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CHAPTER 1 
 

Introduction 

 

1.1. Impact of antibiotic resistance on current drug research 

            Most microbes (bacteria or fungi) produce secondary metabolites that work as 

antibiotics, which serve as defense strategies in crowded environments (Levy, S.B., 

1994). Discovery of the penicillin family of antibiotics facilitated progress of the so-called 

golden era of these drugs (1940-1960), at which time present-day antibiotics were 

identified. Unfortunately, during the same time period, antibiotic resistance also evolved 

due to environmental pressures of antibiotic overuse and the rapid growth ability of 

bacteria (Benveniste, R. et al., 1973; Overbye, K.M. et al., 2005). Antibiotic resistance in 

bacteria results from their ability to oppose the inhibitory (bacteriostatic) or killing 

(bacteriocidal) effects of antibiotics (Vakulenko, S.B. & Mobashery, S., 2003).  

           Antibiotic resistance has been a major driving force behind the discovery of new 

antibiotics. The first drug-resistant strains of pathogenic bacteria appeared 

predominantly in hospital settings, where the use of the antibiotics was most prevalent 

(Levy, S.B., 1998). In the 1930s and 1940s, the sulfonamide-resistant Streptococcus 

pyogenes (Levy. S.B., 1982; Coonan, K.M. et al., 1994) and the penicillin-resistant 

Staphylococcus aureus (Forbes, G.B., 1949) strains emerged in London military and 

civilian hospitals. Soon after, strains of Mycobacterium tuberculosis that were resistant 

to streptomycin also appeared (Crofton, J. et al., 1948). The enteric bacteria species, 

namely Escherichia coli (E. coli) (Cavalli, L.L et al., 1952), Shigella and Salmonella 

(Watanabe, T. et al., 1961), developed resistance to multiple drugs in the late 1950s 
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and 1960s, causing severe problems to people in developing countries. The threat of 

these bacterial species was not realized by the industrialized nations until the 

appearance of ampicillin-, chloroamphenicol-, and tetracycline-resistant Haemophilus 

influenzae and ampicillin-resistant Neisseria gonorrhoeae (Klingeren, B.V et al., 1977; 

Elwell, L.P. et al., 1977) strains in the 1970s. These pathogens caused untreatable 

respiratory and genitourinary diseases. In developing countries, overuse of antibiotics, 

poor sanitation conditions, and lower health-care funds further fueled the emergence of 

the antibiotic-resistant bacterial species (Okeke, I.N. et al., 1999). 

           Since the 1980s, the presence of multiple-drug-resistant (MDR) bacteria or the 

so-called “superbugs” caused a tough dilemma faced by modern medicine, since these 

organisms make drug therapy more expensive and sometimes unsuccessful. The 

superbugs include the well-known pathogens methicillan-resistant Staphylococcus 

aureus (MRSA), vancomycin-resistant enterococci (VRE), and drug-resistant 

Escherichia coli, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, A. 

baumannii, and Burkholderia cepacia (Wright, G.D., 2007). In the case of 

Staphylococcus aureus strains present in the United States and United Kingdom, 40-

60% are methicillin-resistant (MRSA). These MRSA strains are also showing resistance 

to vancomycin (Weigel, L.M. et al., 2003). In parts of Asia and China, some strains of E. 

coli that cause urinary tract infections have also become multiple-drug-resistant (MDR), 

including resistance to fluoroquinolones (Wang, H. et al., 2001). Resistance in 

pneumococci, which causes severe ear infections and pneumonia in children worldwide, 

continues to rise. Individuals who were first resistant to penicillins have now acquired 

resistance to the macrolides and tetracyclines in many parts of the world (Schrag, S.J. 
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et al., 2004). The emergence of MDR strains has raised the health-care costs in United 

States from $150 million to $30 billion per year since the occurrence of the drug 

resistance has gone beyond the hospitals (Rubin, R.J. et al., 1999; Phelps, C.E, 1989). 

           The above-mentioned drug-resistance problems and their economic impact on 

society lead to the question of how the bacteria acquire resistance. Drug resistance is 

mainly achieved through transmittance of mobile genetic elements, such as 

bacteriophages, plasmids, naked DNA, or transposons that have genes for supplying 

bacteria with different resistance mechanisms (Hall, R.M. et al., 1999; Nandi, S. et al., 

2004; Clewell, D.B. et al., 1986). The resistance mechanisms present in these 

organisms are numerous and vary among different species (summarized in Figure 1.1). 

Some of the mechanisms are directed towards altering the antibiotic structures, such as 

using -lactamase enzymes that inactivate penicillins and related compounds 

(Vakulenko, S.B. et al., 2003; Mingeot-Leclercq, M. et al., 1999). Another class of 

mechanisms involves pumping the antibiotics from the bacterial cell through efflux, 

which includes the tetracyclins and fluoroquinolones (Schweizer, H.P., 2003). A third 

mechanism involves modification of the antibiotic targets such as the ribosome, or 

metabolic enzymes for DNA metabolism or cell-wall synthesis, which makes the drug 

incapable of inhibiting important functions of the bacterial cell (Prammananan, T. et al., 

1998) (Figure 1.1). 

           The impact of antibiotic resistance on the modern therapeutic world has obliged 

scientists to think deeply at the molecular level for the discovery and development of 

new antibiotics. For the discovery of novel drug leads, structure-based drug design 

(SBDD) and combinatorial library approaches gained success in the early 1990s and  
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Figure 1.1.A) Some of the general mechanisms adopted by the bacterial cell for 
defending itself against environmental stress such as antibiotics are shown. B) The 
chemical structures of some antibiotics hindering protein synthesis are shown.  
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both practices are an integral part of the entire drug-discovery process. A wealth of 

genomic, proteomic, and structural information on pathogenic bacteria has further 

helped to streamline this process by providing information for new targets. The influence 

of SBDD has been clearly exhibited in the area of AIDS, in which five protease inhibitors 

have been designed based on the structural data of HIV-1 protease (Roberts, N.A. et 

al., 1990; Erickson, J., et al., 1990; Dorsey, B.D. et al., 1994). 

            Structure-based drug design involves multiple steps before an optimized lead 

compound goes into phase I trials. In the first step, a target with a potential binding site 

is selected. For example, the antimicrobial drug targets should have an essential role in 

the pathogen, be present only in the pathogen, and be able to be inhibited by a small 

molecule. Next, the binding site of the target should be a well-defined pocket with a 

variety of possible hydrogen-bond donors and acceptors, hydrophobic features, and 

size of a molecular surface. Examples in this category include the active sites of 

enzymes (Enyedy, I.J. et al., 2001), RNA secondary structural features (Lind, K.E. et al., 

2002), and various protein-protein interactions. After selection of the target site, its 

structure is resolved by one of the three major methods: X-ray crystallography, NMR, or 

homology modeling. The compounds from a database are arranged into the well-

defined pocket of the structure. After that, they are categorized based on their steric and 

electrostatic interactions with the target spot. The finest compounds are tested with the 

biochemical assays. In the second step, the structure of the compound (from the first 

cycle with micromolar inhibition in vitro) with the target is determined. The structure is 

then studied to reveal the sites on the compound to be optimized in order to raise its 

effectiveness. In later cycles, the optimized lead compound is synthesized with 
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improved features; the structure determination of the new target-lead complex is carried 

out and thus, after quite a few cycles, the optimized compound generally demonstrates 

an increase in binding and specificity towards the target (Anderson, A.C., 2003). 

           Some of the common experimental methods of high-throughput screening for 

finding the lead compound is applying combinatorial chemistry, in which thousands of 

compounds can be tested for biochemical assays (Lind, K.E. et al., 2002), the 

molecular-biology-based phage display (Smith, G.P. et al., 1997), mRNA library 

(Lipovsek, D. et al., 2004), ribosome display (Lipovsek, D. et al., 2004), and SELEX 

(Osborne, S.E. et al., 1997; Ellington, A.D. et al., 1990). The computer-aided methods 

for high-throughput screening are divided into three classes: inspection, virtual 

screening, and de novo generation. In the first section, known molecules that bind to the 

target site, such as in enzymes and in protein-nucleic acid interactions, are altered to 

become inhibitors by exploiting their complementary interactions in the target site 

(Roberts, N.A. et al., 1990; Dorsey, B.D. et al., 1994; Varney, M. et al., 1992; Chan, D. 

et al., 2001). In the second method of virtual screening, the molecules from available 

databases of small molecules are positioned at the target site and scored based on their 

calculated properties within the target site. In the de novo category, the small motifs of 

the molecules such as benzene rings, carbonyl groups, amino groups are arranged in 

the target site and scored. The final compounds created from the study are synthesized 

and tested for their binding properties. One of the computer softwares available for this 

type of virtual screening is DOCK (Kuntz, I. et al., 1982); ADAM (Mitzutani, M. et al., 

1994) and others for de novo generation are LUDI (Boehm, H., 1992) and GRID 

(Goodford, P., 1985). All of these techniques aim to narrow the drug discovery timeline 
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by grading the promising lead compounds from active to nonactive, and decreasing the 

compounds required for synthesis.  

         Based on these criteria, in the discipline of developing effective antimicrobials, the 

bacterial ribosome is a fully validated antibacterial target, since it fulfills most of the 

requirements for a good target. It is targeted by half of the known antibiotics, such as 

aminoglycosides, macrolides, ketolides, and tetracyclines (Hansen, J.L. et al., 2002; 

Carter, A.P. et al., 2000). These antibiotics halt the ribosome’s cellular function of 

protein synthesis by interacting with the ribosomal RNA rather than its related proteins. 

The common aminoglycoside antibiotics work as antibacterials by binding mainly to the 

bacterial decoding center (30S subunit, A-site rRNA), which is structurally different from 

the human decoding center (Lynch, S.R. et al., 2003). High-resolution crystal structures 

of the ribosomal subunits with antibiotics bound to them are a major achievement in the 

structural biology field (Wimberly, B.T. et al., 2000; Carter, A.P. et al., 2000; Ban, N. et 

al., 2000; Nissen, P. et al., 2000). Structural information for the ribosomal subunit is 

enhanced by the X-ray structures of smaller model systems such as the A site 

(Agalarov, S.C. et al., 2000; Fourmy, D. et al., 1996; Wimberley, B.T. et al., 1999).  

           The selectivity of the antibiotics for bacterial over eukaryote ribosomes is clearly 

apparent from structural knowledge. One case is the higher affinity of paromomycin for 

the bacterial A-site rRNA over the corresponding eukaryotic A site, as well as 

decreased affinity for a variant with methylation at A1408, which gives resistance to the 

antibiotic (Fourmy, D. et al., 1998). The high-resolution structure of paromomycin with 

the A-site rRNA fragment shows the role of water-mediated contacts, which could not 

be observed in the ribosome structures (Vincen, Q. et al., 2001). Thus, structural 
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information based on smaller model systems gives relevance to the biochemical and 

resistance data (Ogle, J.M. et al., 2001).  

          The present RNA structural data of the ribosomal subunits and its complexes with 

the antibiotics, such as aminoglycosides, allowed computational scientists to design and 

use drug-discovery models for new compounds. Attempts for designing neamine 

analogs as new antibacterials were lead by researchers at Wayne State University and 

a company named RiboTargets (Russell, R.J. et al., 2003). These compounds showed 

enhanced activity against several pathogenic bacteria, but were not able to reach the 

clinical level status. Another attempt was made by the company Vernalis Ltd., in which 

the target of interest was the A site or the decoding center located in the 30 S subunit of 

the ribosome (). Over one million compounds were screened against this target and 34 

were shown to have the potential as leads for a novel antibacterial.  

           For possible new antibiotics against the 50S subunit of the ribosome, the 

available structure of chloramphenicol bound to the D. radiodurans bacterial ribosome 

and those of the chloramphenicol analogs was used (Johansson, D. et al.; 2005). The 

main aim was to design linker compounds between chloramphenicol and dinucleotides 

of the P-loop in 23 S rRNA of the 50 S subunit. With the use of the molecular dynamics 

simulations, Johansson and coworkers chose six compounds for synthesis, and one 

compound was verified through RNA-footprinting to be more effective than the parent 

chloramphenicol. 

            As structural genomics, bioinformatics, and computational power keeps 

advancing, more accomplishments in structure-based drug design are expected to 

follow. Since the emergence of antibiotic resistance is inevitable, clear rethinking of 
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strategies for preserving the useful life of the antibiotics calls for altering the behavior of 

both patients and physicians in their consumption. 

 

1.2. The ribosome: its organization and cellular tasks 

            Each living cell in an adult human body has about a billion proteins that are 

continuously being degraded; therefore, a continuous production of these proteins is 

needed. The enormous task of synthesizing the proteins from the DNA genetic code is 

called translation and is performed by an intricate apparatus composed of ribosomes, 

messenger RNA (mRNA), transfer RNAs (tRNA), and various protein factors (Yonath, 

A., 2009).  The ribosome is a complete ribonucleoprotein assembly that is the key 

player in the process of translation. All ribosomes are composed of two unequal 

subunits with their own defined functions. The small subunit makes available the path 

along which the mRNA advances, the decoding center for codon-anticodon interactions, 

and the mechanistic features for controlling translation fidelity. The large subunit 

contains the site for peptide-bond formation between the two amino acids and the exit 

tunnel for the nascent protein (Green, R. et al., 1997). These organelles have a 

molecular weight of about 2.5 MDa in bacteria and about 4 MDa in higher living beings 

(Davidovich, A. et al., 2009).  

           Usual mammalian cell contains over a million ribosomes and a bacterial cell has 

on the order of 100,000 ribosomes. The ribosomal RNA (rRNA) has the capacity of 

catalyzing peptide-bond formation between two amino acids, thus giving ribosome the 

distinction of being a ribozyme (Yonath, A. 2003). Ribosomes from all kingdoms of life 

have maximum sequence conservation in the functional regions, such as the decoding 
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center and the peptidyl-transferase center (PTC) (Ban, N. et al., 2000; Schluenzen, F. et 

al., 2000). The non-ribosomal participants of the translation process include the mRNA 

chain which carries the genetic information from the DNA (Brenner, S. et al., 1961), and 

the tRNAs which transport the cognate amino acids to the ribosome (Hecht, L.I. et al., 

1959). 

            The two unequal subunits of the ribosome associate during the initiation step of 

protein synthesis through an intricate network of intermolecular bridges and work 

cooperatively during the elongation process of translation (Bashan, A. et al., 2003) 

(Figure 1.2.A). Both subunits are made of RNA and proteins. The entire ribosome in 

bacteria has a sedimentation coefficient of 70 S and in eukaryotes has a sedimentation 

coefficient of 80 S. In bacteria, the small subunit is designated as 30 S and has one 

RNA chain (16 S) of about 1500 nucleotides and 20-21 proteins (Schmeing, T.M. et al., 

2009). The large subunit in bacteria is assigned as 50 S and has two RNA chains (23 S 

and 5 S) of about 3000 nucleotides and different 31-35 proteins and 120 nucleotides, 

respectively (Schmeing, T.M. et al., 2009) (Figure 1.2.B). The intersubunit surface of the 

ribosome is composed of rRNA and is occupied with tRNAs during translation. The 

anticodons of tRNAs form base pairs with codons on the mRNA in the 30 S subunit. 

Their 3’-CCA ends, which carry the growing polypeptide chain and incoming amino acid, 

contact the 50 S subunit. The PTC, where peptide bond formation is catalyzed, is on the 

50 S subunit. This function shows that unlike protein enzymes, RNA is the main 

participant in the protein synthesis (Schmeing, T.M. et al., 2009).  
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A) 
                

                 
B) 
       

 
 
 
Figure 1.2. A) The schematic of ribosome showing the two subunits 50 S and 30 S, 
mRNA, tRNAs with their amino-acids and the growing polypeptide chain is depicted. B) 
The assembly of the bacterial ribosome from its large (50 S) and small (30 S) subunits 
with their respective rRNAs and proteins is shown.  
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            The proteins mostly occupy the peripheral globular domains of the ribosome 

with their elongated loops or terminal extensions passing through rRNA interior. Thus, 

they seem to carry out the role of stabilizing the rRNA tertiary structure (Klein, D.J. et 

al., 2004). There are a few examples of proteins that appear to play a dynamic role in 

ribosome function. The L7/L12 stalks of the proteins L7 and L12 appear to be involved 

in tRNA translocation in the large subunit (Kothe, U. et al., 2004). The proteins S5, S6, 

and S12 are believed to help with mRNA (Ogle, J.M. et al., 2002). 

              Outstanding progress has been made in the field of ribosomal crystallography 

to learn about the function of ribosomes at the atomic level. Most of the existing 

ribosome crystal structures are from eubacteria Deinococcus radiodurans (D50S; 

Harms, J. et al., 2001), Thermus thermophilus (T30S, Schluenzen, F. et al., 2000; 

Wimberly, B.T. et al., 2000 and T70S, Yusupov, M.M. et al., 2001), the archaeon 

Haloarcula marismortui (H50S; Ban, N. et al., 2000), and the bacteria Escherichia coli 

(70S, Schuwirth, B.S. et al., 2005). Additional crystal structures include functional 

complexes of the small subunit with mRNA (Kaminishi, T. et al., 2007) and tRNAs 

(Selmer, M. et al., 2006) or modified tRNAs, (Dunham, C.M. et al., 2007), the large 

subunit with non-ribosomal secondary factors, such as the trigger factor (Baram, D. et 

al., 2005; Schluenzen, F. et al., 2005), and 50S with the ribosomal recycling factor (Pai, 

R.D. et al., 2008). Extensive studies of the bacterial ribosome through crystallography 

have contributed immensely to the comprehension of the universal process of protein 

synthesis. It has provided insight into the important issues concerning ribosome of the 

eukaryotic kingdom and revealed the different approaches for the development and 

improvement of ribosomal antibiotics. 



13 
 

            Ribosomes are responsible for the conversion of the genetic information carried 

by the mRNAs into specific sequences of amino acids. Although the events of the 

translation process are universally conserved, major differences exist in the detailed 

mechanism of each phase. The translation in bacteria engages relatively few factors as 

compared to the complex process in eukaryotes (de Cock, E. et al., 1999). Bacterial 

translation on the ribosome is divided into four main phases, namely, initiation, 

elongation, termination, and ribosome recycling. In bacteria, specific protein factors are 

involved in the various stages of the initiation (McCutcheon, J.P. et al, 1999; Carter, 

A.P. et al., 2000), elongation (Stark, H. et al., 1997; Agrawal, R.K. et al., 1998), 

termination (Rawat, U.B.S. et al., 2003; Klaholz, B.P. et al., 2003; Klaholz, B.P. et al., 

2004), and ribosome recycling (Pai, R.D. et al., 2008).  

            The third phase of translation, which is relevant to this thesis work, is termed 

termination, since it leads to the end of protein synthesis (Figure 1.3). This process 

takes place on the ribosome as a response to a stop codon in the A site. The codons 

UAG, UAA, and UGA are known as stop codons. This process is assisted by various 

release factors (RFs). There are two classes of RFs: class I, a codon-specific RF, and 

class II, a nonspecific RF (RF3) in bacteria (Nakamura, Y. et al., 2000). These RFs 

have tripeptide anticodons, Pro-Ala-Thr in RF1 and Ser-Pro-Phe in RF2 that determine 

the RF identity and the stop codon on the mRNA (RF1 for UAG/UAA and RF2 for 

UGA/UAA). After encountering the respective stop codon, the RFs relay the signal from 

the mRNA stop codon present in the A site to the PTC, where they are believed to 

trigger hydrolysis of the peptidyl tRNA (Freistroffer, D.V., et al., 1997; Kisselev, L.L. and 

Buckingham, R.H., 2000). Following the release of polypeptides by RFs, the ribosomal  
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Figure 1.3. The termination of translation and the recycling of ribosome are shown. The 
RFs assist in peptide release and RRF together with EF-G helps in recycling of the 
ribosome. The RF = release factor, RRF = ribosome recycling factor, EF-G:GTP = 
elongation factor G with GTP. 
 
complex of deacylated tRNA (in the P site), class I RF (in the A site) and mRNA are left 

behind. Thereafter, RF3 helps to dissociate RF1 or RF2 from the ribosome in a GTP-

dependent manner (Milman, G. et al., 1969; Grentzmann, G. et al., 1994; Karimi, R., et 

al., 1999).  
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            In the fourth phase of translation of ribosome recycling, the ribosome recycling 

factor (RRF), acts together with EF-G to cause dissociation of the 50 S and 30 S 

subunits (Figure 1.3). Crystal structures of RRF with E. coli 70 S ribosomes show the 

factor binding to a crevice involving the PTC. Upon binding of RRF, the tip of helix 69 

(H69) in the 23S rRNA of large subunit shifts away from the small subunit and towards 

RRF by 8 Å, causing disruption of an important intersubunit bridge called B2a (Pai, R.D. 

et al., 2008). Disruption of this major contact between the two subunits reveals a key 

role of RRF in dissociation of the 70 S ribosome. Initiation factor 3 (IF3) is also required 

helps in recycling of ribosomes by acting on post-termination ternary complexes after 

the dissociation of 50 S subunits. It catalyzes the dissociation of deacylated tRNA from 

the partial P site of the 30 S subunits (Karimi, R. et al., 1999). 

 
1.3. Antibiotics targeting the 50 S and 30 S subunits 

            The small (30 S) and large (50 S) ribosomal subunits are proven targets for 

many of the known antibiotics in pathogenic bacteria. A few of the inhibitory modes of 

the antibiotics studied crystallographically include: (i) improper coding at the decoding 

center by aminoglycoside antibiotics, such as paromomycin (Brodersen, D.E. et al., 

2000), (ii) restriction of the ribosomal movement by spectinomycin, hygromycin B, or 

edeine (Brodersen, D.E. et al., 2000; Carter, A.P. et al., 2000; Pioletti, M. et al., 2001), 

(iii) obstruction of tRNA binding at the decoding center by paromomycin and tetracycline 

(Brodersen, D.E. et al., 2000; Pioletti, M. et al., 2001) or PTC by chloramphenicol or 

sparsomycin, and (iv) blockage of the protein exit tunnel by macrolides and ketolides 

(Schluenzen F. et al., 2001; Hansen, J.L. et al., 2003; Schluenzen, F. et al., 2001). It is 

clear from the given examples that the antibiotics target the well-established functional 
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centers of the ribosome. Some examples of antibiotics are summarized in table 1.1. 

Table1.1. Various antibiotics targeting important functional regions of large and small 
subunits of ribosome are given. The classes of few of the antibiotics are given in 
parentheses. 

 

: LS = large subunit, SS = small subunit, PTC = peptidyl transferase center. 

            The 50 S or the large subunit of the ribosome is mainly responsible for peptide-

bond formation in the PTC and channeling of the newly formed peptide chain through 

the exit tunnel (Ban, N. et al., 2000). Antibiotics that target the PTC can be classified 

into two categories. The first includes antibiotics that bind or disrupt peptide-bond 

formation (Schluenzen F, et al., 2004) and the second contains those that hinder the 

PTC or substrate motions (Harms,J. et al., 2004). Some of the known drugs binding to 

the PTC are chloramphenicol, puromycin, clindamycin, tiamulin, sparsomycin, and 
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streptogramin A (Schluenzen, F. et al., 2001; Harms,J. et al., 2004; Schluenzen F, et 

al., 2004; Bashan, A. et al., 2003).  

           The first antibiotic of the large subunit studied crystallographically was 

chloramphenicol, which works by blocking the A site as it binds to the PTC. Antibiotics 

interact with the active-site crevice or the exit-tunnel crevice by inserting their aromatic 

groups in the hydrophobic interiors of these motifs. The streptogramins are unique 

among the ribosomal antibiotics since they consist of two components, streptogramin A 

and B, which act synergistically. Quinopristin, a streptogramin B compound, binds and 

blocks the ribosomal exit tunnel; whereas, dalfopristin, a streptogramin A compound, 

binds directly within the PTC and affects the occupancy by both the A- and P-site tRNA 

molecules. Upon binding of these drugs, the PTC undergoes a substantial 

conformational change causing the post-antibiotic obstruction of protein synthesis 

(Harms, J.M. et al., 2004). The pleuromutilin class of antibiotics, tiamulin is a powerful 

inhibitor of protein synthesis.  

           The 30 S or the small ribosomal subunit is involved in two primary functions. The 

first is to monitor accuracy in the decoding process, in which matching of the aminoacyl 

tRNA with the codon of the mRNA at the A site is carried out. The second is to 

participate in the process of translocation, in which it works with the 50 S subunit to 

move tRNA and mRNA precisely by one codon at a time. The 30 S subunit is the target 

of a significant number of antibiotics, such as tetracyline, ediene, aminoglycosides, 

pactamycin, and cyclic peptides (viomycin and capreomycin) (Poehlsgaard, J. et al., 

2005). 
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            A plethora of antibiotics targeting the ribosomal RNA, few of which have been 

mentioned, bind to the functional centers of the ribosome. Developing a deeper 

understanding of their binding mechanisms at the molecular level will aid in designing 

compounds with an enhanced antimicrobial activities and reduced antibiotic resistance. 

1.4. Secondary and tertiary structures in rRNA 

            In order to study the binding interactions of antibiotics and the ribosome, it is 

important to have a good understanding of the chemical structures of the compounds 

and targets. The primary sequence of the RNA determines the types of the secondary 

structures that in turn outline the tertiary structures. The RNA present in the cell has an 

A-form helix stabilized by pairing between bases on opposite strands and by stacking of 

adjoining bases. Any perturbation of the standard duplex structure leads to the 

formation of various secondary structures, such as single-base bulges, multiple-base 

bulges, hairpin loops, internal loops, duplexes, mismatch loops, and three-stem or four-

stem junctions (Chow, C.S. et al., 1997) (Figure 1.4.). The single-base bulges are 

formed when the unpaired nucleotide in the duplex either stacks in the duplex or is 

exposed to the solution. The multiple-base bulges result from more than one base 

unpaired in the duplex. The base bulges often lead to an expansion of the deep groove 

of the RNA strand, thereby forming potential protein or small-molecule binding sites 

(Weeks, K.M. et al., 1991). The internal loops are formed by having one or more 

unpaired bases on each strand of the duplex. The three-stem or four-stem junctions are 

formed by the connection of three or more helical stems, and common example of four-

stem junction is seen in tRNA. 
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Figure 1.4. The different secondary structures adopted by the RNA in the ribosome are 
shown.  

            The rRNA has a vast array of these secondary structures that serve as unique 

recognition sites for a wide variety of substrates. The secondary structures of the rRNA 

also engage in additional interactions to form tertiary arrangements such as tetraloops, 

A-minor motifs, pseudoknots, and cross-strand purine stacks. The tetraloops are formed 

when four-base loops cap the double-helical strands in rRNA. These tetraloops exhibit 

invariant to highly variable sequences, depending upon their position in the molecule. 

The A-minor motif is the most commonly found long-range tertiary interaction in the 

large subunit. The A-minor motif occurs by the insertion of shallow groove edges of 

adenines into the shallow groove of the neighboring helices, most likely C-G base pairs. 
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The adenines then form hydrogen bonds with the 2’-OHs of those pairs (Lescoute, A. & 

Westhof, E., 2006). The main function of the A-minor motif appears to be stabilization of 

the interactions between the RNA helices or between loops and helices, and to 

influence the conformations of junctions and tight turns. A wide range of secondary and 

tertiary interactions exist within the ribosome, which will not be discussed in detail. The 

secondary structure map of 16 S rRNA is shown in Figure 1.5.   

 

Figure 1.5. The secondary structure of 16 S rRNA of 30 S subunit illustrating the four 
main domains is shown (Gutell, R.R., 1993). 
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           The large subunit (50 S) of the bacterial ribosome catalyzes peptide-bond 

formation in the PTC and holds the site for binding factors responsible for initiation, 

elongation, and termination phases of protein synthesis. The crystal structure of the 

large subunit of H. marismortui at 2.4 Å (Ban, N. et al., 2000) revealed that the 

secondary structure of 23 S rRNA could be divided into six large domains. The base 

pairs stabilizing the helices by at least two hydrogen bonds are clear and in addition, the 

secondary structures such as base triples, tetraloops, and cross-strand purine stacks 

are also recognized (Ban, N. et al., 2000) (Figure 1.6).  

