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Chapter 1:  Introduction 

 Diabetes mellitus 

Diabetes is a disease characterized by elevated blood glucose level either due to 

deficit in insulin production and/or the inability of the body to utilize it. Diabetes mellitus can 

be broadly classified as Type I DM [Type I Diabetes Mellitus] and Type II DM [Type II 

Diabetes Mellitus]. Type I DM is manifested by relative lack of insulin secretion due to loss of 

pancreatic β-cells by autoimmune aggression. Type II DM is a metabolic disorder 

characterized by an increase in blood glucose levels either due to a decrease in insulin 

secretion from pancreatic β-cells, or tissue resistance to the secreted insulin and accounts 

for 90% of the disease. Hypersecretion of insulin by the β-cells due to tissue resistance to 

insulin worsens the situation leading to hyperglycemia and hyperinsulinemia [1]. According to 

the WHO, 346 million people are living with diabetes mellitus globally and 80% of deaths 

associated with the disorder occur in middle- and low- income countries [Table 1-1 and 1-2]. 
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Country Millions 

China                                                                      90.0 

India                                                                                 61.3 

United States of America                                              23.7 

Russian Federation   12.6 

Brazil  12.0 

Japan  10.1 

Mexico  10.3 

Bangladesh   8.4 

Egypt   7.3 

Indonesia  7.0 

Pakistan 6.4 

Germany 5.0 

Philippines 4.2 

Italy 4.0 

Thailand 4.0 

 

Table 1-1: Top fifteen countries of the world with diabetes mellitus in 2012 [2, 3]. 

 

 

 

 

 

 

 

 

 

 

Table 1-2: Projection for top ten countries of the world with diabetes mellitus by 2030 [2, 3]. 

 
 

Country                                 Millions  

China                                                                            129.7 

India                                                                                 101.2 

United States of America                                              29.6 

Brazil  19.6 

Bangladesh   16.8 

Mexico  16.4 

Russian Federation   14.1 

Egypt   12.4 

Indonesia  11.8 

Pakistan 11.4 
 

 



3 
 

 

 

Insulin and its receptor  

The discovery of insulin in 1920s by Drs Frederick Banting, Charles Best and John 

Macleod revolutionized the treatment of diabetes in young patients where starvation therapy 

was the only option for those in need. Insulin is a peptide hormone secreted by the β-cells of 

the pancreas that facilitates the uptake of glucose, amino acids and fatty acids by the body 

cells and inhibits the hydrolysis of their precursors namely glycogen, proteins and fats, 

respectively thereby maintaining the plasma blood glucose concentration between 4-7mM [4-

6].  

The physiologically active form of insulin in human has two chains. The A chain and B 

chain having 21 and 30 amino acids respectively. With the exception of few organs in the 

body such as brain, the majority of body cells depend on insulin for glucose uptake. Insulin 

binds to its receptor which is tetrameric in nature with two extracellular α- and intracellular β-

subunits localized on the cell surface of target organs such as liver, kidney and muscle 

[Figure 1-1]. Upon binding of insulin to extracellular subunits, the β-subunits which have a 

tyrosine kinase activity autophosphorylate and transduce the signals to intracellular targets. 

The biological action of insulin such as expression of GLUT4, enzyme activation [increase in 

the synthesis of glycolytic and fatty acid synthetic enzymes; eg., acetyl-CoA carboxylase] 

and enzyme deactivation [decrease in gluconeogenic enzymes; eg., glucose-6-phosphatase] 

are mainly due to the concerted actions of IR/IRS, PI3K and AKT/PKB pathways [5, 7 8]. 
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Figure 1-1: Insulin and its receptor. 

Structure of the A chain [red; 21 amino acids] and B chain [yellow; 30 amino acids] of human insulin 
linked by two disulfide bridges [A7–B7 and A20–B19] and insulin receptor which is a tetramer 
consisting of two extracellular α- and two intracellular β-subunits [5].  

 
 
Pathogenesis of Type I DM 

 Based on the therapeutic approach and epidemiological occurrence, it is also known 

as insulin-dependent diabetes mellitus or juvenile onset diabetes mellitus. It is characterized 

by an absolute insulin deficiency due to a chronic recurring immune-mediated attack on 

functional β-cells by the auto-reactive effector T-cells which dominate over the regulatory    

T-cell through time that leads to major loss in β-cell mass [Figure 1-2]. The presence of 

auto-antibodies against insulin, glutamic acid decarboxylase 65, islet cell antigen 2, islet 
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specific glucose-6-phosphatase catalytic subunit related protein, glial fibrillary acidic protein 

puts susceptible individual at risk for acquiring the disease [9, 10]. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1-2: Beta-cell mass and autoimmune reaction. 

The loss of β-cell mass over time due to autoimmune reaction leading to a deficit in insulin secretion 
and an increase in blood glucose level, and the opposing effect of regulatory T-cells over the auto-
reactive effector T-cell at the earlier time point followed by an increase in number of auto-reactive 
effector T-cells [9].  

 

 Although the exact cause of the disease is under scientific scrutiny, it is widely 

accepted that environmental [e.g., viral infection, presence of nitrosamine in food] and 

genetic [e.g., susceptibility loci in human leukocyte antigen region] predisposition factors play 

a role in autoimmune mediated destruction of the pancreatic β-cells. Studies from animal 

models of type I diabetes and human type I diabetic patients revealed that antigen presenting 

cells [APC] for instance macrophages and dendritic cells, lymphocytes [CD4+ and CD8+     

T-cells] and proinflammatory cytokines released by those immune cells exert significant roles 

in the pathogenesis of the disease. The auto-antigens such as islet cell antigen 2 and/or 
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insulin are processed by antigen presenting cells and serve as immunologic signals that 

disturb the balance of the regulatory and effector T-cell function [Figure 1-3]. The 

hyperactivation of the effector T-cell further activates cytotoxic T-cell [CD8+] and 

macrophages that lead to the destruction of pancreatic β-cells either through generation of 

reactive oxygen and/or nitrogen species, through Fas/FasL, granzymes, perforin and release 

of proinflammatory cytokines. Among known cytokines, IL-1β, TNFα, and INFγ have been 

shown to play a major role in mediating the disease progression [11-14]. 

 

 

 

 

 

 

 

 

 

  

 
 
 
Figure 1-3: Autoimmune destruction of pancreatic β-cell. 

Self antigen processed by antigen presenting cell disturbs the balance of effector and regulatory T-cell 
functions leading to autoimmune destruction of pancreatic β-cell. The hyperactivation of effector T-cell 
function mediates pancreatic β-cell destruction through proinflammatory cytokines and reactive 
oxygen species [14]. 

 

 The two principal pathways of apoptosis in pancreatic β-cell due to cytokine insult are 

the intrinsic pathway and the extrinsic pathway. In intrinsic pathway, cytokines disturb the 

balance of anti-apoptotic and pro-apoptotic activities of the Bcl-2 family of the mitochondrial 
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proteins which leads to the release of cytochrome complex to the cytoplasm and activation of 

the initiator [e.g., caspase-9] and effector caspases [e.g., caspase-3]. The extrinsic pathway 

is initiated by binding of cytokines to death receptors [e.g., CD95] located on the cell surface 

followed by activation of adaptor proteins, kinases and transcription factors which culminate 

in the activation of the initiator and effector caspases that cleave different cellular substrates 

such as prenylating enzymes [eg., FTase and GGTase] and nuclear envelop proteins [eg., 

lamin B] [13, 15, 16-18]. 

 

Animal models  

Non obese diabetic [NOD] mice and bio-breeding [BB] rats are the two commonly 

used genetic animal models for type I diabetes. Both NOD mice and BB rats share similar 

pathogenetic mechanisms and diabetic symptoms. The incidence rate of the disease is much 

higher in the female NOD mice than their male counterparts, whereas both sexes of BB rats 

equally manifest the disease symptoms. The major histocompatibility complex products 

namely RT1u/u in BB rats and I-Ag7 in the NOD mice make them genetically susceptible to the 

disease [19-21].  

NOD mice were established as animal model for type I diabetes in the 1970`s in 

Shionogi Aburahi Laboratories in Japan by Makino and colleagues from out bred JC1-ICR 

mice that are prone to cataracts. Unlike other breeds of mice, there is an increased 

frequency and localization of antigen presenting cells in the pancreas of NOD mice since 

their birth. This is followed by pre-insulitis, peri-insulitis and intra-insular insulitis [Figure 1-4] 

caused by  auto-reactive T-cell, dendritic cell, CD4+T cell, CD8+T cell, macrophage and B-

cells leading to a complete destruction of the islets, and the mice show diabetic symptoms 

starting from 12 weeks of age and die from the complications around 30 weeks of age, if not 

treated [22-24].  
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Figure 1-4: Pathogenesis of type I diabetes in the NOD mice.  

Localization of antigen presenting cells such as dendritic cell to the pancreas starts around 3 weeks of 
age and the different stages of the inflammatory conditions [pre-insulitis, peri-insulitis, and intra-insular 
insulitis] ensue up to 12 weeks of age. Complete islet destruction and clinical manifestation start from 
12 weeks onwards [22, 24]. 

 

GTP-binding proteins in islet function  

 There are three different types of G-proteins in pancreatic β-cell: trimeric G-proteins 

consisting of α-[39-53 kDa], β-[~37 kDa] and γ-[7-10 kDa] subunits, small molecular weight 

[17-30 kDa] monomeric G-proteins consisting of Ras, Rho, Rab, Sar1/Arf, Ran families and 

the elongation factors and Tau proteins. The trimeric G-proteins are involved in receptor 

mediated cellular activation primarily due to hormones and neurotransmitters; the monomeric 

G-proteins function in vesicular transport and cytoskeletal organization, and the elongation 

factor and Tau proteins have a role in protein biosynthesis [25-27].  



9 
 

 

 

 

Post-translational modification of G-proteins 

The functions of small monomeric G-proteins are regulated by post-translational 

modifications such as prenylation, palmitoylation and methylation. Prenylation is the addition 

of either 15 carbon [farnesyl group] or 20 carbon [geranyl group] derivatives of mevalonic 

acid into the carboxyl terminal of the cysteine residues by a thioether linkage. Acetyl CoA, 

which is an important intermediary metabolite in energy production in the body and the 

starting material for cholesterol synthesis, is the precursor for farnesyl and geranylgeranyl 

pyrophosphate [Figure 1-5] [25].  

Prenylation is catalyzed by a group of enzymes called prenyltransferases which 

include farnesyltransferase [FTase], geranylgeranyltransferase [GGTase] I and II [28, 29]. 

Based on the specific structural motif of the substrate proteins for prenyltransferase and the 

subfamily of the protein they prenylate, the FTase and GGTase-I are referred to as CAAX 

prenyltransferase and GGTase-II is called non-CAAX prenyltransferase or Rab GGTase, 

where C stands for cysteine, A is aliphatic amino acid and X  is the terminal amino acid. 

Addition of farnesyl group, the 15 carbon derivatives of the mevalonic acid, is catalyzed by 

FTase, and examples of farnesylated proteins include H-Ras, Lamin A or B and Gγ subunits. 

Incorporation of geranyl group, the 20 carbon derivatives of mevalonic acid, is catalyzed by 

GGTase and some of the geranylated proteins include Rac1, Rho and Cdc42 [25, 30].  
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Figure 1-5: Biosynthesis of farnesyl and geranyl pyrophosphates.  

HMG-CoA synthetase and reductase catalyzes the synthesis of mevalonate from acetyl-CoA and 
acetoacetyl-CoA. Mevalonate then serves as a precursor for farnesyl pyrophosphate [farnesyl-pp], 
geranylgeranyl pyrophosphate [geranylgeranyl-pp] and cholesterol. The farnesyl pyrophosphate and 
geranylgeranyl pyrophosphate are incorporated into substrate proteins catalyzed by FTase and 
GGTase respectively. Lovastatin inhibits mevalonate synthesis; FTI and GGTI inhibit FTase and 
GGTase, respectively [25].  

 

Prenylation is the first step of the post-translational modifications and it is followed by 

protease-dependent removal of the three amino acids of the CAAX motif after the prenylated 

cysteine. In the presence of S-adenosyl methionine [SAM] as a methyl donor, the exposed 

carboxyl group is methylated by carboxylmethyltransferase. Moreover, certain proteins 

require an additional palmitoylation [addition of palmitate] step upstream of the prenylated 
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cysteine. These modifications will help the proteins to associate with the membrane and/or 

activate other proteins in the signal transduction pathways [Figure 1-6] [27].  

 

 

 

Figure 1-6: Steps implicated in post-translational modification of small G-proteins. 

Farnesylation/Geranylgeranylation is the first modification followed by protease dependent removal of 
three amino acids after the prenylated cysteine. These proteins then undergo carboxylmethylation 
reaction in the presence of S-adenosyl methionine and/or palmitoylation at cysteine residue upstream 
to the prenylated cysteine. These post-translational modifications are requisite for the functions of G-
proteins [27]. 

 
 
Inhibition of G-protein activation 

Studies using Clostridial toxins, molecular biological techniques [siRNA and dominant 

negative mutants] and pharmacological inhibitors have shown that G-proteins play important 

roles in pancreatic β-cell function including insulin secretion [31-36]. G-proteins are also 

involved in the metabolic dysfunction of β-cells. Studies from our laboratory and others have 

indicated that small G-proteins, namely H-Ras and Rac1, are involved in nitrosative and 

oxidative stress-induced pancreatic β-cell death. Both H-Ras and Rac1 are monomeric G-
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proteins with molecular weight of ~21 kDa that shuttle back and forth between cytosol and 

membrane thus acting as molecular switches in signal transduction pathways between the 

receptor and effector systems. Both H-Ras and Rac1 proteins undergo post-translational 

prenylation, which is catalyzed by FTase and GGTase, respectively [25, 37-39].  

