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PHYSICAL REVIEW A

VOLUME 22, NUMBER 3

Large-momentum-transfer limit of some matrix elements

J. M. Wadehra** and Larry Spruch*
Department of Physics, New York University, New York, New York 10003
and Group T-4, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545
(Received 26 December 1979)

The matrix element €, (K), or €, that appears in the study of elastic and inelastic electron-atom scattering from an
initial state i to a final state f in the first Born approximation depends explicitly on the momentum transfer #K.
The uncertainty in the value of the calculated cross sections arises not only from the application of the Born
approximation but also from the approximate nature of the wave functions used. For the 1 !S-2 'P transition in
helium, we present an analytic expression in terms of the 1 'S and 2 'P wave functions for the leading coefficient C,
in the asymptotic expansion of € as a power series in 1/K; C, is defined by € ~ C,/K 5as K ~ o. An accurate
numerical value of C, is obtained by using a sequence of better and better 1 'S and 2 'P wave functions. An
accurate value of C, can be useful in obtaining an approximate analytic form for the matrix element. We also
present analytic expressions, in terms of the 1 'S wave function, for the coefficients of the two leading terms of €
for the diagonal case, that is, for the atomic form factor, and we obtain accurate estimates of those coefficients. The
procedure is easily generalizable to other matrix elements of helium, but it would be difficult in practice to apply the
procedure to matrix elements of other atoms. We also give a very simple approximate result, valid for a number of
matrix elements of heavy atoms, for the ratios of the coefficients of successive terms (in the asymptotically high-K
domain) in a power series in 1/K . Finally, we plot € for 1S to 1S and for 1S to 2 'P, with the known low-X and
high-K dependence extracted. One might hope that each plot would show little variation, but the 1 S to 1'S plot
varies considerably as one goes to high K, and the 1'S to 2 'P plot shows a very rapid variation for K ~ oo,
strongly suggesting that at least one element of “physics”—perhaps a pole outside of but close to the domain of
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convergence—has been omitted.

I. INTRODUCTION

In studying the elastic or inelastic collisions of
an electron with an atom, it is often sufficiently
accurate and convenient, when the incident elec-
tron has sufficiently high energy, to use the first
Born approximation. The matrix elements that
appear in calculating cross sections in the first
Born approximation are found to be of the form!

€ ()= f o} ; exp(R- F))o dF, (1.1)

where 7K is the momentum transfer, ¥, is the
position of the jth electron, and ¢, and ¢, are the
normalized initial- and final-state wave functions.
We will sometimes write ¢ for €;,(K). The inte-
gration is performed over the coordinates of all
the target electrons; the coordinate of the incident
electron does not appear. The diagonal and off-
diagonal matrix elements are related to the atomic
form factor and the generalized oscillator
strengths, respectively.? When the target is an
atom other than hydrogen, there is, in addition

to the uncertainty due to the application of the
Born approximation, an uncertainty arising from
the necessarily approximate nature of the wave
functions used. These considerations have aroused
a great deal of interest® in the possibility of ob-
taining analytic expressions for the form factors
and for generalized oscillator strengths, or even
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a “reasonably accurate” approximate analytic
form. (Recent developments in dispersion theory,*
in connection with electron-hydrogen atom scatter-
ing, in which new singularities in the full Green’s
functions have apparently been revealed, should
give more information on the nature of wave func-
tions. This suggests that now might be a good
time to attempt to develop such analytic forms,
but we shall not here make such an attempt. See,
however, Sec. IV.) As one application the open
parameters could be chosen to fit the experimental
data in the experimentally accessible domains
(or domains where data are available) and could
then be used to predict values in experimentally
inaccessible domains (or domains where data are
not available). As a second application the theo-
retical evaluation of €, for a given choice of nK
and of ¢; and ¢,, canbe very time consuming, and
it would therefore also be useful to have an analy-
tic form for € which could be matched to theoreti-
cal estimates for a few values of h'ﬁ, and then
used to estimate values of € for other values of
# K. Matrix elements of the form (1.1) also ap-
pear in the cross section for the photoeffect for
electrons emitted with sufficiently high energy.®
We will begin by considering the asymptotic be-
havior of €, defined by (1.1), which will behave as
(Ka,)™", with » known, with corrections of higher
order in 1/K. If a useful analytic form for € were
available, an accurate value of the coefficient of
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(Ka,)™" would be very helpful in fixing the con-
stants. Furthermore, we will consider only a

few transitions for the particular case of helium.
It has been shown® using simply the selection rules
implied in the angular integral of € that the leading
term in the asymptotic expansion (K ~«) of ¢ is
given by

€~const(Kao)-(l‘Olf04), (1‘2)

where I; and I, are the angular-momentum quan-
tum numbers of the active electron’s orbitals of
the initial and final states, respectively. How-
ever, few numerical estimates have been obtained
previously for any of the coefficients of the leading
terms in these asymptotic expansions. We will
estimate the coefficient (or the two leading co-
efficients) numerically and will give the forms

for the next few coefficients, for certain transi-
tions in helium, valid for any choice of wave func-
tions. The procedure, even though illustrated
here only for helium, can be easily generalized

to other atoms.

We note that large momentum transfers occur
at small impact parameters so that the region of
configuration space that is of relevance in the
asymptotic behavior of € is the region close to the
nucleus; for large momentum transfer, the ex-
ponential factor in Eq. (1.1) for € oscillates very
rapidly so that the main contribution to the matrix
element comes from small values of the associated
7, from zero to of the order of 1/K. This is also
the region of configuration space that is relevant
in the calculation of hyperfine interactions and of
isotope shifts. In fact, the leading coefficient in
the asymptotic expansion of the atomic form factor
can be related to the volume isotope shift via sum
rules.”

Finally, we will be using, for some simplifica-
tions, the cusp conditions of Kato. These cusp
conditions arise due to the electron-electron and
electron-nucleus Coulomb singularities of the
Schrddinger equation (neglecting spin interactions).
Kato® showed that at these singularities the follow-
ing cusp conditions in the n-electron wave function
o(F,...,T,) hold.

