6 GPSO

MUGPSO

3.90e+02 5.08e+03

5.58e+02

8.57e+04

1.48e+04

3.10e+04

2.65e+03

2.48e+04

4.46e+03

19980

19738

F7 GPSO

MUGPSO

-1.80e+02 -1.78e+02

-1.78e+02

-1.75e+02

-1.74e+02

-1.77e+02

-1.77e+02

0.89e+00

1.25e+00

19980

18920

F8 GPSO

MUGPSO

-1.40e+02 -1.18e+02

-1.19e+02

-1.18e+02

-1.18e+02

-1.18e+02

-1.18e+02

0.04e+00

0.04e+00

19980

18585

F9 GPSO

MUGPSO

-3.30e+02 -2.97e+02

-3.01e+02

-2.58e+02

-2.73e+02

-2.81e+02

-2.84e+02

1.21e+01

9.32e+00

19980

19252

F1

0

GPSO

MUGPSO

-3.30e+02 -1.37e+02

-2.11e+02

-8.18e+01

-8.40e+01

-1.07e+02

-1.37e+02

1.59e+01

4.54e+01

9960

9692

89

APPENDIX J. CONVERGENCE PROFILE OF GPSO AND MUGPSO ON F2, F3,

F4, F8, F9, and F10

APPENDIX J-a. Convergence profile of GPSO and MUGPSO on F2. The mean solutions visited

at every iteration (left) and mean solutions visited zoomed in near the end of iterations (right).

APPENDIX J-b. Convergence profile of GPSO and MUGPSO on F3. The mean solutions visited

at every iteration (left) and mean solutions visited zoomed in near the end of iterations (right).

90

APPENDIX J-c. Convergence profile of GPSO and MUGPSO on F4. The mean solutions visited

at every iteration (left) and mean solutions visited zoomed in near the end of iterations (right).

APPENDIX J-d. Convergence profile of GPSO and MUGPSO on F8. The mean solutions visited

at every iteration (left) and mean solutions visited zoomed in near the end of iterations (right).

APPENDIX J-e. Convergence profile of GPSO and MUGPSO on F9. The mean solutions visited

at every iteration (left) and mean solutions visited zoomed in near the end of iterations (right).

91

APPENDIX J-f. Convergence profile of GPSO and MUGPSO on F10. The mean solutions visited

at every iteration (left) and mean solutions visited zoomed in near the end of iterations (right).

APPENDIX K. MATLAB SCRIPTS FOR META
2
 IMPLEMENTATION

clear;

load('welddata.mat');

%Decision boundaries for C, epsilon, gamma (rbf kernel)

lb = [2^-3 2^-8 2^-15];

ub = [2^15 2^1 2^3];

%Specify swarm size

D = numel(lb);

Nswarm = numel(lb) * 10;

%Initialize variables to store results

rep = 10;

Allx=cell(1,numel(5:5:50));

Allfval=zeros(rep,numel(5:5:50));

Allelaptime=zeros(rep,numel(5:5:50));

Allfitcount=cell(rep,numel(5:5:50));

Allgbestvals=cell(rep,numel(5:5:50));

%Repeatedly run Meta2 different number of SVR

j=1;

for N_SVR=5:5:50,

92

tempAllx=zeros(rep,D);

 for i=1:rep,

 tic

 [gbest,gbestval,allgbestval,fitcount] = MUGPSO(D, Nswarm, max_iter, lb, ub,

input, target, artfdata.CVO, N_SVR);

 Allelaptime(i,j) = toc;

 Allgbestvals{i,j} = allgbestval;

 Allfitcount{i,j} = fitcount;

 tempAllx(i,:)= gbest;

 Allfval(i,j)=gbestval;

 fprintf('completed - dataset: %s, iteration: %d, rep: %d, N_SVR: %d, Time taken:

%.2fmin.\n',datasetname, max_iter, i, N_SVR, Allelaptime(i,j)/60);

 end

 Allx{j} = tempAllx;

 j=j+1;

end

%Save results to file

save(strcat(datasetname,'_T',iter,'_MUGPSO_baggingSVR_result.mat'),'Allx','Allfval','Al

lelaptime','Allfitcount','Allgbestvals');

function [gbest,gbestval,gbest_values,allgbestval, fitcount]= MUGPSO(Dimension,

Particle_Number, MUGPSOparam, VRmin, VRmax, input, target, CVO, N_SVR)

%PSO parameter initialization

ps = Particle_Number;

D = Dimension;

%Acceleration constants c1 and c2

c = [MUGPSOparam.C1 MUGPSOparam.C2];