 

 

Figure 1.6. The secondary structure of 23 S rRNA of 50 S subunit is shown in which the 
six major domains are labeled, and the location of H69 is highlighted (Gutell, R.R. & 
Fox, G.E., 1988). 
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            The secondary structure of 23 S rRNA encloses a central loop that is closed by 

a terminal stem, and 11 more stem-loops emerge from this central loop (Figure 1.6). 

Domain I is present in the back of the large subunit and helices 1 to 25 (H1-25) span the 

back region of domain I. This domain forms a globular structure behind the L1 protein 

region. 

            Domain II is observed to be the largest of all the domains and its three 

protrusions reach the subunit interface side of the particle. One of the protrusion having 

helices 42-44 (H42-44) form part of L7/L12 stalk and interact with the elongation factors. 

Helix 38 (H38) forms the second protrusion and the longest unbranched stem of the 

subunit. The third protrusion is made of helices 32 to 35.1 (H32-35.1), and the loop of 

helix 34 (H34) interacts directly with the small ribosomal subunit (Culver, G.M. et al., 

1999).  

            Domain III occupies the bottom region of the subunit. It makes more contacts 

with domain II, with only modest contacts with domains I, IV, and VI, and hardly had any 

contact with domain V. For domain IV, most of it faces the intersubunit area of the large 

subunit and forms a diagonal patch of flat surface. It connects to domains III and V in 

the back of the particle.  

            Domain V is packed in between domains IV and II and is considered to be 

closely engaged in peptide-bond formation. Helix 75 (H75) forms the binding site for L1 

protein, helices 80 to 88 (H80-88) form the central protuberance region and helices 89 

to 93 (H89-93) widen towards domain VI and stabilize the elongation-factor binding 

region of the ribosome.  
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            Domain VI is the smallest domain of the 23 S rRNA and includes the sarcin-ricin 

loop (SRL, stem-loop 95). This loop is required for factor binding and its conformation is 

stabilized through interactions with domain V and by proteins (Correll, C.C. et al., 1998). 

This loop is also seen to be exposed to solvent through nucleotide protection studies. 

Although the 23S rRNA is organized into six domains at the secondary structure level, 

the tertiary structure of the domains is stabilized by common elements such as 

pseudoknots, tetraloop-tetraloop interactions, and base triples (Westhof & Fritsch, 

2000). Therefore, these interactions stabilize the contacts of sequences present in 

different parts of the secondary structure of 23 S rRNA (Figure 1.6). 

 

1.5. Significance of helix 69 in the ribosome  

1.5.1. Positioning of helix 69 at the subunit interface  
 
            Helix 69 (H69) is located in domain IV of the 50 S subunit with its loop portion 

being universally conserved. It is a 19-nucleotide hairpin loop (residues 1906-1924 by 

E. coli numbering) with three post-transcriptionally modified nucleotides, namely 

pseudouridine () at positions 1911, 1915, and 1917 (Bakin and Ofengand, 1993). The 

pseudouridine at 1917 is methylated at its N3 position (Kowalak, J.A. et al., 1996). The 

secondary structure of H69, uridine, pseudouridine, and methylated-pseudouridine are 

shown in Figure 1.7. 
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A)                                                                 B) 

                                    

                           E. coli H69                                                           E. coli H69                   

C) 

  

Figure 1.7. A) The secondary structure of E. coli helix 69 (H69) is shown with its 
pseudouridine () residues at 1911, 1915, and 1917 and a GU mismatch in the stem 
region. The 1915 pseudouridine is methylated at N3 position.B) The crystal structure of 
H69 (1906-1924) in 70 S E.coli ribosome, with its A1913 (black) flipped out of the 
loopregion (PDB ID = 2J01) is presented. C) The chemical structures of uridine, 
pseudouridine and 3-methylpseudouridine are shown. 
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            H69 is positioned in the interface of the two subunits and forms the major RNA-

RNA bridge B2a that is found to be very flexible (Figure 1.8) (Harms et al., 2001; 

Yonath, 2002a, b). H69 was reasonably disordered in the X-ray crystal structures of the 

50 S subunit (Ban et al., 2000; Bashan et al., 2003). These bridges are formed from 

components belonging to both subunits and it may adopt different conformations in the 

associated ribosome and the free ribosome. 

 

Figure 1.8. The components of RNA-RNA bridge b2a, h44 of 30 S subunit and H69 of 
50 S subunit, are shown. The PDB ID for 50 S subunit = 2AW4 and for 30 S subunit = 
2AVY  (Schuwirth, B.S. et al., 2005). 
 

            In the 70 S ribosome crystal structure of Thermus thermophilus, it is very clear 

that the loop of H69 associates with the shallow groove of the D stem of the A-site 
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tRNA, and the shallow groove of its stem contacts the minor groove of the D stem of the 

P-site tRNA during protein synthesis. Simultaneously, it is also shown to be interacting 

with the shallow groove of h44 at the decoding region (Yusupov, M.M. et al., 2001).This 

structural data is supported by the previous cross-linking studies, in which it is clearly 

indicated that H69 contacts the decoding region at positions 1408-1411 and 1518-1520 

of 16 S rRNA (Mitchell, P. et al., 1992). Since H69 interacts with both A-site and P-site-

bound tRNAs, it can be deduced that H69 may be involved in the translocation process. 

It can be further hypothesized that the flexibility of H69 may be important for the proper 

functioning of the ribosome.  

           In a crystal structure of the E. coli 70 S ribosome at 3.5 Å, the molecular details of 

interactions of H69 with h44 are clearly described, suggesting a role for H69 in subunit 

association (Schuwirth, B.S. et al., 2005). Residues 1911 and A1919 were shown to 

form a reversed-Hoogsteen base pair that is bridged by the 2’-OH of A1918, forming an 

A-A dinucleotide platform. This interaction moves A1919 close to the U1406/U1495 

bases of h44 in the small subunit. Residue A1912 stacks on A1918 and forms a 

reversed-Hoogsteen base pair with 1917. A1912 also projects into the shallow groove 

of the C1407/G1494 base pair in h44 of 16S rRNA (Schuwirth, B.S. et al., 2005). 

          The involvement of specific nucleotides of H69 in subunit association is 

encouraged by the fact that methylations at A1912 and A1918 as a result of DMS 

(dimethyl sulfate) modification studies were shown to interfere with subunit association 

and thus proper functioning of 70 S ribosome (Maivali, U. et al., 2004). These studies 

suggest that H69 has a dynamic character and might also participate in translocation 

(Yusopov, M.M. et al., 2001; Bashan, A et al., 2003; Klaholz, B.P. et al., 2004; Liiv, A. et 
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al., 2005). It was suggested in early reports that H69 might act as a molecular crane in 

transferring tRNA from A to the P site since it is difficult to visualize the movement of 

tRNA through RNA-packed interface without some simultaneous structural change 

(Ortiz-Meoz, R.F. & Green, R., 2010; Yonath, A. et al., 2003; Yonath, A. et al., 2004); 

however, recent studies refute this hypothesis (Ali, I.K. et al., 2006). 

1.5.2. Mutational studies of helix 69 

          The high-resolution crystal structures of the ribosome have placed H69 at a 

functionally relevant area where it forms the RNA-RNA bridge B2a with h44 of the small 

subunit. Therefore, H69 is of utmost interest for mutational analysis through site-

directed mutagenesis or complete deletion from the ribosome. Interestingly, in one of 

the earlier genetic studies for investigating the role of rRNA in preserving the accuracy 

of translation (O’Connor & Dahlberg, 1995) mutations were recovered in the loop region 

of H69. The mutations that were pulled out included a deletion of A1916, the insertion of 

two consecutive A residues between A1916 and U1917 and a C to U change at 1914 

(Figure 1.9). These mutations promoted the readthrough of stop codons and showed 

increasing levels of both +1 and -1 frameshifting at the trpE91 frameshift site. It was 

suggested that the mutations of the loop residues of H69 may have disturbed the 

precision of the codon-anticodon interaction by changing the conformation of the 

decoding center in 16S rRNA across the subunit interface (O’Connor & Dahlberg, 

1995). Site-directed mutagenesis of the loop of H69 lead to mutants A1912G and 

A1919G, which were inactive during in vitro protein synthesis and under-represented in 

the polysomes (Liiv, A. et al., 2005). Also, mutant 1917C had a strong growth 

phenotype and general depletion of the polysome pool (Liiv, A. et al., 2005). In addition, 
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the point mutations at A1912G, A1919G, and 1917C strongly affected the translational 

activity both in vivo and in vitro (Ali, I.K. et al., 2006) (Figure 1.9).  

 

Figure 1.9. The mutations observed at different nucleotides of H69 are summarized in 
which mutations A1916, A1916, and C1914U promoted readthrough of stop codons 
and increased + 1 and – 1 frameshifting. The mutations A1912G, A1919G, and 1917C 
affected the in vivo and in vitro translational activity (O’Connor & Dahlberg, 1995; Liiv, 
A. et al., 2005). 

            The mutational studies were also carried out for deciphering the importance of 

three pseudouridines (s) in H69. The single synthase RluD, accountable for insertion 

of s at the 1911, 1915, and 1917 positions in H69, was deleted. Its deletion led to a 

strong growth defect, and defective RluD led to impaired ribosome assembly 

(Raychaudari, S. et al., 1998; Sivaraman, J. et al., 2004). In another genetic mutational 

study in the loop region of H69, functional variants were attained through the 

randomization of the H69 loop. Residues A1912 and U1917 were found to be highly 
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important for the ribosome function and an A1915-ribosome mutant demonstrated 

fragile subunit association, weak A-site tRNA binding, and a severe growth phenotype 

and low translational fidelity (Hirabayashi, N. et al., 2006). In another study, single 

substitutions were introduced from positions 1912 to 1919 of H69. In a cell-free 

translation elongation assay, the mutated ribosomes had strongly reduced activity in the 

synthesis of the poly(Phe), but the peptidyl transferase activity was not affected in a 

puromycin-based assay. The A1919C and H69 50 S subunit variants had the most 

severe in vitro reassociation efficiency and a mutation at A1919 also destabilized the 

dipeptidyl-tRNA in the A site (Kipper, K. et al., 2009). In general, mutations at loop 

positions of H69 affect the initiation factor-dependent 70 S initiation complex formation, 

ribosomal processivity in vitro, and lead to reduction of 50 S subunits in polysomal 

fractions in vivo (Kipper, K. et al., 2009). Therefore, the mutational studies on H69 

clearly indicated its important role in subunit association and in various translation 

events. 

1.5.3. Contacts of helix 69 (h69) with protein factors 

           Structural evidence has shown that H69 is involved in both peptide release and 

ribosome recycling by contacting release factors (RF) and ribosome recycling factor 

(RRF). The cryo-EM structures of release factor 2 (RF2) with 70 S reveal that the 

domain 2/4  of RF2 fits into a structure formed by protein S12, helix 18, and helix 44 of 

the small subunit and H69 of the large subunit (Klaholz, B.P. et al., 2003; Rawat, U.B.S. 

et al., 2003; Petry, S. et al., 2005). In cryo-EM studies of release factor 3 (RF3) bound 

to 70 S ribosome, the C-terminal domain of the RF3 contacts the loop of H69. As RF3 

moves from an open to closed conformation, the tip of H69 moves slightly into the P site 
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because of absence of tRNA. This illustrates that H69, being present close to the 

rotation center of 30 S subunit, could be a major player for the structural transition of the 

ribosome and tRNA translocation (Klaholz, B.P. et al., 2004).  

            During later stages of protein translation, H69 has been observed to contact 

RRF. RRF together with elongation factor G (EF-G) disassembles the post-termination 

complex of mRNA, deacetylated tRNA, and the ribosome into their independent parts 

(Peske, F. et al., 2005; Zavialov, A.V. et al., 2005). While learning the molecular details 

of the mode of action of RRF through hydroxyl-radical probing studies, it was noticed 

that amino acids R129 and R132 of domain I of RRF come in close proximity with 

nucleotides 1907 and 1908 of H69 (Lancaster, L. et al., 2002). Later, cryo-EM 

reconstructions of a similar complex of E. coli 70S ribosome and RRF revealed that the 

loop residues of H69 contact highly conserved amino acids E122-R133 of RRF, and the 

loop itself shows some movement upon RRF’s binding (Agrawal, R.K. et al., 2004).  

            A 3.3 Å crystal structure of domain I of RRF bound to D. radiodurans 50 S 

subunit demonstrated that binding of RRF disturbs the position of H69 (Wilson, D.N. et 

al., 2005). Nonetheless, this structure does not provide the insight into the separation of 

the two ribosomal subunits upon RRF binding. In a recent crystal structure of E. coli 

RRF or T. thermophilus RRF bound to E. coli 70 S ribosome, the tip of the H69 was 

observed to be moving away from the small subunit towards RRF by 8 Å, following the 

disruption of bridge B2a between two subunits (Pai, R.D. et al., 2008) (Figure 1.10). The 

movement of H69 implicated an ordered-to-disordered change upon RRF binding to the 

ribosome. RRF amino acids H23, V20, and S17 that lie on -helix 1 in domain I 

interacted with the shallow groove nucleotides C1914 and 1917. Thus, weakening of 
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bridge B2a due to RRF binding may play an important physiological role towards 

ribosome recycling (Pai, R.D. et al., 2008).  

A)                                                                        B)  

             

 

Figure 1.10. A) The overlapping images of H69 without RRF (red) and H69 bound to 
RRF (yellow) from E. coli are shown. PDB ID for red image = 2AW4 (Schuwirth, B.S. et 
al., 2005) and for green image = 2QBE (Borovinskaya, M.A. et al., 2007). B) The amino 
acids of domain I of RRF (red) making contacts with nucleotides of H69 (red) are 
shown.  
 
            In another structural study of aminoglycoside (gentamicin or paromomycin) 

inhibition of bacterial ribosome recycling, H69 was seen to move away from subunit 

interface upon RRF binding. But when aminoglycosides bind at the base of H69 stem 

(after h44 was saturated with the antibiotics) and RRF at the same time, H69 was not 

able to move away from h44 in bridge B2a. At this stage, the presence of 

aminoglycosides stabilized the intersubunit bridge B2a leading to obstruction of 
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ribosome recycling (Borovinskaya, M.A. et al., 2007). In summary, the above 

observations indicate that H69 plays a dynamic role through protein-assisted steps of 

translation. 

 

1.5.4. Consideration of helix 69 (H69) as a drug target 

           The sequence of H69 has been shown to be a highly conserved moiety of 

ribosome in all three kingdoms of life, bacteria, archaea and eukaryotes (Cannone et 

al., 2002). More than 88% of the stem residues of H69 are conserved. However, when 

the sequences of H69 are compared between the bacteria (E. coli) and eukaryotes (H. 

sapiens), there are some visible differences between them (Figure 1.11). The first 

difference is that the 1915 position in E. coli is a methylated pseudouridine, whereas in 

humans it is not; secondly, the base at the 3’ end of the loop is an A for E. coli and a G 

for H. sapiens; and thirdly, H. sapiens have two extra pseudouridines in the stem region 

of the hairpin. In E. coli, the native helix 69 has two pseudouridines () at positions 

1911 and 1917 (Bakin, A. et al., 1993) and an N3-methylated pseudouridine (m3) at 

position 1915 (Kowalak, J.A. et al., 1996). 

           Considering the role played by H69 in subunit association of the ribosome during 

protein synthesis, the highlighted sequence differences of H69 between human and 

bacterial H69, and the dynamics of H69 when RRF binds ribosome, it is very attractive 

to consider H69 as novel antibacterial target. Additionally, through the study of chemical 

probes, it has been shown that in free 50S subunit, H69 nucleotides are strongly 

cleaved by hydroxyl radicals at most positions (Merryman, C. et al., 1999). Furthermore, 

H69 is exposed in the cell in the unassembled form of 50S and could be targeted by 

means of small molecules. 
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Figure 1.11. The sequences of the E. coli and human analogs of H69 are shown for 
comparison (referred to as m3 and 5, respectively).  is pseudouridine and m3 
is 3-methylated pseudouridine. The nucleotides in upper case letters in E. coli H69 
sequence have >95% conservation and the lower case letters have 88-95% 
conservation in three kingdoms (Cannone, J.J. et al., 2002). 
 
 
1.6. Thesis statement: goals and approaches 

            Bacterial ribosomes are composed of a large 50 S subunit having 23 S rRNA, 5 

S rRNA, and over 30 proteins and a small 30 S subunit containing 16 S rRNA and about 

20 proteins. The entire 70 S ribosome is formed by the combination of the 30 S and 50 

S subunits through a network of intermolecular bridges. These intersubunit bridges are 

twelve in number and most of them involve rRNA (Yusupov, M.M. et al, 2001). The 

RNA-RNA contacts are centrally located and are in direct contact with the tRNA binding 

sites, whereas the protein contacts are on the outside of the ribosome (Yusopov, M.M. 

et al., 2001). The region of the ribosome under investigation in this study is helix 69 

(H69), which occupies a large surface area of the RNA-RNA bridge called B2a. H69 is 

located in domain IV of the 23 S rRNA and consists of nucleotides 1906-1924.  
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            H69 has been assigned a number of different roles due to its presence at the 

interface region of the ribosome. In addition to contacting the small subunit during 

mRNA decoding, H69 also contacts both the A- and P-sites tRNAs (Yusopov, M.M et 

al., 2001; Schuwirth, B.S. et al., 2005). These structural interactions implicate the 

involvement of H69 in translocation during protein synthesis (Bashan,  A. et al., 2003; 

Liiv, A. et al., 2005; Sumita, M. et al., 2005; Yonath, A. et al., 2004; Yusopov, M.M. et 

al., 2001; Schuwirth, B.S. et al., 2005). Many groups have also ascertained H69’s role 

between the 30 S decoding site and GTPase-related elements of the 50 S subunit 

(Bashan, A. et al., 2003; Cochella & Green, 2005; Frank, J. et al., 2005). Mutational 

studies have also established participation of H69 in ribosomal accuracy. A genetic 

selection for rRNA mutations increasing frameshifting and stop-codon readthrough 

identified three mutations in the loop of H69 (O’Connor & Dahlberg, 1995).  

            There are structural data showing H69 to be taking part in both peptide release 

and ribosome recycling. The cryo-EM models of release factors (RF1 and RF2) bound 

to 70 S ribosome indicate that domain II of the RFs comes in very close proximity to 

H69 (Klaholz, B.P. et al., 2003; Petry, S. et al., 2005; Rawat, U.B.S. et al., 2003). In 

alternate RF3-bound conformations of 70S ribosome, the loop of H69 assumes different 

structures after contacting the C-terminal domain of RF3 (Klaholz, B.P. et al., 2004). In 

crystal structures of the both E. coli and T. thermophilus ribosome recycling factor 

(RRF) bound to E. coli ribosomes, the loop of H69 is observed to be moving away from 

h44 of the small subunit, thereby interrupting a significant contact between the two 

subunits, which is bridge B2a (Pai, R.D. et al., 2008).  
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            From the above-cited roles of H69 in various ribosomal functions, it is quite clear 

that H69 is a highly flexible multitask feature of the ribosome. Owing to the emergence 

of antibiotic resistance and the notable structural differences between the bacterial and 

human H69, this helix could be considered as a novel antibacterial target. H69 could be 

targeted in bacteria with some ligand or small molecule such as a peptide or DNA/RNA 

aptamer to interfere with the naturally occurring intersubunit contacts. The main idea 

behind this project was to isolate small peptides that specifically bind to H69 by using a 

phage-display peptide library. Phage-display libraries have already been used to isolate 

peptides and proteins that bind to antibodies or receptors and also to study protein 

interactions with DNA (Jamieson, A.C. et al., 1994; Wu, H. et al., 1995).  

            Phage display is a biological system that facilitates the cloning and rapid 

selection of peptides from large combinatorial libraries (Smith, G.P. & Petrenko, V.A., 

1997). In comparison to the chemical combinatorial approach, the advantages of phage 

display lie in its simplicity and replicability. The phage display library is a heterogeneous 

mixture of phage clones, each carrying a different foreign DNA insert and therefore 

displaying a different hybrid peptide on its surface. An in vitro selection process called 

affinity selection, or biopanning, allows rapid identification of peptide ligands from this 

library (Lowman, H.B., 1997). Biopanning is carried out by incubating the phage peptide 

library with immobilized target (in this case H69) then removing the unbound phages 

and eluting the target bound phages. The eluted phages are amplified in cells to yield a 

large crop of progeny phages and subjected through additional binding/amplification 

cycles to enrich the pool in favor of the best binding sequences (Smith, G.P. & 

Petrenko, V.A., 1997; Arap, M.A., 2005). After three to four rounds of selection, the 
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amino-acid sequences of foreign DNA inserts of preferred RNA-binding phages are 

determined through DNA sequencing. Eventually, high-affinity peptides are cloned or 

synthesized so that they can be studied individually. 

 

          

Figure 1.12. The overview of the project is shown. The H69 was targeted with phage 
library and later the selected peptide sequences were subjected to binding analysis. 
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             To identify the preferred H69-binding peptides, the Ph.D.-7 Phage Display 

Peptide LibraryTM was chosen for selection. This phage library is based on a 

combinatorial library of random heptapeptides fused to a surface-exposed minor coat 

protein (pIII) of M13 phage, which is present in five copies at one end of the phage 

particle (Marvin, D.A., 1998). Thus, each phage displays five copies of one particular 

fused peptide. The library contains approximately 2 x 109 independent phage clones. 

The displayed heptapeptides are expressed at the N-terminus of pIII. A short spacer 

(Gly-Gly-Gly-Ser) is present between the peptides and the wild-type pIII sequence.  

            After the selection of a particular peptide sequence, further studies with the 

selected peptides involved the chemical synthesis of the peptides and later studies of 

binding mechanisms through biophysical methods. Binding studies included 

electrophoretic gel mobility shift assays (EMSA), on-bead peptide libraries using high-

throughput fluorescence assays, Fe-EDTA reactions, in-line probing techniques, and 

electrospray ionization (ESI) mass spectrometry (MS). After all these analyses to 

determine binding affinities and selectivities of the selected peptides, they may be 

refined as antimicrobial drug leads, in the future, using peptidomimetic chemistry. 
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CHAPTER 2 

 
Isolation of peptides binding to helix 69 of E. coli 23 S rRNA 

employing an M13 phage-display library 
 

 

2.1. Phage-display libraries 

2.1.1. Peptides as ligands for RNA 

            Phage-display libraries are composed of a collection of phage particles in which 

the foreign peptides or proteins are expressed along with the phage coat proteins. The 

phage is a single-stranded DNA virus that infects a number of gram-negative bacteria. 

This technology was first pioneered by George Smith (Smith, G.P., 1997). The 

formation of the phage library is achieved by integration of the nucleotide sequence 

encoding the peptide or protein to be displayed into the phage genome as a fusion in 

the gene responsible for a phage coat protein. This fusion makes certain that the 

assembled phage particles display the foreign peptide or protein together with the coat 

protein (Smith, G.P. & Scott, J.K., 1993). This physical link between the phenotype and 

the genotype of the expressed protein and the replicative ability of the phage are ideal 

features of the phage-display technology (Smith, G.P., 1985). The filamentous phage 

particles frequently used for display purposes are known as Ff, and include strains M13, 

f1, Fd and ft. The M13 strain is an E. coli-specific filamentous phage about 1 m long 

and 5-7 nm in diameter (Marvin, D.A., 1998) (Figure 2.1). The major coat protein p8 (50 

amino acids) together with four other minor coat proteins, p3, p6, p7, and p9, package a 

circular, single-stranded DNA of about 6400 nucleotides to make the complete phage 

particle (Marvin, D.A., 1998). The viral mass is 16.3 MDa and consists of approximately 
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2700 copies of p8. The proteins p7 and p9 cap one end of the particle and are present 

in either three or five copies; whereas, the other end is capped by proteins p3 and p6, 

which are also present in either three or five copies (Arap, A.M., 2005). The structural 

stability of the phage particle comes from the contribution of all five coat proteins, but p3 

is necessary for host cell recognition and infection (Armstrong, J. et al., 1981).  

 

                                   

 
Figure 2.1. The filamentous M13 phage particle is shown in which the dashed line inside 
the phage represents the single-stranded DNA, with the segments encoding proteins p8 
and p3 are shown by black and white boxes, respectively. The hatched segment within 
the white box represents for the foreign coding sequence merged into the p3 coat 
protein. The black oval shows the p8, which is the major coat protein, the small white 
circles at one end of the particle represent the N-terminal domains of the five p3 
molecules, and the hatched circles on the p3 white circles show the peptides specified 
by the foreign coding sequences.   
 

           The polypeptides fused to the M13 coat proteins are displayed on the surface of 

the phage, on the condition that the fusion protein passes through the M13 phage 

assembly apparatus and does not influence the viability of phage particle itself (Russel, 

M., 1995). Applying simple molecular biology techniques, diverse phage-displayed 

libraries can be constructed (Sidhu, S.S. et al., 2000). The procedure for selection of 

peptides of desired binding properties from the library pool involves binding to an 

immobilized target, and then ascertaining the sequence of the selected peptide from the 

sequence of the enclosed DNA (Figure 2.2). Currently, optimized molecular techniques 
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enable the construction of phage-display libraries having >1011 unique DNA sequences 

(Sidhu, S.S. et al., 2000).   

 

Figure 2.2. The generalized scheme of steps for selection of peptide ligands employing 
a phage-display library is shown, in which the immobilized target is biotin-labeled H69 
RNA. 
 

            The use of phage display depends on the efficiency with which the peptides are 

displayed on the phage surface. The intensity of exhibition of different peptides depends 

on both the length and the sequence of the peptide. In polyvalent display, hundreds or 

thousands of copies of small peptides (<8 residues) can be displayed per phage particle 

(Liu, G. et al., 1996); whereas, larger proteins (>100 residues) are displayed in 
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monovalent format of one copy or less per phage particle (Lowman, H.B. et al., 1991; 

Sidhu, S.S. et al., 2000).           

           The initial design of phage display was the N-terminal fusion to the p3 or p8 coat 

proteins in the phage genome, but their use was limited because the function of the coat 

protein was compromised (Devlin, J.J et al., 1990; Cwirla, S.E. et al., 1990; Nakayama, 

G.R. et al., 1996). Later, to overcome this problem, hybrid phage-display systems were 

developed. In one system, the displayed fusion protein was present as an additional 

component of a phage coat that had all of the five coat proteins of wild-type. The fusion 

gene was added to a complete phage genome such that the expanded genome had two 

versions of the coat proteins, the wild type and the copy of the fused protein to be 

displayed (Smith, G.P., 1993). On the other hand, hybrid display was also accomplished 

with a phagemid-based system. A phagemid is a plasmid containing DNA sequences 

that are packaged into phage particles and these vectors have the M13 origin of 

replication and a phage packaging site in addition to the plasmid propagation elements 

(Azzazy & Highsmith, 2002). The phagemid has a coat protein gene that has the 

sequence of the foreign peptide to be displayed along with that coat protein. The 

progeny phage contains the wild-type coat proteins from the helper phage and the 

fusion coat protein from the phagemid. Consequently, the foreign protein or the peptide 

is displayed on the phage surface, surpassing the harmful effects of the fusion with the 

assistance of the helper-derived, wild-type coat proteins (Mead, D.A. & Kemper, B., 

1988).  

            With the help of these hybrid display systems, large proteins are readily 

displayed as N-terminal fusions with p3 or p8 (Sidhu, S.S. et al., 2000) or with p7 and 
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p9 (Gao, C. et al., 1999). Also, C-terminal display has been realized with p6, p3, and p8 

(Fuh, G. et al., 2000; Fuh & Sidhu, 2000). Most of these display formats are successful 

because the fusion protein stays as the minor component of the phage coat and does 

not interfere with the phage viability. 

           Some other types of phage have been employed as vehicles for constructing the 

libraries such as lambda and T7 (Gupta, A. et al., 2003; Danner, S. & Belasco, J.G., 

2001). The M13 phage is an excellent cloning vehicle since the foreign sequences are 

accommodated easily by the formation of longer phage particles. But their nonlytic 

propagation mechanism requires that all the components of the phage coat be exported 

through the bacterial membrane. As a result, only the proteins capable of surviving this 

export are displayed (Marvin, D.A., 1998). This limitation is avoided by using the lytic 

phage lambda and T7 in which the capsid assembly takes place entirely in the 

cytoplasm before the disruption or lysis of the cell (Danner, S. & Belasco, J.G., 2001). 