(a) the singularity arising from r;=0
(Ei=1,...,n):

)

oy ==Z¢(fy,...,T,,0,F1yye .., )/,
i

ry=0

where ¢ is obtained by averaging ¢ over the sur-
face of the sphere 7,= constant, keeping the posi-
tions of the other (n - 1) electrons fixed on both
sides of Eq. (1.3).

(b) the singularity arising from ry=0
@G,7=1,...,n):

(1.3)"‘

9¢

ar
i 'usO

=420, T, B Ty e, Ty, Ty Trupy o0 )8,
(1.4)

where ¢ now is obtained from ¢ by rotating ¥,,
=T, T, over the surface of the sphere 7, = con-
stant, keeping T=3(F;+¥,) and the other (n - 2)
position vectors (all except the ith and jth elec-
tron positions) fixed on both sides of Eq. (1.4).

The cusp conditions quoted above are rigorous
conditions applicable at points at which two parti-
cles coincide. Singularities also arise when more
than two particles coincide. These singularities
are presumably less significant than the two-
particle singularities, and we will not.concern
ourselves with such singularities. The nature of
the singularity when both electrons, in a two-
electron atom, simultaneously come close to the
nucleus is known—it leads to logarithmic terms
in the two-electron wave function.®

II. LARGE-MOMENTUM-TRANSFER LIMIT
A. Diagonal matrix element

The atomic form factor F(K) for a neutral atom
of atomic number Z is defined by

FK)=e, ()= <¢1 i‘, exp(iR - 7))

where ¢, is the ground-state wave function of the
atom. As noted above, F(K) appears in the elastic
scattering of electrons from an atom, in the first
Born approximation.

We will now consider the asymptotic behavior of
€,,(K) for helium (Z=2). The ground-state wave
function of helium depends only on 7,, 7,, and 7,,,
the three sides of the triangle formed by the nu-
cleus and the two electrons, that is, b,
=¢,(ry, 75, 7;,). We then have

€,K)=(s, |exp(if<- T,)+exp(iK - F,) [o,)
=2, |jo&n,) |6, (2.2)

where we have used the symmetry of ¢, under the
interchange of T, and T,, have expanded the plane
wave into partial waves, and have used the fact
that ¢, has total orbital angular momentum L

=0. €,,(K) can be further rewritten formally as
the one-dimensional integral

¢1>, @.1)

€n®)=2 [ ridr,jylKr)Aer,), (2.32)
(o]
where, with dQ,=sin 6,d6,dy,,
Alr)= f o, f dt,0%0, (2.3b)
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is independent of the momentum transfer #K and
does not vanish at r,=0. 4(r,) is related to the
angular average of the first-order density matrix.
Making use of the boundary condition on £(r,),
namely, that it vanish at infinity, and writing
jo&r,) = sin(K7,)/K7,, Eq. (2.3a) can be integrated
by parts successively to get the asymptotic ex-
pansion

4 -1) 1) @™ 4(r,)
L I

The leading term in the asymptotic expansion
(2.4) has, of course, the K dependence predicted
by Rau and Fano®; see Eq. (1.2). The region of

J

configuration space that is of relevance is the
region close to the nucleus.

To obtain explicit expressions for the coeffi-
cients of the first few terms in the expansion
(2.4), in terms of ¢,, we need derivatives of the
function £(r,) defined by (2.3b). For »,~0, we can
expand 7,, as

Y12=7y = ury +[(1 = p2)/27, 172
+[p( =p®/2r23+00Y), (2.5)

where p =7, 7,. Using (2.5), an arbitrary function
g(r,, 7,,7,,) can be expanded as a power series in
7, by expanding about 7, =0 and 7,,=7,. We find

8y, 73, 715) =glo, Vo 72)+ (8 = Bg)7 + [z1- “z)gxz/'rz + %gx, 1~ K&y, 12t %/J’zgxz. 12]73
+[zp@ - uz)gm/fi+ 31 - l-‘z)gl. 12/"2 -zp(l- “z)glz,u/rz

+58111 = %“ga. L2t %“28'1, 12,12 =5 B8z, 12, wLli+00?),

where

32g
’ gl. 12

&= a";l £ie™ a"'u

E__ 9. .o o
7yu0° 97,97, | 7,0

Making this kmd of expansion for the integrand in (2.3b), we have

ﬁ(‘rl)=81r2]‘; 'rzd‘er’ ! 2| ‘rud'rm ¢1¢,

Iry-r,

) 87r2-[> 7‘2d1’2{21'2 620,75, 7,) |2+ 2711’2( (d;r:p :

N 1 7’3[ ( 5 82 83 ’ E}
'y ryvarymat & v & & O% wwarverud
3 ! arlarlz 2 84":11. 2 a‘rlar:

The asymptotic expansion (2.4) can be rewritten
as

€, K)=1/(Kay)* + J/(Ka,)* + O(1/(Kap)®),  (2.8)
where the coefficients of the leading terms are
I= -641r’agj ridr Ji’;..x.\ (2.92)
[ 110
and
2 32 93
— 2,6 —_—
J=1287 aof d‘rz( 3')’,8712 W

3
+81’!—8’r'{;)¢f¢1

Using the Kato cusp condition (1.3), we can re-
write I as

(2.10)

7120

I=2567%a j; - r;drz(da;“qbl)\ E (2.9b)
'1-

For later purposes, it will also be useful to write
this in the form

(2.6)
82 92
| ) —"‘2[( 7, +372 37-2 +7 31,2 )¢1 ¢, ]
'l- 7'110
)d’”“ u] +0(’9} : 2.7)
2 =
' .
I=64nag f df,dT,03$,0(F)). (2.9¢)

We can immediately generalize this result from
helium to the isoelectronic sequence associated
with helium; we need merely multiply Eqs. (2.9b)
and (2.9¢) by a factor of Z/2. It may well also be
possible to obtain a more general form, one appli-
cable to other atoms or ions, or at least to those
atoms and ions for which the ground state has
zero total orbital angular momentum.