%inertia weight 0.9 to 0.5

iwt = MUGPSOparam.wstart-

(1:MUGPSOparam.maxiter).*(0.5./MUGPSOparam.maxiter);

%initialize velocities

if length(VRmin)==1

 VRmin=repmat(VRmin,1,D);

93

 VRmax=repmat(VRmax,1,D);

end

mv = 0.5*(VRmax-VRmin);

VRmin = repmat(VRmin,ps,1);

VRmax = repmat(VRmax,ps,1);

Vmin = repmat(-mv,ps,1);

Vmax = -Vmin;

vel = Vmin+2.*Vmax.*rand(ps,D);

%Initia swarm using Latin hypercube design

pos = lhsdesign(ps, D);

pos = icdf('unif', pos, VRmin, VRmax);

%Evaulate fitness on the initial swarm

e = zeros(ps,1);

e_values = cell(ps,1);

evalfuncname=str2func('fitness_baggingSVR');

for p = 1:ps,

 [e(p,1) e_values{p}] = feval(evalfuncname, input, target, CVO, pos(p,:), N_SVR);

end

%Store some particles

metamodel_input = pos;

metamodel_target = e;

metamodel_inputdb=[];

metamodel_targetdb=[];

spread=MUGPSOparam.smoothingfactor;

%Count number of fitness evaluation on particles

fitcount = ps;

%Update local best and their fitness values

pbest = pos;

pbestval = e;

pbestval_values = e_values;

%Update global best and the fitness value

[gbestval, gbestind] = min(pbestval);

94

gbest_values = pbestval_values{gbestind};

gbest = pbest(gbestind,:);

gbestrep = repmat(gbest,ps,1);

allgbestval=gbestval;

%Iterate PSO process

i=2;

for i=2:MUGPSOparam.maxiter

 %Update velocities

 tempvel = c(1).*rand(ps,D).*(pbest-pos)+c(2).*rand(ps,D).*(gbestrep-pos);

 vel = iwt(i).*vel + tempvel;

 %limit velocities to the range

 %velocities higher or lower than the range are replaced by the min max

 %of the range

 vel = (vel>Vmax).*Vmax + (vel<=Vmax).*vel;

 vel = (vel<Vmin).*Vmin + (vel>=Vmin).*vel;

 %update swarm

 pos = pos+vel;

 %particles higher or lower than the range are replaced by the min max

 %of the range +- 0.25 to avoid particles placed on the boundary

 pos = ((pos>=VRmin)&(pos<=VRmax)).*pos...

 +(pos<VRmin).*(VRmin+0.25.*(VRmax-VRmin).*rand(ps,D))...

 +(pos>VRmax).*(VRmax-0.25.*(VRmax-VRmin).*rand(ps,D));

 %use the nearest data samples from the db to construct the meta-model

 if numel(metamodel_inputdb) >0

 closestones = knnsearch(metamodel_inputdb, pos,'K',1);

 globalinput = [metamodel_inputdb(closestones(:,1),:)];

 globaltarget = [metamodel_targetdb(closestones(:,1),:)];

 else

 closestones=[];

 globalinput = metamodel_input;

 globaltarget = metamodel_target;

 end

95

 %construct a meta-model and evaluate current particles

 metamodel = newgrnn(globalinput', globaltarget', spread);

 e = sim(metamodel, pos')';

 %update the local best solution and fitness

 tmp = (pbestval < e);

 tempind = find(tmp==0);

 if numel(tempind) >= 1

 temppos = pos(tempind, :);

 tempe = zeros(size(temppos,1),1);

 tempe_values = cell(size(temppos,1),1);

 if N_SVR==1

 for p = 1:size(temppos,1),

 [tempe(p,:) tempe_values{p}]= feval(evalfuncname, input, target, CVO,

temppos(p,:));

 end

 else

 for p = 1:size(temppos,1),

 [tempe(p,:) tempe_values{p}] = feval(evalfuncname, input, target, CVO,

temppos(p,:), N_SVR);

 end

 end

 globaldb = abs((e(tempind) - tempe)./tempe);

 globaldbind = find(globaldb>0.01);

 metamodel_inputdb = [metamodel_inputdb; temppos(globaldbind,:)];

 metamodel_targetdb = [metamodel_targetdb; tempe(globaldbind)];

 e(tempind) = tempe;

 for t=1:numel(tempind);

 e_values{tempind(t)} = tempe_values{t};

 end

 fitcount = [fitcount, fitcount(end)+ numel(tempind)];

 else

 tempe = zeros(ps,1);

 tempe_values = cell(ps,1);

 if N_SVR==1

96

 for p = 1:ps,

 [tempe(p,:) tempe_values{p}]= feval(evalfuncname, input, target, CVO,

pos(p,:));