Moreover, studies are showing that the T7 and lambda phage can tolerate the display of 

relatively large proteins in a polyvalent manner (Zucconi, A. et al., 2001). 

            Phage-display technology has been widely applied in the area of antibody 

engineering and further development of the phage-originated peptides into viable 

diagnostic reagents. Examples of diagnostic reagents include the scFv-alkaline 

phosphatase fusion protein, which was used to identify luteovirus in sap extracts from 

infected plants (Harper, K. et al. 1997). Phage-displaying antibody libraries are regularly 

used against immobilized antigens (Marks, J.D. et al. 1991; Malmborg, A.C. et al. 1996) 

or antigens in solution (Hawkins, R.E. et al. 1992). Peptides selected through phage 

display have also played a role as agonists and antagonists of the receptors (Doorbar, 
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J. et al. 1994). Phage-display libraries have been applied for mapping antibody epitopes 

by inserting the DNA fragments responsible for parts of the protein antigen into the 

phage coat proteins. Random-phage libraries displaying the antigenic peptides are then 

used for discovering the monoclonal and polyclonal antibody epitopes (Hill, H.R. & 

Stockley, P.G., 1996; Cortese, R. et al. 1994). The M13 phage libraries have been 

successfully applied in the field of proteins such as the insulin-like growth factor-binding 

protein 1, vascular endothelial growth factor (Sidhu, S.S. et al., 2000). 

 

2.1.2. Peptide-RNA interactions: important examples 

           The secondary structure elements of RNA such as hairpins (stem-loops), bulged 

residues, and pseudoknots in the regular A-RNA conformation generate binding pockets 

for small molecules such as peptides (Chow, C.S. & Bogdan, F.M., 1997; Ye, X. et al., 

1995). These structural features help in the accessibility of the deep groove of the RNA, 

which is otherwise narrow and unreachable for the peptides. Their presence helps in the 

widening of the RNA deep groove as observed in important examples of adaptive 

binding of arginine-rich peptide motifs of viral and phage proteins. These peptides 

include HIV-1 Rev peptide binding with the IIB hairpin of RRE (Battiste, J.L. et al., 

1996), boxB hairpin of bacteriophage  bound to an N-terminal peptide (Legault, P. et 

al., 1998), and P22 N-peptide boxB RNA complexes (Cai, Z. et al., 1998). These 

complexes follow induced fit-phenomenon, since both the RNA and the peptide undergo 

conformational changes upon binding.  

           Arginine-rich peptides (ARM) are 10-20 amino acids in length and bind RNA with 

the same specificity as the parent protein (Lazinski, D. et al., 1989). These peptides are 
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observed to form a variety of secondary structures such as  helices,  hairpins, or 

extended conformations, depending on the peptide sequence and the RNA site. One 

notable example of an arginine-rich peptide motif binding to RNA is the BIV-1 TAR 

RNA-Tat peptide complex (Figure 2.3). Upon binding of the 17-residue Tat peptide as a 

 hairpin, the deep groove of the TAR RNA is widened (Ye, X. et al., 1995). The 

widening of the groove is associated with bulging out of two uridine bases, U10 and 

U12. U10 forms a U10(A-U) base triple with the A13-U24 base pair, and this base triple 

forms a suitable peptide-binding pocket. Uridine 12 is extruded and not involved in 

peptide binding (Ye, X. et al., 1995; Puglisi, J.D. et al., 1995). The formation of the base 

triple results in twisting of the phosphate backbone between G9 and U10. The 

guanidinium group of arginine forms hydrogen bonds with the deep groove edge of G11 

and phosphate oxygen in a forked conformation (Calnan, B.J. et al., 1991). Similarly, in 

the HIV 1 Rev-RRE RNA arrangement, the RRE RNA consists of a stem having the 

purine-purine base pairs and protruding adenine and uridine. The Rev peptide docks 

itself deeply in the widened deep groove of the RNA as an  helix.  

            Another example of an arginine-rich peptide interacting with RNA is the 

bacteriophage  N-peptide/boxB RNA complex (Legault, P. et al., 1998) (Figure 2.4). 

This ARM peptide constitutes the first 22 amino acids of the N protein and binds RNA 

with the same specificity as the entire protein. This peptide binds with the boxB RNA in 

a bent -helical conformation and does not interact with the RNA deep groove. Instead, 

it binds with the 5’ end of the boxB stem and the first three residues of the loop due to 

the negative charge of the RNA (Legault, P. et al., 1998). The peptide binding results in 

widening of the deep groove of the RNA due to the presence of a sheared GA 
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mismatch (Weiss, M.A. & Narayana, N., 1998). Peptide-RNA interactions lead to 

formation of a GNRA-like tetraloop from four nucleotides of the boxB RNA hairpin 

pentaloop. The looped out nucleotide makes a considerable number of contacts with the 

bound peptide (Cai, Z. et al., 1998) (Figure 2.4). 

                                    

Figure 2.3. The 17-residue Tat peptide (in red) in complex with BIV TAR RNA is shown 
(PDB ID = 1BIV) (Ye, X. et al., 1995). 
 

                                       

Figure 2.4. The bacteriophage  N-peptide/boxB RNA complex showing the formation of 
GNRA-like tetraloop (in red) in the RNA. (PDB ID = 1A4T) (Cai, Z. et al., 1998). 
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            Structure-based analysis of amino acids and nucleotide components of RNA-

protein complexes has been performed to know the nature of the interactions at the 

atomic level using a JAVA-based program ENTANGLE (Allers, J. & Shamoo, Y., 2001). 

The examples in this study were taken from three different categories: i) tRNA 

synthetases; ii) ribosomal protein complexes and iii) viral protein complexes. It was 

observed that specific RNA recognition is largely through single-stranded structures 

such as stem-loops, bulges, and kinks, which take advantage of all RNA functional 

groups. It was also revealed that the RNA and protein motifs made contact through salt 

bridges (ionic interactions), van der Waals forces, and hydrogen bonds between bases 

and protein backbone amide and carbonyl groups. Sixteen percent of the H bonds to 

RNA bases involved protein amide groups and 17% were with the carbonyl groups. 

Purine N-1 and pyrimidine N-3 positions were well utilized in all of these RNA-protein 

interactions, since they are readily available in single-stranded regions of RNA. Non-

base interactions involved the ribose 2’ OH for interacting with carbonyl oxygen atom of 

the polypeptide backbone. In this case, the 2’-OH group helps for distinction of RNA 

from DNA for RNA-binding peptides and proteins. Out of the twenty amino acids, 

arginine was found to have the most contacts with all four bases of RNA. It was 

speculated that since the guanidium group of arginine is ionized at physiological pH, it 

forms pentadentate hydrogen bonds with RNA, whereas its long aliphatic chain helps to 

tether it to the main protein chain (Allers, J. & Shamoo, Y., 2001).  

            Ribonucleoprotein complexes as observed in transcriptional elongation in 

viruses, RNA processing, and tRNA coding have conserved sequence peptide motifs. 

These peptide motifs include RNA shape-dependent recognition by the double-stranded 
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RNA-binding motif (dsRBM), RNA sequence- and shape-dependent recognition by an 

RNA-recognition motif (RRM), RNA recognition by zinc fingers (Zif), and arginine-rich 

peptide motifs (ARMS).  

            RNA shape-dependent recognition by dsRBM is a stretch of 70 to 75 amino 

acids with a conserved  protein topology. These motifs are present in a variable 

number of copies and up to five in Drosophila melanogaster staufen (Ramos, A. et al., 

2000). These are categorized into two groups, depending on the presence of the 

catalytic domain in the protein (Fierro-Monti, I. et al., 2000). In the first category, the 

catalytic domain of RNA-dependent protein kinase (PKR) works in affiliation with this 

motif (Green, S.R. & Mathews, M.B., 1992; Patel, R.C. & Sen, G.C., 1992). The dsRNA-

specific adenosine deaminases ADAR 1 and 2, in which the adenosines are converted 

to inosine, also represent the same category (Bass, B.L. & Weintraub, H., 1988). In the 

second category, the dsRBM proteins are missing the catalytic domain. Examples from 

this category are the transcription-related nuclear factor (NF90) family (Corthesy & Kao, 

1994), trans-activation region (TAR)-RNA-binding protein (TRBP) (Benkirane, M. et al., 

1997), vaccinia virus E3L protein (Romano, P.R. et al., 1998), and the RNAi/miRNA 

pathways-related RDE4/R2D2/HYL1 proteins (Tabara, H. et al., 2002; Liu, Q. et al., 

2003).  

            The crystal structures of a dsRBM from Xenopus laevis RNA-binding protein 

(Xlrbpa2) complexed with a 10-bp dsRNA reveals that dsRBM interacts along one face 

of the RNA duplex through both  helices and a 1-2 loop. The main interactions of the 

dsRBM with RNA are with the 2’ OH and phosphate oxygens of two consecutive 

shallow grooves separated by a deep groove (Ryter, J.M. & Schultz, S.C., 1998) (Figure 
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2.5). The structures of two other related complexes of dsRBM-dsRNA complex of 

Drosophila staufen dsRBM3 with an RNA hairpin and that of Escherichia coli RNaseIII 

dsRBM with dsRNA show that dsRBMs recognize the RNA A-form helix through their 

loops 2 and 4 (Ramos, A. et al., 2000; Blaszczyk, J. et al., 2004). 

 

Figure 2.5. The dsRBM (double-stranded RNA-binding motif) of Xenopus laevis 
(Xlrbpa2) with its α helix 1, the 1-2 loop, and the α helix 2 identifying the shape of 
dsRNA (Ryter, J.M. & Schultz, S.C., 1998, PDB ID = 1DI2). 
 

RNA sequence- and shape-dependent recognition by an RNA-recognition motif 

(RRM) or RNA-binding domain (RBD) is the most common small protein motif of 

approximately 90 amino acids. RRM or RBD has a protein topology of , forming 

a four-stranded -sheet against two  helices (Clery, A. et al., 2008). The  sheet is 

mainly involved in the recognition of single-stranded RNAs. RRMs bind several 

nucleotides, starting from a minimum of two in CBP20 RRM (Mazza, C. et al., 2002) and 

nucleolin RRM2 (Johansson, C. et al., 2004) to a maximum of eight in U2B” RRM1 

(Price, S.R. et al., 1998). The bases of these RNA nucleotides are oriented parallel to 
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the  sheet plane and often contact the conserved hydrophobic amino-acid side chains 

(Clery, A. et al., 2008) (Figure 2.6). 

 

Figure  2.6. The RNA-recognition motif (RRM) of CBP20 in complex with m7GpppG (7-
methyl-G(5’)ppp(5’)G is presented above (Mazza, C. et al., 2002, PDN ID = 1H2T). The 
m7GpppG is shown in blue. 
 

In prokaryotes and viruses, approximately 80 proteins having one RRM motif 

have been identified (Maruyama, K. et al., 1999), whereas in eukaryotes, the RRM is 

the most common protein motif and more than 6000 RRM motifs have been recognized 

(Bateman, A. et al., 2002). In eukaryotes, the RRMs are often present as multiple 

copies of two to six RRMs (Oberstrass, F.C. et al., 2005). A few examples of RRMs 

include two RRM motifs of the sex lethal protein of Drosophila melanogaster, RRM1 of 

spliceosomal protein U1A (Handa, N. et al., 1999), and the poly (A)-binding protein 

(PAPB), in which RRM-containing proteins bind to more than three nucleotides and can 

distinguish longer single-stranded RNAs (Deo, R.C. et al., 1999). 

            Zinc-finger motifs displaying a  protein fold are common DNA-binding motifs 

(Pavletich & Pabo, 1991; Wolfe, S.A. et al., 2000). In the  protein fold, the  hairpin 

and -helix are held together by a Zn2+ ion. They bind to specific bases in the DNA 
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major groove through protein side chains of the  helix (Pavletich, N.P. & Pabo, C.O., 

1991). The first evidence of zinc finger binding to RNA came in crystal structure of the 

CCHH-type zinc finger of transcription factor IIIA (TFIIIA) with a 61-nucleotide fragment 

of 5S rRNA (Pelham, H. & Brown, D., 1980). CCHH-type zinc fingers have two modes 

of RNA-binding strategies; first, they interact non-specifically with the backbone of 

double helix and second, they recognize bulged-out bases of the structurally rigid 

elements. In the case of the zinc finger of TFIIIA bound to RNA, the F5  helix 

recognizes dsRNA by contacts through basic amino acids to the RNA sugar-phosphate 

backbone, and the F4  helix interacts with a bulged guanosine through the side chain 

of amino acids at the N-terminus (Lu, D. et al., 2003). 

           

2.1.3. Phage display and RNA 

2.1.3.1. Phage display with RNA: early examples 

RNA has the capacity of folding into complex three-dimensional shapes, and its 

participation in many biological processes makes it more intriguing to learn its mode of 

binding with small molecules (Thomas, J.R. & Hergenrother, P.J., 2008). This 

knowledge can help in understanding the basic principles of nucleic-acid recognition 

involved in various natural processes. Advanced crystal structures of RNA-protein 

complexes and new combinatorial tools have led to the successful designing of peptides 

and small-molecule RNA binders (Carter, A. P. et al., 2000). The multiplicity of shapes 

of RNA gives the possibility of designing ligands with high affinities and specificities; 

however, RNA often rearranges itself in proper conformation after ligand binding. Thus, 
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the RNA target site may not be well defined without the ligand (Cheng, A.C. et al., 

2001). 

             As mentioned in Section 2.1.1., phage display is a molecular biology-based 

technique for selecting peptide ligands for targets such as proteins, enzymes, and RNA 

(Lowman, H.B. 1997). The high diversity of the libraries allows the discovery of specific 

and high-affinity ligands for the target. A phage-display library based on the RNA 

recognition motif 1(RRM1) of U1A protein was one of the first peptide libraries to be 

targeted against the U1 snRNA hairpin binding site (Laird-Offringa, I.A. & Belasco, J.G., 

1995). The library was constructed by inserting the N-terminal U1A domain (1-101 

amino acids) into a phage-display vector. In order to determine which amino-acid 

residues were important for binding with U1 snRNA, nine key amino acids were partially 

randomized. After the selection, four of the nine amino acids were essentially appearing 

in all of the sequenced clones. Further analysis at position 49 showed that upon 

binding, the long side chain of leucine 49 (present in the 2-3 loop of the RRM domain) 

was helping the protein to lock into the U1 snRNA loop. Also, one peptide sequence 

was found to bind to the U1 snRNA with two-fold higher affinity than the wild-type RRM. 

Thus, the phage library proved to be an efficient in vitro method of clarifying RNA-

binding affinity of specific RNA-binding proteins (Laird-Offringa, I.A. & Belasco, J.G., 

1995). 

           A random phage-display library was also used for selecting peptide ligands 

against the triply methylated, 17-nucleotide anticodon stem and loop (ASLPhe) domain 

from yeast tRNAPhe (Agris, P.F. et al., 1999). The ASLPhe (containing three of the five 

modifications Cm32, Gm34, m5C40) formed a five base-pair stem and a seven-membered 
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loop as its secondary structure. The 15-amino-acid peptide phage library used for 

selection had no preset restraints on the phage coat proteins, and the phage clones 

were sequenced after the fourth and fifth rounds of selection. The high-affinity peptides 

identified contained nonpolar aliphatic and aromatic amino acids. Tryptophan was the 

common aromatic amino acid present in the peptide sequences, but was not located in 

the center of the sequence.  Serine was a frequent polar residue present at the N- and 

C-terminal positions of the peptide sequence. Fluorescence and circular dichroism 

spectroscopies were utilized for determining the binding constants of the peptides 

(Agris, P.F. et al., 1999). One of the peptides was further tested for inhibition of 

aminoacylation of the tRNA by its phenylalanyl-tRNA synthetase (FRS). The results 

indicated that the selected peptide bound to the tRNA effectively and had the ability to 

recognize the modifications as simple as methylations (Mucha, P. et al., 2001). 

 

2.1.3.2. Phage library with zinc fingers 

Another example of a phage library targeted towards RNA involved a zinc finger 

(ZF) library. The zinc-finger module, as mentioned earlier, is a widely studied motif with 

DNA-binding properties (Elrod-Erickson, M. et al., 1998; Turner J. & Crossley M., 1999). 

Following the discovery of DNA interactions, the binding of zinc fingers to RNA was also 

assessed (Blancafort, P. et al., 1999). A phage-displayed zinc finger (ZF) library was 

designed based on interactions of the Zif268-DNA model. Zif268 is mouse transcription 

factor and has three ZF domains, ZF1, ZF2, and ZF3 which bind to double-helical DNA 

(Pavletich, N.P. & Pabo, C.O., 1991). In the phage-display library, the middle ZF region 

(ZF2) was randomized while keeping the other two ZFs intact. Then, oligonucleotides 
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were designed in which the middle DNA triplet that binds to ZF2 was replaced with a 

variety of RNA triplets. The other two flanking DNA helices used to anchor the two 

flanking fingers, ZF1 and ZF3, were retained. Selection using this library against an 

RNA duplex having rG-C, rC-G, rA-U, and rU-A as the middle base pairs failed to 

capture any ZF phage. In contrast, when a selection was performed with an RNA duplex 

having rG-A as the middle base pair, ZF phage were selected after the fourth round. 

Specificity of binding of ZF phage clones for the GA base pair within RNA triplets was 

tested by substituting with other base pairs. Only the RNA triplet with a CA base pair 

was found to have significant affinity for this ZF clone. The NMR structure of ZF with the 

rG-A RNA duplex suggested that the interaction of ZF selected for RNA from the library 

was similar to that of ZF2 in Zif268-DNA complex. The rG-A base pair widened the deep 

groove of the RNA and made it more accessible for the  helices of the phage zinc 

finger (Blancafort, P. et al., 1999). 

           Combinatorial RNA-binding, zinc-finger libraries based on randomized  helices 

were also utilized to illustrate the amino acids required for binding TFIIIA ZF4 to 5S 

rRNA. It was observed that the RNA-binding zinc fingers also make use of a recognition 

helix for binding into the RNA deep groove (Friesen, W.J. et al., 1997). Similarly two-

finger proteins recognizing 5S rRNA and the HIV-1 Rev response element (RRE) IIB 

were identified using the phage library based on TFIIIA finger 4 libraries (Friesen, W.J. 

& Darby, M.K., 1998) 
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2.1.3.3. Phage library with randomized α helix 

            The phage-display methodology has been applied to reduce the size of the 

binding domain of the Z-protein having a three  helical groups interacting with the Fc 

part of the immunoglobulin IgG1 (Braisted, A.C. & Wells, J.A., 1996). The small binding 

motifs are simple to synthesize and more compliant for learning the basis of the protein 

function. The crystal structure of the complex (protein A and the IgG) showing the 

contacts of the protein part were from helices 1 and 2 but not 3; however, upon deleting 

helix 3, the affinity of the protein was reduced >105 fold. Therefore, the contacts of 

helices 1 and 2 were improved systematically by employing phage display and 

structure-based design to get a Kd of 43 nM (Braisted, A.C. & Wells, J.A., 1996). 

            The Z-domain of protein A (immunoglobulin binding staphylococcal protein A) 

was presented on M13 phage (Djojonegoro, B.M. et al., 1994). The phagemid libraries 

based on the peptide representing the first two helices of the Z-domain were 

assembled. These libraries contained the exoface, interface and intraface regions of the 

Z-domain. The best binder of the exoface library was considered as starting point for the 

intraface library and then the best peptide from that library was used as basis for the 

interface library. From this approach of sequential phage display, a peptide about half 

the size of its parent protein was selected having the same affinity as wild-type Z-

domain (Braisted, A.C. & Wells, J.A., 1996). 

            In a different study regarding the three -helical Z-domain of the staphylococcal 

protein A, phage libraries were constructed based on this domain (Nord, K. et al., 1997). 

They were prepared by randomization of 13 residues present at the two  helices 

involved in Fc-binding activity of the wild-type domain by employing either NNG/T or 
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(C/A/G)NN degeneracy strategies. Then, biopanning was performed against targets Taq 

DNA polymerase, human insulin, and a human apolipoprotein A-1 variant. The selected 

peptides were studied through SDS-PAGE and CD spectroscopy, and it was observed 

that the peptides had similar secondary structure to the native Z-domain. The binding 

analysis of these peptides resulted in micromolar dissociation constants (Kd) for their 

targets (Nord, K. et al., 1997). 

 

2.2 . Rationale of the project 
 
            Phage-display libraries were utilized in this project to select peptide ligands 

against the target RNA, helix 69 (H69) of E. coli. The rationale was to identify peptides 

as possible drug leads and to develop small molecules, as alternatives to 

aminoglycosides, as preferential binders for the ribosomal RNA target (Scheunemann, 

A.E. et al., 2010). The peptides also provide information regarding the nature and the 

spatial orientation of the functional groups in H69 RNA that are important for drug 

targeting. In addition, small peptides carved out of the RNA-binding domain of a 

complex protein have been shown to recognize its specific RNA site in the absence of 

extensive parent protein structure with almost the same affinity (Jiang, F. et al., 1999). 

There are examples in the literature supporting peptides as drug leads such as those 

designed for platelet glycoprotein IIb/IIIa (McDowell, R.S. et al., 1994) and another 

being advanced for rheumatoid arthritis (Adalimumab, 2003). In earlier studies aimed at 

learning about the chemistry of protein binding sites of antibodies, peptides gave 

information about the contributing functional motifs of the proteins (Benguri, D.R. et al., 

2001). We hope to gain similar information with RNA targets by the use of peptides.  
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           Phage-display techniques are well established with adequately laid out protocols 

that are easy to follow. Phage display is a viable choice because it utilizes the chemical 

and structural diversity of peptide libraries. The power of using phage-display libraries 

lies in the ability of rapid peptide-library construction with high diversity, affinity 

selection, amplification for enrichment of high-affinity peptides, and analysis of results 

(Smith, G.P.  et al., 1997). Phage-display libraries have been widely used to isolate 

peptides and proteins that bind to antibodies or receptors, but also to study protein 

interactions with DNA/RNA (Marks, J.D. et al., 1991; Malmborg, A.C. et al., 1996). An 

example already mentioned is the phage-display library based on RRM1 (RNA 

recognition motif) of the U1A protein, which was one of the first peptide libraries to be 

targeted against the U1 snRNA hairpin binding site (Laird-Offringa, I.A. et al., 1995). 

            The target in this study is H69. H69 is a 19-nucleotide hairpin present in domain 

IV of bacterial 23 S rRNA (residues 1906-1924). This RNA has three post-

transcriptionally modified pseudouridines () at positions 1911, 1915, and 1917, with 

the pseudouridine at 1915 being methylated at N3 (Bakin, A. & Ofengand, J., 1993; 

Kowalak, J.A. et al., 1996). H69 rRNA has been chosen as a novel antibacterial target 

because this is the major constituent of the intersubunit bridge B2a in the ribosome 

(Yusopova, M.M. et al., 2001). This bridge is formed during the association of the two 

ribosomal subunits in the functional center of the ribosome. H69 is the element 

participating with the small subunit decoding region at helix 44 (h44). The region of the 

large subunit harboring hairpin H69 has been shown to be protruding from the 50 S 

subunit (Merryman, C. et al., 1999). The main idea behind this project was to obtain 
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phage-selected peptides as potential inhibitors of this rRNA bridge B2a, which could 

then lead to disruption of protein synthesis in bacterial pathogens. 

 

2.3. Phage display library for selection 

           For selecting peptides against bacterial H69 in this project, the Ph.D.-7 Phage 

Display Peptide LibraryTM was chosen. This random peptide library is based on M13 

filamentous bacteriophage and contained approximately 2.8 x 109 independent phage 

clones amplified once to yield 70 copies of each sequence in 10 l of the supplied 

phage library solution. The random, foreign, seven amino-acid peptides were expressed 

along the N-terminus of the minor p3 coat protein with a copy number of three to five at 

one end of the phage particle. The first residue of the mature protein is the first 

randomized position. Then, the peptide is followed by a short spacer (Gly-Gly-Gly-Ser) 

and the wild-type p3 sequence.   

 

2.4. Materials and methods 

2.4.1. General materials 

            The materials included H69 RNA (5'-GGCCGAACm3AAACGGUC-3'), 

which was custom synthesized at Dharmacon Research Inc., (Lafayette, CO). The 3-

methylpseudouridine (m3) in the H69 sequence was synthesized by Helen Chui in our 

lab (Chui, H.M. et al., 2002).  H69 was biotinylated at the 5’ end following the procedure 

given in the ‘Oligonucleotide biotin-labeling kit’ from Amersham Life Science, Inc., 

(Piscataway, NJ). The enzyme polynucleotide kinase (PNK) was obtained from New 

England Biolabs (Ipswich, MA) and iodoacetyl-LC-biotin was purchased from Pierce 
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Biotechnology (Rockford, IL). The Ph.D.-7TM and Ph.D-12TM phage display library kits 

were purchased from New England Biolabs (Ipswich, MA). The kits included phage 

display library solution in TBS (50 mM Tris-HCl, pH 7.5; 150 mM NaCl) with 50% 

glycerol, E. coli ER 2738 host strain in 50% glycerol solution, streptavidin (lyophilized), 

biotin (10 mM, pH 7.0), -96 g3 sequencing primer (5’-CCCTCATAGTTAGCGTAACG-

3’,1 pmol/L) and -28 g3 sequencing primer (5’-GTATGGGATTTGCTAAACAAC-3’,1 

pmol/L). Streptavidin-coated plates (Reacti-Bind-streptavidin coated polystyrene 96-

well plates from Sigma) were used for immobilizing the biotinylated RNA. The solutions 

used for biopanning experiments included LB medium (for 1 L: 10 g Bacto-tryptone, 5 g 

yeast extract, 5 g NaCl), agarose top (for 1 L: 10 g Bacto-tryptone, 5 g yeast extract, 5 g 

NaCl, 1 g MgCl26H2O), TBS (50 mM Tris-HCl pH 7.5, 150 mM NaCl), PEG/NaCl (20% 

{w/v} polyethylene glycol-8000, 2.5 M NaCl), TBST (50 mM Tris-HCl, pH 7.5; 150 mM 

NaCl, 0.1% Tween-20), buffer A (10 mM Tris-HCl pH 7.5, 10 mM MgCl2, 50 mM NaCl, 1 

mM dithiothreitol), buffer B (0.2 M glycine-HCl pH 2.2, 1 mg/mL BSA), TBS with 0.02% 

sodium azide (final concentration), and equilibrated phenol solution (pH > 8). Isopropyl 

β-D-1-thiogalactopyranoside (IPTG), 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside 

(X-gal), tetracycline, bovine serum albumin (BSA), phenol solution and Tween-20 were 

purchased from Fisher Scientific (Pittsburgh, PA).  

            IPTG/Xgal stock solution was prepared in 25 mL ethanol by adding 1.25 g of 

IPTG (final concentration of 0.2 M) and 1 g of Xgal (final concentration of 0.1 M) and 

was stored in dark at -20 C. The tetracycline stock solution was prepared by adding 20 

mg in 1 mL of ethanol (final concentration of 0.045 M) and stored in dark at -20 C. The 

LB/IPTG/Xgal plates used for growing the phage plaques had LB medium (1 L) and 15 
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g/L agar. The solution was autoclaved and after cooling to <70 C, I mL of IPTG/Xgal 

stock solution was added to give final concentration of IPTG as 0.2 mM and Xgal as 0.1 

mM. The LB/tet plates were prepared by adding 15 g/L agar to LB medium (I L), and 

then the solution was autoclaved. After cooling the solution to <70 C, 1 mL tetracycline 

stock solution was added (final concentration of tetracycline was 0.02 mg or 0.045 mM). 

            The T4 polynucleotide kinase (PNK) was purchased from New England Biolabs 

(Ipswich, MA). Bacto agar and bacto tryptone were obtained from Difco (Detroit, MI). 

Acrylamide, bis-acrlyamide, ammonium persulfate, glycine-HCl, urea, N,N,N',N'-

tetramethyl-ethane-1,2-diamine (TEMED) and yeast extract were bought from Sigma 

(St. Louis, MO). Tris, NaCl, KCl, MgCl2, EDTA, HEPES, dithiothreitol (DTT), sodium 

azide (NaN3) and glycerol were bought from Fisher Scientific (Pittsburgh, PA). 