B. Off-diagonal matrix element

The matrix element that appears in the general-
ized oscillator strength for the 1!S-2'P transition
in helium is

€, (K)=(o, (exp(i-ﬁ - F,)+ exp(K - T,) | 6,)
= %9, |exp(K- F,)[¢,), (2.11a)

where ¢, =¢,(r,, 7,, 7,,) is again the 1S ground-
state wave function, ¢, is the 2'P excited-state
wave function of helium, and we have used the
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fact that both ¢, and ¢, are symmetric under the
interchange of coordinates 1 and 2. Without any
loss of generality, ¢, can be written in the form

B2=71Xp (1, 72, 71,)Y 1o (7y)
+7,Xex (71, 72, 712)Y 10(75)

where the subscripts D and EX will always denote
direct and exchange, respectively, and where

Xex (V15 72 712) = Xp(725 715, 715) (2.12)

and both X, and Xzx remain finite and nonzero as
either », or 7, goes to zero. Expanding the plane
wave in partial waves, we have

€, (K) =2(121)" %o, |, (&K7,)Y ;o)) | $,) . (2.11D)

This can be rewritten formally as the one-dimen-
sional integral

€ ®)=20201"% [~ s2ar,j,EKr (), (2.133)
4]

where

H)= [ ag, [ a,61¥ 460, (2.13b)
is independent of the momentum transfer 7K.
Equation (2.13a) can be integrated by parts suc-
cessively to get the asymptotic expansion

1/2 n n
cat- 2 S LU D FHL)

120

(2.14)

-To obtain the coefficients of the leading terms in
the asymptotic expansion (2.14) in terms of ¢, and
¢,, we proceed as we did earlier for the diagonal
matrix element case, namely, we expand the inte-
grand in (2.13b) as a power series in 7, and inte-
grate term by term., Since H(0)=0, the leading
term in the expansion (2.14) goes as K5, as ex-
pected from Eq. (1.2). The expansion (2.14) can be
rewritten as

a=ilp +Igx)/ (Ka,)® + O(1/(Ka,)"), (2.15)

where

© %
Ip= -647(127)/ 2a} f rgdrza(—‘glrlﬁ\
(4] 1

(2.16a)
' 641r 2 (dFXpx)
1 127) /248 f ridr, \
sx=+y (12077 "z 97,37, "130
(2.16b)

The subscripts D and EX denote the direct and ex-
change character of the integral. I, and Izx, in-
dividually, are the leading coefficients in the
asymptotic expansion of

€10 (K) = 2i(120)" X7, Xo Y 1o @) | 7, &7))Y 1, (7)) | 9

(2.17a)
and
€21 ex(K) = 20(127)" X0, Xgx ¥ 1o () | 1, (K7 10 (7)) | 6))
(2.17b)
respectively.

L. SOME NUMERICAL RESULTS FOR 1,7, I,
AND Iy

We have calculated numerically the leading co-
efficients I and J in the asymptotic expansion
(2.8), the diagonal matrix element case, and the
coefficients I, and Iy in the asymptotic expansion
(2.15), the off-diagonal matrix element case. We
have employed approximate wave functions of
helium with different numbers of parameters. In
particular, 6- and 10-parameter ground-state
wave functions were taken from Page,' a 20-
parameter ground-state wave function from Hart
and Herzberg,'! and a 53-parameter ground-state
wave function from Weiss.!? For the 2'P excited
state, we ourselves determined 7-, 10-, 20-,
and 35-parameter wave functions using the Ray-
leigh-Ritz energy-minimization procedure; in
addition, a 52-parameter 2'P excited-state wave
function was taken from Weiss.!> The constants of
the various wave functions are given elsewhere.!?

Table I gives the numerical values of I and J
using various ground-state wave functions. The
simplest of these wave functions is a Hartree pro-
duct of hydrogenic wave functions with Z =4].
Pekeris,'* using his elaborate 1078-parameter
ground-state wave function, evaluated the integral
appearing in (2.9c). Table II gives numerical esti-
mates of the leading coefficient (I, +Igy) for the
off-diagonal matrix element case and for its in-
dividual components I;, ahd Iyy, using, firstly,
ground-state wave functions and 2'P excited-state
wave functions with a comparable number of

TABLE I. Coefficients of the leading terms in the
asymptotic expansion [see Eq. (2.8)] of the atomic form
factor for helium using approximate ground-state wave
functions ¢4 with different numbers N(¢;) of linear pa-
rameters; all have one nonlinear parameter.

N(dy) 1 , J
0 307.55 —6732.62
6 363.13 -13165.83
10 363.94 -13147.36
20 364.21 ~13176.49
53 363.95 ~12718.44
1078 364.01
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TABLE II. Coefficients I, and Igx of the leading term
in the asymptotic expansion [see Eq. (2.15)] of €, (K) for
helium, using approximate ground-state wave functions
¢, and 2 1P excited-state wave functions ¢, with different
numbers N(¢;) and N(¢,), respectively, of linear pa-
rameters. The wave functions with no linear parameters
are Hartree products of hydrogenic functions. The
closeness in value of the numbers with dashed lines un-
derneath indicates the insensitivity of I, to the ground-
state trial wave function, while the closeness of the
numbers with solid lines underneath indicates the in-
sensitivity of Igx to the excited-state trial wave function.