 end

 else

 for p = 1:ps,

 [tempe(p,:) tempe_values{p}] = feval(evalfuncname, input, target, CVO,

pos(p,:), N_SVR);

 end

 end

 globaldb = abs((e - tempe)./tempe);

 globaldbind = find(globaldb>0.01);

 metamodel_inputdb = [metamodel_inputdb; pos(globaldbind,:)];

 metamodel_targetdb = [metamodel_targetdb; tempe(globaldbind)];

 numel(find(globaldbind ==1));

 e=tempe;

 e_values = tempe_values;

 fitcount = [fitcount, fitcount(end)+ numel(e)];

 end

 tmp = (pbestval <e);

 temp = repmat(tmp, 1, D);

 pbest = temp.*pbest+(1-temp).*pos;

 pbestval = tmp.*pbestval+(1-tmp).*e;

 ind = find(tmp==0);

 for t=1:numel(ind);

 pbestval_values{ind(t)} = e_values{ind(t)};

 end

 %Update the global best solution and fitness

 [gbestval,tmp]=min(pbestval);

 gbest_values = pbestval_values{tmp};

 gbest=pbest(tmp,:);

 gbestrep=repmat(gbest,ps,1);

 allgbestval(i) = gbestval;

97

end

end

function [fitness,cvOutput] = fitness_baggingSVR(input, target, CVO, hyperparams,

N_SVR)

%Candidate solution

C = hyperparams(1);

eps = hyperparams(2);

gamma = hyperparams(3);

%K fold cross validation

K= CVO.NumTestSets;

%Output variable to store target and prediction values

testingoutputs=cell(K,1);

testingtargets=cell(K,1);

%Construct bagging models using K fold cross validation

parfor k=1:K,

 trIdx = CVO.training(k);

 teIdx = CVO.test(k);

 trinputs = input(trIdx,:);

 trtargets = target(trIdx,:);

 teinputs = input(teIdx,:);

 tetargets = target(teIdx,:);

 trainInd = find(trIdx==1);

 testInd = find(teIdx==1);

 opts = sprintf('%s %s %s %s %s %s %s','-q -s 3 -t 2','-p',num2str(eps),'-g',

num2str(gamma),'-c',num2str(C));

 [testingoutputs{k}]=baggingSVR(trinputs,trtargets,teinputs,tetargets, N_SVR, opts);

 testingtargets{k} = tetargets;

end

%Output variable: target and prediction values

98

cvOutput = [cell2mat(testingoutputs), cell2mat(testingtargets)];

%MSE

fitness = mse(cvOutput(:,1)-cvOutput(:,2));

end

function [bagging_testoutput] = baggingSVR(traindata, traintargetdata, testdata,

testtargetdata, N_SVR, SVRopts)

%Generate bootstrapped datasets

[bootstat, bootsam] = bootstrp(N_SVR,@mean, traindata);

%Train SVR on each bootstrapped dataset

parfor (i=1:N_SVR)

 model(i) = svmtrain(traintargetdata(bootsam(:,i),:), traindata(bootsam(:,i),:), SVRopts);

 testoutput(:,i) = svmpredict(testtargetdata, testdata, model(i),'-q');

end

%Aggregate SVRs

bagging_testoutput = mean(testoutput,2);

end

99

REFERENCES

Andrés, E., Salcedo-Sanz, S., Monge, F., and Pérez-Bellido, A. (2012). “Efficient

aerodynamic design through evolutionary programming and support vector

regression algorithms.” Expert Systems with applications, Elsevier, 39(12), 10700–

10708.

Arciszewski, T., and De Jong, K. (2001). “Evolutionary computation in civil engineering:

research frontiers.” Civil and structural engineering computing: 2001, Saxe-Coburg

Publications, 161–184.

Ayat, N.-E., Cheriet, M., and Suen, C. Y. (2005). “Automatic model selection for the

optimization of SVM kernels.” Pattern Recognition, Elsevier, 38(10), 1733–1745.

Bauer, E., and Kohavi, R. (1999). “An empirical comparison of voting classification

algorithms: Bagging, boosting, and variants.” Machine learning, Springer, 36(1-2),

105–139.

Bengio, Y. (2000). “Gradient-based optimization of hyperparameters.” Neural

Computation, MIT Press, 12(8), 1889–1900.

Białobrzewski, I. (2008). “Neural modeling of relative air humidity.” Computers and

electronics in agriculture, Elsevier, 60(1), 1–7.

Bird, S., and Li, X. (2010). “Improving local convergence in particle swarms by fitness

approximation using regression.” Computational Intelligence in Expensive

Optimization Problems, Springer, 265–293.