Sequitherm EXCEL II DNA sequencing kit was obtained from Epicentre Biotech 

(Madison, WI). Long range gel solution for sequencing was from Cambrex Bioscience 

(Rockland, ME).  

 

2.4.2. Biotin-labeling of RNA 

Helix 69 rRNA (H69), the target in this selection procedure, was biotinylated at its 

5’ end using a modified protocol provided by the ‘Oligonucleotide biotin-labeling kit’ 

(Amersham Life Science, Inc. 1995). H69 was first phosphorothiated at the 5’ end using 

a kinase reaction and then biotinylated in the coupling reaction as shown in Figure 2.7. 

The modifications in the procedure were: i) for the kinase reaction, the RNA solution 

was first boiled and immediately placed on ice, ii) the amount of enzyme polynucleotide 

kinase (PNK) for the kinase reaction was increased to 5 l, iii) after the kinase reaction 
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was completed, the reaction mixture was dried for 2 h or until it was almost dry, iv) the 

incubation time of the coupling reaction was increased to 1.5 - 2 h, v) after coupling was 

completed, 500 l of ddH2O was added and then dried in speed-vac, and vi) no ethanol 

precipitation was performed and samples were resuspended in ddH2O for gel 

purification. 

 
 

Figure 2.7. The biotinylation reaction scheme for 5’-biotin labeling of H69 consisting of 
kinase reaction with polynucleotide kinase and coupling reaction with N-Iodoacetyl-N-
biotinylhexylenediamine is summarized. 
 

2.5. Biopanning, or affinity selection, of peptides 

2.5.1. On-plate, one-step selection 

             In the first attempt of biopanning or affinity selection, the process of selection 

and biopanning was carried out as given in the protocol provided by NEB (Ph.D-7TM kit) 

with minor modifications. During the first level of stringency, performed in the first round, 

the biotinylated H69 RNA (50 pmoles) was incubated overnight at 4 °C with gentle 

shaking in one well of the streptavidin-coated microtiter plate, in 150 µL buffer A (10 mM 
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Tris-HCl, 10 mM MgCl2, 50 mM NaCl, 1 mM DTT). The binding solution was then 

poured off and the well was blocked with 3 mg/ml BSA for 1.5 h at 4 °C. Subsequently, 

the well was washed with TBST (50 mM Tris-HCl, 150 mM NaCl, pH 7.5 and Tween-20 

0.1%) 6-8 times. Phage solution (10 µL of the original library in 100 µL of buffer A, 2 x 

1011 pfu where pfu is plaque forming unit) was pipetted into a well having no 

immobilized target RNA and incubated for 1 h at RT with gentle shaking for pre-

screening of the library. The phage library was later removed and added to the well 

having the immobilized target RNA for 1 h incubation at RT, with gentle shaking. After 1 

h, the library was discarded and the unbound phage was washed with TBST (10-12 

times). The bound phage were eluted with 100 µL of 0.2 M glycine-HCl (pH 2.2) 

containing 1 mg/mL BSA and neutralized immediately with 15 µL 0.1 M Tris-HCl, pH 

9.0. The eluate was titered and amplified in ER2738 cells for use in subsequent rounds 

of panning.  

            In the next level of stringency, performed in the second round, the phage were 

incubated with 20 pmoles of biotinylated H69 RNA , the well was blocked with 5% non-

fat dry milk, and washed with TBST buffer having Tween-20 concentration of 0.3%. The 

amplified phage library from first round was incubated for 30 min., at RT with the target 

RNA. For removing unbound phage, the timing of the even washes was 30 sec. and for 

odd washes was 3 min., and 12 washes were carried out.  

            In the third level of stringency, performed in the third round, the concentration of 

biotinylated H69 RNA was reduced to 10 pmoles, blocking of the well having 

immobilized RNA was conducted using 3% BSA.  The amplified phage library from 

second round was incubated with target RNA for 15 min. at RT with gentle shaking. For 
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removing unbound phage, the timing of the even washes was 30 sec. and for odd 

washes was 3 min. and 14 washes were carried out.  For the fourth round of the 

selection, target RNA was immobilized in two separate wells of the streptavidin-coated 

plate in order to carry out specific and non-specific elution for the bound phage. The 

specific elution was carried out with 30 pmoles of H69 RNA in TBST buffer, whereas the 

non-specific elution was performed with 100 µl of 0.2 M glycine-HCl (pH 2.2) containing 

1 mg/ml BSA and neutralized immediately with 15 µL 0.1 M Tris-HCl, pH 9.0. The other 

experimental conditions were kept the same as third round. The conditions for selection 

are summarized in Table 2.1.  

      In the second attempt of screening, several changes were made in the screening 

procedure. The procedure for selection was carried out under similar conditions as the 

first attempt, but with the addition of tRNA (90 pmoles) and biotin (0.1 mM) during the 

third and fourth rounds as competitiors during incubation of the library with H69. The 

conditions of screening for the second attempt are summarized in Table 2.2.  
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Table 2.1. Conditions of biopanning summarized during the first attempt of selection for 
H69.               
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Table 2.2. The biopanning conditions in second attempt of selection for H69. 
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2.5.2. Phage amplification and titering 

           After performing the particular round of biopanning with the target, a small 

amount of the eluted phage library or eluate (~1 L) was set aside for carrying out 

titering of the unamplified eluate. The rest of the eluate was stored at 4 C for next day 

amplification. An overnight culture of ER2738 in LB-tet was set up. On next day, the 

overnight culture of ER2738 was diluted in 1:100 ratio in LB medium (200 L to 20 mL 

of culture) in a 250 mL Erlenmeyer flask and the remaining stored unamplified eluate 

was added to the diluted culture. Then, the flask was shaken vigorously at 37 C for 4.5 

h. After shaking, the culture was transferred to a centrifuge tube (50 mL) and spun for 

10 minutes at 10,000 rpm at 4 C. The process was repeated by transferring the 

supernatant to a fresh 50 ml centrifuge tube and re-spun. Then, the upper 80% 

supernatant (~ 16 mL) was pipeted to another fresh 50 mL centrifuge tube and 1/6 

volume of PEG/NaCl was added to the solution. The phage was then allowed to 

precipitate at 4 C for overnight. 

            On the next day, the PEG solution was precipitated for 15 minutes at 10,000 

rpm at 4 C, the supernatant was carefully decanted while leaving the pellet. The pellet 

was suspended in 1 ml TBS and the suspension was transferred to a centrifuge tube. It 

was spun for 5 minutes at 4 C to remove residual cells and the supernatant was 

transferred to second centrifuge tube. Then 1/6 volume of PEG/NaCl was added to the 

tube and the tube was incubated on ice for 15-60 minutes. After that step, the tube was 

centrifuged for 10 minutes at 4 C. The supernatant was discarded and after brief re-

spinning, the remaining supernatant was removed. Finally, the pellet was suspended in 
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200 L of TBS, 0.02% NaN3 solution. The tube was centrifuged for another 1 minute to 

completely eliminate any insoluble matter. The supernatant was then transferred to a 

new tube and labeled as amplified eluate. 

           The titering of the phage eluate (unamplified or amplified) is the procedure to 

count the number of phage particles present in the eluate of the library after every round 

of selection. Each phage particle is represented by the “plaque” or hole formation on the 

LB/IPTG/Xgal plate. These plaques are formed due to the growth of the individual 

phage in a bacterial host cell suspended in the top agar lawn. The M13 phage is 

nonlytic phage so the plaques are due to diminished growth of the bacterial cells. 

Therefore, the number of viruses in the aliquot added to the plate is equal to the number 

of plaques that appear. The phage plaques of the M13 library used in this project were 

blue in color due to the presence of IPTG/Xgal. During the titering procedure firstly, 10-

fold dilutions of the phage-display library in LB medium were prepared as given in the 

Table 2.3. 

Table 2.3. The series of dilutions prepared for unamplified and amplified phage libraries 
after each round. 
                                DILUTIONS                                      DILUTION FACTOR 

           10 µL given library solution  + 90 µl LB                     101 

10 µL 10-1 dilution  + 90 µL LB                                  102 

10 µL 10-2 dilution  + 90 µL LB                                  103 

10 µL 10-3 dilution  + 90 µL LB                                  104 

10 µL 10-4 dilution  + 90 µL LB                                 105 

10 µL 10-5 dilution  + 90 µL LB                                 106 

10 µL 10-6 dilution  + 90 µL LB                                 107 

10 µL 10-7 dilution  + 90 µL LB                                 108 

10 µL 10-8 dilution  + 90 µL LB                                 109 
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           10 µL 10-9 dilution  + 90 µL LB                                 1010 

           The culture of ER2738 cells was set up by inoculating a single colony of ER2738 

in 5-10 mL of LB medium. The solution was incubated with shaking until mid-log phase 

(OD600 ~ 0.5) was achieved. Meanwhile, the agarose top was melted in the microwave 

and equilibrated at 45 C until ready for use. Then, the LB/IPTG/Xgal plates were pre-

warmed at 37 C until ready for use. Once the culture reached the mid-log phase, 50 L 

was dispensed into microcentrifuge tubes (one for each dilution) already having 450 L 

of melted agarose on top. Later, 1 L solution from each dilution was added to the 

labeled microcentrifuge tubes, vortexed quickly, and added on the pre-warmed 

LB/IPTG/Xgal plate. The plates were divided into 2-4 sections for plating different 

dilutions on the same plate. The agarose top was spread evenly by tilting the plate. The 

plates were allowed to cool for 5 minutes, inverted, and incubated overnight at 37 C. 

On the next day, the plaques were counted on plates having  102 plaques. The number 

of the plaques was multiplied by the dilution factor for that plate to get the phage titer in 

plaque forming units (pfu) per L. 

 

2.5.3. Phage DNA purification 

            After the blue plaques were observed on the plates, each one of them 

represented a single DNA sequence to be purified by automated sequencing. The 

purification started with setting up an overnight culture of ER2738 in LB-Tet medium 

from a single colony. The next day, the culture was diluted in 1:100 in LB medium. 

Using a pipette tip, a blue plaque was picked up and transferred to centrifuge tube 

having 1 mL of diluted culture of ER2738. The tube was then incubated at 37 °C for 4.5-
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5 h with vigorous shaking. Later, the mixture was centrifuged at 10,000 rpm for 5 

minutes. The supernatant ( 800 L) was transferred to a new tube; 400 L of 20% 

PEG-NaCl was added and carefully mixed by vortexing the solution. After vortexing, the 

solution was incubated at room temperature for 10 minutes and then centrifuged at 

10,000 rpm for 10 minutes.  The supernatant was removed and the pellet was dissolved 

in 70 l TE buffer (10 mM Tris-HCl, pH 7.3; 1 mM EDTA). For DNA extraction phenol-

chloroform extraction was carried out. An equilibrated solution of phenol (70 L, pH > 8) 

was added, mixed properly by vortexing and then centrifuged at 10,000 rpm for 2 min. 

The lower phenol layer was removed very carefully and the supernatant was combined 

with 70 L CHCl3. After another centrifugation step, the lower CHCl3 layer was 

discarded. Then, 7 L of 3 M NaOAc and 100% cold ethanol (175 L) were added to 

the supernatant and the solutions were stored at - 20 C overnight. The next day, the 

sample was centrifuged at 15,000 rpm for 15 min, and after removing the supernatant, 

the pellet was washed with 500 l of 70% ethanol. The pellet was then dried in the 

speed-vac and dissolved in 30 l ddH2O. 

 

2.5.4. DNA sequencing 

            The phage DNA was sequenced using the LI-COR sequencer (Lincoln, 

Nebraska). The protocol for this sequencer comprised of four parallel PCR reactions 

(dATP, dTTP, dGTP, dCTP) for deciphering the DNA for each phage plaque. The 

reagents for the sequencing reactions were obtained from Sequitherm EXCEL II DNA 

sequencing kit (Epicentre Biotechnologies, Madison, WI). Each PCR reaction consisted 

of phage DNA template (0.6 L) as purified in the above given protocol, premix solution 
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for each dNTP (1 l), and 700 M13-96 rev primer (5’-CCCTCATAGTTAGCGTAACG-3’) 

(LICOR) for M13 phage (0.96 l). The premix solution for each PCR reaction included 

3.5X sequencing buffer (0.4 l), Taq DNA polymerase (0.05 l) and dNTP (0.5 l). The 

sequencing PCR protocol was designed as 1 cycle for 2 min at 94 C, 29 cycles for 15 

sec at 94 C, 49.3 C for 25 sec, and 72 C for 25 sec, 1 cycle for 2 min at 72 C, 

followed by holding at 4 C. The reactions were performed in special PCR 0.2 ml tubes 

and after the PCR reaction was completed, loading dye (1 l from the same kit) was 

added to each tube to discontinue the reaction. The samples were analyzed on 6% 

denaturing polyacrylamide gels with 7 M urea. Prior to loading the samples on the gel, 

the samples were denatured by heating for 5 min at 95 C and then quick cooling on 

ice. After pre-running the gel for 20 min, the samples were loaded (0.6 l for each lane) 

and the gel was run for 2.5 h at 12,000 V for every 25 cm gel.  

 

2.5.5. Peptide synthesis 

            After the peptide sequences were identified, the peptides were chemically 

synthesized by Dr. Edvin Klosi and Dr. Chamila Rupasinghe using the micro TentaGel 

S-NH2 beads by standard F-moc solid phase peptide synthesis procedure (Atherton, E. 

& Sheppard, R.C., 1989). The peptide beads were washed thoroughly with DMF and 

stored in DMF at 4 C before use. In addition, the free peptides with C-terminal 

amidation were synthesized by following the standard F-moc solid phase peptide 

synthesis. 

            The peptide solutions were prepared in Millipore water and the solutions were 

quantified using the LavaPep peptide quantification kit (Fluorotechnics Pty. Ltd., 2006) 
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since the peptide lacked UV active amino acids such as tyrosine, tryptophan and 

phenylalanine. This kit has epicoccone dye, a fluorescent reagent that binds to lysine, 

histidine and arginine amino acids in the peptide sequence. The kit consists of two 

solutions named as part A that is dilute DMSO/acetonitrile solution of dye and part B 

that is bicarbonate buffer with SDS and acetonitrile. The dye fluoresces using a 540 ± 

10 nm excitation filter and 630 ± 10 nm emission filter. For preparation of standard 

peptide curve, solutions of peptide HPVHHYQ-NH2 in water were prepared in four-fold 

dilutions ranging from 40 ng/mL to 0.655 mg/mL. The working solution was prepared by 

mixing water, part A and part B in 8:1:1 ratio (the amount of solution depends on 

number of samples). For measuring fluorescence in 96-well microtiter plate, 50 µL of 

working solution was incubated with 50 µL of each HPVHHYQ-NH2 peptide dilution in 

individual wells. Similarly a blank was prepared by adding 50 µl working solution and 

buffer /water (50 µL) in one well.  For measuring peptide concentration of unknown 

concentration, 50 µL of that solution and 50 µL of working solution were added in 

another well. All the samples were incubated at room temperature in dark for 60 

minutes. After recording the fluorescence readings using excitation wavelength of 540 

nm and emission wavelength of 630 nm, the blank reading was subtracted from all the 

readings of solutions. A plot of log of fluorescence versus log of peptide concentration 

was generated using the linear fit. The equation obtained from the linear fit was then 

used for determining the concentration of peptide with unknown concentration. 

 

2.6. Results and discussion 

2.6.1. First screening using a seven-mer phage library on streptavidin-coated plates                  
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            The commercial Ph.D.-7TM
 (New England Biolabs) library was employed against 

H69 as target RNA and four rounds of selection were carried out. To obtain peptides 

specifically binding to H69 and for reducing the background nonspecific selection, the 

stringency of each round was increased at various steps. The conditions (discussed in 

chapter 3) were found to be successful for pulling out peptides having moderate affinity 

for the target H69 RNA. Stringency mainly refers to the scale at which high affinity 

peptides for the target are favored over low affinity or low specificity peptides.  

            Initial trials suggested that if stringency was too high, then no peptides would be 

selected. Stringency had to be lowered in order to get enough phage for the following 

rounds. The first step of each round was immobilization of biotinylated H69 (B-H69) on 

the streptavidin-coated plates. The concentration of B-H69 (in M) used for 

immobilization was decreased with each round starting from 0.33, and decreasing to 

0.2, 0.13, and 0.13 for respective rounds (Barrett, R.W. et al. 1992). Thus, the total 

number of pmoles of RNA on the surface was 50, 20, 10, and 10, respectively. The 

higher amount of the target for the first round will lead to the capturing of the peptides 

with a wide range of affinities for the H69 RNA. Lowering the amount of target for each 

round was carried out with the intention of obtaining a pool of peptides that have high 

affinity for the target.  

            Blocking buffers were applied in order to coat regions of the polystyrene plate 

that did not contain B-H69. The blocking reagents used during the selection were BSA 

(bovine serum albumin) and a non-fat dry milk solution. These two approaches were 

utilized since the presence of these soluble, globular, monomeric proteins without any 

characterized ligand-binding sites was expected to reduce the amount of non-specific 
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peptide binding. The peptides in the library should also have lower affinity for these 

proteins as compared to the target RNA. In addition, the binding times of the phage 

library were reduced for each successive round, from 60 to 15 minutes. With shorter 

binding times for each round, peptides with rapid on-rates (kon) will be favored. After 

binding, the peptide library to the RNA for a specific amount of time, the unbound phage 

population was removed with washing buffer having increasing levels of detergent 

Tween-20. The presence of the detergent in the wash buffers helps to reduce 

nonspecific interactions between the phage and the target and/or blocking agents such 

as BSA. The Tween-20 concentration in the first round was low in order to have high 

elution of varied sequences of the phage library. It was increased from 0.1% in the first 

round to 0.5% in the fourth round. In order to obtain peptides with suitable kon and koff 

rates, the wash times and numbers were also varied. The time for even washes was 

three min and for the odd washes was 30 s for every round. This method was applied to 

enrich the pool of phage having faster on rates (kon) and slower off rates (koff). The 

elution time for the bound phage was kept at 10 min for each round, since a non-

specific elution protocol was carried out in which the goal was to obtain all remaining 

peptides (0.2 M glycine-HCl, pH 2.2, 1 mg/ml BSA).  

           Selection of the phage library was also performed with a streptavidin-coated well 

with no immobilized target RNA. In all three rounds, the well was blocked with 3% BSA 

having 0.1 g/mL streptavidin to complex with any biotin in BSA and elution of bound 

phage was carried out with 0.1 mM biotin in TBS for 30 min. The peptide sequences 

obtained for streptavidin as target are given in Table 2.4. The well-known consensus 

HPQ/L for the streptavidin ligands was obtained after sequencing five clones of control 
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experiment (Gissel, B. et al., 1995; Lam, K.S. & Lebl, M., 1992). This result validated 

the experimental conditions (blocking reagents, detergent strength in washing buffer, 

and binding and eluting times of the library) for four rounds designed for pulling out 

peptide sequences for control and target RNA.   

Table 2.4. Peptide sequences for target RNA H69 obtained after three rounds.  
 

 
a) non-specific elution [0.2 M glycine-HCl (pH 2.2) containing 1 mg/ml 
BSA and neutralized immediately with 15 µl 0.1 M Tris-HCl, pH 9.0], b) the 
peptide sequences for control (streptavidin-coated well) where the familiar 
consensus of HPQ/L for streptavidin binding ligands is clearly seen, c) the 
consensus observed in the peptide sequences for both the target and the 
control is underlined.  

 

            For target RNA H69, the sequencing of ten clones gave a consensus of TSVS 

after the third round with non-specific elution. The sequencing of six other clones gave 

random sequences although three contained the S residue at positions 5 or 7 (Table 

2.4). The elution of bound phage in the fourth round was carried out with two 

approaches: non-specific elution (low pH) and specific elution (higher concentration of 
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target RNA). When the sequencing of twenty phage plaques obtained after non-specific 

elution was performed, the peptide sequences of STYTSVS appeared eleven times and 

NQVANHQ appeared for five times (Table 2.5). For specific elution, twelve phage 

clones were sequenced out of which eight sequences were STYTSVS and four were 

NQVANHQ (Table 2.5). Interestingly, both STYTSVS and NQVANHQ peptide 

sequences appeared in the specific and non-specific elution methods of fourth round. 

Therefore, these two peptides were synthesized chemically for further binding studies 

with target H69 with different biochemical and bioanalytical assays such as the on-bead 

fluorescence assay, electrophoretic mobility shift assay (EMSA), electrospray ionization 

(ESI) mass spectrometry, and the in-line probing assay (Chapters 3, 4, and 5). 

 

Table 2.5. The peptide sequences obtained after fourth round. 

 
a) the non-specific elution was carried out with 0.2 M glycine-HCl (pH 2.2) 
containing 1 mg/ml BSA and neutralized immediately with 15 µl 0.1 M Tris-
HCl, pH 9.0, b) the specific elution was carried out three times higher 
concentration of the target RNA in order to compete with the bound 
phage. 
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2.6.2. Second screening using a seven-mer phage library and screening of a 12-mer 

phage library 

            The second selection attempt for searching peptides binding to H69 was aimed 

at finding a different set of peptide sequences. The stringency conditions were changed 

by adding some additional steps during the experiments. For example, to avoid 

selection against background materials like streptavidin and plastic of the 96-well 

streptavidin coated plates, the phage library was added to an empty well of the plate. 

After an hour of pre-screening with the well, it was removed and used for selection 

against H69. All the other conditions for selection in further rounds were kept the same 

except for adding tRNA (90 pmoles) and biotin (0.1 mM) in the third and fourth rounds 

as competitors during incubation of the library with H69. After the third round of 

selection, no consensus sequence was observed, but different peptide sequences were 

obtained as shown in Table 2.6.   

            The affinity selection for peptides against H69 was also performed using a 

commercial phage library displaying 12 amino-acid-long foreign peptides on its N-

terminus (Ph.D.-12TM). Three rounds of selection were carried out using similar 

conditions as applied for seven-mer phage library. After the third round of selection with 

non-specific elution for removing bound phage, 13 phage clones were sequenced and 

the peptide sequences are listed in Table 2.6. Further sequencing with the twelve-mer 

phage library was not actively pursued since the binding analysis of the peptides 

STYTSVS and NQVANHQ with the target H69 was started simultaneously and 

promising results were obtained (Chapter 3 and 4). 
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Table 2.6. Peptide sequences obtained from seven-mer library and twelve-mer library 
after three rounds. 
 

 
 

a) = non-specific elution [0.2 M glycine-HCl (pH 2.2) containing 1 mg/ml 
BSA and neutralized immediately with 15 µl 0.1 M Tris-HCl, pH 9.0]. 

 
                       

2.6. Conclusions 

            The phage-display technique was successfully carried out for selecting peptide 

sequences for target RNA H69. The library applied had heptapeptide sequences 

presented at the N-terminus of the p3 coat protein of the M13 phage particle. The N-

terminus of the p3 protein is exposed to the cytoplasm resulting in easy availability of 

the peptides for the immobilized target. The consensus sequence obtained in the first 

attempt of biopanning after third round was TSVS. After the fourth round, the elution of 
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the bound phage was carried out by nonspecific elution (low pH conditions) and specific 

elution (three times higher concentration of target RNA). In case of non-specific elution, 

the peptide STYTSVS appeared for eleven times and peptide NQVANHQ appeared five 

times in addition to other peptide sequences. In the specific elution, only STYTSVS and 

NQVANHQ peptide sequences were obtained in the phage pool. The later was a unique 

sequence for which a consensus did not appear. Of note, however, was the fact that 

this sequence contained an abundance of amino acid residues that are also present in 

the ribosome recycling factor, RRF, and known to make contacts with H69.  

            The crystal structure of RRF bound to 70S ribosome shows the amino acids 

present on one face of -helix 1 in domain 1 of RRF interacting with nucleotides of H69. 

The amino acids include serine 17 (S17) interacting with 1917, valine 20 (V20) 

interacting with A1916 and m31915, histidine 23 (H23) and aspargine (N24) interacting 

with C1914 (Pai, R.D. et al., 2008). The presence of the similar amino acids in the RRF 

contacting H69 and the heptapeptide pulled out from the phage library give a validity to 

the optimized conditions of the selection employing phage-display library. Upon 

examining the peptide sequences from the selection, it was also noticed that polar, 

uncharged amino acids such as serine (S) and glutamine (Q) occurred in higher 

frequency.  

            The second attempt of the biopanning was performed with the same seven-mer 

library in order to get another set of peptide sequences. But the peptide sequences did 

not show any clear consensus and once more the peptide pool was dominated with 

polar, uncharged amino acids. In addition, selection with the twelve-mer library lead to 

peptide sequences having more polar, uncharged amino acids. The two peptide 
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sequences STYTSVS and NQVANHQ were chosen for binding analysis through 

electrospray ionization (ESI) mass spectrometry and the results are discussed in detail 

in the next chapter. 
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CHAPTER 3 
 

Assays for validation of interactions of peptides with RNA 
 
 

 
3.1. Introduction to Tentagel bead assay 

After the selection of peptides for the target helix 69 (H69) using the phage-

display method, preliminary binding studies of the peptides with RNA were pursued. 

The sequences of the chosen selected peptides were NQVANHQ and STYTSVS. A 

simple fluorescence-based assay using Tentagel beads was developed to obtain 

knowledge about the relative binding affinities of these peptides with H69. This assay 

was a modified version of the one-bead, one-peptide combinatorial assay developed 

originally by Lam and coworkers (Lam, K.S. et al., 1991). In their assay format, a large 

peptide library was first created on millions of Tentagel beads, in which each bead 

contained a single peptide sequence (six amino acids in length). The library was 

constructed using split-pool synthesis and represented a pool of possible random 

peptides in approximately equimolar proportion. After screening the library with a 

particular acceptor molecule, the next step was to pull out the RNA-bound beads. The 

acceptor molecules were linked to an enzyme (alkaline phosphatase) or fluorescein.  

            Complex formation between a particular peptide and the acceptor molecule 

caused intense staining or fluorescence of the beads, and the beads were observed 

with a low-power microscope. They were later removed for analysis of the peptide 

sequence. This assay has been widely applied for identifying novel peptide ligands 

against cell-surface receptors   (Lau, D. H. et al., 2002), enzymes (Lam, K.S. et al., 

1995), proteins (Udaka, K. et al., 1995), and antibodies (Pinilla, C. et al., 1994).  
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The one-bead one-peptide binding assay applied in this study differed from its 

original combinatorial selection by not using Tentagel bead peptide libraries for 

selection. Instead, the selection for peptide ligands for H69 RNA was performed using 

the phage-display library (Smith & Petrenko, 1997) as discussed in Chapter 2. Also, the 

conditions of the assay, such as type of blocking buffer, and incubation time of the 

beads and RNA, were changed, employing two tripeptides (KL-KD-NL and RL-KD-VD) and 

TAR RNA as the model system. These tripeptides were identified from a bead selection 

carried out by Hwang and coworkers (Hwang, S. et al., 1999) and were synthesized on 

the Tentagel beads. Later, the optimized assay conditions were applied to assess the 

binding of heptapeptide sequences against H69 with their target RNA. 

            Tariq Rana’s group has successfully employed the one-bead one-peptide 

combinatorial assay against TAR RNA (a major target for anti-viral therapeutics) for 

discovering peptide ligands other than the natural Tat peptide. The TAR (transactivation 

response region) RNA is a 59-base stem-loop structure found at the 5’ end of the 5’ 

untranslated leader region of all the nascent HIV-1 viral mRNA transcripts. Replication 

of the HIV-1 virus requires the critical interaction of the TAR RNA with the Tat protein 

(transactivator protein) (Jones, K.A. et al., 1994). The Tat binding site has been 

confined to a minimal RNA moiety within TAR RNA containing a hexanucleotide loop 

and three-nucleotide bulge (Cordingley, M.G. et al., 1990; Dingwall, C. et al., 1990; 

Weeks, K.M. et al., 1990). The binding of the Tat peptide to the TAR RNA is mediated 

through a 10 amino-acid basic  helix (rich in basic arginines and lysines) of the Tat 

peptide lying in the deep groove of the TAR RNA (Mujeeb, A. et al., 1994). This Tat-

TAR interaction has been widely targeted by small molecules for developing anti-HIV 
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therapeutics. Examples of small molecules disrupting this Tat-TAR interaction include L-

argininamide (Brodsky. A.S. et al., 1997), Tat-derived arginine-rich peptide mimics 

(Calnan, B.J. et al., 1991; Weeks, K.M. et al., 1991), oligocationic peptides (O'Brien, 

W.A. et al, 1996), peptoid Tat mimetics (Hamy, F. et al., 1997), D-Tat peptides (Huq,I. et 

al., 1997), and conjugates of the aminoglycosides with arginine (Litovchick, A. et al., 

1999 & 2000).  