N(¢y) N(e,) b Iegx I +Igx
0 0 37.95 0 37.95
6 7 46.30 -33.62 12.68

10 51.48 -33.81 17.67
20 52.89  -33.17  19.72
35 60.46 ~32.79 27.67
52 62.51 -32.73 29.78
10 7 46.46 -29.90 16.56
10 51.65 -30.01 21.64
20 53.05  -29.37 23.68
35 60.64 -~29.01 31.63
52 62.70 -~28.95 33.75
20 7 46.68 ~23.69 22.99
10 51.86 ~23.74 28.12
20  53.23 -23.10  30.13
35 60.83 -22.,75 38.08
52 62.89 =22.70 40.19
53 7 46.60 - -23.38 23.22
10 51.77 ~23.42 28.35
20 53.14  -22.78  30.36
35 60.73 -22.43 38.30
52 62.78 -22.38 40.40

parameters, and secondly, the ground-state wave
functions and 2 'P-state wave functions, which
differ significantly in the number of parameters.
Note that limy. ., — iK%a3€,, (K) =1 +Izx and that
the integral (2.11b) for €,,(K) can be computer
coded for given wave functions for any value of K.
Table III gives the values of —iK®age,, (K) for
different values of Ka,. As KZ2aZ gets larger, the
value of —iK®a3e,, (K) approaches the value I, +Igy
as given in Table II for a given set of wave func-
tions. The integrals ¢,,, and €,, zx [see Eq. (2.17)]
can also be computer coded. Table III also gives
the values of —ie€,, pK®a5 and —ie€,, gx° K*aj for
K®aZ=10°, which approach I, and Iy, respectively,
in the asymptotic domain. These results not only
provide a check on the values given in Table II,
but also give a reasonable estimate of the momen-
tum transfer at which the leading term in the
asymptotic behavior is of the accuracy one seeks.
Finally, we note that in the off-diagonal matrix
element case, the components I, and Iyx of the
leading coefficient I arise from the direct and ex-
change terms in the 2'P excited-state wave func-
tion. Looking at the results in Table II, we note
that I, is almost insensitive to the ground-state
wave function (see, for example, the numbers with
the dashed lines underneath), but varies signifi-
cantly for a change of the excited-state wave func-
tion. The opposite is true for Iy, namely, Izy is
almost insensitive to the excited-state wave func-
tion (see, for example, the numbers with solid
lines underneath) but varies considerably for a
change of the ground-state wave function. This
observation is also borne out by the results in
Table III. Looking at the entries in either Table
II or Table III, it is apparent that Iy has nearly

TABLE IIl. Values of —i€,; (K)K aj for increasing values of K %2}. The last two columns
give the decomposition of —i€, K 5a8, for K zaﬁ =105, into its direct and exchange components.

—ien (OK Ka=10°
N(¢)  N(py) K%a}=10° Klhi=10" K2a}=10° —ieypK’a}  —i€ypxK’a}
6 7 12.86 12.70 12.67 46.29 -33.62
10 17.49 17.65 17.66 51.47 —33.81
20 19.27 19.67 19.71 52.87 -33.16
; 52 28.64 29.66 29.76 62.49 -32.73
10 7 16.46 16.55 16.56 46.45 —29.89
10 21.18 21.59 21.63 51.63 —30.00
20 22.95 23.61 23.67 53.03 -29.36
52 32.34 33.61 33.73 62.68 —28.95
20 7 22.37 22.93 22.99 46.67 -23.68
10 27.14 28.02 28.10 51.84 -23.74
20 28.89 30.00 30.12 53.22 ~23.10
52 38.26 39.99 40.16 62.86 ~22.70
53 7 22.45 23.14 23.20 46.58 -23.38
10 © 27,22 28.23 28.34 51.75 -23.41
20 28.96 30.21 30.33 53.12 -22.79
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converged to a value close to —23, and I;, has
converged to about +63. As the number of param-
eters in the wave function increases, the computer
program for €,,, or its components ¢,,, and €, gy,
not only becomes more elaborate but also more
time consuming. In such a situation, the proce-
dure for determining the leading coefficient in the
asymptotic expansion of €,, by taking the large-
momentum-transfer limit of K°c,, is not ideal.
This is exactly when the analytic expression (2.16)
for the leading coefficient becomes quite useful.
Even for quite elaborate wave functions only few
terms survive in the wave functions and their de-
rivatives near the origin. (One nevertheless re-
tains the full benefit of the effort that went into
determining the wave functions.) The program for
I, and Igy is manageable on the computer even for
a sophisticated wave function. For example, for
N(#,)=20 and N(¢,) =52, the calculation of €,,
takes approximately 65 sec. on a CDC 6600 com-
puter, whereas the calculation of I, +Izx with the
same numbers of parameters takes only a fraction
of a second.

IV. ANALYTIC PROPERTIES OF €5 (K)

As is so often the case, it is useful to extend a
real physical variable, in this case K, into the
complex plane. One can then use the theory of
functions of a complex variable to study the matrix
element ¢, (K) defined by Eq. (1.1) and hope to
transform some knowledge of the behavior of
€, (K)—the position of its poles, for example—into
rather general information about the matrix ele-
ment, such as the functional form of its dependence
upon K. This may enable one to use values of
(,,(K) for some real values of K to obtain esti-
mates of ¢, (K) for other real values of K. We
have little to contribute to the formal analysis, but
a few remarks may be useful to those who pursue
the matter in the future. Furthermore, the re-
marks will be helpful in guessing at the forms of
€(K) considered below.

Since the integrand of ¢, (K) is finite everywhere
in the finite complex K plane, the singularities of
€, (K) in the finite complex K plane can only come
from regions of very large . Lassettre!® assumed
that as the coordinate of a given electron becomes
large, one could ignore the possibility that any
other coordinate would be comparably large. To
simplify the discussion, and in particular the no-
tation, we restrict our considerations for the mo-
ment to helium. Further, we take the initial state
tobe the 1'S ground state, characterizedas a(ls)?

state, and we take the final state to be the state char-

acterized as the singlet (1s)(ul) state, where nl can
be 1s. The electron with coordinate 7, will be

assumed to be the active electron, and the matrix
element ¢, (K) for the (1s)? to (1s)(nl) transition
will be written as €"'(K). (In particular, €*(K) and
€?*(K) are therefore what we previously denoted

by €,,(K) and ¢,,(K), respectively.) The energy of
the singlet (1s)(!) state will be denoted by
Eg,(1s,nl). We assume that

Vue(18,10)~ Yirgs,1,(75)g,, (7 )P (cosb,) , 7,~,

Using the equations satisfied by the helium atom
and helium-ion wave functions, and replacing
e?/r,, by e?/r,, since r,~ =, we find

{7, = /) + 10+ )52/ 2m v2] + (@2 5%/ 2m)}
Xg,r)=0, r,~*, (4.1a)
where

_kP1ld ,d
YT 2m v2dr, tdr,’

(4.1b)

and
a2 ki?/2m=-Ey,(1s,nl) +[-4(e?/2a,)] ; (4.2)

the quantity in square brackets is Eg,+(1s). In
particular, a2#?/2m is the ionization energy of
the (1s)? state of helium. It is now entirely trivial
to obtain the asymptotic form of g, ,(r,) and there-
by to deduce'® that €"'(K) has poles at K =i (a,,
+a,)=xia. That poles exist at these points is
almost certain. The question that remains is if
there are additional poles.