Breiman, L. (1996). “Bagging predictors.” Machine learning, Springer, 24(2), 123–140.

100

Burges, C. J. (1998). “A tutorial on support vector machines for pattern recognition.”

Data mining and knowledge discovery, Springer, 2(2), 121–167.

Chang, C.-C., and Lin, C.-J. (2011). “LIBSVM: a library for support vector machines.”

ACM Transactions on Intelligent Systems and Technology (TIST), ACM, 2(3), 27.

Chang, M.-W., and Lin, C.-J. (2005). “Leave-one-out bounds for support vector

regression model selection.” Neural Computation, MIT Press, 17(5), 1188–1222.

Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. (2002). “Choosing multiple

parameters for support vector machines.” Machine learning, Springer, 46(1-3), 131–

159.

Chatterjee, A., Pulasinghe, K., Watanabe, K., and Izumi, K. (2005). “A particle-swarm-

optimized fuzzy-neural network for voice-controlled robot systems.” Industrial

Electronics, IEEE Transactions on, IEEE, 52(6), 1478–1489.

Chen, K.-Y. (2007). “Forecasting systems reliability based on support vector regression

with genetic algorithms.” Reliability Engineering & System Safety, Elsevier, 92(4),

423–432.

Chen, S., Wang, W., and Van Zuylen, H. (2009). “Construct support vector machine

ensemble to detect traffic incident.” Expert Systems with applications, Elsevier,

36(8), 10976–10986.

Clarke, S. M., Griebsch, J. H., and Simpson, T. W. (2005). “Analysis of support vector

regression for approximation of complex engineering analyses.” Journal of

Mechanical Design, American Society of Mechanical Engineers, 127(6), 1077–1087.

101

Clerc, M., and Kennedy, J. (2002). “The particle swarm-explosion, stability, and

convergence in a multidimensional complex space.” Evolutionary Computation,

IEEE Transactions on, IEEE, 6(1), 58–73.

Currit, N. (2002). “Inductive regression: overcoming OLS limitations with the general

regression neural network.” Computers, environment and urban systems, Elsevier,

26(4), 335–353.

Dias, J., Rocha, H., Ferreira, B., and do Carmo Lopes, M. (2013). “A genetic algorithm

with neural network fitness function evaluation for IMRT beam angle optimization.”

Central European Journal of Operations Research, Springer, 1–25.

Dietterich, T. G. (2000). “An experimental comparison of three methods for constructing

ensembles of decision trees: Bagging, boosting, and randomization.” Machine

learning, Springer, 40(2), 139–157.

Enders, C. K. (2010). “Applied missing data analysis.” Guilford Press.

Escalante, H. J., Montes, M., and Sucar, L. E. (2009). “Particle swarm model selection.”

The Journal of Machine Learning Research, JMLR. org, 10, 405–440.

Fan, R.-E., Chen, P.-H., and Lin, C.-J. (2005). “Working set selection using second order

information for training support vector machines.” The Journal of Machine Learning

Research, JMLR. org, 6, 1889–1918.

Fang-shu, C., and Jian-Chao, Z. (2009). “An effective intelligent algorithm for stochastic

optimization problem.” Control and Decision Conference, 2009. CCDC'09. Chinese,

IEEE, 3197–3202.

102

Fleming, P. J., and Purshouse, R. C. (2002). “Evolutionary algorithms in control systems

engineering: a survey.” Control engineering practice, Elsevier, 10(11), 1223–1241.

Gamberger, D., Lavrač, N., and Džeroski, S. (1996). “Noise elimination in inductive

concept learning: A case study in medical diagnosis.” Algorithmic Learning Theory,

Springer, 199–212.

Gheyas, I. A., and Smith, L. S. (2010). “Feature subset selection in large dimensionality

domains.” Pattern Recognition, Elsevier, 43(1), 5–13.

Gomide, F. (n.d.). “Fuzzy Clustering in Fitness Estimation Models for Genetic

Algorithms and Applications.” Fuzzy Systems, 2006 IEEE International Conference

on, IEEE, 1388–1395.

Graham, J. W. (2009). “Missing data analysis: Making it work in the real world.” Annual

review of psychology, Annual Reviews, 60, 549–576.

Gräning, L., Jin, Y., and Sendhoff, B. (2007). “Individual-based management of meta-

models for evolutionary optimization with application to three-dimensional blade

optimization.” Evolutionary Computation in Dynamic and Uncertain Environments,

Springer, 225–250.