            A tripeptide combinatorial library of 24,389 members with both D- and L-amino 

acids was synthesized on Tentagel resin by Rana’s group using split-pool synthesis 

(Hwang, S. et al., 1999). They were able to isolate tripeptides capable of binding 

specifically to the bulge region of the TAR RNA (Figure 3.2).  

 

Figure 3.1. The sequence of TAR RNA used in Rana’s group for selecting tripeptides 
binding specifically to the bulge region of the RNA (Hwang, S. et al., 1999). 
 

            In Rana’s selection procedure, disperse red dye was covalently attached to the 

TAR RNA sequence having a bulge region. The labeled RNA sequences having the 
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bulge and the unlabeled RNA without the bulge were incubated in a suspension of the 

random peptide library beads. An unlabeled RNA sequence lacking the bulge region 

was added for selection of peptides specifically against the bulge region. The dye-TAR 

conjugate easily diffused through the beads, giving an evenly distributed red color to the 

translucent Tentagel beads. After the selection of colored beads from the library, a few 

tripeptide sequences were found to interact with the bulge region of the TAR RNA. One 

of the tripeptides, KL-KD-NL, gave a dissociation constant of 420 ± 44 nM as compared 

to the wild-type Tat peptide (residues 48-57) that had a dissociation constant of 727 ± 

74 nM. Thus, the tripeptide KL-KD-NL showed even tighter binding with TAR RNA than 

the Tat peptide. Another tripeptide, RL-KD-VD, gave a dissociation constant of 10,434 ± 

594 nM, clearly indicating weaker binding with the TAR RNA.  

            To test the binding of the tripeptide KL-KD-NL, Hwang and coworkers synthesized 

the peptide on Tentagel beads and incubated the dye-TAR conjugate with a suspension 

of the peptide beads.  After incubation for 5 h at 4 C, the beads turned red, confirming 

the binding of the TAR RNA with the tripeptide KL-KD-NL. This simple fluorescence 

assay using disperse red dye provided useful information about the relative binding 

affinities of the TAR RNA binding ligands, although it did not represent the binding 

under true physiological conditions. Further NMR studies of the tripeptide KL-KD-NL 

showed that the resonances of the bulge residues changed, specifying that the peptide 

specifically interacted with TAR RNA at the bulge region (Hwang, S. et al., 1999). 

The TAR RNA and the two KL-KD-NL and RL-KD-VD tripeptide sequences were 

chosen as a model for our experiments. The changes in our assay included labeling the 

TAR RNA with fluorescein instead of disperse red dye, synthesis of the tripeptide 
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sequences KL-KD-NL and RL-KD-VD on Tentagel beads, and binding under different 

buffer conditions. The experimental conditions included washing, swelling, and blocking 

of the peptide beads with Superblock buffer (a commercially available buffer from Pierce 

Inc., IL). After blocking, the fluorescein-labeled TAR RNA (F-TAR RNA) was incubated 

with Tentagel beads. Later, the beads were viewed under a fluorescence microscope 

for analysis. The diagrammatic illustration of the assay is given in the Figure 3.2.  

            Similarly, the heptapeptide sequences NQVANHQ and STYTSVS for H69, 

selected from phage-display method (Chapter 2) were synthesized on Tentagel beads. 

The target RNA H69 was tagged with fluorescein (F-H69) for easy detection of the 

beads bound to RNA. Similar experimental conditions were applied with the NQVANHQ 

and STYTSVS Tentagel beads and F-H69. The different intensities of the fluorescing 

beads were interpreted to give a preliminary understanding of the relative binding 

affinity of these peptides for the target and unrelated RNA sequences. The Tentagel 

bead consists of polyethylene glycol attached to cross-linked polystyrene through an 

ether linkage, and combines the benefits of the soluble polyethylene glycol support with 

the insolubility and handling characteristics of the polystyrene bead (Quarrell, R. et al., 

1996; McAlpine, S.R. et al., 1999). 

 

Figure 3.2. The schematic of the Tentagel bead assay is depicted, which is based on 
the fluorescence intensity of the Tentagel beads having a bound peptide-RNA complex. 
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3.2. Materials and methods 

3.2.1. General materials            

            The fluorescein-labeled TAR RNA (Fl-5’-GGC AGA UCU GAG CCU GGG AGC 

UCU CUG CC-3’) was purchased from IDT (Integrated DNA technologies, Coralville, 

IA). The F-TAR RNA was later gel purified by running on 20% polyacrylamide 

denaturing gels for ~ 2 h at 400 V. The RNA band was visualized by UV shadowing, 

excised and subjected to electroelution using Amicon CentrilutorTM device and 

CentriconTM YM-3 in 0.5 X TBE buffer (90 mM Tris-HCl, 90 mM boric acid, 2.5 mM Na-

EDTA, pH 8.3) for 2 h. Then, the RNA was desalted and concentrated by centrifugation 

at 3000 rpm at 4 C overnight with addition of water for further desalting. Finally, the 

RNA was stored in 10 mM HEPES buffer, pH 7.4. The final Fl-TAR RNA concentration 

was calculated by its absorbance value at 260 nm using Beer’s law: A = Cl, in which 

 is the extinction coefficient of 268,900 L-1M-1cm-1 for unlabeled TAR RNA, c is the 

concentration, l is the path length, and A is the absorbance at 260 nm. The secondary 

structure of the Fl-TAR RNA is given in Figure 3.3. 

The nonspecific fluorescein-labeled RNAs used as controls in the experiments 

were theophylline-binding RNA (F-theophylline RNA, ε=296,160 M-1 cm-1), 17-

nucleotide substrate for the 38-nucleotide hammerhead ribozyme (S16-F, ε=162,300 M-

1 cm-1), GG dimer (F-GG, ε=21,600 M-1 cm-1), and the A site of eukaryotic 18S rRNA (F-

AS 18S rRNA, ε=258,100 M-1 cm-1) as shown in Figure 3.3. All RNAs were renatured 

before use by heating and slow cooling.       
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    A) 

                                         

  B)            

                                           

 

Figure 3.3. A) The sequences of the fluorescein-labeled TAR RNA and the fluorescein-
labeled H69 as used in the experiments for the Tentagel bead assay are given. B) The 
sequences of the control RNAs are shown, where Fl stands for fluorescein. 
 
 
            RNA H69 was also fluorescein labeled using a 5’-amino-6-carbon linker H69 

sequence [5’-NH2-C6-GGCCGAAC(m3)AAACGGUC-3’]. The sequence of H69 is 

given in Figure 3.3. The labeling procedure included adding 20 µL or 0.0125 µmoles of 

the RNA, 3 µL of diiopropylethylamine, 15 µL of DMSO (dimethylsulfoxide), and 5 µL or 

0.75 µmoles of fluorescein in DMSO to a 1.5 µL eppendorf tube. The eppendorf tube 
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was then placed in the shaker in reduced light and oscillated for 22-24 h. The reaction 

mixture was purified by directly running it on the 20% denaturing polyacrylamide gel (7 

M urea) for ~ 2 h at 400 V. The RNA band was visualized by UV shadowing, excised 

and subjected to electroelution and desalting as described in the previous paragraph. 

The RNA was stored in 10 mM HEPES buffer, pH 7.4. The final RNA concentration was 

calculated using the extinction coefficient of 187,000 L-1M-1cm-1 for H69 RNA. The RNA 

was renatured before use. 

            For the preparation of the Tentagel beads having peptides covalently attached 

to them, Tentagel S-NH2 resin was employed (Tübigen, Germany). The sequences of 

the peptides synthesized on these beads were KL-KD-NL, RL-KD-VD, STYTSVS and 

NQVANHQ. The synthesis of the peptides was carried out by Edvin Klosi in Dr. Mark 

Spaller’s lab. 

 

3.2.2. Binding experiments utilizing F-TAR RNA and peptides on Tentagel beads  

The first step for performing the assay was to optimize the conditions for the 

buffer required to block the beads (carrying peptide ligands) for reducing non-specific 

interactions. A few of the requirements for the most suitable buffer were to have minimal 

or no background fluorescence and no RNases activity. In Rana’s group (Hwang, S. et 

al, 1999), the buffer used for all their bead assays was TK buffer (50 mM Tris-HCl, pH 

7.4, 20 mM KCl, 0.1% Triton x 100). When this buffer was tested for background 

fluorescence in presence of our beads, we observed fluorescence. Therefore, this buffer 

was not continued for our assay. The other blocking buffers tested for the assay were 

“New blocking buffer” (0.1% BSA and 0.05% gelatin), Pierce “SuperBlock buffer” 



87 
 

(phosphate-buffered saline with 0.05% Tween-20 detergent from Pierce Inc., Rockford, 

IL) and HEPES binding buffer (50 mM HEPES, pH 7.4, 140 mM NaCl, 10 mM KCl, 1mM 

MgCl2 and 1 mM CaCl2). For background fluorescence, the beads were incubated with 

buffer and then visualized under the fluorescence microscope. To determine RNase 

activity in the buffer, the RNAs were incubated in each buffer and then run on 

polyacrylamide gels to see if degradation of RNA is visible. A ladder of RNA bands 

would indicate degradation of the RNA after incubation in the buffer.  

The fluorescence microscope used in the visualization of the beads was Ziess 

fluorescence microscope (Tübigen, Germany) located in Dr. Marcus Fredrich’s 

laboratory. The parameters for taking the images were: gamma (1.02), brightness (0.7-

0.8), exposure time (30 sec), filter color (green), and binning (none). The microscope 

was equipped with Spot Advanced software, version 4.1.2 (Diagnostic Instruments, Inc.) 

for processing the images and the pictures were taken using 32-bit Pixel memory 

space. 

After synthesizing the peptides on the beads, they were washed with water to 

remove the residual DMF (dimethylformamide). The beads were then blocked with 

Pierce SuperBlock buffer (500 µL) for two to three hours to avoid nonspecific 

interactions for further steps. Next, they were washed with ddH2O (500 µL, X 3). A small 

quantity of the beads (~10-12) was extracted from the solution and 15 µl of 1 µM F-TAR 

RNA in 10 mM HEPES buffer was added to the beads. The suspension was then stirred 

in the shaker for one day at 4 C. On the next day after the removal of the RNA, the 

beads were further incubated with more F-TAR RNA. This process was repeated for 

four consecutive days under the same conditions as described to attain maximum 
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fluorescence. At the end, the beads were washed with ddH2O (500 µL, X 3) and then 

viewed under the fluorescence microscope. The above mentioned experimental 

conditions were optimized by my colleague Srividya Pattabiraman (Pattabiraman, S. 

2006). For F-TAR RNA the peptides synthesized on the beads were KL-KD-NL and RL-

KD-VD. The peptide KL-KD-NL was reported by Rana’s group to bind in the bulge region 

with high affinity, whereas RL-KD-VD peptide was a very modest binder to TAR RNA 

(Hwang, S. et al, 1999). 

 

3.2.3. ELISA assays of TAR RNA binding to peptides on Tentagel beads 

 As the name of the assay ELISA (Enzyme-Linked Immunosorbent Assay) 

suggests, the primary anti-FITC antibody was employed to perform this part of the 

colorimetric assay. A separate set of the experiments were executed for both KL-KD-NL 

and RL-KD-VD peptides selected for TAR RNA. The assay was carried out with the 

maximum fluorescing beads after a four-day incubation period and a schematic diagram 

of the assay is shown in Figure 3.4. Fifty µL of goat anti-FITC antibody (Biomed, 

Dedham, MA) was added to the beads in the ratio of 1:2000 using diluent (0.5% BSA in 

10 mM Tris-HCl, 150 mM NaCl, 0.05% sodium azide) for 6 h in a shaker at 4 ºC. 

Afterwards, excess antibody was removed by washing with ddH2O (500 µL, X 5). The 

resin was later incubated with a secondary antibody, namely rabbit anti-goat IgG 

conjugated with the enzyme alkaline phosphatase, in the ratio of 1:30,000 (using diluent 

as listed in the first step) for 6 h. Subsequently, the beads were washed with ddH2O 

(500 µL, X 3) and then moved to BCIP solution (5-bromo-4-chloro-3-indolyl phosphate) 

(Promega, Madison, WI) (1.65 µL in 500 µL of diluents containing 100 mM Tris-HCl (pH 
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9.0), 150 mM NaCl, and 1 mM MgCl2) for overnight incubation at 4 ºC. The beads 

attained a turquoise color as a result of the cleavage of the phosphate group from BCIP 

by the enzyme alkaline phosphatase. The beads were visualized under visible light and 

the turquoise-colored beads were removed manually. The control experiments for the 

assay involved the exclusion of the primary antibody, secondary antibody, or substrates 

from the procedure of the assay. The Ziess fluorescence microscope was used to view 

the beads, and in this case they were seen under visible light instead of UV light. The 

microscope used Spot Advanced software, version 4.1.2 (Diagnostic Instruments Inc., 

Sterling Heights, MI), for processing the images. 

 

Figure 3.4. The generalized scheme for the ELISA experiment performed on fluorescing 
beads where Fl is fluorescein dye, Ab is antibody, AP is alkaline phosphatase enzyme 
and BCIP is 5-bromo-4-chloro-3-indolyl phosphate. 
 

3.3. Results and discussion  

3.3.1. Fluorescence assay for the F-TAR RNA and KL-KD-NL and RL-KD-VD peptides on 

Tentagel beads 

            The KL-KD-NL peptide beads were first blocked with Pierce SuperBlock buffer, as 

it did not show any sign of causing RNA degradation and had very low background 
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fluorescence. Then, the peptide beads were incubated for four days as described in the 

Methods section with the F-TAR RNA. A fresh quantity of F-TAR RNA was added each 

day after removing the supernatant having the previous F-TAR RNA. The beads 

attained maximum fluorescence with this procedure after four days. The fluorescence 

was noticed to be distributed evenly throughout the beads. Similarly, the RL-KD-VD 

peptide beads were also incubated for four days with the F-TAR RNA. The KL-KD-NL 

peptide bead images as seen under the fluorescence microscope are shown in Figure 

3.5.  

 

Figure 3.5. The above panels show the KL-KD-NL peptide beads after incubation with F-
TAR RNA for four days. The increase in the intensity of the peptide beads is clearly 
seen with the increasing incubation time. 
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            The RL-KD-VD peptide beads were also incubated with F-TAR RNA for four days. 

After visually comparing the beads of both peptides, it was observed that the KL-KD-NL 

peptide beads were fluorescing more strongly as compared to RL-KD-VD peptide beads. 

The beads of both peptides are seen side by side in Figure 3.6. (left panel). The weak 

fluorescence of the RL-KD-VD peptide beads is observed when the beads having no 

peptides and the RL-KD-VD peptide beads are mixed together (Figure 3.6., right panel). 

This qualitative observation was consistent with the results of the Rana’s group bead 

assay, in which they have detected a stronger red color (from disperse red dye) for the 

beads having the KL-KD-NL peptide (Kd = 420 ± 44 nM) as compared to the RL-KD-VD 

peptide beads (Kd = 10,434 ± 594 nM) (Hwang, S. et al, 1999). The results clearly 

indicated that the F-TAR RNA was able to enter the bead interior and bind to the 

peptides. This assay was further carried out by synthesizing the peptide NQVANHQ and 

STYTSVS on Tentagel beads with F-H69, as described in Section 3.2. 

 

 

Figure 3.6. In the left panel, the difference in fluorescence intensity between the KL-KD-
NL peptide beads and the beads with RL-KD-VD peptide is clearly seen. The brightest 
bead is the one having the KL-KD-NL peptide. In the right panel, the comparison of the 
beads having no peptide and the RL-KD-VD peptide beads is shown. 
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3.3.2. Determination of apparent dissociation constants 

            For determining the relative affinities of peptides to TAR RNA, the measurement 

of the apparent dissociation constant (Kd) was carried out from the fluorescence bead 

assay. The direct fluorescence intensity values were measured after a four-day 

incubation of the KL-KD-NL peptide beads and the beads with RL-KD-VD peptide. For the 

peptide KL-KD-NL, the fluorescence intensity value reached the maximum plateau at less 

than 1 µM concentration of F-TAR RNA, whereas for the RL-KD-VD peptide beads the 

plateau of the fluorescence intensity was reached at greater than 1 µM concentration of 

F-TAR RNA. After four days of successive incubation with F-TAR RNA, 10 micro-beads 

were selected for each set of concentrations of F-TAR RNA (ranging from 0.02 – 10 µM) 

and placed in 10 mM HEPES buffer in 96-well Costar plates. Each bead was 90 µm in 

size and had 90 pmole capacity for the ligand. Therefore, the concentration of the 

peptide on the beads was determined to be 9 µM/µL. After obtaining the fluorescence 

intensity value for each concentration of F-TAR RNA, the intensity value was converted 

to a fraction bound ratio using the following equation 3.1.  

Fr   = (Fo - Fi) / (Fo – Ff)                

in which Fr is the fraction of RNA bound, Fo is the fluorescence intensity of the free 

RNA, Fi is the fluorescence intensity at any given concentration, and Ff is the 

fluorescence intensity at the final concentration of the experiment.  

            Assuming the simple binding mode of 1:1 for peptide and RNA, the apparent 

dissociation constant (Kd) for each peptide-RNA complex was acquired by fitting the 

data with quadratic equation (Equation 3.2.). The peptide concentration was the lower 

limit as the peptide was not free in the solution and its concentration was higher near 
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the beads. Kaleidagraph 4.0 was further used for curve fitting with following quadratic 

equation (Equation 3.2.):  

((Kd +[RNA]+[ligand]) – sqrt ((Kd +[RNA]+[ligand])^ 2 – 4*[ligand] *[RNA]))/2*Const        

            The Kd value calculated with the quadratic equation for KL-KD-NL peptide with F-

TAR RNA was found to be 120 ± 40 nM and for the RL-KD-VD peptide with F-TAR RNA 

was found to be 6300 ± 500 nM. The plots representing the fraction of TAR RNA bound 

with the two peptides are given in Figure 3.7. The curve fit for the peptides was not ideal 

one for several reasons: i) these were not solution studies, ii) the direct calculation of 

the fluorescence intensity value from the beads may not be entirely consistent; and iii) 

the mixtures were non-uniform. The values calculated for the apparent dissociation 

constants for both peptides were different from the values obtained in Rana group’s 

work (Kd = 420 ± 44 nM for KL-KD-NL and Kd = 10,434 ± 594 nM for RL-KD-VD). 

Nonetheless, the relative binding affinities of both peptides were in the same order as 

seen in Rana’s work, in which the KL-KD-NL peptide was shown to be having higher 

affinity for the TAR RNA than the RL-KD-VD peptide (Hwang, S. et al, 1999). Our results 

suggest that this simple, cost-saving fluorescence method can be applied for 

determining the relative binding affinities for two or more ligands selected against a 

particular target. 

            The apparent dissociation constant and the number of binding sites (n) were 

also obtained applying the Hill equation. The Kd value was obtained by the intercept of 

the plot. The following Hill equation (Equation 3.3.) used was: 

log (B/([Peptide] – B)) = n (log[RNA]) – nlogKd  ,                                             

where B = ([peptide]* Fr) and [peptide] =(90 pmol/bead x 10 beads)/100 µl = 9 µM/µl.  
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A)                                                                  B)       

 

Figure 3.7. The plots of the fraction of TAR RNA bound with the two peptides KL-KD-NL 
and RL-KD-VD on beads in HEPES buffer at 4 ºC is shown. A) represents the KL-KD-NL 
peptide giving the Kd of 120 ± 40 nM (R = 0.8), and B) stands for the RL-KD-VD peptide 
with the Kd of 6300 ± 500 nM (R = 0.8). 
 
 
            After performing Hill analysis for the KL-KD-NL peptide, a Hill constant of 1.0 was 

obtained and apparent dissociation constant of 320 nM was reached. For the second 

RL-KD-VD peptide, a Hill constant of 0.9 was obtained and after fitting with Equation 3.3., 

the apparent dissociation constant calculated was 2,100 nM (Figure 3.8). The Hill 

constant suggested the presence of one binding site for the peptide with TAR RNA in 

both cases.  

            The values of the apparent dissociation constant obtained through our 

fluorescence assay for the two peptides and the TAR RNA and the ones calculated by 

the Rana’s group are summarized in Table 3.1. Although we were not entirely satisfied 

with the outcome of these results, the relative binding affinities and approximate ranges 

of Kds for the peptides could be assessed. 
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A)                                                                 B) 

 

Figure 3.8. A)  The Hill plot for KL-KD-NL peptide binding to F-TAR RNA in HEPES buffer 
at 4 ºC is shown with [F-TAR RNA] between 0.2 to 10 M (n =1.0, R = 0.9, Kd = 320 nM, 
B) The Hill plot for RL-KD-VD peptide binding to F-TAR RNA in HEPES buffer at 4 ºC is 
shown with [F-TAR RNA] between 0.2 to 10 M (n =0.9, R = 0.7, Kd = 2130 nM). 
 

Table 3.1. Comparison of the various apparent dissociation constants values acquired 
for the two peptides for TAR RNA through our lab’s fluorescence assay and the Rana 
group’s assay. 
 

   

 

3.3.3. Control and competition experiments 

          The control experiments for demonstrating the specificity of the peptides toward 

TAR RNA through the fluorescence assay included incubating the beads with KL-KD-NL 
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and RL-KD-VD peptides with free fluorescein and other unrelated RNAs such as F-

theophylline RNA, F-GG, F-AS 18S rRNA, and F-substrate (Figure 3.3. B). The beads 

without any peptide were also incubated with free fluorescein to check if there is any 

interaction of the Tentagel beads themselves with the free dye. The images of the 

beads with KL-KD-NL and RL-KD-VD peptides and without peptides after incubation for 

four days with free fluorescein are given in Figure 3.8. The free fluorescein did not bind 

to the beads without any peptides or to the beads with peptides. No fluorescence was 

observed with these beads. It should be noted that a few anomalies were observed, as 

seen by a single bright control bead in Figure 3.9.B., so all such results need to be 

interpreted with some caution.   

 

Figure 3.9. A) The beads without any peptides before incubation with free fluorescein 
and B) after incubation with free fluorescein are depicted in the pictures. C) The beads 
with KL-KD-NL peptide before incubation and D) after the incubation with free fluorescein 
are shown in the images. 
 

The control experiment with the unrelated RNAs such as F-theophylline RNA, F-

GG, F-AS 18S rRNA, and F-substrate with the KL-KD-NL and RL-KD-VD peptides also 

demonstrated the same results as the free fluorescein. The beads were found not to 

interact with the unrelated RNAs, thus indicating specificity of the peptides for the TAR 

RNA. These results indicate success of this relatively simple fluorescence assay that 

can provide fairly accurate information about the “specificity” characteristic of these 
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peptides. The bead images of the KL-KD-NL and RL-KD-VD peptides with the control 

RNAs are shown in Figure 3.10. 

The reversibility characteristic of the interaction of TAR RNA and the KL-KD-NL 

peptide was tested through competition experiments. This experiment was performed 

by adding excess amount of unlabeled TAR RNA to the fluorescing KL-KD-NL peptide 

beads. It was observed that after addition of 10 µM unlabeled TAR RNA as a competitor 

to the fluorescing beads the interaction between the KL-KD-NL peptide and F-TAR RNA 

was either reduced or abolished. This demonstrated that the unlabeled TAR RNA 

competed with the previously bound F-TAR RNA for binding with the peptides, since the 

fluorescence of some of the beads was diminished or eliminated as shown in Figure 

3.11., compared to the results in Figure 3.5. We did not attempt to use a high-fold 

competitor concentration due to the lack of availability of large quantities of the RNA. 

 

 

 

Figure 3.10. Beads with the peptide KL-KD-NL
 with non-specific RNAs after four days of 

incubation are shown in A) F-AS 18S rRNA, B) F-GG, C) F-substrate, and D) F-
theophylline RNA. The images of beads with the peptide RL-KD-VD

 and non-specific 
RNAs such as F-AS 18S rRNA (E), F-GG (F), F-substrate (G), and F-theophylline (H) 
RNA are shown. 
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Figure 3.11. The beads with the peptide KL-KD-NL incubated with 1 µM F-TAR RNA 
followed by the addition of unlabeled TAR RNA (10 µM) as a competitior are depicted. 
Some of the beads have diminished fluorescence intensity as compared to others. 
 
 

3.3.4. On-bead ELISA assay for F-TAR RNA and KL-KD-NL peptide 

            ELISA (Enzyme-Linked Immunosorbent Assay) with the fluorescing KL-KD-NL 

peptide beads gave supplementary evidence for the interaction of this peptide with the 

TAR RNA. The procedure of the assay is outlined in Figure 3.4. This assay gave 

turquoise color to the beads by the addition of BCIP (5-bromo-4-chloro-3-indolyl 

phosphate) at the last stage of the assay. The turquoise color was evenly distributed all 

over the beads indicating homogeneous binding with the peptide KL-KD-NL (Figure 3.12). 

The control experiments in this assay included lack of RNA or the antibodies to the 

different sets of experiments. As a result, no turquoise color was observed for those 

peptide beads (Figure 3.13) in the control experiments.  The negative results of the 

control experiments confirmed specificity of the interaction of the TAR RNA and the KL-

KD-NL peptide and gave validity to the performance of this colorimetric assay. 
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Figure 3.12. The image of the turquoise colored KL-KD-NL peptide beads incubated with 
F-TAR RNA and subjected to ELISA is given.  
 

 

 

Figure 3.13. The ELISA control experiments with no addition of TAR RNA are shown in 
these pictures. A)  ELISA experiments of KL-KD-NL peptide beads with primary antibody, 
and substrate are shown. B) ELISA experiments of KL-KD-NL peptide beads with 
secondary antibody conjugated to the enzyme and substrate are shown. C) ELISA 
experiments of KL-KD-NL peptide beads with primary antibody, and secondary antibody 
conjugated to enzyme are shown. 
 
 
3.3.5. Fluorescence assay for F-H69 and NQVANHQ and STYTSVS peptides on 

Tentagel beads 

            After optimizing the assay conditions for the TAR RNA and its peptides and 

observing positive results, similar experimental conditions were carried out with the 

phage-selected peptides NQVANHQ and STYTSVS for target RNA H69. These 

peptides were also chemically synthesized on the Tentagel beads.  The initial steps 
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involved washing the peptide beads with water to remove residual DMF from the 

synthesis. Next, non-specific interactions with the beads were avoided by blocking the 

beads with 500 µL of 1 X “Pierce SuperBlock buffer” for 4 h. The beads were washed 

again with ddH2O (500 µL x 3) before further use. These beads were incubated with 

fluorescein-labeled H69 (F-H69) at 1 µM concentrations for four days in the same 

manner as followed for F-TAR RNA. Peptide interactions with H69 were monitored with 

the measurement of the fluorescence intensity of the beads under the microscope. The 

higher or lower intensity of the fluorescence gave an idea about the relative binding 

affinity of the peptides with their target RNA H69. The fluorescence intensity of the 

beads having NQVANHQ peptide was slightly higher as compared to STYTSVS peptide 

beads indicating that NQVANHQ has stronger binding with H69 (Figure 3.14). These 

results were further verified with the higher precision method of ESI (electrospray 

ionization), in which direct titration experiments of the peptides with the H69 RNA were 

carried out (Chapter 4). 

    A)                                                         
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B) 

 

Figure 3.14. A) This panel shows the sequence of the target F-H69 being fluorescein 
labeled at the 5’ end. B) The green fluorescent NQVANHQ peptide beads and 
STYTSVS peptide beads are observed after incubation with target F-H69.  
 

            The above assay was also performed with another kind of fluorophore called 

Quantum dots (Q-dots) that had an anti-fluorescein antibody attached to them. Q-dots 

are small inorganic particles of less than 10 nm in dimension (Goldman, E.R. et al, 

2002). The main advantage of Q-dots is their bright fluorescence with prolonged photo 

stability that is tunable within the UV and IR range (Murray, C.B. et al., 1993). Q-dots 

were incubated with the mixture of peptide beads and F-RNA at concentrations as low 

as 1 nM. The images of the beads were monitored under the fluorescence microscope 

with an excitation wavelength at 430 nm and emission wavelength at 655 nm and the 

red color of the beads indicated that H69 is binding to the peptides. The results with Q-

dots better illustrated that NQVAHNQ peptide has stronger affinity with H69 as 
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compared to peptide STYTSVS. These quantum dot assays were performed by Dr. 