The transformation

t=K/(K*+a?)/? (4.3)

maps a singularity-free region of €™ (K) into the
unit circle of the ¢ plane, and since K varies from
0 to » as ¢ varies from 0 to 1, it follows under
the assumptions made that an expansion of €™ (K)
as a power series in ¢ will converge for all phys-
ically attainable values of K.!%'1® Now in fact even
for 7, large, there is a finite possibility that »,
can be comparably large.'® The above analysis
may not then be exact, and there may be other
singularities’®'!” of €™(K). The requirement that
the wave functions be antisymmetric may alsolead to
additional singularities.!®)" Inthis last regard we
note that it would be useful if, inthe course of future
calculations of €™ (K), the direct and exchange
contributions were to be separately recorded, as
we did in this paper for the generalized oscillator
strength for He for the 1S to 2'P transition.

This might help to determine if the exchange con-
tribution possesses singularities at values of K
other than tia. [Even if such additional singular-
ities exist, they may have very small residues
and/or be far removed from the real axis, and
therefore may have a small effect on €™ (K) for K
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real.]

The reader may well have asked himself why we
are concerned with the behavior of €"(K) for large
K; though there will be instances in which €™ (K)
for large K will be of direct interest, for most
practical purposes it will be small values of K
for which €”(K) will be of direct interest. Thus,
for example, various cross sections can be ex-
pressed as integrals over K of the generalized
oscillator strengths, and the contributions to these
integrals from large K are quite small. Neverthe-
less, in an analysis which proceeds within the for-
malism of the theory of a function of a complex
variable, the asymptotic form of €”(K) can be of
considerable interest. Thus, for example, since
t~1 as K~=, while

1-t*=a%/(a?+ K?)~ a?/K?

as K~w=, it is clear'® that if €"(K) vanishes as
K™ for K~ =, the power series expansion in ¢
of €®(K) must be of the particular form

= 1-F 3 by,

(where the sum neither vanishes nor diverges for
t close to unity). The factor (1 =2} does not con-
tain any information at K=0, where t=0 and the
factor reduces to unity, but it does contribute to
the K dependence of €"(K) at low K, even though
it originated from a knowledge of the high-K be-
havior of €®(K). (Indeed, for certain transitions
in hydrogen, the factor deduced from a knowledge
of the high-K behavior gives €™ (K) exactly for all
K.)

In the literature, the form of €™(K), expressed
as a function of ¢#, has sometimes been patterned
after its (known) form for an analogous hydrogen-
like matrix element, but this viewpoint may be
too limited. Thus, for example, the effective Z
for hydrogen and hydrogenlike ions is the true Z,
and therefore the same for all », whereas for
other atoms, and for helium in particular, an ef-
fective Z for large r (important for low K) can be -
different from an effective Z for small » (impor-
tant for large K). Since t~1 as K~ <, the expan-
sion of €™ (K) as a power series in { can converge
very slowly for large K, and since knowledge of
€"(K) Ior large K can be useful for small K, one
might well consider forms other than power series
in {. Figures 1 and 2 show the rapid variation with
t, near t=1, of the functions A(t?) and B(¢?), de-
fined below, which are constructed from the form
factor F(K)=€'%(K) and from €*(K) by extracting
the known ¢ dependence. Thus, we know that
€'*(K)~1/(Ka,)* for K~ =, and we also know that

€%(K)/2=1 =(rHK?/3l ++ - =1 =(r?) t3a®/31 + .+ -
(4.4a)

1

28 ' L J

20 -

A(12)

0s 4

00 1 1 L 1
000 0.25 050 ors 1.00

12
FIG. 1. A plot showing the considerable variation of

A(t?), given by Eq. (4.5b), with t2, especially near ¢
=1,

for small K, where a in Eq. (4.4a) is equal to
2a,,. This suggests that we write
€ (K)=2(1 —t’)a(l +2 d,,(t*)") . (4.4b)
1
We have therby built in the low-K behavior of
€'%(K) in the sense that Eq. (4.4b) gives €'%(K)
=2+ O(K?); we have built in the coefficient of K?
even though it will often be reasonably well known.
Further, we have notbuilt inthe high-K behavior only
in the sense that Eq. (4.4b) gives €'%(K)~ const/K*
as K~«. The value of the constant I/a} has not
been built in since for most atoms I will not be
known. (The value of I will be built in shortly.)
Introducing :

8(td

[.X.] 54 —

1 1 | 1
0.
%.00 0.28 0.80 0.78 1.00
12

FIG. 2. A plot showing the dramatic variation of
B(t?), given by Eq. (4.6), with £ near ¢t=1,
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A@?) = z tz)

we see from Fig. 1, drawn with the use of com-
puted values!® of €'5(K), that

A(®)=[3(1 - £2)2e %K) - 1]/ (4.5b)

is rapidly varying near ¢#=1, though it is finite.
In fact, upon inserting the asymptotic form for
€'%(K) for K~ given by Eq. (2.8) into Eq. (4.5b),
we find that

=d,+d, %+ (4.5a)

A(1)=1/2(aa,)*-1=2.4814. (4.5¢)
Of course, the series representation for A(¢2)
given by Eq. (4.5a) might diverge at #2=1 even
though A(1) is finite, because A(#?) might have a
pole on the unit circle for #? at a point other than
t*=1. [We note in passing that the value of (»%)
obtamed from Eq. (4.4a) by using the known val-
es of €'%(K) is in excellent agreement with the val-
ue obtained directly by Pekeris.!*] To build in

the coefficient of K™, we write

e¥K)=2(1 -£22[1+ A1)+ £3(1 = 2)AX(?) ]}, (4.5d)

with A(1) given by Eq. (4.5¢). Equation (4.5d) gives
€'%(0)=2 and €'%(K)~1/(Ka,)* as K~=, but a graph
of A*(¢?) as defined by Eq. (4.5d) is not signifi-
cantly flatter near /=1 than the graph of A(#?).