Guo, X., Yang, J., Wu, C., Wang, C., and Liang, Y. (2008). “A novel LS-SVMs hyper-

parameter selection based on particle swarm optimization.” Neurocomputing,

Elsevier, 71(16), 3211–3215.

Hendtlass, T. (2007). “Fitness estimation and the particle swarm optimisation algorithm.”

Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, IEEE, 4266–4272.

103

Hibbert, D. B. (2012). “Experimental design in chromatography: a tutorial review.”

Journal of chromatography B, Elsevier, 910, 2–13.

Huang, C.-M., Lee, Y.-J., Lin, D. K., and Huang, S.-Y. (2007). “Model selection for

support vector machines via uniform design.” Computational Statistics & Data

Analysis, Elsevier, 52(1), 335–346.

Ivanciuc, O. (2007). “Applications of support vector machines in chemistry.” Reviews in

computational chemistry, Wiley; 1999, 23, 291.

Jeng, J.-T. (2005). “Hybrid approach of selecting hyperparameters of support vector

machine for regression.” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, IEEE, 36(3), 699–709.

Jin, R., Chen, W., and Simpson, T. W. (2001). “Comparative studies of metamodelling

techniques under multiple modelling criteria.” Structural and Multidisciplinary

Optimization, Springer, 23(1), 1–13.

Jin, Y. (2005). “A comprehensive survey of fitness approximation in evolutionary

computation.” Soft computing, Springer, 9(1), 3–12.

Jin, Y. (2011). “Surrogate-assisted evolutionary computation: Recent advances and future

challenges.” Swarm and Evolutionary Computation, Elsevier, 1(2), 61–70.

Jin, Y., and Sendhoff, B. (2004). “Reducing fitness evaluations using clustering

techniques and neural network ensembles.” Genetic and Evolutionary Computation–

GECCO 2004, Springer, 688–699.

104

Kapp, M. N., Sabourin, R., and Maupin, P. (2009). “A PSO-based framework for

dynamic SVM model selection.” Proceedings of the 11th Annual conference on

Genetic and evolutionary computation, ACM, 1227–1234.

Kavaklioglu, K. (2011). “Modeling and prediction of Turkey’s electricity consumption

using Support Vector Regression.” Applied Energy, Elsevier, 88(1), 368–375.

Khoshgoftaar, T. M., Van Hulse, J., and Napolitano, A. (2011). “Comparing boosting and

bagging techniques with noisy and imbalanced data.” Systems, Man and Cybernetics,

Part A: Systems and Humans, IEEE Transactions on, IEEE, 41(3), 552–568.

Kim, H.-C., Pang, S., Je, H.-M., Kim, D., and Bang, S.-Y. (2002). “Support vector

machine ensemble with bagging.” Pattern recognition with support vector machines,

Springer, 397–408.

Kim, H.-C., Pang, S., Je, H.-M., Kim, D., and Yang Bang, S. (2003). “Constructing

support vector machine ensemble.” Pattern Recognition, Elsevier, 36(12), 2757–

2767.

Kim, H.-S., and Cho, S.-B. (2001). “An efficient genetic algorithm with less fitness

evaluation by clustering.” Evolutionary Computation, 2001. Proceedings of the 2001

Congress on, IEEE, 2, 887–894.

Kim, I.-S., Jeong, Y., Lee, C., and Yarlagadda, P. (2003). “Prediction of welding

parameters for pipeline welding using an intelligent system.” The International

Journal of Advanced Manufacturing Technology, Springer, 22(9-10), 713–719.

105

Kim, M.-J., and Kang, D.-K. (2012). “Classifiers selection in ensembles using genetic

algorithms for bankruptcy prediction.” Expert Systems with applications, Elsevier,

39(10), 9308–9314.

Kleijnen, J. P. (1986). “Statistical tools for simulation practitioners.” Marcel Dekker, Inc.

Kusiak, A., and Salustri, F. (2007). “Computational intelligence in product design

engineering: review and trends.” Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on, IEEE, 37(5), 766–778.

Lim, D., Ong, Y.-S., Jin, Y., and Sendhoff, B. (2007). “A study on metamodeling

techniques, ensembles, and multi-surrogates in evolutionary computation.”

Proceedings of the 9th annual conference on Genetic and evolutionary computation,

ACM, 1288–1295.

Lin, S.-W., Ying, K.-C., Chen, S.-C., and Lee, Z.-J. (2008). “Particle swarm optimization

for parameter determination and feature selection of support vector machines.”

Expert Systems with applications, Elsevier, 35(4), 1817–1824.

Lins, I. D., Moura, M. D. C., Zio, E., and Droguett, E. L. (2012). “A particle swarm‐

optimized support vector machine for reliability prediction.” Quality and Reliability

Engineering International, Wiley Online Library, 28(2), 141–158.