Chamila Rupasinghe. The bead images are shown in Figure 3.15. 

 

 

Figure 3.15. The images of NQVANHQ and STYTSVS peptide Q-dots recorded after 
they were incubated with F-H69. The higher intensity of red color of NQVANHQ beads 
indicates the same results as for fluorescein bead assay. 
 
 

3.3.6. On-bead ELISA assay for H69 and peptides 

            In another scheme of validating the binding of the peptide with the target RNA 

H69, the above peptide bead assays were performed by employing antibodies. 

Antibodies against fluorescein (goat anti-Fl Ab) were practical since the H69 construct 

that was incubated with the peptide beads was fluorescein labeled. These antibodies 

were further reacted with rabbit anti-goat antibody conjugated with alkaline phosphatase 

enzyme. The enzyme further reacted with substrate BCIP, giving rise to a turquoise 

color on the peptide beads. The experiment was also repeated with biotin-labeled H69 

(B-H69) instead of fluorescein H69. In this case, anti-biotin antibodies conjugated with 

enzyme alkaline phosphatase (anti-biotin Ab-AP) were used. The substrate used was 
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BCIP and turquoise colored peptide beads were seen. The general outline of the 

experiment is shown in Figure 3.16.  

 

Figure 3.16. The fluorescein- or biotin-labeled RNAs are incubated with peptide beads 
and upon reaction with enzyme-conjugated antibodies and BCIP, turquoise color beads 
are seen, indicating the binding of the peptide with H69. Fl: fluorescein, Ab:antibody, 
AP: alkaline phosphatase, BCIP: 5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt. 
 

            The turquoise color of the NQVANHQ peptide beads and STYTSVS peptide 

beads showed binding of RNA, although the relative affinities were not as apparent as 

with the Q-dot assay. In order to assess the role of the modified nucleotide 

pseudouridine () present in the native H69, an additional H69 RNA having uridine (U) 

nucleotide instead of pseudouridine () at positions 1911, 1915 and 1917 was 

synthesized. The unmodified helix 69 was biotin labeled (B-UUU) and incubated 

following the same procedure as explained in Section 3.3.3 for F-TAR RNA. The 

appearance of the blue color on the beads (Figure 3.17.) indicates binding of the 

peptide with the unmodified RNA, revealing that the pseudouridine () nucleotides do to 

play a major role in binding selectivity of the peptide with the H69 under the given buffer 

conditions. Some non-specific binding of both peptides was seen with other RNAs such 
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as biotin-helix 17 (from the small subunit 16S RNA) to some extent and the beads itself. 

But upon comparing the intensity of the color of the beads, it was observed that the 

NQVANHQ peptide beads had higher affinity for modified H69. Overall, this assay was 

somewhat problematic and gave results that were difficult to quantify. The Q-dot method 

assay would be the preferred method for future studies. 

 

                       

Figure 3.17. Comparison of the intensities of the color of beads is shown after 
performing the assay.  
 
 
 
3.3.7. Affinity of NQVANHQ and STYTSVS peptide beads with control RNAs 

           Several control experiments were performed to demonstrate the specificity of the 

two peptides with the H69. First, the incubation of the free fluorescein dye with the 

NQVANHQ and STYTSVS peptide beads with free fluorescein indicated no interaction 

of the dye with the heptapeptides. Second, incubation of unrelated RNAs such as F-

TAR RNA, and F-18 S RNA with the NQVANHQ and STYTSVS peptide beads was 

carried out. The two peptides did not reveal any binding interactions with F-18 S (human 
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A-site RNA), whereas the STYTSVS peptide beads showed some binding to F-TAR 

RNA. The images of the fluorescent beads taken under the fluorescence microscope 

are shown in Figure 3.18. The results of these control experiments showed that the 

binding of the NQVANHQ peptide was more specific for H69 than STYTSVS. This 

relative affinity was also verified by using ESI (Chapter 4 of this thesis and T. Wang, 

unpublished data).  

 

Figure 3.18. No fluorescent beads are observed with controls free fluorescein, human A-site 
RNA (F-18S RNA) and F-TAR RNA for NQVANHQ peptide. But non-specific binding is 
observed in case of STYTSVS peptide with F-TAR RNA. 
 

3.4. Conclusions 

           TAR RNA and the two tripeptides selected by Rana’s group, KL-KD-NL and RL-KD-VD, 

were used as a model system to develop the fluorescent Tentagel bead screening method. 
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This method was then applied to assess the relative binding affinities of the peptides selected 

by the phage display technology against target RNA H69. The KL-KD-NL peptide had higher 

affinity for TAR RNA than the RL-KD-VD peptide. The two peptides were covalently attached 

on the Tentagel beads and the TAR RNA was fluorescein labeled at its 5’ end. This method 

had a relatively simple procedure to follow and was done at a reasonable cost. The peptide 

beads were incubated with F-TAR RNA and the beads gave green fluorescence once the 

TAR RNA interacted with the peptides. The fluorescence intensity of the beads was exploited 

to monitor the binding of the TAR RNA and the peptides. The green fluorescing peptide 

beads clearly indicated that the F-TAR RNA was able to enter the interior of the Tentagel 

beads and bind to the peptides. The KL-KD-NL peptide beads were found to be fluorescing 

with more intensity as compared to the RL-KD-VD peptide beads. These observations were 

consistent with the results acquired by Rana’s group. The dissociation constants for the two 

peptides and the TAR RNA as reported in Rana’s work for the KL-KD-NL and RL-KD-VD 

peptides were 420 ± 44 nM and 10,434 ± 54 nM, respectively (Hwang, S. et al, 1999). In our 

fluorescence-based assay, the dissociation constant calculated for the KL-KD-NL peptide was 

120 ± 40 nM and that for the RL-KD-VD peptide was 6300 ± 500 nM. Although the values for 

the dissociation constants from our assay calculations vary considerably from the Rana 

group’s values, the relative order of binding of the peptides was the same. The KL-KD-NL 

peptide binds to TAR RNA with 25 times better affinity as compared to the RL-KD-VD peptide. 

            The results of the ELISA experiments for KL-KD-NL peptide beads further verified the 

fluorescence assay results. The KL-KD-NL peptide was again validated to be binding with the 

TAR RNA, but the ELISA results of the RL-KD-VD peptide were inconclusive. This assay 
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posed problems with the quantification of the binding interaction of the peptide; therefore, it 

was not considered to be that useful for future experiments. 

            For proving the specificity of the peptides for the TAR RNA, control experiments were 

performed. The peptides were not seen to bind to the free fluorescein or to unrelated RNAs, 

such as a theophylline aptamer, human A-site RNA, or ribozyme substrate. Upon performing 

a competition experiment with excess unlabeled TAR RNA, the green fluorescence of the 

peptide-F-TAR RNA beads was seen to either diminish or to be abolished. This observation 

indicated that the unlabeled TAR RNA competed with the F-TAR RNA for binding with the KL-

KD-NL peptide and that the binding of the peptide with the TAR RNA was reversible in nature. 

            After optimization of the assay conditions with the TAR RNA and its peptides, the 

next step involved using the same assay conditions for the NQVANHQ and STYTSVS 

peptides chosen for H69. The peptides were synthesized on the Tentagel beads and then 

incubated with F-H69. After four days of incubation, the fluorescence was observed to be 

evenly distributed within the beads for both peptide beads. But from the high fluorescence 

intensity of the NQVANHQ peptide beads, it was evident that the NQVANHQ peptide had 

good affinity for H69 RNA. The Q-dot assay verified this result and also showed a lower 

relative affinity of STYTSVS to H69 as compared to NQVANHQ. To check the specificity of 

the peptides with the H69 RNA, control experiments were carried out with the free fluorescein 

and several unrelated RNAs including F-TAR RNA and F-18S RNAs. There was no 

interaction detected between free fluorescein and the two peptide beads. The NQVANHQ 

peptide beads did not show any interaction with the F-TAR RNA or F-18S RNAs suggesting 

the specific nature of this peptide for H69. STYSTVS on the other hand, did show moderate 

affinity for at least one of the unrelated RNAs. The ELISA assay was also done with the 
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fluorescing NQVANHQ and STYTSVS peptide beads. There were some discrepancies 

detected with the ELISA assay results, so this was considered to be unreliable. Perhaps the 

reagents interacted nonspecifically with the bead components. 

            The Tentagel bead assay described provides a tool for quick testing of the binding of 

the newly discovered ligands for the target RNAs. The positive verification of the results of 

this Tentagel beads assay with ESI (electrospray ionization) technology as will be described 

in the next Chapter, gave powerful evidence of the dependability of this assay for preliminary 

knowledge of the relative affinities of new ligands for the RNA targets.  
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CHAPTER 4 

 

Analysis of binding interactions of peptides with  
H69 RNA and variants using ESI-MS 

 

  

4.1. Introduction 

 In this thesis work, ESI-MS (electrospray ionization mass spectrometry) has 

been applied to monitor complex formation between H69 and peptides NQVANHQ-NH2 

and STYTSVS-NH2, and also for calculating the apparent dissociation constants (Kds) 

of these peptides with H69 RNA and its variants. ESI-MS proved a convenient method 

to calculate stoichiometry and dissociation constants for these molecular complexes 

when conventional solution methods proved difficult for their characterization. In recent 

years, this technique has gained popularity for studying biological complexes having 

noncovalent interactions. The complexes of this nature are usually held together by 

noncovalent forces such as electrostatic interactions, hydrogen bonds, and 

hydrophobic interactions (Daniel, J.M. et al., 2002; Loo, J.A., 2000).  

The ESI procedure originated from the work of Dole’s group (Dole, M. et al, 

1968), but it was coupled with mass spectrometry by Fenn’s group at Yale University 

(Fenn, J.B. et al., 1989). This method allows, under appropriate conditions, the 

production of multiply charged ions from large molecules with little or no fragmentation 

and their advancement into the gas phase for direct mass analysis. The series of 

multiply charged ions gives rise to a series of peaks in the ESI spectra that is known as 

the charge-state distribution of each component in solution. High mass complexes are 
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easily detected due to the formation of highly charged species at relatively low mass-

to-charge ratios (m/z) (Kebarle, P. et al., 1993). Most notably, since ESI is an 

extremely soft ionization technique, the strong covalent bonds and the weak 

noncovalent interactions between the molecules are preserved during their study.  

The applicability of ESI-MS for studying noncovalent complexes started in the 

early 1990s. Ganem and coworkers in 1991, for the first time, detected the intact 

receptor-ligand complex between FK-binding protein and macrolide rapamycin, as well 

as the enzyme-substrate complex of lysozyme and N-acetylglucosamine through ESI-

MS (Ganem, B. et al., 1991). Subsequently, this technique has been extensively 

applied for observation of protein-nucleotide and protein-ligand complexes. The first 

example in the category of protein-DNA complexes was reported by Cheng and 

coworkers, in which the homodimer of gene V protein from bacteriophage f1 and its 

complex with single-stranded DNA was observed by ESI-MS (Cheng, X. et al., 1996). 

In earlier studies of protein-RNA complex detection by ESI-MS, Cavanagh’s group was 

successful in observing protonated molecules of dimeric NF-B with its 31-nucleotide 

RNA aptamer. Peaks corresponding to protein-RNA complexes with a ratio of RNA 

aptamer to NF-B protein dimer were detected (Cavanagh, J. et al., 2003).  

One major question related to the validity of ESI-MS being applied for detection 

of noncovalent complexes is whether the complex structure in the gas phase is a true 

representation of the one that exists in solution phase. Much of the early work for this 

validation in ESI-MS was based on the studies performed on protein structure and 

conformation. The first demonstration to monitor a protein’s solution conformation with 

this method was done by Chowdhury et al, in 1990 by using the well-studied protein 
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cytochrome C (Chowdhury, S.K. et al., 1990). A change in its charge distribution was 

observed as a function of solution pH, which correlated well with the protein’s well- 

known conformational states in solution. In another study performed by Loo et al. in 

1990, different solution conformations of a small protein ubiquitin with changing 

acetonitrile (organic solvent) content were displayed (Loo, J.A. et al., 1991). In 

contrast, the complexes of inhibitors with carbonic anhydrase, which interact through 

hydrophobic means, were extremely labile (Wu, Q. et al., 1997). Nonetheless, these 

studies demonstrated the ability to examine solution-phase structure of a 

macromolecule by ESI. 

 A few pioneering studies were performed in the area of oligonucleotide 

complexes. In the case of RNA-protein complexes, it was observed that the 

noncovalent complexes such as Tat peptide-TAR RNA (Sannes-Lowry, K.A. et al., 

1997) and zinc finger human immunodeficiency virus (HIV) nucleocapsid protein NCp7-

-RNA (Loo, J.A. et al., 1998) were extremely stable in the ESI environment. 

Aminoglycosides such as neomycin are known to interact with RNAs primarily through 

charge-charge interactions. The neomycin-TAR RNA complexes were not observed to 

dissociate in the gas phase (Sannes-Lowry, K.A. et al., 1999). In the ESI spectrum, the 

multiple charge distribution represented by the m/z values, and the relative width of the 

m/z positions can be related to the structure or conformation of the solution-phase 

macromolecule.  

For studies of small molecule-macromolecule complexes, such as 

aminoglycoside-RNA and peptide-RNA complexes, mass spectrometry is a sensitive 

and rapid method in comparison to the gel-based methods such as EMSA 
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(electrophoretic mobilbity shift assay) and footprinting. ESI-MS has been successfully 

employed to calculate binding constants (Sannes-Lowry, K.A. et al., 2000), the location 

of binding sites (Griffey, R.H. et al., 1999), and the binding specificity of 

aminoglycosides on the A-site rRNA (Hofstadler, S.A. et al., 1999). Although NMR and 

X-ray crystallography are powerful tools to acquire the three-dimensional structural 

information of macromolecules and their complexes with small molecules, milligram 

quantities of the samples are required (Fourmy, D. et al., 1998; Yusupov, M.M. et al., 

2001). In the case of ESI-MS studies, only nanogram amounts of sample are required. 

When employing fluorescence-based methods, labeling of the target or ligand with an 

appropriate fluorophore is essential (Llano-Sotelo, B. et al., 1999); whereas, 

fluorophore labeling is not required for analysis by ESI-MS. The stoichiometry of the 

complexes can also be readily obtained through ESI-MS by knowing the molecular 

masses of the molecules involved in complex formation (Sannes-Lowry, K.A. et al., 

1997).  

Despite the advantages of ESI-MS, there are still some limitations in using this 

technique. For accurate measurement of the molecules and the complexes, very high 

purity samples are required. Pure samples are obtained through extensive dialysis, 

removing most of the nonvolatile counterions such as Na+ and then precipitating the 

target in the presence of the desired volatile counterions (for example, NH4
+). The most 

preferable buffers for analyzing RNA and small molecules is ammonium acetate, which 

is present in concentration ranges of 10 to 150 mM in the final solution. Ammonium 

acetate is preferred because like phosphate- and sulfate-based buffers, this compound 
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readily evaporates and does not form undesirable salt adducts in the gas phase with 

the analyte molecules (Iavarone, A.T. et al., 2004).  

Regardless of these limitations, ESI-MS has been successfully applied for 

characterizing noncovalent complexes and estimating their apparent dissociation 

constants (Kd). The values of the apparent dissociation constants (Kd) obtained with 

ESI-MS correlate well with those determined from solution measurements in case of 

noncovalent complexes such as the src SH2-phosphopeptide system (Bligh, S.W.A. et 

al., 2003) , the antibiotic vancomycin binding to peptide ligands (Lim, H.K. et al., 1995), 

and aminoglycosides with A-site rRNA (Sannes-Lowry, K.A. et al., 2000). 

 

4.2. Electrospray ionization mass spectrometry (ESI-MS) 

4.2.1. Basic principles of ESI-MS 

            Since the pioneering development of the electrospray ionisation (ESI) for mass 

spectroscopy by Fenn’s group (Fenn, J.B. et al., 1989), it has been used as an active 

analytical tool in biology, biochemistry, and biomedical research. In the ESI-MS 

compounds are characterized by interpreting the mass spectrum, which typically shows 

a distribution of multiply charged ions that are separated according to their mass-to-

charge ratio. Singly charged compounds represent their molecular weight as (MW + 

H)+ in the positive ionization mode and as (MW – H) in the negative ionization mode. 

ESI-MS works for the transfer of a large range of ions from the solution to the gas 

phase. The ions include  the singly charged electrolytes Na+ and Cl-, group two ions 

Ca2+, Sr2+, and Ba2+, bioorganic ions such as multiply protonated peptides and proteins 
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of molecular masses in the range of 100,000 Da, and multiply deprotonated negatively 

charged nucleic acids (Kebarle, P. et al., 1993).  

           The electrospray ionization inlet system is part of the mass spectrometer, which 

has a mass analyzer and detector. The electrospray ionization source, unlike other 

inlet systems, is a soft ionization inlet system that allows for the detection of complete 

non-fragmented compounds (analytes) (Figure 4.1). 

 

Figure 4.1. The principles of the electrospray ionization mass spectrometry (ESI-MS) 
are depicted in the above picture. 
 

            The steps involved in the formation of gas-phase analyte ions from solutions 

holding these ions can be divided into the following steps: a) formation of an aerosol of 

charged droplets at the capillary tip, and b) production of gas-phase ions from the very 

small charged droplets by the charge residue mechanism (CRM) or the ion evaporation 

mechanism (IEM) (Cole, B.R., 2000). For the formation of ions in ESI-MS, a high 

voltage is applied to the metal ESI capillary through which the sample solution is 

coming out. This leads to the electrophoretic movement of the ionic species in the 

sample solution under electric field strength of ~ 106-107 V m-1 (Pfeifer, R.J. et al., 

1968). In the positive-ion mode, anions are driven inside of the metal ESI capillary, 
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whereas cations migrate away from the capillary, i.e., in the direction of the counter 

electrode. The positive ions at the surface of the liquid and the applied electric field 

cause a repulsive force that overcomes the surface tension of the emerging liquid. At 

sufficient high electric field strength, the liquid starts to emerge in shape of a cone also 

referred to as ‘Taylor cone’ (Taylor, J.R., 1964). Due to the presence of the high 

voltage difference between the ESI capillary and the counter electrode, oxidation 

reactions take place at the metal-solution edge of the ESI capillary such as H+ 

production from water. In the negative-ion mode, the anions are attracted towards the 

counter electrode and the cations are driven inside of the ESI metal capillary. In this 

mode, reduction reactions may occur at the metal solution interface of the ESI capillary 

(Blades, A.T. et al., 1991). In both modes of ESI-MS, charge flow of the ions of same 

polarity is maintained by these electrochemical reactions. Similarly, at the counter 

electrodes where the ions of reverse polarity keep arriving, another electrochemical 

reaction is completed. The occurrence of this second electrochemical reaction 

completes the special kind of electrical circuit and thus, electrospray source has been 

considered as an unusual type of electrolytic cell, in which electrolysis maintains the 

continuous stream of charged droplets (Kebarle, P. et al., 2000). 

            The accumulation of excess charges on the surface of the droplets help to 

elongate the emerging liquid in the direction of the counter-electrode and the opposing 

force of surface tension of the liquid keeps the liquid droplet together. The balancing 

act of these two forces produces the dynamic Taylor cone at the tip of ESI capillary 

(Taylor, J.R., 1964). The theory behind the formation of gas-phase ions from the small, 

highly charged droplets is explained with the help of two principal mechanisms, 
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namely, charged residue model (CRM) (Dole, M. et al., 1968) and the ion evaporation 

mechanism (IEM) (Iribarne & Thomson, 1976; Thomson & Iribarne, 1979). In the CRM, 

proposed by Dole and co-workers (Dole, M. et al., 1968), a series of fission events 

eventually leads to the generation of final small droplets having one or more excess 

charges, but only a single analyte molecule. Due to the evaporation of the last few 

solvent molecules, the excess charges present will accumulate on the sites forming the 

most stable gas-phase analyte ion. In IEM, Iribarne and Thomson (Iribarne & 

Thomson, 1976; Thomson & Iribarne, 1979) reasoned that prior to decrease of the 

radius of the droplet below 10 nm (Rayleigh limit), the electric field on the surface of the 

charged droplets is high enough for emitting the solvated ions into the gas phase. In 

the IEM, the partitioning of the single solvated analyte ion carrying some of the 

droplet’s charge is due to the desorption event.  

            Despite the controversy of the two major events leading to the formation of gas-

phase ions in ESI-MS, a firm consensus has come forward that ionic structure of very 

large molecules, comprising multiply charged molecules, are formed due to the charge 

residue mechanism (CRM). The examples of these large molecules usually comprise 

the protein-protein complexes such as enzyme-substrate, and enzyme-product 

complexes (Fernandez de la Mora, J., 2000; Valentine, S.J., 1997; Shelimov, K.B. et 

al., 1997). These complexes are held together in the cellular environment with the 

strong covalent bonds as well as weak noncovalent interactions such as electrostatic 

interactions, hydrogen bonds, and hydrophobic interactions. Formation of the small 

gas-phase ions is favored by IEM, such as the simple stable alkali metal Na+, K+, Cs+ 

ions. These ions are helpful for the production of ionized analytes from the species that 
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do not ionize in solution, but have polar groups such as sugars and glycols. In solutions 

of these molecules, these ions enter the gas phase with a solvated shell as M+(H2O)m 

when the solvent is water (since the IEM holds in early stages). As the solvent 

evaporates, the formation of ML+ ions predominates (where L is sugar or glycol 

molecule) (Kebarle, P. et al., 2000; Gamero-Castaño, M., 2000). Therefore, ESI-MS 

has enabled the observation of molecular ions of intact noncovalent complexes under 

certain solvent conditions. 

 

4.2.2. Applications of ESI-MS to nucleic acids 

At present, mass spectrometry with the introduction of electrospray ionization 

has accelerated the studies of biological macromolecular complexes such as DNA and 

RNA duplexes, triplexes and quadruplexes in the field of nucleic acids. This chapter 

focuses on the study of RNA interactions with heptapeptides using ESI-MS. There is 

sufficient evidence provided by the literature for using this technique for characterizing 

nucleic acid complexes held together noncovalent forces. The first nucleic acid 

complex observed with ESI-MS was from the group of Ganem and coworkers, in which 

the duplex structure of two DNA strands formed by the noncovalent base pairing was 

clearly seen (Ganem, B. et al., 1991). It was reported that the relative abundance of the 

duplex versus single-stranded DNA was more for a GC-abundant 8-mer as compared 

to an AT-rich 8-mer. Another study by Doktycz and coworkers using an ion-trap 

quadruple mass spectrometer, pointed to the stability of the DNA duplex in the ESI 

experimental settings (Doktycz, M.J. et al., 1994). In their study, the 10-mer and 20-

mer DNA duplexes were observed to survive the atmosphere/vacuum interface and 
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had lifetimes of hundreds of milliseconds in the gas phase. Bowers and coworkers not 

only studied the duplex formation of DNA strands, but also the different parameters of 

duplex formation such as strand length, effects of metal ions on the Watson-Crick base 

pairing, and quadruplex formation by using ESI-MS (Gidden, J. et al., 2005). In their 

results, they reported that the duplexs retained their helical structure on the ms time 

scale in the gas phase, and that DNA quadruplex formation was observed for G-C rich 

oligonucleotides in presence of ammonium ions.  

Higher-order complexes of DNA were observed with ESI-MS in negative ion 

mode by Griffith and co-workers (Griffith, M.C. et al., 1995). They studied the binding of 

a 10-mer peptide nucleic acid (PNA) with 15-mer single-stranded DNA, in which 

triplexes consisting of two PNAs bound to one DNA strand were formed. These authors 

found that an AG-rich PNA strand was bound to a TC-rich DNA strand as a triplet. 

These studies helped to push forward the concept of PNAs as antigene and antisense 

agents  

ESI-MS has been used extensively for probing the DNA-protein interactions. 

ESI-MS studies of RNA-protein interactions have been more challenging due to the 

innate difficulties of handling RNA and due to the presence of RNA nucleases. Despite 

these hurdles, interactions of HIV-TAR RNA with Tat peptide and Tat protein were 

successfully carried out (Sannes-Lowry, K.A. et al., 1997). Relative binding affinities 

between Tat peptide and TAR RNA and several mutants were differentiated with ESI 

competitive binding experiments by Sannes-Lowry’s group. There was reduced affinity 

of the Tat peptide with the mutant TAR RNAs, consistent with the previous gel-mobility 

shift experiments (Roy, S. et al., 1990). It was quite evident from these studies that 
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specific interactions between the peptide and protein were maintained in the gas phase 

as compared to the solution-phase studies of the same TAR RNA and Tat peptide or 

Tat protein systems. ESI-MS was a convenient method to calculate peptide-RNA 

binding stoichiometries and binding constants (Sannes-Lowry, K.A. et al., 1997).   

In a recent study, ESI-MS was employed for detecting cobalt (III)hexammine 

[Co(NH3)6
3+] binding to RNA hairpins having G•U and A•C wobble pairs, in addition to 

modified bases such as pseudouridine () and 3-methyl-pseudouridine (m3) 

(Kieltyka, J.W. et al., 2006). The pH-dependent binding studies of Co(NH3)6
3+ were 

performed with the 790 GU-loop RNA containing a G•U mismatch and 790 A•C-loop 

RNA having an A•C mismatch. At pH 5.3, only the -3, -4, and -5 charge states of the 

complexes were observed, whereas at pH 7.2, an additional charge state of -6 was 

also observed. This showed that lowering the pH of the solution resulted in simpler 

spectra by narrowing of the charge state envelope of the complex. Further, it resulted 

in three-fold decrease in the formation of the 1:1 complex for 790 GU hairpin with 

Co(NH3)6
3+ and an increase in the 1:2 complex, showing decreased specificity. This 

three-fold decrease of binding affinity was possibly attributed to the protonation of the 

base in the 790 GU hairpin leading to unfavorable interactions with Co(NH3)6
3+. In case 

of 790 A•C-loop RNA, a thirty-fold decrease in binding affinity of the Co(NH3)6
3+with the 

RNA hairpin was noticed. The decrease in binding affinity was probably due to the 

protonation of the mismatch site (A+•C), and this mismatch site was a potential binding 

site of the metal complex with RNA. These studies revealed that the ESI-MS is a viable 

and sensitive technique for characterizing noncovalent interactions between RNA and 

the transition-metal complexes. The change in the binding affinity of the complexes 
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because of the pH change lead to the recognition of the potential ligand-binding sites of 

the RNA hairpins (Kieltyka, J.W. et al., 2006). Based on the previous studies, we 

believe that ESI-MS would be useful to characterize the interactions of peptides 

discovered through phage display with H69 RNAs. 

            

4.3. Materials and methods 

4.3.1. General materials 

          All the experiments were conducted on the Quattro LC tandem quadrupole mass 

spectrometer with electrospray ionization (ESI) inlet (Micromass, Manchester, UK).  A 

quadrupole mass analyzer consists of four parallel rods applied with direct current (DC) 

and radio frequency (RF) voltage. The schematic of the Quattro LC is shown in Figure 

4.2. 

 

 

Figure 4.2. A general format of the Micromass Quattro LC mass spectrometer showing 
the main parts of the instrument is illustrated (Quattro LC User’s Guide). 
 

           The ESI-MS experiments in this thesis were carried out with the Quattro LC 

tandem quadrupole mass spectrometer having electrospray ionization in the negative 

ion mode (Micromass, Manchester, UK). The operating conditions included a capillary 
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voltage of 2.5 kV, cone voltage of 50 V, extractor cone voltage of 2 V, RF lens voltage 

of 0.6 V, source block temperature of 100 C, and a desolvation temperature of 120 C. 

A flow rate of 6 µl/min was set for infusing the sample using a Harvard II syringe pump. 

The desolvation gas flow rate was set to be ~ 400 L/h and nebuliser gas flow rate of ~ 

90 L/h was used. Since none of the RNA charge states were observed below the m/z 

value of 1200 and above the m/z value of 2500, the mass spectra were recorded from 

1200-2500 m/z for every sample and 60-70 spectra were averaged. Before acquiring 

the data on the instrument, thorough cleaning of the sample cone and the lines was 

performed. The sample cone was cleaned by sonication (50% water, 45% methanol, 

5% formic acid) for 20 minutes followed by rinsing with water and then drying with 

stream of nitrogen. The capillary tubing and the transfer lines were cleaned with the 

solution of 75% water and 25% 2-propanol.  