We note that

A% =[A() -A1))/A =)

and, further, as follows by comparing the asym-
ptotic forms of €'%(K) as defined by Eqs. (4.5d) and
(2.8), that

A*(1)=2+3A(1)+ [J/(20%a8)]= ~17.385 .
Similarly, we know that
€?(K)~(p+15y)Kay) S, K~

and we also know that the dipole oscillator strength
£(0) defined by

(”(K)
Ka,

’

f(0)= hm —7—

where AE=Ey (1s 2p) — Ey (1s?), is easily obtained
experimentally. We rewrite the above equation as

€?(K)~ (Ka,)[zf(0)(e?/a,)/AE 2=tT, K~0
where, noting that K ~at for K~0,
=3(aa,)?*f(0)(e*/a,)/AE = 0.6008 ;

a is given by a=a, + az,,. where a,, is defined by
Eq. (4.2). The forms of €*(K) for K~0 and for K
~ suggest the form

*(K)=T1t(1 —t2)5/2(1+ 2‘, d;t*’) .
1

(Note that this expression incorporates the Jorm
for K~«, but not the numerical coefficient; that
will be done shortly. It of course gives the correct
behavior for K~0.) We now introduce

BE)=t? ) dyftr=di+dytts -,
1

so that
B(t?)=t{[(1 - £*)/2e* k) /(t7)] - 1}. (4.6)

Using known values'® of €*(K), we have plotted
B(t?) in Fig. 2. Here we see an even more rapid
variation for ¢ close to 1, so that again we have a
series, here for €**(K), which is not rapidly con-
verging. We note that the use of Eq. (2.15) in Eq.
(4.6) leads to

B(1)= (ID +IEx)/T(aao)5 -1=1.458.

To build in the correct asymptotic behavior of
€**(K) as K~ =, coefficient and all, we write

(K)=7t(1 - £2)*/2[1+ B(1)*+ 13(1 - 2)B*(#?)] ,

with B(1) defined as just above. The variation of
B*(t?) near t*=1 is unfortunately almost as rapid
as the variation of B(t*) near 1. We note in pass-
ing that

BX(t*)=[B¢*) - B(1))/(1 -#?).

Since we have not evaluated the coefficient of the
second term in the expansion of €*, the term an-
alogous to J in the expansion of €'*—compare Eqs.
(2.15) and (2.8)—we cannot give the numerical
value of B*(1).

The above analysis, in which the known behavior
of €"(K) was extracted, is similar to some work
done by Rau in a study of the 1'S and 21S transi-
tion in helium.*® [One must of course be cautious
in using high-K numerical values of matrix ele-
ments, especially if, as was the case for Kim
and Inokuti, the emphasis in the calculation was
on low values of K. The point is that one needs
wave functions that are very accurate near the
origin to obtain reasonable values for high K,
while the determination of the approximate wave
function through minimization of the energy in a
Rayleigh-Ritz calculation places the emphasis on
obtaining a wave function that is good at distances
of the order of a,. There are, nevertheless, two
reasons for suspecting that the Kim-Inokuti num-
bers are reasonably accurate even for somewhat
high K. Firstly, the figures plotted in Figs. 1 and
2 are smooth. Secondly, the wave function used
by Kim and Inokuti gives as the value of the density
at the origin p(0) =1.8101, while the value obtained
using the elaborate 1078-parameter wave function
of Pekeris gives p(0)=1.8104. We will assume
that the rapid variation of A(¢%) and of B(#?) near
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t=1 is not an artifact introduced by inaccuracies
in the numerical calculation of €(K).]

The rapid variation of A(#2) and B(¢?) near ¢=1
suggests that not all of the “physics” has been
extracted; we may need to know more about €"(K)
than (i) its behavior at very low (real) K, (ii) its
behavior at very high (real) K, and (iii) the fact
that it has poles at K=+ia. [Not on theoretical
grounds, but simply from the poles of A(t*) and
B(t?), one might suspect that €™(K) has poles at
values of ¢ close to [¢| =1 and of magnitude greater
than unity.] Padé approximants are very flexible
forms, which, in particular, can readily account
for singularities outside the domain of conver-
gence, and we therefore consider Padé approxi-
mants for A(¢?) and B(¢?), defined by Egs. (4.5)
and (4.6), respectively, for a few different as-
sumptions. Clearly, one is free to use any avail-
able information. For example, in the study of
the form factor of a given atom—we will perform
our numerical analysis for helium but much of
the analysis is applicable to other atoms—the
(r?) which appears in the second term in the low-K
(or low-t) expansion can be reasonably well esti-
mated if one has available an experimental value
of the diamagnetic susceptibility of the atom. Fur-
thermore, in some unpublished work by the au-
thors and Rau, it is shown that, not surprisingly,
a knowledge of the behavior of the atomic wave
function for one of the electron coordinates
very small gives information about the behavior
of €(K) for K~«. In particular, it should be pos-
sible for a number of atoms to estimate the ratio
of the second to the first numerical coefficients of
the expansion of €(K) as a power series in 1/(Ka,).
We now return to our analysis of helium, assum-
ing that we know only something of the behavior
of €(K) at K~0 and K~ .