 I. Clostridial toxins: Clostridial toxins irreversibly glucosylate and inactivate small G-

proteins. Our laboratory provided the first evidence that small G-proteins [e.g., H-Ras] are 

involved in cytokine-induced metabolic dysfunction of the islet β-cell. These studies were 

further confirmed using pharmacological inhibitors [40]. 

 II. Inactive mutants and siRNA: Overexpression of an inactive mutant of the 

regulatory α-subunit of protein prenyltransferase markedly attenuated glucose but not KCl 

induced insulin secretion [35]. siRNA mediated knockdown of α- and β-subunits of GGTase 

II, Rab escort protein 1 and isoprenylcysteine carboxyl methyltransferase markedly 

attenuates glucose stimulated insulin secretion [41].  

 III. Pharmacological inhibitors: Generic [eg., lovastatin] and site specific inhibitors 

of protein prenylation [eg., 3-vinyl farnesol, 3-vinyl geraniol, GGTI-2147] as well as the 

inhibitor of carboxylmethylation acetyl farnesylcysteine [AFC] indicated that G-proteins are 

involved in nutrient induced insulin secretion [30, 32, 34]. The significance of palmitoylation 

reaction in pancreatic β-cell was also confirmed by using two structurally different inhibitors 

of palmitoylation reaction, namely, cerulenin and 2-bromopalmitate. These inhibitors 

protected the insulin-secreting β-cells against noxious effects of cytokines [IL-1β] [42]. 

 

Regulators of G-protein function 

 There are three major types of proteins that regulate the activity of small G-proteins. 

These include GEFs [Guanine nucleotide Exchange Factors], GDIs [GDP Dissociation 

Inhibitors] and GAPs [GTPase Activating Proteins]. During the inactive state, GDI causes G-
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proteins to be in the GDP-bound form. Following appropriate stimulation, GDI dissociates 

from the corresponding G-protein and GEF facilitates the exchange of GTP for GDP, causing 

the G-protein to be in the active form to regulate its effector proteins. The intrinsic GTPase 

activity of G-protein along with GAP causes GTP hydrolysis converting the G-protein into 

inactive state [25]. 

 

NADPH oxidase in islet function 

 NADPH oxidase [NOX] represents a class of enzymes that has a membrane and 

cytosolic components, and it is involved in the generation of intracellular reactive oxygen 

species [ROS] in phagocytic and non-phagocytic cells. From the different isoforms of NOX 

that exist in the mammalian cells NOX1, NOX2 and NOX4 are found in pancreatic β-cells 

[43, 44]. NOXA1 [NOX Activator Protein 1] and NOXO1 [NOX Organizer Protein 1] constitute 

the cytosolic components for NOX1. gp91phox, p22phox and Rap1 makes the membrane 

bound catalytic subunits and p67phox, p47phox, p40phox and Rac1 form the cytosolic subunits for 

NOX2. Rac1 is the only cytosolic component for NOX4 [44, 45].  

 NOX catalyzes one electron reduction of molecular oxygen using NADPH as a 

cofactor and this process is associated with the generation of superoxide [O2
.-] [Figure 1-7]. 

In addition to the normal physiological stimuli, a number of chemical, physical, and 

inflammatory stimuli activate the NOX system. The activation of a prototypical NOX with 

proinflammatory cytokines such as IL-1β, TNFα, and INFγ causes Rac activation which in 

turn activates, phosphorylates and translocates other cytosolic components to the 

membrane-associated components to complete the holoenzyme assembly and function [25, 

45, 46].   

  Rac1, part of the cytosolic components of the NOX2 enzyme system, undergoes 

geranylgeranylation reactions. It is also regulated by GEF such as T-lymphoma invasion and 
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metastasis 1 [Tiam1] and Vav2. Blocking the Rac1-NOX2 signaling pathway using 

pharmacological inhibitors such as NSC23766 and GGTI-2147 prevented cytokine-induced 

reactive oxygen species generation and mitochondrial membrane damage in pancreatic β-

cell [47, 48].  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1-7: The prototypical isoform of NADPH oxidase [NOX] and its subunits in pancreatic β-cell.  

NOX1, gp91
phox

 [NOX2] and p22
phox

 constitute the membrane/catalytic subunit. For the membrane 
bound catalytic subunits to become active and generate superoxide, they require association with the 
cytosolic components which slightly varies between the different isoforms. NOX2 requires Rac, 
p67

phox
, p40

phox
 and p47

phox
 where as NOX1 needs NOXO1, NOXA1 and Rac proteins [45]. 

 
 
 
 
 
 
 
 
 
 
 
 



15 
 

 

 

Oxidative and Nitrosative stress 

 Pancreatic β-cells, like other cells in the body, use oxygen to fulfill their energy 

demand; therefore, they are constantly exposed to oxidants that result from metabolism. In 

contrast to majority of the cells in the body, pancreatic β-cells have low antioxidant 

machinery; this makes the islet β-cells more vulnerable to damage by oxidative and 

nitrosative stress due to reactive oxygen and nitrogen species, respectively. The reactive 

oxygen and nitrogen species include superoxide radical [O2
.-], hydrogen peroxide [H2O2], 

hydroxyl radical [OH.], nitric oxide [NO.] and peroxynitrite [OONO] [Figure 1-8] [49-52].  

 

 

 

 

 

 

 

 

 

 
 
 
 

 

Figure 1-8: A model for oxidative and nitrosative stress pathways and the corresponding antioxidants 
system.  

Stimuli such as proinflammatory cytokines activate NOX and iNOS gene expression and these 
activations lead to the generation of superoxide and nitric oxide, respectively. In the presence of iron, 
superoxide and hydrogen peroxide will be converted to hydroxyl radical through Fenton and Haber-
Weiss reactions causing cell damage. Superoxide also reacts with nitric oxide leading to the 
generation of a highly reactive species called peroxynitrite. The presence of antioxidants such as 
superoxide dismutase, catalase, glutathione peroxidase and reductase counteract the oxidant effect 
and prevent the cell damage [52]. 
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 Although physiological levels of reactive oxygen species are needed for islet function 

and insulin secretion, excessive ROS-mediated oxidative stress has been shown to be 

detrimental to the cells [47, 51]. The two well known cellular sites for the generation of the 

reactive oxygen species are the mitochondria respiratory system and phagocyte-like NADPH 

oxidase system. Nutrient-induced insulin secretion from pancreatic β-cell depends on 

glucose metabolite, ATP production and ROS generation. The NOX in the pancreatic β-cell is 

the major contributory factor for pathological roles of ROS in β-cell [53, 54]. Proinflammatory 

cytokines such as IL-1β, TNFα and INFγ also induce iNOS gene expression through NFĸB 

[Figure 1-8] leading to generation of reactive nitrogen species such as NO, culminating in β-

cell death [52]. Several extant studies demonstrating the role of oxidative and nitrosative 

stress in cytokine-induced pancreatic β-cell dysfunctions are summarized in Table 1-3.  
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Table 1-3: ROS generation and NO release in cytokines-induced pancreatic β-cell dysfunction. 

 

Endoplasmic Reticulum [ER] stress 

 Endoplasmic reticulum is one of the major cellular organelles involved in the 

synthesis and folding of cellular proteins and maintaining physiological concentration of 

calcium in the cell. In the pancreatic β-cell, both physiological and pathological factors cause 

ER stress. Mutant proteins, hypoxia, viral infection, environmental toxins, proinflammatory 

cytokines are some of the pathological factors causing ER stress. The three principal ER 

membrane bound proteins that detect the ER stress are: inositol requiring 1 [IRE1], double-

stranded-RNA-dependent protein kinase-like ER kinase [PERK] and activating transcription 

factor 6 [ATF6] [75-78].  

Model  Cytokines    Findings  Ref.  

Rat islets, RINm5F cells  IL-1β/IL-1β,TNFα,INFγ  ROS dependent  17  

Human and mouse islet, INS1, 
βTC3 cells  IL-1β/ TNFα,INFγ  ROS dependent  55  

MIN6 cells, mouse islets  TNFα, INFγ  ROS dependent  56  

Rat islet, BRIN BD 11  IL-1β/ TNFα,INFγ  ROS dependent  57  

HIT-T15 cells  IL-1β  NO dependent  40  

HIT-T15, INS-1  IL-1β  NO dependent  42  

RINm5F cells, rat islets  IL-1β, INFγ  NO dependent  58  

RINm5F cells  IL-1β/ TNFα, INFγ  NO dependent  59  

Rat (LEW.1W and  BB/OK) islets   IL-1β, INFγ  NO dependent  60  

Pancreatic islet, RINm5F cells  IL-1β, INFγ  NO dependent  61  

RINm5F, rat islets  IL-1β, INFγ  NO dependent  62 

Mouse islet, RINm5F cells,  IL-1β/ TNFα, INFγ  NO dependent  63  

RINm5F, rat islets  IL-1β, INFγ  NO dependent  64  

RINm5F  IL-1β/ TNFα, INFγ  NO dependent  65  

INS1E cells  IL-1β/ TNFα, INFγ  NO dependent  66  

Rat islets  IL-1β, TNFα  NO dependent  67  

Mouse islet  IL-1β/ TNFα, INFγ  NO independent  68  

Bank vole  IL-1β/ TNFα, INFγ  NO independent  69  

iNOS knock out mouse Islets  IL-1β, INFγ  NO independent  70  

INS 832/13 cells  IL-1β/ TNFα, INFγ  ROS and NO dependent  47  

RINm5, rat islets  IL-1β/IL1β,TNFα, INFγ  ROS and NO dependent  71  

BRIN-BD11 cells, mouse islets  IL-1β/ TNFα, INFγ  ROS and NO dependent  72  

RINm5F cells  IL-1β/ TNFα, INFγ  ROS and NO dependent  73  

Human islets  IL-1β/ TNFα, INFγ  Peroxynitrite dependent  74  
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 The ER stress initiates a signaling network called unfolded protein response [UPR] 

and, depending on the nature of the stimuli and extent of damage, the UPR has either a 

homeostatic outcome that helps to resolve the stress or an apoptotic consequence. Studies 

have shown that proinflammatory cytokines deplete endoplasmic reticulum calcium by 

interfering with sarcoendoplasmic reticulum pump Ca2+ATPase2b [SERCA2b] causing 

pancreatic β-cell apoptosis through ER stress [77, 79].  

 

Stress kinases 

 c-Jun N-terminal Kinase [JNK] and p38 are part of the Mitogen-Activated Protein 

[MAP] kinase family that are activated by protein kinase cascade following various stress 

inducing agents that affect cell survival [80-82]. There are three isoforms of JNK; JNK1 and 

JNK2 are expressed ubiquitously in different tissues of the body and JNK3 is expressed only 

in brain and heart tissues. There are four different isoforms of p38; p38-α, p38-β, p38-γ and 

p38-δ [82, 83]. Depending on the nature of the stimuli when these protein kinases get 

activated, they cause ER stress, activate mitochondrial apoptotic protein and transcription 

factors in the nucleus [83, 84]. Studies in pancreatic β-cells have shown that p38 MAP 

kinase and JNK are activated following exposure to proinflammatory cytokines and stress 

induced during islet isolation process [85-88]. 
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Proposed working model 

The overall objective of my doctoral dissertation is to determine putative cellular mechanisms 

underlying proinflammatory cytokine-induced metabolic dysfunction and demise of the islet      

β-cell.  To accomplish this goal, I propose to: 

 test the hypothesis that cytokines induce ROS generation and oxidative stress 

via activation of phagocyte-like NADPH-oxidase [NOX2]; 

 test the hypothesis that protein palmitoylation is a key regulatory step involved 

in cytokine-induced nitrosative and oxidative stress; 

 determine the identity of palmitoylated G-proteins, which are involved in 

cytokine-induced metabolic dysfunction of the islet β-cell; and  

 test the hypothesis that pharmacological inhibition of palmitoylation of specific 

G-proteins [e.g., H-Ras and Rac1] attenuates cytokine-induced activation of 

oxidative, nitrosative and other stress signaling pathways [e.g., JNK1/2] 

thereby halting metabolic dysregulation of the islet β-cell. 

Based on the results obtained from my studies, I conclude that protein palmitoyl transferase 

is a novel therapeutic target for the prevention of cytokine-induced metabolic dysfunction of 

the islet β-cell. 
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Chapter 2: Materials and Methods 

2.1. Materials 

 Chemicals: IL-1β, TNFα, INFγ and Z-DEVD-FMK, a caspase inhibitor, were from     

R & D Systems [Minneapolis, MN]. 2`,7-Dichlorofluorescein diacetate, 2-bromopalmitate, 

Griess reagent, N,N`-dimethyl-9,9`-biacridiniumdinitrate [lucigenin], 4′-hydroxy-3′ 

methoxyacetophenone [apocynin] and 50 mM phosphate buffer solution were obtained from 

Sigma-Aldrich [St. Louis, MO]. NADPH and NSC23766 were from Calbiochem [Billerica, MA] 

and EHop-016 was kindly provided by Dr Vlaar, Department of Pharmaceutical Sciences, 

School of Pharmacy, University of Puerto Rico.  