           The RNA oligonucleotides for ESI-MS study were chemically synthesized on a 

1.0 µmole scale via phosphoramidite technique (Scaringe, S.A. et al., 1998) by 

Dharmacon, Inc. (Lafayette, CO). 3-Methylpseudouridine (m3) was synthesized in our 

lab by Helen Chui, converted to its phosphoramidite form (Chui, H.M.-P. et al., 2002) 

and sent to the Dharmacon, Inc. for incorporation in the given RNA sequences (Figure 

4.3.).                                                   

H69 [5’-GGCCGAAC(m3)AAACGGUC-3’, modified, m3 ] 

UUU [5’GGCCGUAACUAUAACGGUC-3’, unmodified] 

U [5’-GGCCGUAAC(m3)AAACGGUC-3’] and 

 U [5’-GGCCGAACUAAACGGUC-3’]  
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Figure 4.3. The sequences of H69 (mod. and unmod.), mutants of H69 (U, U) 
that were employed for carrying out the binding studies with the peptides are shown. 
                                 

            The RNAs were recieved as 2’-O-ACE protected oligos and were deprotected 

by dissolving in 100 mM TEMED-acetic acid solution (pH 3.8) followed by incubation at 

60 C for 30 minutes. The RNAs were then dried in a speed-vac. Following 

deprotection, the RNAs were precipitated twice with 7.5 M ammonium acetate, pH 7.2. 

The precipitation was performed by adding 250 µl ammonium acetate solution and 750 

µl of 200-proof cold ethanol. The samples were mixed properly and incubated at -80 C 

for 45 to 60 minutes. After incubation the samples were centrifuged (10,000 rpm, 4 C) 

for 30 minutes followed by cautious removal of the supernatant. The above procedure 

was carried out again and after removal of the supernatant the second time, 200 µl of 

cold ethanol was added to the RNA pellet. The RNA pellet was then dried in speed-

vac, reconstituted in water and stored at - 20 C. For the ESI-MS experiments, the 

RNAs were renatured in 15-30 µl aliquots of 100-200 µM RNA in 100 mM ammonium 

H69 (mod. m3) H69 (unmod. UUU)

U U

H69 (mod. m3) H69 (unmod. UUU)

U U
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acetate (pH 7.2) by incubating in heat block at 90 C for 2 minutes. The heat block was 

switched off and the RNA solutions were gradually allowed to reach at room 

temperature (3 to 4 hrs). The concentrations of the RNA solutions were calculated from 

the UV-visible spectra by applying Beer’s law. The extinction coefficients () for the 

RNAs were calculated using the Schepartz Lab Biopolymer Calculator and their values 

were 187,000 L-1•mol-1•cm-1for UUU (unmodified H69). The  value acquired for UUU 

was also applied to the H69 (m3), U, and U RNAs, since the Biopolymer 

calculator does not have values for the modified nucleotides. 

            The peptides NQVANHQ-NH2 and STYTSVS-NH2 with C-terminal amidation 

used in the ESI-MS experiments with RNA were synthesized by Chamila Rupasinghe 

in our lab using solid-phase peptide synthesis. The amidated peptides were generated 

and the chemical structures are given in Figure 5.4. The peptide solutions were 

prepared in Millipore water and the solutions were quantified using the LavaPep 

peptide quantification kit (Fluorotechnics Pty Ltd., Sydney, Australia, 2006) since the 

peptide lacked UV active amino acids such as tyrosine, tryptophan and phenylalanine. 

This kit has epicoccone dye, a fluorescent reagent that binds to lysine, histidine, and 

arginine amino acids in the peptide sequence. The kit consists of two solutions named 

as part A that is a dilute DMSO/acetonitrile solution of dye and part B that is 

bicarbonate buffer with SDS and acetonitrile. The dye fluoresces using a 540 ± 10 nm 

excitation filter and 630 ± 10 nm emission filter. For preparation of standard peptide 

curve, solutions of peptide HPVHHYQ-NH2 in water were prepared in four-fold dilutions 

ranging from 40 ng/mL to 0.655 mg/ml. The working solution was prepared by mixing 

water, part A and part B in 8:1:1 ratio (the amount of solution depends on number of 
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samples). For measuring fluorescence in a 96-well microtiter plate, 50 µl of working 

solution was incubated with 50 µl of each HPVHHYQ-NH2 peptide dilution in individual 

wells. Similarly a blank was prepared by adding 50 µl working solution and buffer/water 

(50 µl) in one well.  For measuring peptide concentration of unknown concentration, 50 

µl of that solution and 50 µl of working solution were added in another well. All the 

samples were incubated at room temperature in the dark for 60 minutes. After 

recording the fluorescence readings using an excitation wavelength of 540 nm and 

emission wavelength of 630 nm, the blank reading was subtracted from all the readings 

of solutions. A plot of log of fluorescence versus log of peptide concentration was 

generated using the linear fit. The equation obtained from the linear fit was then used 

for determining the concentration of peptide with unknown concentration. The 

concentration of STYTSVS-NH2 was calculated by measuring its absorbance at 280 

nm. The extinction coefficient () used for tyrosine (Y) was 1200 AU/mmol/ml.  

                     

Figure 4.4. The chemical structures of the peptides NQVANHQ-NH2 and STYTSVS-
NH2 are shown. 
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4.3.2. ESI-MS data analysis 

            The optimized conditions for the binding studies in this thesis for the ESI-MS 

samples were typically 50 µl volume having final concentrations of 1-3 µM RNA, 150 

mM ammonium acetate, pH 5.2 or pH 7.0, 25% 2-propanol and 0-120 µM peptide. The 

mixtures of the RNA and the peptide were equilibrated for 30 min at room temp before 

each measurement. In the spectra of the RNA, usually three charge states -3, -4 and -5 

were observed, whereas in the spectra of the RNA-peptide complexes, the charge 

state of -4 was more dominant as compared to the -5 charge state. The formation of 

the complex between the RNA and the peptide did not change the charge states of the 

RNA as seen in the absence of the peptide. The formation of 1:1 complex between 

RNA and the peptide NQVANHQ-NH2 was more as compared to 1:2 complex. An 

assumption regarding the ionization efficiencies of the free RNA and the RNA-peptide 

complexes was made in accordance with the literature (Hofstadler, S.A. et al., 1999 

and 2001; Daniel, J.M. et al., 2002; Smith, R.D. et al., 1997; Sannes-Lowry, K.A. et al., 

1997, 1999, 2000; Loo, J.A. et al., 1997 and 2000; Bligh, A.S.W. et al., 2003; Nesatyy, 

V.J., 2002). It has been shown previously that if the ligand is much smaller than the 

target biomolecule in mass, then the ionization efficiencies of the biomolecule and their 

complexes are considered same. In the present studies, the binding of the peptides to 

the RNA was presumed to not alter the ionization efficiency of the complex since the 

mass of the peptides are small compared to the RNA target (<10%). Thus, for all 

calculations, a correction factor for different ionization efficiencies was not used. Mass 

LynxTM 4.0 was applied for data collection and analysis. For calculation of the peak 

areas, the spectra were smoothed once from the full-width at half-height value using 
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the Savitzky-Golay method before integration (command for integration in the Mass 

LynxTM 4.0). In performing these experiments, it was assumed that the summed peak 

areas of the charge states of the free RNA, 1:1, and 1:2 complexes was comparative to 

the concentrations of the free RNA, 1:1, and 1:2 complexes in solution, respectively. 

This assumption was considered reasonable, since low concentrations of RNA and 

peptide were employed (Tang, L. et al., 1993; Sannes-Lowry, K.A. et al., 2000; Loo, 

J.A., 2000). 

             For calculating apparent dissociation constants, in much of the literature, the 

sum of the peak areas of all the observed charge states is generally taken into account 

(Sannes-Lowry, K.A. et al., 2000; Bligh, A.S.W. et al., 2003; Greig, M.J. et al., 1995; 

Rosu, F. et al., 2002; Loo, J.A. et al., 1997; Gabelica, V., 2003; Wendt, S. et al., 2003).  

Therefore, the peak intensities of free RNA ions, RNA-Na+ and RNA-K+ adduct ions in 

the -4, -5, and -6 charge states were summed up. Similarly, the peak intensities of the 

RNA-peptide complexes (including 1:1, 1:2) and their Na+ and K+ ion adducts were 

added up. The fraction of RNA bound was calculated by dividing the peak intensity of 

RNA-peptide complexes with summation of peak intensities of free RNA and RNA-

peptide complexes. The apparent dissociation constant (Kd) was calculated by plotting 

the fraction of RNA bound versus the concentration of peptide and using a non-linear 

curve fitting quadratic equation (Equation 5.1.). This equation was applied because 

mainly 1:1 complex formation was observed at lower concentrations of the peptide and 

in a previous study carried out in our lab involving the calculations of the apparent 

dissociation constants of the transition metal complexes with the RNA, only this 
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equation gave suitable results for the Kds out of many equations tried (thesis submitted 

by Jason W. Kieltyka, 2006) 

Equation 4.1: 
 

  
 

In the above equation, [R]o is the total concentration of RNA, [P]o is the total 

concentration of peptide, RPn- is the total concentration of RNA-peptide complexes at 

given charge state or all charge states (depending upon which approach is used), Rn- 

is the total concentration of free RNA at given charge state or all charge states 

(depending upon which approach is used). The KalaidagraphTM software was 

employed to fit the data and apparent dissociation constants were calculated with the 

above quadratic equation.  

            In another approach, the apparent dissociation constant for the 1:1 complex 

was also calculated for the individual charge states of -4 and -5, where the peak areas 

of free RNA H69 with its salt adducts at individual charge state and the complexed 

RNA H69 at individual charge state with its salt adducts were summed together. The 

fraction of H69 bound to the peptide at a particular charge state was calculated by 

dividing peak intensity of the H69-peptide complexes with the summation of the peak 

intensities of the free RNA and the RNA-peptide complexes. The data was again 

analyzed using Equation 4.1. Similarly, the apparent dissociation constant for 1:2 

complexes was determined at the -4 charge state. For some of the apparent 

dissociation constant calculations, the relative fraction of peptide-bound RNA was also 

calculated using equation 4.2: 
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Fr = (F0-Fi)/(F0-Ff),                                                                                    Equation 4.2.               

where Fr is the fraction of RNA bound, F0 is the intensity of free RNA, Fi  is the intensity 

at a given titration point, and Ff is the intensity at the end point of the titration. The data 

obtained after using equation 4.2 is marked with an asterisk (). 

 

4.4. Results and discussion 

4.4.1. ESI-MS binding studies with the NQVANH-NH2 peptide and H69 

            In this work, experiments for studying the peptide-RNA complexes were carried 

out with different H69 RNA sequences (modified, m3; unmodified, UUU; U; 

U ) and the other criterion was to do the experiments at two different pH values of 

7.0 and 5.2 for modified and unmodified H69 RNA. The titrations were carried out by 

keeping the H69 RNA concentration constant and varying the peptide concentrations. 

The dissociation constants for H69-NQVANHQ-NH2 and UUU-NQVANHQ-NH2 

complexes was calculated at two pH values, one at physiological pH 7.0 and the other 

at pH 5.2. The two pH values were selected in accordance with the pH-dependent 

studies performed at pH 7.0 and at lower pH values by my colleague Dr. Sanjaya 

Abeysirigunawardena (Abeysirigunawardena, S. & Chow, C.S., 2008). The circular 

dichroism and UV melting data clearly indicated that an altered conformation of H69 

existed at lower pH and that the protonated form of RNA at pH 5.5 had a slightly higher 

stability than the unprotonated form at pH 7.0. The apparent pKa for H69 protonation 

was 6.3 and was calculated based on molar ellipiticity changes at different pH values. 

The CD experiments were also carried out with only the stem region of H69, excluding 

the loop residues, and no notable differences in structure were seen at pH 7.0 and pH 

5.5. This led to the conclusion that the loop region plays important role in pH-
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dependent conformational change of H69. Temperature-dependent NMR data further 

revealed that at the higher pH value, the loop residue A1913 is flipped out, leading to 

partial exposure of 1915 and 1917 to solvent, but at lower pH the loop residue 

A1913 is located inside the loop and protects the 1915 and 1917 from solvent 

exchange. Therefore, at higher pH the loop region was more dynamic and at lower pH 

had a higher degree of base stacking or stabilization. The structural changes observed 

with the lower pH conditions for isolated H69 construct were in accordance with the 

50S structure given by Bashan and coworkers (Bashan, A. et al., 2003).  

            H69 has three uridine (U) residues modified to pseudouridine () residues at 

positions 1911, 1915 and 1917 with 1915 being methylated at N3 position. The role 

of the  residues at 1911 and 1915 in binding of the peptide with the H69 was also 

investigated. For this purpose, two separate RNA H69 constructs having uridines 

instead of pseudouridine () nucleotides at position 1911 and 1915, respectively, were 

synthesized (the other pseudouridine nucleotides being present in the sequence). The 

dissociation constants for the complexes of NQVANHQ-NH2 peptide with these RNA 

constructs were also calculated with ESI-MS. 

 

4.4.1.1. Experiments at pH 7.0 with H69 (modified, m3) 

            Our first set of experiments was carried out with the H69 RNA derived from E. 

coli 23S rRNA with peptide NQVANHQ-NH2 within a range of concentrations. For free 

RNA, three charge states (-3, -4, -5) were observed, with the -4 charge state being the 

dominant and -5 being the least dominant charge state. For the 1:1 complex of RNA 

and peptide, -4 and -5 charge states were detected, and the dominant charge state was 
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-4; whereas, for 1:2 complexes, only the -4 charge state was observed at higher 

concentrations. The calculated average molecular weights for all the charge states for 

the free RNA and its complexes with the peptide are summarized in Table 4.1. 

Table 4.1. The calculated average molecular weights for the free H69 and its variants 
and their complexes with the peptide are listed as given by the MassLynx V4.0. 
 

 

            In one approach, the fraction of RNA bound with the peptide was calculated 

based on the sum of the total complexes, in which RPn- is the total intensity of RNA-

peptide complex and their salt adducts, at all stoichiometries (1:1, 1:1 + 1:2) and the 

data was analyzed using Equation 4.1. The apparent dissociation constant (Kd) for the 

H69-peptide complex based on the sum of all the charge states, was 20 ± 3 µM.  In 

another approach, the fraction of RNA bound in 1:1 complex was estimated based on 

the individual charge states of -5 and -4. The apparent dissociation constant (Kd) for the 

1:1 H69-peptide complex obtained from the dominant -4 charge state was 11 ± 1 µM 

and for the less dominant -5 charge state was 16 ± 6 µM (Figure 4.5). The calculations 

for the errors in apparent dissociation constants were based on the standard deviation 

of average of two experiments. The accuracy of the ESI-MS is challenged by the 

presence of low fraction of the complex and no saturation conditions of the complex 

(i.e., disappearance of the free species of RNA in favor of the RNA-peptide complex). 

The saturation conditions for our present RNA-peptide complex were not reached due 
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to the poor ionization efficiency of the RNA-peptide complex in which hydrophobic 

interactions likely dominated. Thus, only relative values of dissociation constants were 

obtained instead of the absolute values since the saturation was considered to be 

achieved when the fraction bound was found to become stationary. Applying this 

relative change and low signal-to-noise ratio (due to low fraction bound), the peaks were 

integrated for calculation of a dissociation constant at a known stoichiometry. The 

fraction bound was found to be low even at more than saturating concentrations, 

showing that the hydrophobic interactions are the major driving forces behind the 

complex formation.  

           The comparison of the values of the apparent dissociation constants (Kd) for the 

1:1 complex at the -4 and -5 charge states shows that the -4 charge state is 

predominant among the two charge states for the 1:1 complex. Since the -5 charge 

states is not the major charge state for the 1:1 complex and the peaks are quite small, 

the error bars for the fraction of RNA bound plot of this charge states are high as 

compared to the 1:1 complex at -4 charge state. For the 1:2 complex of H69 and 

peptide at the -4 charge state, the apparent dissociation constant of 28 ± 6 µM shows 

that the formation of this complex is not as favorable in comparison to the 1:1 complex 

at the same charge state of -4 (Figure 4.6). The value of the collective calculation of the 

apparent dissociation constant of 20 ± 3 µM for the H69-NQVANHQ complex where all 

the charge states are summed for 1:1 and 1:2 complexes, represents the average of the 

apparent dissociation constant of 1:1 and 1:2 complexes (Figure 4.6). The ESI spectra 

for the free RNA and the complex formation as the peptide concentration increases from 

0 to 120 µM are shown in Figure 4.7. 
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   A)                                                                            B) 

               

Figure 4.5. (A) The plot of fraction of H69 bound in 1:1 complex with the peptide 
NQVANHQ at -4 charge state and the Kd obtained with equation 4.1 after normalization 
with equation 4.2. (B) The fraction of H69 bound in 1:1 complex with the peptide at -5 
charge state. The values obtained for the Kd is the average of two separate 
experiments. 
 
 A)                                                                  B) 

 
 

            
 
Figure 4.6. (A) This plot represents the H69 bound in 1:2 complex at -4 charge state 
with peptide NQVANHQ. (B) In this plot the fraction of H69 bound is the average of all 
charge states and the Kd shown is the average value of 1:1 and 1:2 complexes and is 
obtained after normalization with equation 4.2. The values obtained for the Kd is the 
average of two separate experiments. 
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Figure 4.7. The spectra obtained from ESI-MS experiment at pH 7.0 showing the free 
RNA at -3, -4, -5 charge states; H69-NQVANHQ-NH2 1:1 complex (RNA + P)  at -5 and 
-4 charge states; H69-NQVANHQ-NH2 1:2 complex (RNA + 2P) at -4 charge state and 
peptide dimer (2P). 
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4.4.1.2. Experiments at pH 5.2 with H69 (modified, m3) 

            Based on the observed pH-dependent conformational changes for the H69 RNA 

(modified, m3) (Abeysirigunawardena, S. & Chow, C.S., 2008), the binding studies 

for H69-NQVANHQ-NH2 peptide were carried out at different pH values. At a pH value 

of 7.0, the apparent dissociation constant obtained for the 1:1 H69-NQVANHQ peptide 

complex at -4 charge state was 11 ± 1 µM, but when the ESI-MS experiments were 

carried out pH 5.2, the apparent dissociation constant for 1:1 complex increased to 34 ± 

3 µM for the same charge state calculation (Figure 4.8.). The apparent dissociation 

constant changed to 31 ± 12 µM for the 1:1 complex at -5 charge state (Figure 4.8.). 

Since this charge state was less dominant for the H69-peptide complex, the error value 

for the apparent dissociation constant and the error bars were high. The three-fold 

increase in value of Kd for 1:1 complex at lower pH suggests weakening of the binding 

affinity of this peptide for H69. The structural change of H69 at lower pH value might be 

contributing to the decreased affinity of the peptide NQVANHQ-NH2, although a pH-

dependent change of the peptide cannot be ruled out. The observed pH-dependent 

changes occurred in the loop region of H69 where the residues were in a higher stacked 

conformation (Abeysirigunawardena, S. & Chow, C.S., 2008). Therefore, it is possible 

that one important binding site for this peptide is in the loop region that is lost due to 

change in pH value. An alternate explanation is that certain peptide functional groups 

are protonated at lower pH, which may also inhibit interactions with H69. 

            The comparison of free energy values (G) for H69 at two pH values (Table 

4.2.) indicates that peptide seems to have slight preference for the thermodynamically 

less stable H69 conformer at pH 7.0 and reduced affinity for thermodynamically more 
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stable H69 structure at pH 5.2. The low and high pH-states for H69 were observed in 

50S subunits and 70S ribosome crystal structures, respectively (Bashan, A. et al., 2003; 

Selmer, M. et al., 2006). The ESI spectra for the free RNA and the complex formation 

as the peptide concentration increases from 0 to 140 µM are shown in Figure 4.9. 

 

                         (A)                                                         (B) 

                                                            

Figure 4.8. (A) This plot represents the curve fitting for calculation of apparent 
dissociation constant for 1:1 complex at -4 charge state for H69-NQVANHQ peptide 
complex at pH 5.2. (B) The calculation of apparent dissociation constant for 1:1 H69-
NQVANHQ peptide complex at -5 charge state and at pH 5.2.  The values obtained for 
the Kd is the average of two separate experiments.  
 
Table 4.2. The apparent dissociation constants for the 1:1 H69-NQVANHQ-NH2 
complexes at the -4 charge state and at pH 7.0 and 5.2 and the free energy values for 
the H69 are summarized in tabular form.  
 

 

  a = data from Abeysirigunawardena, S. & Chow, C.S., 2008. 
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Figure 4.9. The ESI spectra at pH 5.2 showing the free H69 RNA at -3, -4, and -5 
charge states and  H69-NQVANHQ-NH2 1:1 complex (RNA + P)  at -5 and -4 charge 
states; H69-NQVANHQ-NH2 1:2 complex (RNA + 2P) at -4 charge state and peptide 
dimer (2P). 
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4.4.1.3. Experiments at pH 7.0 with H69 (unmodified, UUU) 

          The fully modified E. coli H69 (mod. m3) construct used above for phage 

selection and binding studies with peptide NQVANHQ-NH2 has three pseudouridines 

() at positions 1911, 1915 and 1917. The corresponding nucleotides in the 23S rRNA 

are post-transcriptionally modified from uridines to pseudouridines in bacteria 

(Raychaudhuri, S. et al., 1998). To study the effects of these pseudouridine residues on 

the binding of the peptide NQVANHQ-NH2, a 19-nucleotide RNA construct having 

uridine (U) residues in place of the  residues was synthesized. The construct is 

referred to unmodified UUU H69. The binding of the peptide NQVANHQ-NH2 with UUU 

H69 was studied similarly through ESI-MS at pH 7.0 and 5.2. The experimental setup 

for performing the solution-based titrations for binding studies was the same as 

described for the modified H69. The titration was carried out with a range of 

concentrations for the peptide (0-120 µM). The apparent dissociation constant for the 

1:1 complex for UUU-NQVANHQ-NH2 was calculated based on the quadratic equation 

(Equation 4.1). The value of the dissociation constant obtained at the dominant -4 

charge state for 1:1 complex of UUU-NQVANHQ-NH2 at pH 7.0 was 19 ± 2 µM and at 

the less dominant -5 charge state for the same complex was 12 ± 3 µM (Figure 4.10).  

            As seen in the plots for the two charge states, the value of apparent dissociation 

constant at the -5 charge state is lower because the number of titration points available 

for plotting is fewer due to the low intensities in the MS spectra. The error bars plotted 

for the -5 charge state are also high compared to those of the -4 charge state. This 

result shows that the apparent dissociation constant for -5 charge state is less reliable 
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compared to that from the -4 charge state. The slightly higher value of the dissociation 

constant for the 1:1 UUU-NQVANHQ-NH2 complex at pH 7.0 than the H69-NQVANHQ-

NH2 complex shows that the  residues influence the Kd, (11 M Vs. 19 M  for 

m3  and UUU, respectively, at pH 7.0). This result is supported by the work of 

Meroueh and coworkers (Meroueh, M. et al., 2000) in which the overall stabilities of 

UUU and m3 H69 RNAs were identical at pH 7.0, but the overall structures 

differed, particularly in the loop region. The ESI spectra for the free RNA and the 

complex formation as the peptide concentration increases from 0 to 120 µM are shown 

in Figure 4.11. 

                    (A)                                                                   (B) 

                                                   

Figure 4.10. (A) This plot represents the curve fitting for calculation of apparent 
dissociation constant for 1:1 complex at -4 charge state for UUU-NQVANHQ peptide 
complex at pH 7.0. (B) The calculation of apparent dissociation constant for 1:1 UUU-
NQVANHQ-NH2 peptide complex at -5 charge state, pH 7.0.  The values obtained for 
the Kd is the average of three separate experiments. 
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Figure 4.11. The ESI spectra at pH 7.0 showing the free UUU RNA at -3, -4, and -5 
charge states and UUU-NQVANHQ-NH2 1:1 complex (RNA + P)  at -5 and -4 charge 
states; UUU-NQVANHQ-NH2 1:2 complex (RNA + 2P) at -4 charge state and peptide 
dimer (2P). 
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4.4.1.4. Experiments at pH 5.2 with H69 (unmodified, UUU) 

          The binding experiments conducted with the modified H69 construct (m3) 

and peptide NQVANHQ-NH2 at pH 7.0 and pH 5.2 resulted in different values of the 

apparent dissociation constants for the complex. A similar approach was followed for 

the UUU-NQVANHQ-NH2 complex for studying the effect of the pH on the binding of the 

peptide. The binding experiments of the UUU with peptide NQVANHQ-NH2 at pH 7.0 

gave the value of 19 ± 2 µM for the apparent dissociation constant (Kd) for 1:1 complex. 

The Kd value was lower for the modified H69 (m3) and peptide complex, thus 

indicating the stronger binding of the peptide for the -containing RNA. ESI-MS 

experiments were carried out at pH 5.2 for UUU-NQVANHQ-NH2 complex. The 

calculations for the 1:1 complex at -4 charge state gave a Kd value of 31 ± 3 µM and the 

plot is shown in Figure 4.12. Calculations for the -5 charge state were not possible.  

           This higher value of the apparent dissociation constant (Kd) at pH 5.2 indicates 

that the binding affinity of the peptide has decreased for the UUU RNA. This affect could 

be attributed to the fact that the peptide is undergoing some protonation event resulting 

in some unfavorable conformational change. The UUU RNA was shown to be 

unaffected by the change in pH. Although the difference of the free energy values of the 

UUU RNA at two pH values of 7.0 and 5.2 was almost negligible, the binding affinity of 

the peptide for the RNA was reduced (Table 4.3). This suggests that a change in the 

peptide conformation at the lower pH value might play a role in the reduction of the 

binding affinity for H69 RNA. The ESI spectra for the free RNA and the complex 

formation as the peptide concentration increases from 0 to 120 µM are shown in Figure 

4.13. 
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Figure 4.12. The value of the apparent dissociation constant for the 1:1 UUU-
NQVANHQ-NH2 complex is calculated at -4 charge state at pH 5.2. The values 
obtained for the Kd is the average of three separate experiments. 
 

 
Table 4.3. The apparent dissociation constants for the 1:1 complex of the UUU-
NQVANHQ-NH2 complex at the -4 charge state at two pH values are summarized in 
the table.  
 

 

a : The free energy values of the UUU RNA at pH 7.0 and 5.2 are also presented 
(Abeysirigunawardena, S. & Chow, C.S., 2008). 
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Figure 4.13. The ESI spectra at pH 5.2 showing the free UUU RNA at -3, -4, and -5 
charge states and UUU-NQVANHQ-NH2 1:1 complex (RNA + P)  at -5 and -4 charge 
states; UUU-NQVANHQ-NH2 1:2 complex (RNA + 2P) at -4 charge state and peptide 
dimer (2P). 
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4.5.2. The role of the pseudouridine residues in binding of H69 to NQVANHQ-NH2 

           For studying the effect of the pseudouridine modifications on the binding 

behavior of the peptide NQVANHQ-NH2 with H69 (modified, m3), constructs with 

individual pseudouridine () residues replaced with uridine (U, U) were 

synthesized. The ESI-MS experiments were performed by keeping the RNA 

concentration constant and varying the peptide concentration from 0 to 120 µM. The 

procedure for the experiments has been described in the ESI-MS data collection 

section.  

 

4.5.2.1. ESI-MS with U 

           The apparent dissociation constant for the 1:1 U-NQVANHQ-NH2 complex at 

-4 charge state and at pH 7.0 was calculated to be 28 ± 5 µM, as shown by the plot in 

Figure 4.14. The 2.5-fold higher value of the apparent dissociation constant for 1:1 

complex of this RNA construct compared to the fully modified H69 (m3) RNA 

indicates a role for 1911 in the binding of peptide. This reduced affinity of the peptide 

towards U is supported by the results of Meroueh and coworkers in which the effects 

of single  residues on the structure and stability of the H69 were studied (Meroueh, M. 

et al., 2000). It was shown that the presence of the individual  residues had unique 

local effects on the structure of the H69, and in different combinations, the  residues 

had varying structural and stabilizing effects. The pseudouridine at 1911 position that 

forms the loop-closing base pair has a stabilizing effect on the structure of H69. 