Little, R. J., and Rubin, D. B. (1987). “Statistical analysis with missing data.” Wiley New

York, 539.

Liu, H. (2010). “Instance selection and construction for data mining.” Springer-Verlag.

Liu, H., and Motoda, H. (2002). “On issues of instance selection.” Data mining and

knowledge discovery, Springer, 6(2), 115–130.

106

Lu, X., Tang, K., and Yao, X. (2011). “Classification-assisted differential evolution for

computationally expensive problems.” Evolutionary Computation (CEC), 2011 IEEE

Congress on, IEEE, 1986–1993.

Mao, W., Yan, G., Dong, L., and Hu, D. (2011). “Model selection for least squares

support vector regressions based on small-world strategy.” Expert Systems with

applications, Elsevier, 38(4), 3227–3237.

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). “Comparison of three

methods for selecting values of input variables in the analysis of output from a

computer code.” Technometrics, Taylor & Francis, 21(2), 239–245.

Melville, P., Shah, N., Mihalkova, L., and Mooney, R. J. (2004). “Experiments on

ensembles with missing and noisy data.” Multiple Classifier Systems, Springer, 293–

302.

Mendes, R., Cortez, P., Rocha, M., and Neves, J. (2002). “Particle swarms for

feedforward neural network training.” Neural Networks, 2002. IJCNN'02.

Proceedings of the 2002 International Joint Conference on, IEEE, 2, 1895–1899.

Moser, G., and Serpico, S. B. (2009). “Automatic parameter optimization for support

vector regression for land and sea surface temperature estimation from remote

sensing data.” Geoscience and Remote Sensing, IEEE Transactions on, IEEE, 47(3),

909–921.

Olvera-López, J. A., Carrasco-Ochoa, J. A., Martínez-Trinidad, J. F., and Kittler, J.

(2010). “A review of instance selection methods.” Artificial Intelligence Review,

Springer, 34(2), 133–143.

107

Opitz, D., and Maclin, R. (1999). “Popular Ensemble Methods: An Empirical Study.”

Journal of Artificial Intelligence Research, 11, 169–198.

Oyang, Y.-J., Hwang, S.-C., Ou, Y.-Y., Chen, C.-Y., and Chen, Z.-W. (2005). “Data

classification with radial basis function networks based on a novel kernel density

estimation algorithm.” IEEE transactions on neural networks, IEEE, 16(1), 225–236.

Pal, M. (2008). “Ensemble of support vector machines for land cover classification.”

International journal of remote sensing, Taylor & Francis, 29(10), 3043–3049.

Pal, S. K., Bandyopadhyay, S., and Ray, S. S. (2006). “Evolutionary computation in

bioinformatics: A review.” Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on, IEEE, 36(5), 601–615.

Pal, S., Pal, S. K., and Samantaray, A. K. (2008). “Artificial neural network modeling of

weld joint strength prediction of a pulsed metal inert gas welding process using arc

signals.” Journal of materials processing technology, Elsevier, 202(1), 464–474.

Pan, F., Zhu, P., and Zhang, Y. (2010). “Metamodel-based lightweight design of B-pillar

with TWB structure via support vector regression.” Computers & structures,

Elsevier, 88(1), 36–44.

Park, J.-H., and Seo, K.-K. (2006). “A knowledge-based approximate life cycle

assessment system for evaluating environmental impacts of product design

alternatives in a collaborative design environment.” Advanced Engineering

Informatics, Elsevier, 20(2), 147–154.

Park, S.-Y., and Lee, J.-J. (2014). “An efficient differential evolution using speeded-up k-

nearest neighbor estimator.” Soft computing, Springer, 18(1), 35–49.

108

Parno, M., Hemker, T., and Fowler, K. (2012). “Applicability of surrogates to improve

efficiency of particle swarm optimization for simulation-based problems.”

Engineering optimization, Taylor & Francis, 44(5), 521–535.

Polikar, R. (2012). “Ensemble learning.” Ensemble Machine Learning, Springer, 1–34.

Praveen, C., and Duvigneau, R. (2009). “Low cost PSO using metamodels and inexact

pre-evaluation: Application to aerodynamic shape design.” Computer Methods in

Applied Mechanics and Engineering, Elsevier, 198(9), 1087–1096.

Regis, R. G. (2014). “Particle swarm with radial basis function surrogates for expensive

black-box optimization.” Journal of Computational Science, Elsevier, 5(1), 12–23.

Ren, Y., Sun, C., Zeng, J., and Pan, J. (2013). “GRNN-based Prediction Strategy for

Particle Swarm Optimization..” International Journal of Advancements in Computing

Technology, 5(6).