 Antibodies: Antisera directed against phospho-p47phox [NCF1] and p67phox were from 

Abcam [Cambridge, MA]. Total-p47phox, phospho-p38, total-p38 and FTase/GGTase-α 

subunit were from Santa Cruz Biotechnology [Santa Cruz, CA]. Rac1 and gp91phox were from 

BD Biosciences [San Jose, CA]. Antisera directed against CHOP, phospho-JNK, total-JNK 

and cleaved caspase-3 [active form] were from Cell Signaling [Danvers, MA]. Anti-mouse 

and anti-rabbit IgG-horseradish peroxidase conjugates were from Amersham Biosciences 

[Piscataway, NJ]. 

 Assay kits: Enhanced chemiluminescence kits were from Amersham Biosciences 

[Piscataway, NJ]. Re-blot plus strong antibody stripping solution was from Millipore [Billerica, 

MA]. Rac1 activation assay kit was from Cytoskeleton [Denver, CO]. All other reagents used 

in these studies were from Sigma Aldrich [St. Louis, MO] unless stated otherwise. 

 Animals: NOD/ShiLtJ and BALB/cJ mice were from Jackson Laboratory [Bar Harbor, 

ME]. Picolab Rodent Diet was from Lab Diet [Brentwood, MO]. The laboratory animal 

bedding, Bed-o’Cobs 1/8″, was from Anderson [Maumee, OH].  
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2.2. Insulin-secreting cell line and mouse islets  

 INS-1 832/13 cells were kindly provided by Dr. Chris Newgard, Duke University 

Medical Center, Durham. INS-1 832/13 cells were cultured in RPMI-1640 medium containing 

10% heat inactivated FBS supplemented with 100 IU/ml penicillin and 100 IU/ml 

streptomycin, 1mM sodium pyruvate, 50 µM 2-mercaptoethanol and 10 mM HEPES [pH 7.4]. 

The cultured cells were subcloned twice weekly following trypsinization and passages 53-61 

were used for the studies. Islets from 7-8 weeks NOD/ShiLtJ and control BALB/cJ mice were 

isolated by collagenase digestion method [89]. All protocols, including isolation of pancreatic 

islets from mice, were reviewed and approved by Institutional Animal Care and Use 

Committee of the Wayne State University. 

 INS-1 832/13 cells or mouse islets were incubated with cytomix [IL-1β, TNFα and 

INFγ; 10 ng/ml each] or individual cytokines [25 ng/ml] for 0-24 hrs as indicated in the text. In 

select studies, INS-1 832/13 cells were incubated with cytomix [IL-1β, TNFα and INFγ; 10 

ng/ml each] in the presence and absence of different pharmacological inhibitors for 0-24 hrs 

as indicated in the text. At the end of the incubation period the cells were harvested and 

lysed in RIPA buffer [50 mM Tris-HCl, pH7.4, 1% NP-40, 0.25% sodium deoxycholate,150 

mM NaCl, 1mM EDTA, 1 mM NaF, 1 mM PMSF, 1 mM Na3VO4 and 1 µg/ml protease 

inhibitor cocktail]. 

 

2.3. Isolation of membrane fraction 

 INS-1 832/13 cells were treated with cytomix for the designated time points as 

indicated in the text. At the end of the incubation period, cells were washed with ice-cold 

PBS, harvested and pelleted by centrifugation at 2,000 rpm for 5 min at 4oC. After re-

suspending in the homogenizing buffer [50 mM Tris-HCl [pH 7.4], 250 mM sucrose, 1 mM 

EDTA, 1 mM DTT, 1 mM PIC, 1 mM PMSF and 1 mM Na3VO4] and sonication, unbroken 
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cells and nuclei were separated by centrifugation at 1,300 rpm for 10 min. The cleared 

supernatant was further centrifuged at 40,000 rpm for 30 min [OptimaTM MAX 

Ultracentrifuge]. The cytosol fraction was separated and the membrane fraction was 

dissolved in 2% CHAPS [10 mM Tris-HCl, pH 7.6, 1.5 M NaCl, 1 mM PIC, 1 mM PMSF  and 

1 mM Na3VO4]. 

 

2.4. ROS generation assay 

 INS-1 832/13 cells were plated in a 6 well plate and treated with cytomix [IL-1β, TNFα 

and INFγ; 10 ng/ml each] or individual cytokines [25 ng/ml] for 24 hrs as indicated in the text. 

Subsequently, the media was removed and the cells were incubated further with 2`7-

dichlorofluorescein diacetate [DCHF-DA] at 37oC for 30 min. The cells were washed twice 

with ice-cold PBS and harvested, followed by loading equal amount of protein [50 µg] and 

reading the fluorescence using luminescence spectrophotometer [Ex:485nm and Em:535nm] 

[PerkinElmer, Waltham, MA]. 

 

2.5. NOX2 assay 

INS-1 832/13 cells were plated in a 6 well plate and co-incubated with IL-1β [25 

ng/ml] and apocynin [100 µm] for 30 min. The NOX2 activity was measured using the method 

described by Hwang and associates [90]. Control, cytokine [IL-1β] and glucose-treated cells 

were homogenized using 50 mM phosphate buffer solution [pH 7.0] containing 1 mM EDTA 

and 1 mM PMSF. The homogenates were centrifuged at 3,000 g for 10 min and the clarified 

lysates [250 µg protein/ml] were then incubated with N, N-dimethyl-9,9`-biacridinium dinitrate 

[lucigenin] for 2 min followed by the addition of NADPH [100 µM]. The chemiluminescence 

signal resulting from reaction of superoxide anion and lucigenin was recorded every 1 min for 



23 
 

 

 

15 min using BioTek Synergy HT, Gen5 [Winooski, VT] and the activity was expressed as 

chemiluminescence units per mg lysate protein per minute. 

 

2.6. NO release assay 

 INS-1 832/13 cells were plated in a 6 well plate and treated with cytomix [IL-1β, TNFα 

and INFγ; 10 ng/ml each] for 24 hrs as indicated in the text. At the end of the incubation 

period, the media was collected and centrifuged at 1,000 g for 5 min. Equal amount of media 

and Griess reagent were mixed and the absorbance [540nm] was measured using a 

microplate reader [Molecular Devices, Sunnyvale, CA].  

 

2.7. Rac1 activation assay 

 Pull-down assay: INS-1 832/13 cells were pretreated with NSC23766 [20 μM] 

followed by treatment with cytomix for 15 min in the absence and presence of the inhibitor 

[20 μM]. Cell lysates [250–300 μg] were clarified by centrifugation. Then PAK-PBD [p21-

activated kinase-p21-binding domain] beads [20 μl] were added to the supernatant, rotated 

for 1 h at 4°C, and pelleted. The resultant pellet was washed and reconstituted in Laemmli 

buffer. Proteins were resolved by SDS-PAGE and immunoblotted for Rac1 [47].  

 GLISA: Activated Rac1 was quantitated using the GLISA activation assay kit 

according to the manufacturer’s instructions. Briefly, lysates were clarified by centrifugation 

at 14,000 rpm for 2 min. Equal amounts of protein were incubated in the Rac1-GTP affinity 

plate for 30 min at 4°C. The wells were washed twice with washing buffer and incubated with 

anti-Rac1 primary antibody and secondary antibody, followed by additional incubation with 

horseradish peroxidase-detection reagent. Horseradish peroxidase-stop buffer was added to 

stop the reaction, and the absorbance was measured at 490 nm using a microplate reader. 
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2.8. Protein phosphorylation assay 

 INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα, and INFγ, 10 ng/ml each] 

in the presence and absence of pharmacological inhibitors for 0-24 hrs time point and the 

cells were lysed with RIPA buffer containing 1 µg/ml protease inhibitor cocktail, 1 mM NaF,   

1 mM PMSF, and 1 mM Na3VO4. The samples were incubated on ice for 10 minutes followed 

by clarification and determination of the total protein content by Pierce 600 nm Protein 

Assay. Equal amount of proteins were separated by SDS-PAGE on 10% [w/v] 

polyacrylamide mini gels and electro-transferred to a nitrocellulose membrane. The 

membranes were immunoprobed with corresponding primary phospho-antibodies and 

developed as indicated below. The same blots were used to probe for total-proteins for the 

respective phospho-proteins to ensure equal loading and transfer of the proteins. 

 

2.9. Western blotting 

 Proteins [30-40 µg/lane] were separated by SDS-PAGE on 10% [w/v] polyacrylamide 

mini gels and electro transferred to nitrocellulose membrane. The membranes were blocked 

with 5% BSA or 5% non fat dry milk in 10 mM Tris-HCl, pH 7.6, 1.5 M NaCl and 0.1% Tween 

20 followed by incubation with corresponding primary antibody and secondary polyclonal 

rabbit or mouse antibody conjugated to horseradish peroxidase. The protein signal was 

enhanced by chemiluminescence system and developed using Kodak Pro Image 400 R 

[New Haven, CT]. The same blots were used to probe for β-actin to ensure equal loading and 

transfer of the proteins. 

 

2.10. Pharmacological inhibitors  

INS-1 832/13 cells were incubated with cytomix [IL-1β, TNFα and INFγ; 10 ng/ml 

each] or [IL-1β; 25 ng/ml] in the presence and absence of 2-bromopalmitate [100 µM], 
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apocynin [100 µM], EHop-016 [5 µM], NSC23766 [20 µM] for 0-24 hrs and their effect on 

cytomix/IL-1β induced ROS generation, NO release, Rac1 and NOX2 activation, CHOP 

expression, JNK1/2 and p38 MAP kinase activation were analyzed as indicated in the text. 

  

2.11. Statistical analysis of experimental data 

 Results are expressed as mean + SEM. Statistical significant difference between 

groups was evaluated by ANOVA followed by SNK Post-Hoc test where appropriate.            

P < 0.05 was considered to be statistically significant. 
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Chapter 3: Cytokines activate phagocyte-like NADPH oxidase in pancreatic     
β-cell. 

 

 Portions of this work have been published [copies of the published manuscripts are 

appended] 

Mohammed AM, Syeda K, Hadden T, Kowluru A. Upregulation of phagocyte-like NADPH 

oxidase by cytokines in pancreatic β-cells: attenuation of oxidative and nitrosative stress by 

2-bromopalmitate. Biochemical Pharmacology 2013; 85(1):109 -114.  

Mohammed AM, Kowluru A. Activation of apocynin-sensitive NADPH oxidase [NOX2] activity 

in INS-1 832/13 cells under glucotoxic conditions. Islets 2013; 5(3).  

 

 Type 1 diabetes is characterized by an absolute insulin deficiency arising from 

progressive autoimmune destruction of insulin-secreting pancreatic β-cells [1, 24, 91]. During 

the progression of this disease, several proinflammatory cytokines, including IL-1β, TNFα 

and IFNγ are secreted into the islets by infiltrated and activated T cells and macrophages, 

which, in turn, elicit damaging effects on pancreatic β-cells. However, putative mechanisms 

and the underlying signaling mechanisms involved in cytokine-induced loss of β-cells remain 

only partially understood [55, 92]. Among numerous mechanisms proposed, IL-1β has been 

demonstrated to mediate its effects via the induction of inducible nitric oxide synthase 

(iNOS), which, in turn, promotes cytotoxic NO release culminating in β-cell demise. In 

addition, TNFα and IFNγ elicit regulatory effects on β-cell function via regulation of individual 

metabolic signaling steps leading to cell death [16, 40, 71]. Along these lines, previous 

studies have suggested that IFNγ sensitizes human islets to the effects of IL-1β [93]. In 

addition to NO, several recent studies including our own have suggested that phagocyte-like 

NADPH oxidase [NOX2] contributes to loss of β-cell function, metabolic dysregulation and 

http://www.ncbi.nlm.nih.gov/pubmed/23092759
http://www.ncbi.nlm.nih.gov/pubmed/23092759
http://www.ncbi.nlm.nih.gov/pubmed/23092759
http://www.ncbi.nlm.nih.gov/pubmed?term=Mohammed%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=23695780
http://www.ncbi.nlm.nih.gov/pubmed?term=Kowluru%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23695780
http://www.ncbi.nlm.nih.gov/pubmed/23695780
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the loss of β-cell mass under the duress of pathological conditions such as glucolipotoxicity 

and exposure to cytokines. Specifically, we have demonstrated that chronic exposure of 

isolated β-cells to cytomix leads to NOX2 holoenzyme activation, ROS generation, 

mitochondrial dysfunction and cell death [44, 47, 53, 94].  Moreover, using selective 

inhibitors of Rac1, a small G-protein, which is a member of NOX2 holoenzyme, we have 

been able to demonstrate that inhibition of Rac1 activation leads to prevention of ROS 

generation and mitochondrial dysregulation in isolated β-cells [47, 51, 95]. Interestingly 

however, we failed to see any clear effects of Rac1 inhibitors on cytomix-induced NO 

generation suggesting involvement of a Rac1-independent mechanism for cytomix-induced 

NO release in these cells. 

 A recent Editorial Focus by Jastroch [96] appropriately pointed out a need for the 

development of pharmacological probes/reagents that can block both ROS and NO 

generation in pancreatic β-cells exposed to cytomix as simultaneous release of both ROS 

and NO could lead to the formation of peroxynitrite, which may be more damaging to the β-

cell compared to ROS or NO alone. Therefore, as a logical extension, we undertook an 

investigation to assess the roles of protein palmitoylation in the cascade of events leading to 

cytomix-induced ROS and NO generation in INS-1 832/13 cells.  