From a knowledge of the diamagnetic suscepti-
bility of He, we know A(0)=0.5618. Also from a
knowledge of the numerical values of the leading
coefficients I and J in the asymptotic expansion
of €*(K), wededuce A(1)=2.4814and A’(1) =7.3834,
where the prime denotes the derivative with re-
spect to 2. Using these values we can construct
a Padé approximant, with three parameters, of
the form

A(t*)=(0.5618+ 0.0834 £2) /(1 — 0.7400£3) ,

which reproduces the values of A(#?) to within 7%
for all values of ¢ between 0 and 1.

On the other hand, using only the knowledge of
A(0) and the ratio J/I of the two leading coeffi-
cients in the asymptotic expansion of €!%(K), one
can construct a Padé approximant, with two pa-
rameters, of the form

A(t?)=0.5618/(1 - 0.9340¢%) ,

which reproduces A(#?) very well for low values of
¢ but can be as much as 75% off for ¢ close to 1.

In constructing a Padé approximant for B(f?), we
assume that we know only that B(0)=0.210, B(1)
=1.458, and B’(1)=29.44. The approximant

B(#2)=(0.210 -~ 0.086 £2)/(1 — 0.915 £2)

gives B(¢%) within 3% for t< 0.5, but is as much as
50% off for ¢ close to 1.

While our three-parameter Padé approximant
for A(t?) was not bad, it is clear that in general
it would be desirable to have available more in-
formation about €(K). One could take a fundamen-
tal approach and attempt to obtain some deeper
theoretical insights into the structure of €(K);
as noted above, for example, there can be other
singularities originating in exchange effects or in
the effects of two electrons being simultaneously
at great distances. We will here, however, re-
strict ourselves to a much less basic approach.
In the remainder of the paper we examine the
form of the wave functions for one coordinate
small to obtain at least rough estimates of the
ratios not only of the first two coefficients but of
the first few coefficients in the expansion in
powers of 1/(Ka,) of €(K). )

The point to be emphasized is that it is possible,
as we will now show, to obtain information about
€™ (K) for K~ beyond the form of the K depen-
dence, and that this information may also be use-
ful in studying the low-K dependence of €™ (K).

To study the very-high-K domain, it is necessary
to study the region of very small »,. We ignore
the possibility that the second electron is at com-
parably small distances, and, since the active
electron is the one with coordinate r, so that the
outer electron sees a unit charge, we write

Yo(1s,nl)~ Y, 15(72)G (7, )(=i)'P,(c0s§,), 7,~0.
(4.7

Using the equations satisfied by the helium and
hydrogen functions and approximating e?/7,, by
e?/r,, we find

[T, = (2¢*/7,)+ (g% 7%/2m)]G 4(7,)=0, 7,~0,

(4.8)
where
- -l 2 A _101)
u”"om\dr? roar, i )’
and where
g1 /2m = —Ey (15 ,nl)+ [-(°/2a,)]. (4.9)

We choose G, (r,) to be regular at the origin. The
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normalization of G,(r,) is, of course, not deter-
mined by the equation it satisfies, and, in fact,
since the energy in Eq. (4.8) is not an eigenvalue
of the equation, G,(r,) will diverge at infinity.

]

However, only the value of G, in the neighborhood
of the origin will concern us. G, is simply the
Coulomb function (proportional to the hypergeo-
metric function), that is,

Gy(r,)=N 7l exp(=q,7,) F 1+ 1-[2/(q,a))], 21+2, 2q,7),

with the normalization constant N, unknown. (Though his derivation is not rigorous, Lassettre’s deduc-
tion's that €™ (K) can be expanded in a power series in ¢ for all K may be exact, for although exchange ef-
fects and the effect of two electrons being at great distances will almost surely introduce new singular-
ities, they can be expected to be introduced at points in the K plane such that the region in the K plane
mapped into the unit circle in the ¢ plane still contains no singularities. On the other hand, as will be
discussed later, the results obtained below are almost surely not exact. Note, though, that Lassettre’s
results, even if not exact, can still be useful if, for example, the additional singularities are far from
the real axis and have weak strengths. Correspondingly, the results to be obtained below can be useful

even though they are not exact.)

Using Eq. (4.7) to approximate the initial and final states, integrating over 7,, and dropping the sub-

script on 7,, we immediately obtain

€"(K)~2N,,N f df e F (1 - [2/(q,,8,)],2,2q,7) X FriemT
X F(1+1=[2/(ga,)], 21+ 2,2q ,7)(=i)P,(cos )

K~», (4.10)

= 81N (N, f drrt*e™ s+ 1) (Ky) F (s++) F (+++),

where the prime denotes the restriction of the region of integration to 0<»<R,, where 1/K <R, < za,.
The lower limit guarantees, for fixed K, that the region giving the dominant contribution has been includ-
ed, and the upper limit is to guarantee that Eq. (4.7) represents a good approximation. In fact, by retain-
ing the exponentially decaying factors in Eq. (4.10), we can extend the upper limit of integration to infinity,

and we can integrate term by term after expanding the hypergeometric functions in power series. We

immediately obtain

e (K)~ 87N, N, 2% g, 3
16Vt (274 2)

_1__[1 2 3,2 5 1 111_1_._5_)]/ e, ...
><{(Kao)'*‘*"[3("“'%)(2”5)‘“(""’“0):’(2‘””2"2 21+3)+8(6 “reataies)) [He) T

In particular, we have

€70~ BTN, N, (20 {1/ (K = [5(ay,2,)"+ 5(a,08,+ 56/ (e -},
€"™(K)~ 121N, N ,(2a,){1/(Ka,)* =5[7(q,,8,)* + 5(¢ »a,)*+ 48]/(Ka,) + - - - },
€™(K)~ 321N, N ,(2a,)*{1/(Ka,)® - &[42(q,,a,)* + 23(q 4a,) + 220]/(Ka,)®++ - - }.