Reyes-Sierra, M., and Coello Coello, C. A. (2005). “A study of fitness inheritance and

approximation techniques for multi-objective particle swarm optimization.”

Evolutionary Computation, 2005. The 2005 IEEE Congress on, IEEE, 1, 65–72.

Robinson, T. J., Borror, C. M., and Myers, R. H. (2004). “Robust parameter design: a

review.” Quality and Reliability Engineering International, Wiley Online Library,

20(1), 81–101.

Rubin, D. B. (1976). “Inference and missing data.” Biometrika, Biometrika Trust, 63(3),

581–592.

Schafer, J. L., and Graham, J. W. (2002). “Missing data: our view of the state of the art..”

Psychological methods, American Psychological Association, 7(2), 147.

109

Shi, L., and Rasheed, K. (2010). “A survey of fitness approximation methods applied in

evolutionary algorithms.” Computational intelligence in expensive optimization

problems, Springer, 3–28.

Shi, Y., and Eberhart, R. (1998a). “A modified particle swarm optimizer.” Evolutionary

Computation Proceedings, 1998. IEEE World Congress on Computational

Intelligence., The 1998 IEEE International Conference on, IEEE, 69–73.

Shi, Y., and Eberhart, R. C. (1998b). “Parameter Selection in Particle Swarm

Optimization.” Proceedings of the 7th International Conference on Evolutionary

Programming VII, Springer-Verlag, 591–600.

Shieh, M.-D., and Yang, C.-C. (2008). “Classification model for product form design

using fuzzy support vector machines.” Computers & Industrial Engineering,

Elsevier, 55(1), 150–164.

Smola, A. J., and Schölkopf, B. (2004). “A tutorial on support vector regression.”

Statistics and computing, Springer, 14(3), 199–222.

Sousa, I., and Wallace, D. (2006). “Product classification to support approximate life-

cycle assessment of design concepts.” Technological Forecasting and Social

Change, Elsevier, 73(3), 228–249.

Specht, D. F. (1991). “A general regression neural network.” IEEE transactions on

neural networks, IEEE, 2(6), 568–576.

Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y.-P., Auger, A., and Tiwari,

S. (2005). “Problem definitions and evaluation criteria for the CEC 2005 special

session on real-parameter optimization.” KanGAL Report, 2005005.

110

Sun, C., Jin, Y., Zeng, J., and Yu, Y. (2014). “A two-layer surrogate-assisted particle

swarm optimization algorithm.” Soft computing, Springer, 1–15.

Sun, C., Zeng, J., Pan, J., Xue, S., and Jin, Y. (2013). “A new fitness estimation strategy

for particle swarm optimization.” Information sciences, Elsevier, 221, 355–370.

Tang, Yucheng, and Chen, J. (2009). “Robust design of sheet metal forming process

based on adaptive importance sampling.” Structural and Multidisciplinary

Optimization, Springer, 39(5), 531–544.

Tang, Yuanfu, Chen, J., and Wei, J. (2013). “A surrogate-based particle swarm

optimization algorithm for solving optimization problems with expensive black box

functions.” Engineering optimization, Taylor & Francis, 45(5), 557–576.

Valentini, G. (2005). “An experimental bias-variance analysis of SVM ensembles based

on resampling techniques.” Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, IEEE, 35(6), 1252–1271.

Valentini, G., and Dietterich, T. G. (2003). “Low bias bagged support vector machines.”

ICML, 752–759.

Van den Bergh, F., and Engelbrecht, A. P. (2006). “A study of particle swarm

optimization particle trajectories.” Information sciences, Elsevier, 176(8), 937–971.

Vapnik, V. N. (1995). “Thc Nature of Statistical Learning Theory. Spring-Verlag, New

York.” Inc.

Vapnik, V. N. (1998). “Statistical learning theory.” Wiley.

Venugopal, V., and Narendran, T. (1992). “Neural network model for design retrieval in

manufacturing systems.” Computers in Industry, Elsevier, 20(1), 11–23.

111

Wang, G. G., and Shan, S. (2007). “Review of metamodeling techniques in support of

engineering design optimization.” Journal of Mechanical Design, American Society

of Mechanical Engineers, 129(4), 370–380.

Wang, J., and Wan, W. (2009). “Experimental design methods for fermentative hydrogen

production: a review.” International journal of hydrogen energy, Elsevier, 34(1),

235–244.

Wang, S.-J., Mathew, A., Chen, Y., Xi, L.-F., Ma, L., and Lee, J. (2009). “Empirical

analysis of support vector machine ensemble classifiers.” Expert Systems with

applications, Elsevier, 36(3), 6466–6476.