 

IL-1β promotes ROS generation  

 Our laboratory recently reported a significant increase in NOX2-mediated generation 

of ROS in INS-1 832/13 cells. In the current set of experiments we examined effects of 

individual cytokines on ROS generation in order to determine which of the three cytokines 

exert stimulatory effects on ROS generation in INS-1 832/13 cells. Data in Figure 3-1 

indicated that of all the three cytokines tested, namely IL-1β, TNFα or IFNγ [25 ng/ml each; 

24 hr] only IL-1β significantly augmented [~2.5 fold] ROS generation; these values were 



28 
 

 

 

comparable to those demonstrated in the presence of all the three cytokines combined 

[referred to as cytomix throughout].  A modest, but insignificant, effect of TNFα [bar 1 vs. 3] 

or IFNγ [bar 1 vs.4], was demonstrated under these conditions. Therefore, we determined 

the effects of cytokines on NOX2 activation in most of the studies described from here on 

since the cytomix represents an appropriate model to determine effects of cytokines on islet 

β-cell dysfunction. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-1: IL-1β, but not TNFα and INFγ, activates ROS generation in INS-1 832/13 cells.  

INS-1 832/13 cells were treated with individual cytokines [IL-1β, TNFα and INFγ; 25 ng/ml each] for 24 
hrs and the amount of ROS generation was measured with 2`7-dichlorofluorescein diacetate assay. 
Data represent mean + SEM from three independent experiments and expressed as % of control.     
*P < 0.05 versus control. 
 

 

Cytomix induces p47phox phosphorylation  

 Recent studies from our laboratory and others have shown that cytokines induce the 

expression of p47phox, and siRNA-mediated depletion of endogenous pools of p47phox 
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markedly attenuated cytokine-induced NOX2-mediated ROS generation in insulin-secreting 

cells [47]. Furthermore, evidence in other cell types indicates that p47phox is phosphorylated 

subsequent to agonist activation [97, 98] and the phosphorylation step is necessary for its 

translocation to the membrane fraction for association with other members of the NOX2 core 

proteins to complete holoenzyme assembly leading to the activation of NOX2.  This has not 

been examined before in islet β-cells exposed to cytokines. Data in Figure 3-2 [Panel A] 

suggested a time-dependent activation of p47phox [0-60 min] following exposure to cytokines.  

We observed nearly a 2-fold increase in the phosphorylation of p47phox by cytokines within an 

hour of incubation [Panel B]. These data suggest that cytokines induce phosphorylation of 

p47phox. 
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Figure 3-2: Cytomix induces phosphorylation of p47
phox 

in INS-1 832/13 cells. 

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα, and INFγ; 10 ng/ml each] for different time 
intervals as indicated in the figure. Degree of phosphorylation of p47

phox
 was determined by Western 

blot [Panel A] followed by densitometry [Panel B]. Data are normalized to total p47
phox

 content in 
corresponding lanes. Data represent mean + SEM from three independent experiments and 
expressed as percent control of the ratios between phosphorylated- and total-p47

phox
.  *P < 0.05 

versus control. 

 

Cytomix induces gp91phox expression 

 We next investigated alterations, if any, in the expression of gp91phox in cells following 

exposure to cytomix. To address this, INS-1 832/13 cells were incubated in the presence of 

cytomix for different time intervals [0-60 min] as above [Figure 3-2]. Relative abundance of 
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gp91phox was determined in the total membrane fraction isolated by a single-step 

centrifugation method by Western blotting for gp91phox [Figure 3-3; Panel A] and 

densitometry [Figure 3-3; Panel B]. These data indicated a time-dependent increase in the 

expression of gp91phox in INS-1 832/13 cells following exposure to cytomix. A significant 

increase in the expression was seen as early as 20 min [~2 fold], which appear to plateau 

with time. Together, these data are indicative of positive modulatory effects of cytomix on 

NOX2 in INS-1 832/12 cells. Such effects are comprised of increase in the activation of Rac1 

[47], phosphorylation of p47phox and expression of gp91phox; such conditions are essential for 

activation of NOX2 enzyme. 
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Figure 3-3: Cytomix increases the expression of gp91

phox
 in INS-1 832/13 cells.  

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα, and INFγ; 10 ng/ml each] for different time 
points as indicated in the figure. Degree of gp91

phox
 expression was measured by Western blot [Panel 

A] followed by densitometry [Panel B]. Data are normalized to β-actin content in individual lanes. Data 
represent mean + SEM from three independent experiments and expressed as percent control of the 
ratios between gp91

phox
 and β-actin. *P < 0.05 versus control and # P < 0.05 versus 20 min and 40 

min. 

 

IL-1β increases apocynin-sensitive NOX2 activity  

It is well documented that in addition to the phagocyte-like NADPH oxidase, other 

cellular organelles such as mitochondria, peroxisomes and endoplasmic reticulum produce 

reactive oxygen species [99-102]. Physiological amounts of ROS is required for normal 

functioning of the β-cells such as glucose stimulated insulin secretion. The presence and 

chronic activation of NADPH oxidase by high glucose, palmitate and proinflammatory 
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cytokines could lead to excessive amount of ROS in the β-cell. Hence, follow up studies were 

carried out in INS-1 832/13 cells to specifically measure the NOX2 activity under cytokine [IL-

1β] condition. To exclude other oxidoreductase enzyme activities in the assay, a relatively 

selective pharmacological inhibitor for NOX2 [apocynin] was used. The results showed that 

apocynin has no significant effect on basal NOX2 activation [bar 1 vs. bar 2]. However, 

exposure to IL-1β [25 ng/ml] activates the enzyme [~1.7 fold] as early as 30 min [bar 1 vs. 

Bar 3] and it was significantly blocked by apocynin [100 µM] [bar 3 vs. bar 4] [Figure 3-4].  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 3-4: IL-1β increases apocynin-sensitive NOX2 activity in INS-1 832/13 cells.  

INS-1 832/13 cells were incubated with IL-1β [25 ng/ml] in presence and absence of apocynin [100 
µM] for 30 min and NOX2 enzyme activity was measured for 15 min. The enzyme activity was 
expressed as chemiluminescence units per mg lysate protein per minute. Data represent mean + SEM 
from six independent experiments and expressed as percent of control. *P < 0.05 versus control; #P < 
0.05 versus IL-1β. 
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2-Bromopalmitate inhibits cytomix-induced ROS generation 

 Recent studies from our laboratory have demonstrated that activation of Rac1 is 

necessary for cytokine-induced NOX2 activation and ROS generation. In this context we 

reported that prior incubation of INS-1 832/13 cells with GGTI-2147, an inhibitor of 

geranylgeranylation of Rac1 or NSC23766, a known inhibitor of Rac1 mediated by Tiam1, a 

guanine nucleotide exchange factor for Rac1 markedly attenuated cytomix-induced ROS 

generation [Figure 3-5]. Therefore, in the present study we determined the effects of 2-

bromopalmitate, a known inhibitor of protein palmitoylation on cytomix-induced ROS 

generation. These studies are based on the recent reports of palmitoylation of Rac1 at a 

cysteine residue upstream to the C-terminal cysteine. To address this, cytomix-induced ROS 

generation was quantitated in INS-1 832/13 cells incubated in the presence of diluent alone 

or 2-BP [100 μM; 24 hr]. Data depicted in Figure 3-6 indicated no significant effects of 2-BP 

on basal ROS generation [bar 1 vs. bar 2]. However, cytomix-induced ROS generation was 

completely abolished by 2-BP [bar 3 vs. bar 4]. These findings suggest that a palmitoylation-

dependent signaling step is necessary for cytomix-induced ROS generation. 
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Figure 3-5: Cytomix-induced ROS generation is inhibited by NSC23766 and GGTI-2147. 

INS-1 832/13 cells were treated with either diluent or cytomix [IL-1β, TNFα, and INFγ; 10 ng/ml each] 
in the presence and absence of NSC23766 [20 μM] or GGTI-2147 [10 μM] for 12 h [Panel A] and 24 h 
[Panel B] as indicated in the figure, and intracellular levels of ROS was measured using DCHF-DA 
assay. Data are representative of three independent experiments, expressed as a percentage of 
control and represent means ± SEM. Bars with different symbols (*, **, ***) are significantly different at 
P < 0.05 [47]. 
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Figure 3-6: 2-BP attenuates cytomix-induced ROS generation in INS-1 832/13 cells.  

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα and INFγ; 10 ng/ml each] for 24 hrs in the 
presence and absence of 2-BP [100 μM] and the amount of ROS generation was measured with 
DCHF-DA assay. Data represent mean + SEM from three independent experiments and expressed as 
% of control. *P < 0.05 versus control and #P < 0.05 versus cytomix.  

 

2-Bromopalmitate inhibits cytomix-induced Rac1 activation 

Rac1 is one of the components of the NADPH oxidase and its activation is required 

for assembly and activation of the holoenzyme. Recent study from our laboratory has shown 

that Tiam1 inhibitor [NSC23766] inhibited Rac1-GTP bound form [Figure 3-7] [47]. In the 

present study we hypothesize that in addition to geranylgeranylation Rac1 also undergoes 

palmitoylation, the addition of palmitate to a cysteine residue upstream to prenylated cysteine 

[Figure 1-6]. To address this, cytomix-induced Rac1 activation was quantitated in INS-1 

832/13 cells incubated in the presence and absence of 2-BP [100 μM; 15 min]. Data shown 

in Figure 3-8 indicated no significant effects of 2-BP on basal Rac1 activation [bar 1 vs. bar 
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2]. However, cytomix-induced Rac1 activation was blocked by 2-BP [bar 3 vs. bar 4]. These 

findings suggest that a palmitoylation-dependent signaling step is necessary for cytomix-

induced Rac1 activation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-7: Cytomix induces transient activation of Rac1 in INS-1 832/13 cells: inhibition of this 
signaling step by NSC23766.  

Cytomix causes transient activation of Rac1 in INS-1 832/13 cells, as determined by the pull-down 
assay followed by Western blot analysis, Panel A. Pooled activation data from three independent 
experiments are shown in Panel B. NSC23766 inhibition of cytomix-induced activation of Rac1. 
Pooled data from three independent studies are depicted in Panel C. *, represent the values that are 
significantly different from control at P < 0.05 [47]. 
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Figure 3-8: 2-BP attenuates cytomix-induced Rac1 activation. 

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα and INFγ; 10 ng/ml each] for 15min in the 
presence and absence of 2-BP [100 μM] and Rac1 activation was measured with GLISA. Data 
represent mean + SEM from three independent experiments and expressed as fold change. *P < 0.05 
versus control; # P < 0.05 versus cytomix.  

 

2-Bromopalmitate inhibits cytomix-induced NO release 

 It is widely felt that both oxidative [ROS] and nitrosative [NO] stress could contribute 

to impairment of the overall health of the islet β-cell [25, 56, 73, 74]. Such concerns were 

raised indeed by investigators in the area warranting additional studies to investigate 

potential targets which could regulate both ROS and NO generation signaling steps under 

the duress of cytokines. To this end, we have previously reported that a palmitoylation-

mediated signaling step may be necessary for cytokine-induced iNOS gene expression and 

NO release [42]. Herein, we revisited those earlier studies to demonstrate that inhibition of 

protein palmitoylation by 2-BP inhibits cytomix-induced NO release in INS-1 832/13 cells. 

Data in Figure 3-9 suggested no direct effects of 2-BP on basal NO release [bar 1 vs. bar 2]. 
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However, as in the case with ROS generation [Figure 3-6], 2-BP treatment also attenuated 

cytomix-induced NO release [bar 3 vs. bar 4]. Together, our findings highlight the importance 

of palmitoylation as a unifying mechanism involved in the induction of NOX2-mediated 

oxidative stress and iNOS-mediated nitrosative stress in pancreatic β-cells. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-9: Cytomix-induced NO release is inhibited by 2-BP   

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα and INFγ; 10 ng/ml each] for 24 hrs time 
point in the presence and absence of 2-bromopalmitate [100 µM] and the amount of nitric oxide 
release was measured using Griess assay. 2-Bromopalmitate significantly decreased cytomix-induced 
nitric oxide release. Data represent mean + SEM from three independent experiments. *P < 0.05 
versus control and # P < 0.05 versus cytomix.  

 

2-Bromopalmitate inhibits high glucose-induced Rac1 activation 

 Studies from our laboratory have shown that Rac1 has both positive as well as 

negative regulatory roles in pancreatic β-cell function. Inhibiting the Rac1 function with 

pharmacological and molecular approach affects glucose stimulated insulin secretion. 

Inhibiting the Rac1 function also protected pancreatic β-cell from oxidative stress due to 
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chronic exposure to glucose, palmitate and proinflammatory cytokines [39]. In the present 

study we determined the role of palmitoylation on glucose-induced Rac1 activation. Similar to 

cytomix effect, incubation of INS-1 832/13 cells with high glucose induces Rac1 activation. 

Data shown in Figure 3-10 indicated no significant effect of 2-BP on Rac1 activation [bar 1 

vs. bar 2]. However, glucose-induced Rac1 activation was inhibited by 2-BP [bar 3 vs. bar 4] 

indicating that both cytomix- [Figure 3-8] and glucose-induced Rac1 activation is dependent 

on palmitoylation. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-10: 2-BP attenuates high glucose-induced Rac1 activation.  