We note parenthetically that if we use the approxi-
mation given by Eq. (4.7) to replace ¢,(r,,7,,7,,) in
in Egs. (2.9) and (2.10), these equations generate
identically the same result as, for n=1, the first
two terms in Eq. (4.12a).

Equations (4.12) cannot be used to check on the
value of the leading coefficient unless the normal-
ization constants happen to be reasonably well
known, but we can check on the accuracv of Eq.
(4.12a) by computing the ratio of the coefficients of

(4.11)

(4.12a)
(4.12b)
(4.12¢)

I

the first two terms of €'%(K), which turns out to be
-34.69, and comparing with the ratios —21.89,
-36.26, -36.13, -36,18, and —34.95 obtained from
Table I, we might characterize the value obtained
from Table I as =35+ 1. The agreement is quite
good and the ratio obtained from Eq. (4.12a) might
be exact. One can surely not expect Eq. (4.11) to
generate all coefficients in the asymptotic expan-
sion of €"(K) in powers of 1/K exactly. Thus, the
outer electron will affect the expansion in powers
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of r, of the wave function (for », small) of the in-
ner electron, and only some of the effect will be
built in via the subtraction of the energy of the
second electron (for », very small) in the deter-
mination of ¢, .
Note that a rough estimate of the ratio of the co-
efficients of the first two terms in the asymptotic
- expansion of € (K) can be obtained by completely
ignoring all effects of the outer electron on the
wave function of the inner electron. G,(r) would
then be the hydrogenic (normalizable) wave func-
tion. If, to take a simple example, we consider
l=n-1, we have

€™"Y(K)~ const f Al exp(—_—zﬁ)j o (&7) exp(_—zr)r2 dr
0 na, %

2™ (n + 2) 4(n+1)3
aonKnos ( —nz(Kao)2+ e )'

(4.13a)
The ratio under consideration is therefore
®R=-4(n+1)°/n*. (4.13b)

In Table IV, we compare the ratio of the coeffi-
cients of the first two terms in the asymptotic ex-
pansion of ¢"(K), for a few values of » and I, as
obtained from Eq. (4.11), Eq. (4.13b), and the
numerical values of the form factor and the gen-
eralized oscillator strengths. In particular, the
numerical data of Kim and Inokuti'® %% ig fitted
to the first three terms in the expansion of ¢"'(K)
to obtain this ratio.

It should be clear that some of the discussion
above might possibly be taken over to heavy atoms,
and some can definitely not be taken over. One
does not have extremely accurate wave functions
for heavier atoms, and often one cannot therefore
obtain accurate estimates of the leading coefficient
I, but the ratio of the coefficients of the first two
terms in the asymptotic expansion of €,,(K) can, at
least in principle, often be obtained by straight-

=const

TABLE IV. The ratio of the coefficients J/I of the
leading two terms in the asymptotic expansion of €™ (K)
for helium using Eq. (4.11), Eq. (4.13b), and numerical
data of Kim and Inokuti fitted to the first three terms in
the expansion of € (K),

~J/I
(1s)(nl) Eq. (4.11) Eq. (4.13b) Kim-Inokuti *
as)? 1ls 34.69 32.00 31.36
(1s)(2s) 218 32.17 39.42
(1s)(3s) 31!s 31.88 40.24
(1s)(2p) 2P 32.63 27.00 40.68
(1s)(3p) 3P 32.40 34.17
(1s)(34) 31D 35.25 28.44 27.13

3References 18, 19, and 21.

forward extension of the above arguments. Con-
sider, for example, the matrix element ¢,,(X) for
Li, with ¢ the ground state, characterized as a
(1s)?(2s) state, and with f the (1s)*(2p) excited
state. Defining g,, and €"'(K) in analogy to the
definition for helium, one finds

(¢2%82/2m = By [(15] - By [(15)°2s]
and
(2% %/2m = Ey [(1sF] - By, [(15F2p].
From Eq. (4.11), we immediately obtain
€?(K) = [const/(Ka,)*]
X411 = § [7(g,0) + 5(q2,3,)° + 48)/ (Kao) + - - -}

It would be nice to be able to compare the ratio
52.37 of the coefficients of the leading two terms
with the value determined numerically by fitting
the generalized oscillator strengths data for
(1s%)(2p) %P - (1s%)(25) 2S transition in Li; unfor-
tunately, the codes presently used in numerically
calculations give such large round-off errors that
useful results have not been obtained for the high
values of K under consideration in the present
discussion.

It should alsobe clear thatone is free touse any
available information. Thus, for example, in the
study of a form factor, the {»2) which appears in
the second term in the low-K (or low-¢) expansion
can be reasonably well estimated if one has avail-
able an experimental value of the diamagnetic sus-
ceptibility of the atom under study.

After we had completed our numerical studies,
it was called to our attention that Lassettre has,
in a one-particle model, found?® that there are
many singularities other than the two at K=+ia.
He points out that the results he obtained are not
mathematically rigorous, having been obtained
in a one-particle model. Nevertheless, the model
uses a one-body potential which is of the form
an equivalent one-body potential, in a many-body
problem, can be expected to assume, and the form
of his results is thereby quite believable. Roughly
speaking, the equivalent one-body potential for an
electron in a neutral atom, for the electron far
from the nucleus, is chosen to be (-e?/7)+ U(7),
with U(») a superposition of exponential potentials.
(The exponential terms arise because, for large
but fixed », some of the inner electrons can lie
beyond 7, so that one does not have complete
shielding.) Then the wave function (r) for the
electron, for » very large, should not only have
the term originally used by Lassettre, an expo-.
nential with an exponent defined by the binding
energy, but additional exponential terms, with ex-
ponents representing more rapid decay. These



generate poles which are also on the imaginary
axis, and at greater distances from the origin;
the nearest singularity—actually a pair of singu-
larities—remains that determined by the binding
energy, and the transformation originally used by
Lassettre'® continues to generate a convergent
power series in . Clearly, however, it would
be interesting to see if building in the new sin-
gularities could speed the rate of convergence.
Lassettre also considered singularities arising
from exchange effects.??
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