Wu, C.-H., Tzeng, G.-H., and Lin, R.-H. (2009). “A Novel hybrid genetic algorithm for

kernel function and parameter optimization in support vector regression.” Expert

Systems with applications, Elsevier, 36(3), 4725–4735.

Yagci, O., Mercan, D., Cigizoglu, H., and Kabdasli, M. (2005). “Artificial intelligence

methods in breakwater damage ratio estimation.” Ocean Engineering, Elsevier,

32(17), 2088–2106.

Yang, C.-C. (2011). “Constructing a hybrid Kansei engineering system based on multiple

affective responses: Application to product form design.” Computers & Industrial

Engineering, Elsevier, 60(4), 760–768.

Zhang, C., Shao, H., and Li, Yu. (2000). “Particle swarm optimisation for evolving

artificial neural network.” Systems, Man, and Cybernetics, 2000 IEEE International

Conference on, IEEE, 4, 2487–2490.

112

Zhang, J., Zhan, Z.-H., Lin, Y., Chen, N., Gong, Y.-J., Zhong, J.-H., Chung, H. S., Li,

Yun, and Shi, Y.-H. (2011). “Evolutionary computation meets machine learning: A

survey.” Computational Intelligence Magazine, IEEE, IEEE, 6(4), 68–75.

Zhou, H., Pei Zhao, J., Gang Zheng, L., Lin Wang, C., and Fa Cen, K. (2012). “Modeling

NO x emissions from coal-fired utility boilers using support vector regression with

ant colony optimization.” Engineering Applications of Artificial Intelligence,

Elsevier, 25(1), 147–158.

113

ABSTRACT

A PREDICTION MODELING FRAMEWORK

FOR NOISY WELDING QUALITY DATA

by

JUNHEUNG PARK

August 2015

Advisor: Dr. Kyoung-Yun Kim

Major: Industrial Engineering

Degree: Doctor of Philosophy

Various research projects have been conducted to utilize historical manufacturing

process data in product design. These manufacturing process data often contain data

inconsistencies, and it causes challenges in extracting useful information from the data. In

resistance spot welding (RSW), data inconsistency is a well-known issue. In general,

such inconsistent data are treated as noise data and removed from the original dataset

before conducting analyses or constructing prediction models. This may not be desirable

for every design and manufacturing applications since every data can contain important

information to further explain the process. In this research, we propose a prediction

modeling framework, which employs bootstrap aggregating (bagging) with support

vector regression (SVR) as the base learning algorithm to improve the prediction

accuracy on such noisy data. Optimal hyper-parameters for SVR are selected by particle

swarm optimization (PSO) with meta-modeling. Constructing bagging models require

114

more computational costs than a single model. Also, evolutionary computation

algorithms, such as PSO, generally require a large number of candidate solution

evaluations to achieve quality solutions. These two requirements greatly increase the

overall computational cost in constructing effective bagging SVR models. Meta-

modeling can be employed to reduce the computational cost when the fitness or

constraints functions are associated with computationally expensive tasks or analyses. In

our case, the objective function is associated with constructing bagging SVR models with

candidate sets of hyper-parameters. Therefore, in regards to PSO, a large number of

bagging SVR models have to be constructed and evaluated, which is computationally

expensive. The meta-modeling approach, called MUGPSO, developed in this research

assists PSO in evaluating these candidate solutions (i.e., sets of hyper-parameters).

MUGPSO approximates the fitness function of candidate solutions. Through this method,

the numbers of real fitness function evaluations (i.e., constructing bagging SVR models)

are reduced, which also reduces the overall computational costs. Using the Meta
2

framework, one can expect an improvement in the prediction accuracy with reduced

computational time. Experiments are conducted on three artificially generated noisy

datasets and a real RSW quality dataset. The results indicate that Meta
2
 is capable of

providing promising solutions with noticeably reduced computational costs.

115

AUTOBIOGRAPHICAL STATEMENT

Junheung Park was born in Seongnam and raised in Seoul, South Korea. He

completed his Bachelor’s degree in Industrial Engineering in 2009 at Kyoungwon

University. In 2011, he received his Master’s degree in Computer Science at Wayne State

University. Since then, he has been pursuing his PhD in Industrial Engineering at Wayne

State University with a focus on machine learning and computational intelligence. He has

applied these skills and experience to multiple industry and academic projects in product

development, manufacturing, and data-driven system design.

	Wayne State University
	1-1-2015
	A Prediction Modeling Framework For Noisy Welding Quality Data
	Junheung Park
	Recommended Citation

	tmp.1445374808.pdf.TQc0d