INS-1 832/13 cells were treated with low glucose [LG; 2.5 mM] and high glucose [HG; 20 mM] for 15 
min in the presence and absence of 2-bromopalmitate [2-BP; 100 μM] and Rac 1 activation was 
measured with GLISA. Data represent mean + SEM from three independent experiments and 
expressed as fold change. *P < 0.05 versus LG; # P < 0.05 versus HG.  
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High glucose increases apocynin-sensitive NOX2 activity 

 Emerging evidence from in vitro and in vivo studies provides strong support to the 

hypothesis that chronic exposure of β-cells to elevated glucose [i.e., glucotoxicity], lipids [i.e., 

lipotoxicity], or glucose plus lipids [e.g., glucolipotoxicity] results in a significant metabolic 

dysregulation eventually leading to cell demise [103]. Published evidence also suggests a 

marked increase in the generation of ROS, which manifests in increased oxidative stress in 

cells under the conditions of glucotoxicity [25, 44]. Several mechanisms have been put forth 

in this context, including depletion of intracellular redox state via the oxidation of reducing 

equivalents [e.g., reduced glutathione] and activation of superoxide-generating enzymatic 

machinery [25, 103]. 

 One of the enzymatic steps involved in the increased generation of ROS and 

associated induction of intracellular oxidative stress in the pancreatic β-cell includes 

activation of the phagocytic NADPH-oxidase [NOX2] system [25, 44]. NOX2 is a highly 

regulated membrane-associated protein complex that catalyzes the one electron reduction of 

oxygen to superoxide anion involving oxidation of cytosolic NADPH. The phagocytic NOX is 

a multicomponent system comprised of membrane as well as cytosolic components. The 

membrane-associated catalytic core is a complex comprising gp91phox, p22phox, and the small 

G protein Rap1. The cytosolic regulatory components include p47phox, p67phox, and the small 

G protein Rac. After stimulation, the cytosolic components of NOX translocate to the 

membrane fraction for association with the catalytic core for holoenzyme assembly. Available 

evidence suggests that a protein kinase Cζ-sensitive phosphorylation of p47phox leads to its 

translocation to the membrane fraction. It has also been shown that functional activation of 

Rac [i.e., Rac-GTP] is vital for the holoenzyme assembly and activation of NOX [25]. 

 Several recent studies have demonstrated localization and functional activation of the 

NOX in clonal β-cells, normal rat islets, and human islets under the duress of various stimuli 
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known to cause metabolic dysregulation [44, 94]. Some of these stimuli include, but are not 

limited to, high glucose, saturated fatty acids, and proinflammatory cytokines [47, 95]. 

Recently, our laboratory has reported increased ROS generation in islets from the diabetic 

Zucker Diabetic Fatty [ZDF] rat and Type 2 DM human islets. In that study, we also provided 

evidence to implicate Rac1-NOX2-ROS-JNK1/2 signaling cascade in glucose-induced 

metabolic dysfunction of the islet. However, we have not directly quantitated NOX2 activity in 

isolated β-cells exposed to hyperglycemic conditions to conclusively demonstrate that NOX2-

derived ROS generation is critical for high glucose-mediated effects on β-cell dysfunction. 

Therefore, a brief study was undertaken to quantitate NADPH oxidase activity in INS-1 

832/13 cells exposed to hyperglycemic conditions. To further demonstrate that such an 

activity represents NOX2, we included apocynin, a selective inhibitor of NOX2, in the assay.  

 Data in Figure 3-11 suggested no clear effects of apocynin on NADPH oxidase 

activity in INS-1 832/13 cells under basal [low-glucose] conditions [bar 1 vs. bar 2]. However, 

exposure of these cells to high glucose resulted in a significant increase [~ 2-fold] in the 

enzyme activity [bar 1 vs. bar 3]. Furthermore, coprovision of apocynin to these cells 

markedly attenuated the ability of glucotoxic conditions to stimulate NADPH oxidase activity. 

These data suggest that glucotoxic conditions promote activation of apocynin-sensitive 

NADPH oxidase activity in isolated β-cells. 

 Our findings provide further support to recently published evidence to suggest 

increased generation of ROS in cell culture models of glucotoxicity and in islets from Type 2 

DM animals and humans. Biochemical and cell biological studies have also demonstrated 

increased expression of p47phox, a member of the cytosolic core of NOX2 in these model 

systems [25, 89]. Furthermore, activation of Rac1 [GTP-bound conformation] has also been 

demonstrated in cells exposed to hyperglycemic conditions or in islets from animal models of 

Type 2 DM [89]. Lack of no effects of apocynin on basal [LG] NADPH oxidase activity 
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suggests very little activation of this enzyme under basal conditions. Along these lines, 

recent studies by Koulajian and associates have demonstrated significant activation of 

NADPH oxidase activity in rat islets following prolonged exposure to non saturated fatty 

acids, such as oleate. Furthermore, they have demonstrated a significant reduction in the 

activation of NADPH oxidase by apocynin [104], thus affirming critical regulatory roles for this 

enzyme in metabolic dysfunction induced by elevated glucose and lipids.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-11: Exposure of INS-1 832/13 cells to high glucose leads to apocynin-sensitive NOX2 

activity. 

INS-1 832/13 cells were incubated with low glucose [LG; 2.5 mM] and high glucose [HG; 20 mM] in 
presence and absence of apocynin [Apo; 100 µm] for 48 hrs and NADPH oxidase enzyme activity was 
measured for 15 min. The enzyme activity was expressed as chemiluminescence units per mg lysate 
protein per minute. Data represent mean + SEM from three independent experiments and expressed 
as percent of control. *P < 0.05 versus LG; #P < 0.05 versus HG. 
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Together, findings in this chapter of my thesis highlight the importance of 

palmitoylation as a unifying mechanism involved in the induction of NOX2-mediated oxidative 

stress and iNOS-mediated nitrosative stress in pancreatic β-cell.  

 

 

 

 
 
Figure 3-12: Model to implicate the role of palmitoylation in cytokine-induced metabolic dysregulation 
and apoptosis of the pancreatic β-cell.  
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Chapter 4: Studies of downstream signaling events involved in cytokine-
induced dysfunction of the islet β-cell 

 

 Portions of this work have been published [copy of the published manuscript is 

appended] 

 

Arora DK, Mohammed AM, Kowluru A. Nifedipine prevents etoposide-induced caspase-3 

activation, prenyl transferase degradation and loss in cell viability in pancreatic β-cells. 

Apoptosis. 2013; 18(1):1-8.  

 

Figure 4-1: MAP kinase signaling cascade. 

 
Cytomix activates JNK1/2 and p38 MAP kinase at 30 min 

 Previous studies have demonstrated a role for mitogen-activated protein [MAP] 

kinase signaling cascade in cytokine-induced dysfunction in multiple cell types including 

pancreatic β-cell [105-107]. Once the mitogen activated protein kinase kinase kinase families 

http://www.ncbi.nlm.nih.gov/pubmed?term=Arora%20DK%5BAuthor%5D&cauthor=true&cauthor_uid=23054080
http://www.ncbi.nlm.nih.gov/pubmed?term=Mohammed%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=23054080
http://www.ncbi.nlm.nih.gov/pubmed?term=Kowluru%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23054080
http://www.ncbi.nlm.nih.gov/pubmed/23054080
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[MAPKKK] are activated by cytokines [stress], the immediate downstream MAP kinase 

kinase [MAPKK] get activated followed by phosphorylation and activation of either p38 MAP 

kinase by MAPKK3 and MAPKK6 or JNK by MAPKK4 and MAPKK7 at the threonine and 

tyrosine residues which lead to the downstream signaling pathways such as activation of 

mitochondrial apoptotic protein, transcription factors and ER stress [Figure 4-1]. Studies 

have shown that the stress [proinflammatory cytokines] signals are delivered to the protein 

kinases through small GTPase such as Rac1 and Ras proteins [107-109].  

  

2-Bromopalmitate inhibits cytomix-induced JNK1/2 activation  

Recent study from our laboratory has shown that high glucose and palmitate activate 

JNK1/2 in INS-1 832/13 cells and this result has also confirmed in Zucker Diabetic Fatty 

[ZDF] rat islets, an animal model for type II diabetes [89]. To study the effect of cytokines on 

JNK1/2 and p38 MAP kinase and the role of protein palmitoylation in the signaling pathway, 

INS-1 832/13 cells were incubated with cytomix [0-24 hrs] in the presence and absence of 2-

bromopalmitate [100 µM]. Short term [30 min] incubation of INS-1 832/13 cells with cytomix 

significantly increased JNK1/2 and p38 MAP kinase activation [Figure 4-2 and Figure 4-7]. 

However, long term incubation [12 and 24 hrs] with cytomix had no notable effect on JNK1/2 

activation [Figure 4-3]. 2-Bromopalmitate significantly inhibited cytomix-induced JNK1/2 

activation at 30 min [Figure 4-2] and had no effect on p38 MAP kinase activation [Figure 4-

7] indicating that p38 MAP kinase pathway is not regulated by palmitoylation. Interestingly, 

unlike short term incubation, long term incubation [12 and 24 hrs] of 2-BP increased JNK1/2 

activation at the basal level [Figure 4-3] implying that there is/are palmitoylated proteins 

which suppress JNK1/2 activation in the absence of stress inducing agents.  
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Figure 4-2: Cytomix-induced JNK1/2 activation is inhibited by 2-BP.  

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα, and INFγ; 10 ng/ml each] for 30 min in the 
presence and absence of 2-BP [100 µM]. JNK1/2 activation was determined by Western blot [Panel 
A] followed by densitometry [Panel B]. Data represent mean + SEM from three independent 
experiment and expressed as fold change of the ratios between pJNK1/2 and total-JNK1/2. Cytomix 
significantly increased JNK1/2 activation [*P < 0.05 versus control] and it is inhibited by 2-BP            
[#P < 0.05 versus cytomix for pJNK1 and $P < 0.05 versus cytomix for pJNK2].  
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Figure 4-3: Long term incubation of INS-1 832/13 cells with cytomix and 2-BP.  

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα, and INFγ; 10 ng/ml each] for 12 and 24 hrs 
in the presence and absence of 2-BP [100 µM] and JNK1/2 activation was determined by Western 
blot. Both at 12 and 24 hrs, there is no difference in JNK1/2 activation between control and cytomix 
treatment [lane 1 vs. lane 3; 12 and 24 hrs]. However, 2-BP increased basal JNK1/2 activation [lane 1 
vs. lane 2; 12 and 24 hrs]. 

 

EHop-016 and NSC23766 inhibit cytomix-induced JNK1/2 activation 

 Rac1 is regulated by three major types of proteins. These include GEFs [Guanine 

nucleotide Exchange Factors], GDIs [GDP Dissociation Inhibitors] and GAPs [GTPase 

Activating Proteins]. During the inactive state, Rac1 binds to GDI in the cytoplasmic 

compartment. Up on arrival of appropriate stimuli, GDI dissociates from the Rac1 and GEF 

namely Tiam1 and/or Vav2 facilitate the exchange of GTP for GDP causing the Rac1 to be in 

active form and regulates its effector proteins. Once the downstream events are activated by 

Rac1, the intrinsic GTPase of Rac1 and/or GAP hydrolysis the GTP loaded on Rac1 

returning it to inactive state [Figure 4-4].  



49 
 

 

 

We utilized two pharmacological agents that inhibit Rac1 function. The first being EHop-016 

which is more potent inhibitor than NSC23766 [25, 94]. 

  

 

 

 

 

 

 

 

 

 

 

Figure 4-4: Proteins that regulate Rac1 function.  

 
 
 To study the role of Rac1 activation in cytomix-induced JNK1/2 and p38 MAP kinase 

activation, INS-1 832/13 cells were incubated with cytomix [IL-1β, TNFα, and INFγ; 10 ng/ml 

each] for 30 min in the presence and absence of EHop-016 [5 µM] and NSC23766 [20 µM]. 

Both compounds had no effect on basal JNK1/2 and p38 MAP kinase activation where as 

cytomix consistently increased JNK1/2 [Figure 4-5 and Figure 4-6] and p38 MAP kinase 

activation [Figure 4-8 and Figure 4-9]. While cytomix induced JNK1/2 activation is inhibited 

by EHop-016 and NSC23766 [Figure 4-5 and Figure 4-6], their effect on cytomix-induced 

p38 MAP kinase activation has not been observed in this study [Figure 4-8 and 4-9] 

indicating that p38 MAP kinase activation does not require Rac1 activation. 
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Figure 4-5: Cytomix-induced JNK1/2 activation is inhibited by EHop-016.  

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα, and INFγ; 10 ng/ml each] for 30 min in the 
presence and absence of EHop-016 [5 µM]. JNK1/2 activation was determined by Western blot [Panel 
A] followed by densitometry [Panel B]. Data represent mean + SEM from three independent 
experiment and expressed as fold change of the ratios between pJNK1/2 and total-JNK1/2. Cytomix 
significantly increased JNK1/2 activation [*P < 0.05 versus control] and it is inhibited by EHop-016   
[#P < 0.05 versus cytomix for pJNK1 and $P < 0.05 versus cytomix for pJNK2].  
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Figure 4-6: Cytomix-induced JNK2 activation is inhibited by NSC23766.  

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα, and INFγ; 10 ng/ml each] for 30 min in the 
presence and absence of NSC23766 [20 µM]. JNK1/2 activation was determined by Western blot 
[Panel A] followed by densitometry [Panel B]. Data represent mean + SEM from three independent 
experiment and expressed as fold change of the ratios between pJNK1/2 and total-JNK1/2. Cytomix 
significantly increased JNK1/2 activation [*P < 0.05 versus control] and cytomix-induced JNK2 
activation is inhibited by NSC23766 [#P < 0.05 versus cytomix for pJNK2].  
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Figure 4-7: Cytomix-induced p38 MAP kinase activation is not inhibited by 2-BP.  

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα, and INFγ; 10 ng/ml each] for 30 min in the 
presence and absence of 2-BP [100 µM] and p38 MAP kinase activation was determined by Western 
blot [Panel A] followed by densitometry [Panel B]. Data represent mean + SEM from three 
independent experiment and expressed as fold change of the ratios between p-p38 over total-p38. 
Cytomix increased p38 MAP kinase activation [*P < 0.05 versus control]; however, the activation is not 
inhibited by 2BP.  
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Figure 4-8: Cytomix-induced p38 MAP kinase activation is not inhibited by EHop-016.  

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα, and INFγ; 10 ng/ml each] for 30 min in the 
presence and absence of EHop-016 [5 µM] and p38 MAP kinase activation was determined by 
Western blot [Panel A] followed by densitometry [Panel B]. Data represent mean + SEM from three 
independent experiment and expressed as fold change of the ratios between p-p38 over total-p38.  
Cytomix increased p38 MAP kinase activation [*P < 0.05 versus control]; however, the activation is not 
inhibited by EHop-016.  
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Figure 4-9: Cytomix-induced p38 MAP kinase activation is not inhibited by NSC23766.  

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα, and INFγ; 10 ng/ml each] for 30 min in the 
presence and absence of NSC23766 [20 µM] and p38 MAP kinase activation was determined by 
Western blot [Panel A] followed by densitometry [Panel B]. Data represent mean + SEM from three 
independent experiment and expressed as fold change of the ratios between p-p38 over total-p38. 
Cytomix increased p38 MAP kinase activation [*P < 0.05 versus control]; however, the activation is not 
inhibited by NSC23766.  
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Cytomix-induced ER stress is not inhibited by 2-bromopalmitate 

 It is well established that ER stress underlies cytokine-mediated metabolic 

dysregulation of the islet β-cell [66, 75, 76]. Furthermore, recent studies by Baldwin and 

associates have suggested a critical requirement for protein palmitoylation in palmitate-

induced CHOP expression [a marker for ER stress] in that, 2-BP significantly attenuated 

palmitate-induced CHOP expression in insulin-secreting RINm5F cells [111]. Therefore, we 

investigated if cytomix-induced CHOP expression in INS-1 832/13 cells is sensitive to 2-BP.  

To address this, cytomix-induced CHOP expression was measured in cells incubated in the 

presence of diluent alone or 2-BP.  

 Data depicted in Figure 4-10 represents a Western blot for the expression of CHOP. 

It suggested no clear effects of 2-BP on CHOP expression under basal conditions [lane 1 vs. 

lane 2].  Exposure of these cells to cytomix significantly increased CHOP expression [lane 1 

vs. lane 3]. However, provision of 2-BP to cytomix-treated cells did not exert any significant 

effect on CHOP expression [lane 3 vs. lane 4] suggesting that protein palmitoylation is not 

necessary for cytomix-induced CHOP expression. 
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Figure 4-10: Cytomix-induced CHOP [C/EBP homologous protein] expression is not inhibited by 2-BP.  

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα and INFγ; 10 ng/ml each] for 24 hrs time 
point in the presence and absence of 2-bromopalmitate [100 μM]. The level of CHOP expression, a 
marker for endoplasmic reticulum [ER] stress, was measured by Western blot. Equal protein loading 
was confirmed by β-actin content in individual lanes.  

 
 
Cytomix induces caspase-3 activation and FTase/GGTase α degradation 

 Apoptosis, a genetically encoded programmed cell death, plays major role in 

cytokine-induced pancreatic β-cell dysfunction and death. The release of cytochrome C from 

mitochondrial intermembraneous space causes the initiation and activation of caspase family 

of cysteine proteases [112]. Studies from our laboratory have shown that palmitate, 

ceramide and proinflammatory cytokines cause loss of mitochondrial membrane potential 

and caspase-3 activation [47, 95]. In the present study, the downstream effects of cytomix-

induced damage on mitochondrial membrane have been examined. Incubation of INS-1 

832/13 cells with cytomix [IL-1β, TNFα, and INFγ; 10 ng/ml each] for 24 hrs significantly 

increased caspase-3 activation [Figure 4-11]. Cytomix also caused a significant degradation 

of FTase/GGTase α [Figure 4-12], one of the substrate protein for active caspase-3.  

 To further elucidate that caspase-3 activation leads to FTase/GGTase α degradation, 

studies have been carried out using caspase-3 inhibitor and  etoposide, a known genotoxic 

agent that causes a roboust activation of caspase-3. Incubation of INS-1 832/13 cells with 

etoposide [60 µM; 6 h]  significantly activated caspase-3 [Figure 4-13] and caspase-3 

inhibitor, Z-DEVD-FMK, [25 μM; 6 h] blocked the activation. Similarly, etoposide induces 
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significant amount of FTase/GGTase-α degradation [Figure 4-14] that was inhibited by the 

peptide inhibitor indicating that caspase-3 activation causes degradation and inactivation of 

FTase and GGTase that leads to defective activation of key G-proteins, defective nuclear 

assembly of lamins and loss of cell viability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11: Cytomix induces caspase-3 activation. 

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα, and INFγ; 10 ng/ml each] for 24hrs and the 
expression of cleaved caspase-3 was measured by Western blot [Panel A] followed by densitometry 
[Panel B]. Data represent mean + SEM from three independent experiment and expressed as fold 
change of the ratios between cleaved caspase-3 and β-actin. Cytomix significantly induces caspase-3 
activation. *P < 0.05 versus control.  
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Figure 4-12: Cytomix increases FTase/GGTase α degradation. 

INS-1 832/13 cells were treated with cytomix [IL-1β, TNFα, and INFγ, 10 ng/ml each] for 24hrs time 
points and the expression of FTase/GGTase α degradation product was measured by Western blot 
[Panel A] followed by densitometry [Panel B]. Data represent mean + SEM from three independent 
experiment and expressed as fold change of the ratios between degraded FTase/GGTase α and β-
actin. Cytomix significantly increases FTase/GGTase α degradation. *P < 0.05 versus control. 
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Figure 4-13: Etoposide induces caspase-3 activation: Protection of this signaling step by Z-DEVD-
FMK, an inhibitor of caspase-3.  

INS-1 832/13 cells were treated with either diluents or etoposide [60 μM] in the presence or absence 
of peptide inhibitor, Z-DEVD-FMK [25 μM; 6 h]. Caspase-3 activation was determined by Western 
blotting. Equal amount of lysates protein were resolved by SDS-PAGE [10 %]. Protein loading was 
determined by β-actin content in individual lanes. Representatives blot indicating the caspase-3 
activation [Panel A] is provided. Quantitative analysis of data obtained from three independent 
experiments for caspase-3 activation [Panel B] was carried out by densitometry. Results are shown 
as mean ± SEM. *P < 0.05. 
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Figure 4-14: Etoposide induces FTase/GGTase-α degradation: Protection of this signaling step by Z-
DEVD-FMK, an inhibitor of caspase-3.  

INS-1 832/13 cells were treated with either diluents or etoposide [60 μM] in the presence or absence 
of peptide inhibitor, Z-DEVD-FMK [25 μM; 6 h]. FTase/GGTase-α degradation was determined by 
Western blotting. Equal amount of lysates protein were resolved by SDS-PAGE [10 %]. Protein 
loading was determined by β-actin content in individual lanes. Representatives blot indicating the 
FTase/GGTase-α degradation [Panel A] is provided. Quantitative analysis of data obtained from three 
independent experiments for FTase/GGTase-α degradation [Panel B] was carried out by 
densitometry. Results are shown as mean ± SEM. ***P < 0.001. 
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In conclusion,   

 I have studied the effect of cytokines on stress signals namely, JNK1/2, p38 MAP 

kinase, ER stress, NOX2 activation, NO release and downstream effect of 

mitochondrial dysfunction. 

 I have assessed the effect of three pharmacological inhibitors namely, inhibitor of 

palmitoylation [2-BP], Vav2-Rac1 [EHop-016] and Tiam1-Rac1 [NSC23766] axis. 

 

Stress Signals 2-BP EHop-016 NSC23766 

JNK1/2 Inhibition Inhibition Inhibition 

p38 MAP kinase No effect No effect No effect 

ER stress No effect Not determined Not determined 

NOX2 Inhibition Not determined Inhibition 

NO inhibition Not determined No effect 

 

 Table 4-1: Summary of the effects of three pharmacological inhibitors on stress signaling 
kinases. 
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Chapter 5: Preliminary studies to determine potential difference, if any in NOX2 
subunit expression and ROS generation in islets from pre-diabetic NOD mice 

and the control BALB mice. 

 
Type I diabetes is an autoimmune disorder that results from the destruction of insulin 

secreting pancreatic β-cell. Although the exact causes of the disorder are still under scientific 

scrutiny, studies have shown that cytokines play a major role in the pathogenesis of the 

disease [12, 14, 16]. To reveal the pathophysiological mechanisms, non obese diabetic 

[NOD] mice, a well known animal model for type I diabetes, have been used for more than 30 

years. 

The NOD mice develop diabetes spontaneously around 12-14 weeks of age and the 

incidence rate is higher in the female mice than the male mice [23]. Based on the hypothesis 

that NOX2 hyperactivation plays a role in mediating cytokine-induced pancreatic β-cell 

dysfunction in the NOD mice, the present study examined the basal status of NOX2 subunit 

expression and activation in the islets of female NOD mice and age matched BALB control 

mice [7-8 weeks]. Preliminary results have shown that both islets of NOD and BALB mice 

express NOX2 subunits namely phospho-p47phox, p67phox, Rac1 and gp91phox. There is no 

difference in the expression as well as activation of the NOX2 enzyme system between the 

two groups [Figure 5-1 and 5-2]. Incubation of the islets with cytomix [IL-1β, TNFα and INFγ; 

10 ng/ml] for 24 hrs increased gp91phox expression in both BALB and NOD mice islets 

preparation [Figure 5-3].  
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Figure 5-1: NOX2 subunit expression in the islets of NOD and BALB mice. 

There is no difference in NOX2 subunit expression in the islets of NOD and control BALB mice. 
Pancreatic islets were isolated from female NOD and control BALB mice using collagenase digestion 
of the pancreas and the expression level of phospho-p47

phox
, p67

phox
 gp91

phox
 and Rac1 were 

determined by Western blot.  
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Figure 5-2: ROS generation and Rac1 activation in the islets of NOD and BALB mice. 

There is no difference in ROS generation and Rac1 activation in the islets of NOD and control BALB 
mice. Pancreatic islets were isolated from female NOD and control BALB mice using collagenase 
digestion of the pancreas and the amount of ROS generation and Rac1 activation were determined 
using DCHF-DA assay and GLISA respectively. Data represent mean + SEM from three independent 
experiments and expressed as % of control for ROS generation and fold change for Rac1 activation.  
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Figure 5-3: The effect of cytomix in the islets of NOD and BALB mice. 

Cytomix induces gp91phox expression in the islets of NOD and control BALB mice. Pancreatic islets 
were isolated from female NOD and control BALB mice using collagenase digestion of the pancreas. 
The isolated islets were incubated with cytomix [IL-1β, TNFα, and INFγ; 10 ng/ml each] for 24hrs and 

the expression level of gp91
phox

, phospho-p47
phox

 and p67
phox

 were determined by Western blot.  
 

In summary, the results obtained in this preliminary study are inconclusive and are yet 

to be confirmed. Future experiment will determine whether or not NSC23766, EHop-016 and 

2BP prevent cytokine-induced damage ex vivo and delay or prevent the onset of diabetes in 

the NOD mice.  
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Chapter 6: Discussion 

 Portions of this work have been published [copy of the published manuscript is 

appended] 

Mohammed AM, Chen F, Kowluru A. The Two Faces of Protein Palmitoylation in Islet β-Cell 

Function: Potential Implications in the Pathophysiology of Islet Metabolic Dysregulation and 

Diabetes. Recent Patents Endocrine Metabolic and Immune Drug Discovery. 2013 [Epub 

ahead of print].  

 

The uptake of glucose by the body cells is dependent upon the availability of insulin 

and the loss of functional pancreatic β-cell mass leads to a condition called “starvation 

amidst plenty” where there is an excess amount of glucose in the blood yet the body cells are 

starved. In type I diabetes, proinflammatory cytokines namely IL-1β, TNFα and INFγ are 

involved in the loss of pancreatic β-cell mass. However the precise mechanisms underlying 

the loss of cytokine-induced pancreatic β-cells are relatively poorly understood. Therefore, 

the objective of my doctoral work is to study the putative mechanisms of cytokine-induced 

metabolic dysfunction of the pancreatic β-cell and identify a novel therapeutic target for the 

prevention of cytokine-induced metabolic dysfunction of the islet β-cell.  

Studies have shown that phagocytic-like NADPH oxidase [NOX2] has a significant 

role in exerting detrimental effects on the pancreatic β-cells following exposure to high 

glucose [glucotoxicity], palmitate [lipotoxicity] or proinflammatory cytokines [25, 56, 72, 94]. 

Results from our laboratory have shown that incubation of INS-1 832/13 cells and normal rat 

islets with high glucose and palmitate increased Rac1 activation, p47phox expression, ROS 

generation and mitochondrial damage. Follow up studies in islets from Zucker Diabetic Fatty 

(ZDF) rats, an animal model for type II diabetes, and diabetic human islets confirmed the 

http://www.ncbi.nlm.nih.gov/pubmed?term=Mohammed%20AM%5BAuthor%5D&cauthor=true&cauthor_uid=23829395
http://www.ncbi.nlm.nih.gov/pubmed?term=Chen%20F%5BAuthor%5D&cauthor=true&cauthor_uid=23829395
http://www.ncbi.nlm.nih.gov/pubmed?term=Kowluru%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23829395
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mohammed+AM%2C+Chen+F%2C+Kowluru+A.
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above results including an increase in expression of p47phox, Rac1 and gp91phox and 

activation of p47phox , Rac1 and ROS generation [39, 51, 89].                       

Studies using proinflammatory cytokines and INS-1 832/13 cells have shown many 

similarities in identifying the NADPH oxidase [NOX2] as a common pathway for metabolic 

dysfunction of the pancreatic β-cell under gluco-lipo-toxicity and proinflammatory cytokine 

conditions. Those previous findings include, incubating INS-1 832/13 cells with cytomix [IL-β, 

TNFα and INFγ; 10 ng/ml each] transiently [~15min] increase Rac1 activation, p47phox 

expression, ROS generation and mitochondrial damage. The use of pharmacological and 

molecular biological approach indicated the role of Rac1 and p47phox in cytomix-induced ROS 

generation and mitochondrial membrane damage. Inhibiting the Tiam1-Rac1 axis using 

NSC23766 and the use of GGTI-2147, a geranylgeranyl transferase inhibitor, attenuated 

Rac1 activation, ROS generation and mitochondrial damage. siRNA p47phox transfection and 

apocynin also inhibited cytomix-induced ROS generation [47].  

As a logical extension of these studies, we further explored the mechanism of NOX2 

activation during the challenge with proinflammatory cytokines condition. To study the effect 

of individual cytokines [IL-1β, TNFα and IFNγ; 25 ng/ml] on NOX2 activation, first, the 

amount of ROS generation was measured after 24 hrs incubation and the results showed 

that IL-1β alone can activate the NOX2 system. As there are other cellular sources for ROS 

such as mitochondria and since NOX2 activation specifically produce superoxide we 

measured the NOX2 activity following cytokine [IL-1β] and high glucose exposure by 

lucigenin [N, N`-dimethyl-9, 9`-biacridinium dinitrate] assay. The assay is based on detection 

of chemiluminescence signal that results from reaction of superoxide anion and lucigenin. 

The result showed that both glucose and IL-1β activate NOX2. IL-1β [25 ng/ml] activated the 

NOX2 as early as 30 min and the enzyme activity is completely blocked by apocynin, which 
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is relatively a selective NOX2 inhibitor, and the enzyme time kinetics coincide with activation 

of the cytosolic [p47phox, Rac1] and membranous [gp91phox] components of the Nox2 system.  

The complex nature of human being cannot be explained only using the number of 

genes in our genome which is ~4-5 times higher when compared with the simple eukaryotic 

organisms such as yeast [113, 114]. Hence, post-translational modifications of proteins such 

as methylation, phosphorylation, prenylation and palmitoylation play major role in diversifying 

protein functions that make specific characteristics for a given species. The present study 

discloses that p47phox, one of the cytosolic subunits of the NADPH oxidase enzyme system 

undergoes phosphorylation in INS-1 832/13 cells following cytomix exposure.  

Similar results have been found in other cell types such as alveolar epithelial cell [97], 

endothelial cell [98], seabream head kidney [115] under different stimulatory conditions. The 

above studies also indicated that protein kinase C [PKC] might be responsible for the 

addition of phosphate group to p47phox that participates in initiating the cascade for activation 

of the NOX2 enzyme system. Moreover, studies using protein kinase C [PKC] knockout mice 

have shown partial protection from multiple low dose of streptozotocin-induced 

hyperglycemia and cytokine mediated islet apoptosis in vitro [116]. Beside p47phox 

phosphorylation, the present study also examined the effect of cytomix on gp91phox 

expression, which is a membrane component of NOX2. The result showed acute regulation 

[~20 min] by cytomix along with other cytosolic components such as Rac1 [~15 min] and 

p47phox.             

 In the context of the currently described studies, our laboratory has recently published 

evidence to suggest that exposure of isolated β-cells to proinflammatory cytokines results in 

increased expression of p47phox, a member of the cytosolic core of NOX2, within 12-24 hr. It 

has also shown that Rac1, another cytosolic component of NOX2, gets activated transiently 

[~15 min] following exposure to cytokines [47]. More importantly, the data also suggested 
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that inhibition of p47phox function via siRNA-p47phox or Rac1 functions using inhibitors of Rac1 

prenylation [i.e., GGTI-2147] or its GTP-exchange functions by Tiam1 [e.g., NSC23766] 

significantly attenuated cytokine-induced ROS generation and loss of mitochondrial 

membrane potential. Interestingly, neither GGTI-2147 nor NSC23766 prevented cytokine-

induced NO generation [47] suggesting that NOX2 activation is not upstream to iNOS 

induction and NO release, and the two signaling steps are regulated by two distinct 

mechanisms. 

 Existing body of evidence clearly implicates novel regulatory roles for protein 

palmitoylation in cellular functions. Unlike isoprenylation, palmitoylation steps are subject to 

acute regulation at the level of the “on” steps [addition of palmitoyl group] as well as the “off” 

steps [removal of palmitoyl group]. The protein palmitoyltransferases [PATs] catalyze the 

transfer of palmitate into the cysteine residues of proteins containing DHHC [Asp-His-His-

Cys] cysteine-rich domains [CRD] via a thioester linkage. Typically, these reactions are 

known to occur at the cytoplasmic face of membranes in the secretory pathway [e.g., 

endoplasmic reticulum and Golgi] and the plasma membrane [117, 118]. At least two types 

of PAT activities have been reported. The first group catalyzes palmitoylation of farnesylated 

proteins including Ras GTPases [e.g., H-Ras and N-Ras], whereas the second group of 

PATs mediates palmitoylation of Src family of tyrosine kinases. A distinct class of palmitoyl 

thioesterases, namely protein palmitoyl thioesterases 1 and 2 and acyl palmitoylesterase 1 

mediate depalmitoylation via hydrolysis of the ester bonds to complete the palmitoylation-

depalmitoylation [i.e., activation-inactivation] cycle [Figure 6-1] [117, 118].  
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Figure 6-1: Palmitoylation and depalmitoylation cycle for a classical farnesylated G-protein. 

  

 Protein palmitoylation plays key regulatory roles in cellular function including 

subcellular localization of proteins, trafficking and stability [117-119]. It is widely felt that 

palmitoylation dictates interaction of peripheral membrane proteins. Potential regulatory roles 

of palmitoylation of integral membrane proteins still remain unclear. Several cellular proteins 

have been demonstrated to undergo palmitoylation. Some of these include, but not limited to, 

A-kinase anchoring protein 79/150 [120], phospholipase scramblase [121], ankyrin-g [122], 

glutamic acid decarboxylase [123], cytoskeletal-associated protein 4 [124], integrin α6β4 

[125], and calnexin [126]. In addition, several GPCRs, including µ-opioid receptor [127], 

protease-activated recpetor-2 [128], β2 adrenergic receptor [129] somatostatin receptor 

[130], regulator of G-protein signaling [RGS4] [131], neurotensin receptor [132], and p63Rho 

guanine nucleotide exchange factor [133] appear to be regulated by palmitoylation-

depalmitoylation signaling steps. 

 Despite considerable experimental evidences on the identity and functional properties 

including subcellular distribution of PATs and palmitoylesterases are described in a variety of 

cell types, very little is known about the identity and regulation of palmitoyl transferases and 

esterases in the islet β-cell. However, pharmacological evidence appears to support key 
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roles for these signaling steps in islet β-cell function.  For example, cerulenin [CER] has been 

shown to inhibit insulin secretion induced by glucose, α-ketoiso-caproic acid, and long chain 

acyl CoAs [34, 134-136]. CER also inhibits glucose-induced incorporation of radio labeled 

palmitate into islet proteins and inhibition of palmitoylation of a 24 kDa protein [137], and 

palmitate-induced tyrosine phosphorylation of insulin receptor [138].  

 Interestingly, studies by Metz and associates have demonstrated that CER failed to 

inhibit insulin secretion facilitated by non-nutrient secretagogues, such as a membrane-

depolarizing concentration of potassium, activators of protein kinase A, or mastoparan [34]. 

More recent studies by Abdel-Ghany and associates [139] have demonstrated significant 

incorporation of [3H] palmitate into islet β-cell proteins, which was stimulated by glucose. 

Furthermore, 2-aminobicyclo heptane-3-carboxylic acid, a non-metabolizable analog of 

leucine and an insulin secretagogue, also promoted incorporation of labeled palmitate into β-

cell proteins. Autoradiographic analysis of these proteins separated by gel electrophoresis 

demonstrated glucose-mediated increase in palmitoylation of at least four β-cell proteins with 

apparent molecular weights of 30, 44, 48 and 76 kDa. More importantly, CER inhibited 

incorporation of labeled palmitate into these proteins under basal as well as glucose-

stimulated conditions indicating the role of protein acylation in islet function [139].  

In addition to CER, some studies utilized 2-BP to understand the roles of 

acylation/lipid metabolism in islet functions including insulin secretion. For example, original 

studies by Warnotte and associates demonstrated partial inhibition of palmitate-induced 

potentiation of glucose-induced insulin secretion [140]. Studies by Parker and coworkers 

[141] have suggested significant inhibition, by 2-BP, of palmitate esterification into cellular 

lipids in isolated rat islets. Furthermore, they also demonstrated partial inhibition of palmitate-

mediated potentiation of glucose stimulated insulin secretion [GSIS]. Cheng and associates 

[142] reported significant protection of distal inhibitory effects of norepinephrine on 
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physiological insulin secretion by CER and 2-BP. Based on these observations these 

investigators proposed novel roles for protein acylation signaling steps in exocytotic secretion 

of insulin. Together, pharmacological evidence suggests that protein acylation, specifically 

palmitoylation, plays critical regulatory roles in islet β-cell function, including insulin secretion. 

 Recent studies have implicated novel roles for small G-proteins [Arf6, Cdc42 and 

Rac1] in glucose stimulated insulin secretion [GSIS] [25, 27, 143, 144]. Furthermore, using 

various pharmacological and molecular biological approaches, our lab and others 

documented a requirement for post-translational prenylation and carboxylmethylation of G-

proteins [e.g., Cdc42, Rho, Rac1] for physiological insulin secretion [25, 27]. More 

importantly, despite the above described pharmacological evidence to indicate inhibition of 

GSIS by CER and 2-BP, very little is known if Rac1 and Cdc42 also require palmitoylation to 

facilitate GSIS. In this context, recently published evidence suggests that Rac1 and bCdc42 

[a splice variant of Cdc42 with predominant localization in the brain] undergo palmitoylation. 

 For example, Navarro-Lerida and associates have recently demonstrated that Rac1 

undergoes palmitoylation at cysteine 178 to facilitate its targeting for stabilization at actin 

cytoskeleton-linked ordered membrane regions [145]. Interestingly, they observed that 

palmitoylation of Rac1 requires its prior prenylation and the intact C-terminal polybasic region 

and is regulated by the triproline-rich motif. In addition, palmitoylation step appears to be 

required for Rac1 activation [i.e., GTP-binding] since non-palmitoylated Rac1 exhibited 

decreased GTP loading and lower association with detergent-resistant membranes. Further 

proof that palmitoylation of Rac1 is critical for cellular function was afforded in these studies 

since cells lacking Rac1 exhibited spreading and migration defects. Based on this compelling 

evidence, the authors concluded that palmitoylation of Rac1 is requisite for its role in actin 

cytoskeleton remodeling and regulation of membrane organization.                      

 Along these lines, Kang et al [146] have demonstrated palmitoylation of a brain-
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specific Cdc42 splice variant [bCdc42]. Additional studies by Nishimura and Linder have 

documented that bCdc42 undergoes classical CAAX processing as well as prenylation and 

palmitoylation at the CCAX motif [147]. Interestingly, the prenylated and palmitoylated 

bCdc42 interacted less efficiently with RhoGDI [a signaling step critical for Cdc42 activation-

deactivation cycles] when compared to canonical Cdc42, which is only prenylated and 

carboxylmethylated, but not palmitoylated. Additional studies are required to determine if 

palmitoylation of Rac1 and/or Cdc42 is necessary for GSIS to occur.    

 In addition to small G-proteins, heterotrimeric G-proteins also control islet function 

including GSIS [25, 27]. Along these lines, our laboratory has demonstrated non-receptor 

dependent activation of trimeric G-proteins by glucose. For example, we have reported 

phosphorylation of Gβ subunits at critical histidine residues in clonal β-cells, normal rat islets 

and human islets, which, in turn, is transferred to Gα.GDP to yield biologically active GTP-

bound Gα subunits [148, 149]. In addition, previous studies have also demonstrated glucose-

mediated activation of the carboxylmethylation of Gγ subunits [33]. Together, these 

observations provided the first evidence to indicate activation of trimeric GTPase via 

signaling steps generated during glucose metabolism culminating in insulin secretion. It is 

noteworthy that recent findings from the laboratory of Gautam [150, 151] have suggested 

critical roles for protein palmitoylation in the shuttling of trimeric G-protein subunits between 

the plasma membrane and intracellular membranes, which is inhibited by 2-BP.         

Potential involvement of protein palmitoylation in glucose-induced activation of trimeric-

proteins in the islet β-cell remains to be verified experimentally.                                         

 In addition to their positive modulatory roles, accumulating evidence supports the 

view point that protein palmitoylation plays negative modulatory roles in the induction of 

metabolic dysfunction of the islet β-cell under the duress of noxious stimuli such as 

proinflammatory cytokines and saturated fatty acids. Original studies from our laboratory 



74 
 

 

 

suggested that a protein palmitoylation step controls IL-1β-induced iNOS gene expression 

and NO release in insulin-secreting β-cells [40, 42]. In those studies, H-Ras, a small G-

protein, was identified as one of the palmitoylated proteins, which is involved in IL-1β-

induced NO release. These conclusions were confirmed via the use of two selective 

inhibitors of protein palmitoylation, namely CER and 2-BP [42]. 2-hydroxymyristic acid, an 

inhibitor of protein myristoylation, failed to affect IL-1β-induced NO release suggesting the 

relevance of palmitoylation, but not myristoylation, in these signaling steps.                    

 It is also demonstrated that there is a significant accumulation of H-Ras in the 

cytosolic fraction in cells incubated with CER indicating that inhibition of palmitoylation leads 

to mis-targeting of G-proteins in islet β-cells [42, 152].  Furthermore, it has also been able to 

demonstrate that selective inhibitors of protein farnesylation [e.g., allylfarnesols, manumycin, 

damnacanthal, FTI-277] markedly attenuated cytokine-induced NO release suggesting that 

farnesylation as well as palmitoylation of H-Ras are necessary for IL-1β-mediated effects on 

NO release [25]. Identity of H-Ras as one of the regulatory proteins involved in cytokine-

induced NO release in β-cells was also confirmed through the use of bacterial toxins [40]. In 

addition to the H-Ras, iNOS also undergo palmitoylation [153] and the inhibitory effect of 2-

BP and cerulenin on cytokine-induced NO release may be in part due to inhibition of iNOS 

palmitoylation.                                                                                                    

 Interestingly, the current findings demonstrated that 2-BP also inhibited cytokine-

induced NOX2 activation and ROS generation suggesting that protein palmitoylation might 

be crucial to cytokine-mediated effects. To address the question of potential identity of the 

protein, cytomix-and glucose induced Rac1 activation was quantitated in the presence of 

palmitoylation inhibitor [2-BP]. 2-BP completely blocked Rac1 activation suggesting that for 

the Rac1 to become active and initiate NOX2 activation, it requires palmitoylation reaction. 

Along these lines, recent studies from Corbett’s laboratory have demonstrated a requirement 
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for a palmitoylation step in palmitate-induced metabolic dysfunction of the islet β-cell [111]. 

Interestingly, they reported a significant inhibition in palmitate-induced CHOP expression and 

associated metabolic dysfunction of the islet β-cell in the presence of 2-BP. While the 

present results further validate such a model in the context of cytokines, we failed to observe 

any significant effects of inhibition of protein palmitoylation with 2-BP on cytokine-induced 

CHOP expression suggesting distinct mechanisms underlying palmitate and cytokine-

induced ER stress and CHOP expression.                           

 Evidences are out there indicating that c-Jun N-terminal kinase [JNK] and p38 which 

are part of the MAP kinase family mediate the downstream effect of cytokine-induced 

apoptosis in pancreatic β-cell [85-88]. Findings from the present study also confirmed that, 

short term exposure with cytomix increased JNK1/2 and p38 MAP kinase activation. To 

further explore the role of small G-proteins and their post-translational modification in 

cytomix-induced JNK1/2 and p38 MAP kinase activation, the effect of three pharmacological 

inhibitors namely, inhibitor of palmitoylation [2BP], Vav2-Rac1 [EHop-016] and Tiam1-Rac1 

[NSC23766] axis were assessed on cytomix-induced JNK1/2 and p38 MAP kinase activation. 

The result showed that palmitoylation is required for short term cytomix induced JNK1/2 

activation. Long term incubation with 2-BP increases JNK1/2 activation at the basal level and 

this may imply that a palmitoylated protein/s suppress JNK1/2 activation in the absence of 

stress inducing agents. In addition to the small G-proteins such as Rac1, Ras or bCdc42, 

there may be a condition that JNK1/2 undergoes palmitoylation following cytomix exposure 

although this needs to be verified experimentally in the β-cell. This is because palmitoylation 

of JNK3, one of the isoform of the JNK, regulate axonal branching and development in 

cortical neuronal culture [154].                                                      

 The upstream role of Rac1 over JNK1/2 activation in gluco-lipotoxic conditions [89], 

cytokine-induced apoptosis of intestinal epithelial cell [107] and JNK1 mediated epithelial cell 
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migration during wound healing [155] have shown in this study using Vav2-Rac1 and Tiam1-

Rac1 inhibitors. Lower concentration of EHop-016 inhibits both JNK1/2 indicating that EHop-

016 is more potent than NSC23766 in inhibiting Rac1 activation. The absence of inhibitory 

effect of 2-BP, EHop-016 and NSC23766 on p38 MAP kinase activation implies that 

palmitoylation and Rac1 activation are not required for cytomix-induced p38 MAP kinase 

activation.           

 As stated in those previous paragraphs, small molecular mass and heterotrimeric G-

proteins play important roles in cellular signaling events leading to glucose-stimulated insulin 

secretion [27, 156]. A growing body of evidence is also suggestive of novel roles for these 

signaling proteins in other β-cell functions including cell cycle progression, survival and 

apoptosis [25]. It is noteworthy that the majority of these proteins undergo post-translational 

modifications at their C-terminal cysteine residues [e.g., prenylation, methylation and 

acylation], which are essential for their trafficking to relevant cell membranes for optimal 

interaction with their respective effector proteins culminating in optimal regulation of β-cell 

function [25, 27, 34].          

 Despite the compelling evidence that FTase and GGTases are acutely regulated by 

glucose in the β-cell [156, 157], and that they are critical for insulin secretion [25, 31, 35], 

very little is known with regard to potential alterations in these enzymes under conditions of 

cellular apoptosis. Along these lines, studies by Kim and associates have demonstrated 

degradation of the FTase/GGTase α-subunit under conditions of caspase-3 activation [158]. 

With this in mind, we quantitated caspase-3 activation, FTase/GGTase degradation and 

cellular dysfunction in isolated β-cells exposed to cytomix and etoposide, a known inducer of 

apoptosis in pancreatic β-cells. Our findings suggested that both cytomix and etoposide 

induce caspase-3 activation and FTase/GGTase α degradation, and blocking the caspase-3 

activation prevented the degradation of the common α-subunit of FTase/GGTase indicating 

http://link.springer.com/article/10.1007%2Fs10495-012-0763-9/fulltext.html#CR5
http://link.springer.com/article/10.1007%2Fs10495-012-0763-9/fulltext.html#CR12
http://link.springer.com/article/10.1007%2Fs10495-012-0763-9/fulltext.html#CR1
http://link.springer.com/article/10.1007%2Fs10495-012-0763-9/fulltext.html#CR1
http://link.springer.com/article/10.1007%2Fs10495-012-0763-9/fulltext.html#CR4
http://link.springer.com/article/10.1007%2Fs10495-012-0763-9/fulltext.html#CR1
http://link.springer.com/article/10.1007%2Fs10495-012-0763-9/fulltext.html#CR9
http://link.springer.com/article/10.1007%2Fs10495-012-0763-9/fulltext.html#CR13
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that caspase-3 activation causes degradation and inactivation of FTase and GGTase that 

leads to defective activation of key G-proteins, defective nuclear assembly of lamins and loss 

of cell viability.                

 As a logical extension of the in vitro findings of cytokine-induced pancreatic β-cell 

dysfunction to an  in vivo animal model, preliminary results have shown that both NOD mice 

and BALB control mice islets express NOX2 subunits namely phospho-p47phox[NCF1], 

p67phox, Rac1 and gp91phox ;however, the results obtained in this study are inconclusive and 

yet to be confirmed.  
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Chapter 7: Conclusion and Future directions 

 NADPH oxidase [NOX2] has cytosolic and membranous components. p47phox, 

p40phox, p67phox and Rac1 constitute the cytosolic components and the membranous core is 

comprised of gp91phox/p22phox and Rap1. It is well established that the cytosolic core 

translocates to the membrane for association with the membranous core to complete the 

holoenzyme assembly and catalytic activation. Several lines of evidence from multiple 

laboratories including our own implicated NOX2 in dysregulation of the islet β-cell exposed to 

a wide variety of pathological conditions, including chronic exposure to high glucose, 

palmitate and proinflammatory cytokines. The present study yielded some novel findings 

suggesting that: [i] cytokines induce p47phox phosphorylation, gp91phox expression, NOX2 

activation, JNK1/2 and p38 MAP kinase activation under acute regulatory conditions; [ii] 2-

BP, a classic inhibitor of protein palmitoylation significantly attenuated cytomix-induced Rac1 

activation, NOX2-mediated ROS generation, iNOS-mediated NO release, JNK1/2 activation 

providing clues that protein palmitoylation step represents a novel therapeutic target for 

cytokine-induced pancreatic β-cell dysfunction; [iii] Cytokine-induced JNK1/2 activation 

requires Tiam1-Rac1 and Vav2-Rac1 axis. 

Follow up studies to present findings will include the following: 

 Evaluate if 2-BP, EHop-016 and NSC23766 prevent NOX2 activation and ROS 

generation in pre-diabetic islets exposed to cytokines in vitro. 

 Demonstrate if treatment of pre-diabetic NOD mice with 2BP, EHop-016 and 

NSC23766 prevent the incidence or delay the onset of diabetes. 

 Molecular biological studies [siRNA] of the regulatory role of palmitoyl 

transferase/esterase in cytokine-induced metabolic dysfunction of the pancreatic β-

cell. 



79 
 

 

 

 Study the role of other isoforms of NADPH oxidase [NOX] in cytokine-induced 

pancreatic β-cell dysfunction.  
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APPENDIX B MOHAMMED AND KOWLURU 2013 
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 Type I diabetes is characterized by an absolute insulin deficiency due to loss of 

pancreatic β-cell mass by autoimmune aggression. During the progression of the disease 

proinflammatory cytokines such as IL-1β, TNFα and INFγ are secreted by infiltrated and 

activated T-cells and macrophages which ultimately damage the pancreatic β-cell. However, 

the signaling mechanisms involved in cytokine-induced damage are only partially 

understood. Phagocyte-like NADPH oxidase [NOX2] has been shown to play regulatory roles 

in the metabolic dysfunction of the islet β-cell under the duress of glucolipotoxic conditions 

and exposure to proinflammatory cytokines. However, the precise mechanisms underlying 

NOX2 activation by these stimuli remain less understood. Herein, I determined some of the 

putative cellular mechanisms underlying proinflammatory cytokine-induced metabolic 

dysfunction and demise of the islet β-cell.  Some of the novel findings of my study are: [i] 

cytokines induce ROS generation and oxidative stress via activation of phagocyte-like 

NADPH-oxidase [NOX2] such effects are comprised of Rac1 activation, p47phox 

phosphorylation, and gp91phox expression. I further confirmed that NOX2 is one of the 

sources for ROS generation under proinflammatory cytokines and glucotoxic conditions as 
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demonstrated by activation of NOX2 activity which is sensitive to apocynin under those 

conditions; [ii] 2-Bromopalmitate, a classic inhibitor of protein palmitoylation, markedly 

attenuated cytokine-induced Rac1 activation, NOX2-mediated reactive oxygen species 

generation and inducible nitric oxide synthase-mediated nitric oxide release indicating that 

palmitoylation of specific G-proteins [e.g., H-Ras and Rac1] is a key regulatory step involved 

in cytokine-induced nitrosative and oxidative stress. 

 In addition to oxidative and nitrosative stress, the effect of cytokines in other stress 

related signaling pathways were also examined. Cytokines activated JNK1/2 and p38 MAPK 

kinases. They also increased CHOP [C/EBP homologous protein] expression, a marker for 

endoplasmic reticulum stress, caused caspase-3 activation and FTase and GGTase 

degradation which leads to defective activation of key G-proteins, defective nuclear 

membrane assembly and loss in cell viability. Pharmacological inhibitors such as 2-

bromopalmitate [inhibitor of palmitoylation], EHop-016 [inhibitor of Vav2-Rac1 axis] and 

NSC23766 [inhibitor of Tiam1-Rac1 axis] attenuated cytokine-induced JNK1/2 activation 

implying that Rac1 is upstream to cytokine-induced JNK1/2 activation. Based on the results 

obtained from my studies, I propose that protein palmitoyl transferase is a novel therapeutic 

target for the prevention of cytokine-induced metabolic dysfunction of the islet β-cell. 

 As a logical extension of the in vitro studies, a preliminary work has been done in the 

NOD [non obese diabetic] mice, an animal model of Type I diabetes, and the results showed 

that both the islets of NOD and control mice express the NOX2 subunits namely, p47phox, 

p67phox, Rac1 and gp91phox.  
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