             The Kd values for the H69, UUU and U in complex with the peptide and the 

free energy (G) values for the individual RNA constructs are summarized in Table 4.4. 



144 
 

The free energy values are obtained from the literature (Abeysirigunawardena, S. & 

Chow, C.S., 2008). Comparison of the free energy values at pH 7.0 shows that the 

U mutant is thermodynamically less stable than both fully modified H69 and 

unmodified UUU RNAs.  The peptide has a reduced preference for binding to mutant, 

possibly due to an altered loop structure. The ESI spectra for the free RNA and the 

complex formation as the peptide concentration increases from 0 to 120 µM are shown 

in Figure 4.15. 

 

                                    

Figure 4.14. The fraction of U RNA bound with the peptide NQVANHQ-NH2   in 1:1 
complex is shown and the Kd for the 1:1 complex is calculated from the dominant -4 
charge state of the ESI-MS spectra. The values obtained for the Kd is the average of 
two separate experiments. 
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Figure 4.15. The ESI spectra at pH 5.2 showing the free U RNA at -3, -4, and -5 
charge states and U-NQVANHQ-NH2 1:1 complex (RNA + P)  at -5 and -4 charge 
states; U-NQVANHQ-NH2 1:2 complex (RNA + 2P) at -4 charge state and peptide 
dimer (2P). 
 

4.5.2.2. ESI-MS with U 

          The ESI-MS binding experiments for the U RNA with peptide NQVANHQ-NH2 

at pH 7.0 were completed using same approach as described above. After data 

collection, the U-NQVANHQ-NH2 complex was analyzed for the -4 charge state and 
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the Kd was estimated to be 28 ± 4 µM as shown by the plot in Figure 4.16. This value is 

comparable to the U RNA and 2.5-fold higher than the fully modified H69 RNA. This 

result shows that the peptide affinity for the RNA has been reduced as compared to the 

m3. In contrast to the U RNA, the U RNA construct is thermodynamically 

more stable in comparison to the H69, UUU (Table 4.4). Even though the RNA acquires 

a stable thermodynamic conformation in the absence of 1915, this conformation is 

less favorable for the binding of the peptide NQVANHQ-NH2. The ESI spectra for the 

free RNA and the complex formation as the peptide concentration increases from 0 to 

120 µM are shown in Figure 4.17. 

 

Figure 4.16. This plot represents the fraction of U RNA in complex with the peptide 
in 1:1 complex at pH 7.0. The Kd was calculated from -4 charge state of the ESI-MS 
experiments. The values obtained for the Kd is the average of two separate 
experiments. 
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Table 4.4. Comparison of the apparent dissociation constants (Kd) obtained for 1:1 
complexes for H69, UUU and H69 mutants with peptide NQVANHQ-NH2.  
 

 
 
 
4.5.3. Selectivity of NQVANHQ-NH2 for H69 

         The preferential binding of peptide NQVANHQ-NH2 with fully modified H69 

(m3) as compared to other RNAs was addressed by testing its binding for other 

RNAs such as helix 31, human H69 (referred to as 5) and the A-site RNA (Figure 

4.18). To compare the binding affinities of these RNAs for NQVANHQ-NH2, ESI-MS 

experiments were carried as described above for H69. Helix 31, or h31, of E. coli 16S 

rRNA is located near the P site (where peptide bond formation takes place) and is 

considered to be closely involved in the translation process (Döring, T. et al., 1994; 

Selmer, M. et al., 2006; Korostelev, A. et al. 2006). The apparent dissociation constant 

(Kd) obtained at pH 7.0 for this RNA in a 1:1 complex with peptide NQVANHQ-NH2 was 

33  10 M (three-fold higher than H69) (Figure 4.19). This result shows that the 

peptide selected for H69 has lower affinity for an unrelated RNA at physiological pH. 
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Figure 4.17. The ESI spectra at pH 5.2 showing the free U RNA at -3, -4, and -5 
charge states and U-NQVANHQ-NH2 1:1 complex (RNA + P)  at -5 and -4 charge 
states; U-NQVANHQ-NH2 1:2 complex (RNA + 2P) at -4 charge state and peptide 
dimer (2P). 
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           The A-site RNA is part of the bacterial decoding region and is located in h44 of 

16S ribosomal RNA of the small subunit. The A site is the location of codon-anticodon 

interactions in the ribosome and plays a very crucial role in the translation process. The 

Kd value for binding of this RNA in 1:1 complex with peptide NQVANHQ-NH2 is 35  5 

M, which is also three-fold higher than the fully modified H69 (m3), again showing 

that the peptide prefers to bind to the RNA for which it was selected against.  

           The human sequence of the H69 (referred to as 5) has five pseudouridine 

residues compared to three in the E. coli H69. The Kd value (50  8 M) obtained for 

this RNA is almost five-fold higher than the E. coli H69. This result shows that the 

peptide will have a higher preference for bacterial H69 over the human H69. This 

feature of the peptide is important if it is to be considered as a potential lead for new 

antibacterials. The apparent dissociation constants (Kd) obtained at pH 7.0 for these 

RNAs in 1:1 complexes with the peptide NQVANHQ-NH2 are summarized in Table 4.5. 

 

Table 4.5. Summary of binding constants (Kds) of both related and unrelated RNAs 
with NQVANHQ-NH2. 
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Figure 4.18. The secondary structures of human H69, E. coli A-site RNA, and E. coli 
h31 as used in the experiments are shown. 
 
 
 
 

A)                                                          B)          

          

                                                                  
 
 
 



151 
 

 
 
 C)  

 
 
 
 
Figure 4.19. The plot of fractions of RNAs A) h31RNA, B) human H69 RNA, and  C) A 
site bound to peptide NQVANHQ-NH2 are depicted. For h31 and human H69, the Kds 
were calculated at -4 charge state and for A-site RNA the Kd was calculated at -5 
charge state. 
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Figure 4.20. The ESI spectra at pH 7.0 showing the free h31 RNA at  -3, -4 and -5 
charge states and h31-NQVANHQ-NH2 1:1 complex (RNA + P)  at -5 and -4 charge 
states; h31-NQVANHQ-NH2 1:2 complex (RNA + 2P) at -4 charge state and peptide 
dimer (2P). 
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Figure 4.21. The ESI spectra at pH 7.0 showing the human H69 RNA at -3, -4, and -5 
charge states and human H69-NQVANHQ-NH2 1:1 complex (RNA + P) at -4 charge 
states; human H69-NQVANHQ-NH2 1:2 complex (RNA + 2P) at -4 charge state and 
peptide dimer (2P). 
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Figure 4.22. The ESI spectra at pH 7.0 showing the A-site RNA at -5 and -6 charge 
states and A site-NQVANHQ-NH2 1:1 complex (RNA + P) at -5 charge states, and 
peptide dimer (2P). 
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4.6. Conclusions 

          In this chapter, binding studies of the heptapeptide NQVANHQ-NH2 were 

conducted with modified H69 (m3), unmodified H69 (UUU), as well as several 

mutants, U and U RNAs. The technique applied for this study was electrospray 

ionization mass spectroscopy (ESI-MS). This method has been shown in the literature 

to provide reliable apparent binding constants (Kds) for noncovalent complexes 

involving nucleic acids such as the Tat peptide-TAR RNA complex (Sannes-Lowry, K.A. 

et al., 1997) and aminoglycosides with the A-site rRNA (Sannes-Lowry, K.A. et al., 

2000), and the antibiotic vancomycin binding to peptide ligands (Lim, H.K. et al., 1995). 

             For the ESI-MS experiments carried out in this study, the RNAs were ionized 

with the help of the organic solvent isopropanol and ammonium salts in the buffer 

systems. The apparent dissociation constants (Kds) obtained for the 1:1 complexes of 

modified H69 (m3)-peptide in this study was 11 ± 1 µM. This value represents 

moderately good binding affinity of the peptide for the target RNA H69 for which it was 

selected against. This value is comparable to that of aminoglycoside antibiotics binding 

to the A-site RNA (1 to 10 µM) (Wong, C.H. et al., 1992; Fourmy, D. et al., 1996; Wang, 

Y. et al., 1996;  Sannes-Lowry, K.A. et al., 2000; Llano-Sotelo, B. et al., 2002; Kaul, M. 

et al., 2004). It should be noted that this interaction may be enhanced under more 

physiological buffer conditions, since the ESI-MS method is limited by ammonium 

acetate buffer in the absence of Na+ or K+. Unfortunately, due to the limited availability 

of the ‘modified RNA’, we were not able to carry out other binding experiments such as 

isothermal titration calorimetry or NMR spectroscopy, although such experiments will be 

done in the future. 
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            Since the H69 RNA has three pseudouridine () residues in its sequence, 

another RNA construct having uridine (U) residues in the place of pseudouridines was 

synthesized in order to assess the contribution of the modifications to peptide binding. 

This construct is referred to as UUU. The apparent dissociation constant (Kd) of 19 ± 2 

µM was acquired for the 1:1 complex of UUU-NQVANHQ-NH2. The increase in Kd value 

for the UUU RNA-peptide complex revealed the importance of the collective role played 

by the pseudouridines in binding of the peptide with fully modified E. coli H69. 

            The E. coli H69 has been shown to undergo a conformational change with the 

change in pH from 7.0 to 5.5 (Abeysirigunawardena, S. & Chow, C.S., 2008), thus, it 

was of interest to analyze the influence of pH change on the binding of the peptide with 

the RNA. The ESI-MS experiments for this study were carried out at pH 7.0 and pH 5.2. 

The apparent dissociation constant for the 1:1 complex of RNA and the peptide was 

reduced for both RNA sequences (m3 and UUU) by three-fold upon lowering the 

pH. From these results, it could be concluded that either protonation of the RNA or the 

peptide structure influenced this change in binding of the two species. Until further 

experiments are done, we will not know the protonation site or specific contributions to 

the binding interactions. 

            In another effort to study the role of the pseudouridines () in binding of the 

peptide, two RNA constructs, U and U, were synthesized. In the U RNA, the 

pseudouridine at position 1911 was replaced by uridine (U) and in the U RNA; the 

pseudouridine at position 1915 was replaced by uridine (U). The Kd for the 1:1 complex 

for the U- NQVANHQ-NH2 was 28 ± 5 µM and for the U-NQVANHQ-NH2 was 28 

± 4 µM at pH 7.0. These values were 2.5-fold higher than the Kd for H69, suggesting 
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that the peptide binding site is located at or near the loop region containing the 

pseudouridines at positions 1911 and 1915. These results also reveal that even subtle 

differences in RNA stability or conformation due to the presence or lack of modifications 

can influence peptide binding. Such differences are important to consider when looking 

at species selectivity or possible changes that could lead to antibiotic resistance in 

future drug designs.  

            To establish the selectivity of the peptide for H69, the propensity of peptide-RNA 

complex formation with both unrelated and related RNAs was studied through ESI-MS 

experiments. The unrelated RNAs chosen were from the small subunit of the ribosome, 

namely, the A-site RNA and helix 31 and the related RNA was the human H69. The 

peptide had moderate affinity for the A-site RNA, helix 31, and the human H69, but with 

three-fold lower affinity than the target H69 RNA. This result suggests that the peptide 

has features that allow for generic RNA binding as well as specific binding for modified 

H69.  
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CHAPTER 5 
 
 

Probing assays used for H69-NQVANHQ complex 
 

 

5.1. Introduction 

         The phage display technique was successfully applied for pulling out peptides 

from the phage peptide library for H69. To quantitatively evaluate the binding interaction 

of NQVANHQ-NH2 peptide with H69, several of the recognized biochemical assays 

were carried out. They included electrophoretic mobility shift assays (EMSA), Fe-EDTA 

cleavage reactions, and in-line probing assays.  

           EMSA was chosen since it is technically simple and relatively fast to perform. 

Typically, discrete bands corresponding to uncomplexed RNA/DNA and the complexed 

RNA/DNA are clearly resolved since the RNA/DNA in complex with protein or any other 

ligand migrate through the a nondenaturing polyacrylamide gel more slowly than the 

free RNA/DNA (Garner, M.M. & Revzin, A., 1981). This assay is widely utilized for 

studying binding of larger proteins to specific sites on DNA and serves as qualitative 

probe for DNA-protein interactions (Khanna, H. et al., 2006; Brunner & Wirth, 2006).  

         The Fe-EDTA reaction assay was selected in order to ascertain the binding site of 

the peptide on the H69 RNA. In this method, [Fe(EDTA)]2- is the reagent that is used for 

identifying the binding sites of nucleic-acid binding ligands (Brenowitz, M. et al., 2002). 

This reagent is prepared by adding appropriate amounts of ferrous ammonium sulfate 

solution to the EDTA (ethylenediaminetetraacetic acid) solutions and incubating with 

RNA. EDTA is a metal chelator that binds to Fe(II), which catalyzes a reaction to 

produce hydroxyl radicals. This reaction is widely known as the Fenton reaction 
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(Hertzberg, R.P. & Dervan, P.B., 1984). The hydroxyl radicals lead to strand scission of 

RNA through oxidative degradation of the ribose moiety (Tullius, T.D. & Dombroski, 

B.A., 1985). The reaction scheme is as follows: 

[Fe(EDTA)]2- + O2 → [Fe(EDTA)]+ O2

 

[Fe(EDTA)]2- + O2
+ 2H+ → [Fe(EDTA)]+ H2O2 

[Fe(EDTA)]2- + H2O2 → [Fe(EDTA)]- + •OH + OH 

RNA + •OH → H2O + RNA (•C1’ or •C4’) → RNA fragments 

Fe(EDTA)]- + e- → [Fe(EDTA)]2- 

            In the above reaction mechanism, i) the [Fe(EDTA)]2 oxidizes to [Fe(EDTA)] 

and provides the electrons for reducing oxygen in the solution, ii) the reduced oxygen in 

solution forms highly reactive hydroxyl radicals through a hydrogen peroxide 

intermediate or if the hydrogen peroxide is added to the reaction, the free radicals are 

formed from hydrogen peroxide rather from oxygen in solution (Celander, D.W., 2000), 

iii) the hydroxyl radicals then react with a sugar carbon (C1’ or C4’) causing the 

backbone cleavage by a β-elimination reaction. The nucleotide strand scission occurs 

through two possible mechanisms, oxygen-dependent and oxygen-independent 

pathways. The oxygen-independent pathway occurs at pH 12 or higher (Stubbe, J. & 

Kozarich, J.W., 1987). In this study, the reaction is performed at neutral pH, thus, the 

reaction pathway is considered to be oxygen-dependent. The iron complex is recycled 

by the reduction of [Fe(EDTA)] to [Fe(EDTA)]2 by ascorbate or dithiothreitol (DTT). The 

hydroxyl radicals are quenched with thiourea (Celander, D.W. & Cech, T.R., 2000). 

            [Fe(EDTA)]2- catalyzes the scission of the nucleic acid backbone without base or 

sequence distinction and without any preference for secondary structure of the 



                                                        160 
 

oligonucleotide under study (Latham, J.A. & Cech, T.R., 1989; Celander & Cech, 1990), 

but the reaction depends on the solvent accessibility of the nucleotides. If all of the 

nucleotides of the given sequence are solvent accessible, then the bands 

corresponding to each nucleotide will be visible on a polyacrylamide gel. However upon 

addition of a ligand such as a small molecule or protein, the cleavage pattern of the 

nucleic acid changes. This change occurs because the ligand binds at certain positions 

and hinders [Fe(EDTA)]2- from reacting at that position of the backbone of the nucleic 

acid.  Thus, some bands on the gel corresponding to certain nucleotides may be absent 

or show less intensity due to the binding of the ligand.  

            In the inline-probing assay developed by Breaker and coworkers, the objective is 

to ascertain the binding site of a ligand on RNA such as the NQVANHQ peptide on H69 

RNA. This assay takes advantage of the inherent self-cleaving property of RNA due to 

the presence of 2’-OH (Soukup, G.A. & Breaker, R.R., 1999). The reaction scheme 

explaining the reaction is summarized in Figure 5.1. 

 

Figure 5.1. The mechanism for intramolecular phosphoester cleavage leading to RNA 
strand scission is shown. The reaction produces RNA fragments with 2’,3’-cyclic 
phosphate (3) and 5’-hydroxyl termini (4) (Soukup, G.A. & Breaker, R.R., 1999). 
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           The cleavage of the RNA strand in inline probing can be hindered due to the 

presence of a bound ligand. All of this information could be ascertained by running the 

reaction mixtures having RNA alone and RNA with peptide on polyacrylamide gels. The 

sequence of RNA appears as distinct bands, in which each band specifies a nucleotide. 

The intensity of the bands corresponding to the nucleotides with the bound ligand 

decreases with increasing concentrations of the ligand. The gels could then be 

quantified for ascertaining the binding constant of the complex. 

  
 
5.2. Materials and methods 

5.2.1. 3’- and 5’- 32P labeling of RNA 

           The RNAs H69 and UUU were purchased from Dharmacon Research Inc., 

(Lafayette, CO) and were chemically synthesized at 1.0 mole scale as described in 

Chapter 4. For conducting the EMSA and Fe-EDTA probing assays, H69 and UUU 

RNAs were radiolabeled at the 3’-end with pCp. For the 3’-32P labeling of H69 the total 

reaction volume was kept at 30 l. In a 2 ml centrifuge tube the following contents were 

added in final concentrations: 50 pmols of gel-purified RNA (modified, m3 H69), 

10% DMSO (dimethyl sulfoxide), 1X T4 RNA ligase buffer (50 mM Tris-HCl, 10 mM 

MgCl2, 1 mM ATP, 10 mM dithiothreitol, pH 7.8 buffer), 10 mM ATP, 20 Ci/pmol [5’-

32P]-pCp (Perkin-Elmer, Waltham, MA), and 1 µL T4 RNA ligase (20 U/µL from New 

England Biolabs, Ipswich, MA). The mixture was incubated for 4 h at 4 °C. The RNA 

was then subjected to ethanol precipitation by addition of 25 µl of cold 4 M ammonium 

acetate (NH4OAc), 5 g tRNAPhe, and 300 µl cold 100% ethanol. The reaction mixture 

was incubated again on dry ice for 1 h and then centrifuged at 12,000 x g at 4 °C for 20 
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min. The supernatant was removed immediately followed by another clean-up of RNA 

by adding 200 µl of 0.5 M NH4OAc and 750 µl of cold ethanol. The mixture was again 

kept on dry ice for 1 h, centrifuged at 12,000 x g at 4 C for 20 min. Finally, the pellet 

was washed with 500 l cold ethanol and dried in speed-vac. The sample was later 

resuspended in 20 to 30 µl ddH2O. The 3’-labeled RNAs were purified on 20% 

polyacrylamide gels, typically at 350 V for 4 h and the RNA bands were visualized under 

the Molecular Dynamics phosphoimager. The gel bands corresponding to RNA were 

excised and then electroeluted with 0.5 x TBE buffer (45 mM Tris, 45 mM boric acid, 0.5 

mM EDTA, pH 8.2) at 200 V for 2 h in an Amicon Centrilutor™ (Beverly, MA) device. 

The RNAs were desalted with ddH2O overnight by using a centrifuge and Centricon 3TM 

(Amicon) devices. The RNAs were renatured in 10 mM Tris-HCl, pH 7.5 by heating to 

90 °C for two minutes followed by slow cooling to room temperature. The A- and U-

specific reactions and the aniline treatment for UUU RNA were performed as described 

by Peattie (Peattie, D.A., 1979).  

           For 5’-labeling of RNA, 50 pmole of RNA solution was incubated in 1X fresh 

polynucleotide kinase buffer (70 mM Tris-HCl, 10 mM MgCl2, 5 mM dithiothreitol, pH 

7.6), and 1 µl -32P-ATP. The reaction mixture was vortexed at slow speed and spun 

down. Then, 30,000 U of polynucleotide kinase (PNK) enzyme (10,000 U/ µl from New 

England Biolabs, Ipswich, MA) were added. The mixture was heated at 37 °C for 30-45 

min. Later, 10 µl of cold 7.5 M NH4OAc (kept at 4 °C) was added. For removing excess 

salt and -32P-ATP, a preloaded G25 column was used (Illustra, MicroSpins G-25 

columns, GE healthcare) according to the manufacturer’s protocol. The first ethanol 

precipitation was carried out by adding 25 µl of cold 7.5 M NH4OAc (kept at 4 °C), 5 g 
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tRNAPhe, and 300 µl cold 100% ethanol. The centrifuge tube was incubated at 20 °C 

for one h followed by spinning at 13,000 rpm for 30 min at 4 °C. The supernatant was 

carefully removed and transferred to another centrifuge tube. The second ethanol 

precipitation was performed at 20 °C for one h by adding 750 µl cold ethanol, and 250 

µl 7.5 M NH4OAc. Finally, the sample was washed with 500 µl cold ethanol and placed 

in speed-vac for drying. The sample was later resuspended in 20 to 30 µl ddH2O and 1 

µl was used for scintillation counter. 

 

5.2.2. Electrophoretic mobility shift assay (EMSA) 

            The EMSA experiments were performed in 5 l of total reaction volume by 

adding 10,000 cpm of 3’-32P-labeled H69 RNA with varying concentrations of peptide 

(0.2-200 M), and 1X of reaction buffer. The reaction was incubated at 37 °C for 30 min. 

The sample having only RNA and no peptide was used as control. After incubation, 2 l 

of loading buffer (0.1% bromophenol blue, 0.1% xylene cyanole FF, 20% glycerol) was 

added to each sample. Native polyacrylamide gels were used for separating the RNA-

peptide complex from the RNA. Before loading samples on the non-denaturing gel, the 

gel was pre-run for 15 min. The samples were then loaded on native gels (5000 cpm 

per lane) and the gel was run at 250 V, at 4 °C for 2 h or at 300 V at RT for 2 h. The gel 

was then wrapped and exposed to a storage phosphor screen (Amersham Biosciences, 

Piscataway, NJ) at -20 °C overnight. The screen was then scanned with a Typhoon 

phosphorimager (GE Healthcare, Piscataway, NJ). The gel was then analyzed for 

complex formation. For optimizing the conditions of the experiments, the cross-linking of 

the gel (ratio of acrylamide to bisacrylamide) was varied between 19:1 to 60:1 and the 
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percentage of the gels was also varied between 8% and 20%. Another step towards 

optimization of the reaction conditions involved changing buffers for formation of the 

peptide-RNA complex. The following buffers used were: 0.1% TBST (50 mM Tris, 150 

mM NaCl, and 0.1% Tween-20), TE buffer (10 mM Tris-HCl, pH 7.5, 70 mM NaCl, 0.2 

mM EDTA, 0.01% NP-40, and 5% glycerol), and Hepes buffer (10 mM HEPES-KOH, 

pH 7.3, 100 mM KCl, 1 mM MgCl2, 0.5 mM EDTA, and 0.01% Triton X-100). The 

reaction conditions were tested on the established model of A-site RNA and 

streptomycin (Fourmy, D., et al., 1996). The buffer used for this complex formation was  

Hepes buffer (10 mM HEPES-KOH, pH 7.3, 100 mM KCl, 1 mM MgCl2, 0.5 mM EDTA, 

and 0.01% Triton X-100). The samples were prepared by adding 10,000 cpm of 3’-32P-

labeled A-site RNA with 1l of varying concentrations of streptomycin (0.04, 0.4, 4, and 

40 M), 1X buffer and x l of ddH2O for a total reaction volume of 5 l. the samples 

were then incubated at 37 °C for 30 min. After incubation, 2 l of loading buffer (0.1% 

bromophenol blue, 0.1% xylene cyanole FF, 20% glycerol) was added to each sample. 

The samples were then loaded onto the native gel, in which the gel conditions were 

15% native gel with 40:1 cross-linking and run at 250 V at 4 °C. The gel was then 

wrapped and exposed onto a storage phosphor screen (Amersham Biosciences, 

Piscataway, NJ) at -20 °C overnight. The screen was then scanned with a Typhoon 

phosphorimager (GE Healthcare, Piscataway, NJ). 

 

5.2.3. Fe-EDTA cleavage reaction 

           For carrying out footprinting assays involving H69 and the peptides with 

[Fe(EDTA)]2-, the following solutions were prepared:  the [Fe(EDTA)]2- solution, sodium 
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ascorbate solution, and hydrogen peroxide solution. The [Fe(EDTA)]2- solution (1 M) in 

ddH2O was freshly prepared fresh using [(NH4)2Fe(II)(SO4)2•6H2O] (A.C.S.reagent, 

Baker & Adamson) in a 10 ml volumetric flask. The solution was kept in the dark until 

ready for use. A sodium ascorbate (1 M) solution was freshly prepared in a 10 ml 

volumetric flask. It was diluted with ddH2O to make a 10 mM final stock solution. The 

hydrogen peroxide (H2O2) solution was freshly prepared as a 0.6% solution in ddH2O 

from a 30% stock solution. The loading buffer for the experiment contained thiourea, 

bromophenol blue, xylene FF, formamide and glycerol. A 10 µl reaction was set up for 

each concentration of peptide. It contained 30,000 cpm of 3’-32P-labeled H69 RNA, 1X 

binding buffer, and peptide solution from 0.2 to 200 M concentration. The reaction 

mixtures were incubated for varying amounts of time. The binding buffers used were 

0.1% TBST (50 mM Tris-HCl, 150 mM NaCl, 0.1% Tween-20) at pH 6.5 and 0.1% TBST 

at pH 7.5 and cacodylate buffer (50 mM NaCl, 20 mM Na cacodylate, pH 5.8). The 

samples were allowed to reach equilibrium at room temperature for 30 min.  After 

incubation, H2O2 solution representing 0.06% final concentration, Fe/EDTA solution 

having final concentration of 2 mM [(NH4)2Fe(II)(SO4)2•6H2O], and 4 mM Na2EDTA, and 

sodium ascorbate having final concentration of 100 mM were added to the side of the 

centrifuge tube and spun down. The samples were incubated at 42 °C for 2 h. The 

reactions were then quenched by adding thiourea solution at final concentration of 10 

mM. The loading buffer (2 l) was added to all the samples. The samples were then 

loaded on high-resolution 20% polyacrylamide gels for analysis. The gels were 

prepared using plates 33 x 42 cm or 20 x 42 cm in dimensions with a 0.4 mm-thick 

spacer. The ratio of acrylamide:bisacrylamide used was 19:1 with 14 M urea. The gels 
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were run at 1800-2000 V (~20 mA of current) for 2-3 h and were analyzed using the 

phosphorimager (Typhoon, GE Healthcare). 

 

5.2.4. Inline-probing assay 

           For inline-probing assay, the reactions were carried out under alkaline conditions 

using the buffer 50 mM Tris-HCl, pH 8.3, 20 mM MgCl2, and 100 mM KCl. Samples with 

30,000 cpm of the 5’-labeled H69 and 5 to 100 M peptide concentrations were 

incubated in alkaline buffer (50 mM Tris-HCl, pH 8.3, 20 mM MgCl2, and 100 mM KCl) 

at 25 °C for 20 h and in dark. After incubation, all the RNA samples were denatured by 

boiling for 1 min with 2 µl of formamide loading buffer (0.1% bromophenol blue, 0.1% 

xylene cyanole FF, 80% formamide, 20% glycerol). Before loading the samples on the 

20% denaturing gel, the gel was pre-run for 20 min. Later, the reaction samples (50,000 

cpm/each) were added to the long, thin (42 cm x 33 cm), denaturing (7 M urea) gel and 

the running buffer for the gel was 0.5x TBE buffer (900 mM Tris, 900 mM boric acid, pH 

8.3, 25 mM Na2EDTA). The gel was run for 3-4 h at 2800 V and later transferred onto a 

film, wrapped and exposed onto a storage phosphor sreen (Amersham Biosciences, 

Piscataway, NJ) at -20 °C overnight. The screen was then scanned on the Typhoon (GE 

Healthcare, Piscataway, NJ). The alkaline hydrolysis ladder of the labeled H69 was 

generated by incubation with 50 mM NaHCO3/Na2CO3 (pH 9.0 at 23 °C) and 1 mM 

EDTA for 7 min at 90 °C (Knapp, G., 1989). The A- and U-specific reactions and aniline 

treatment of UUU RNA were carried out as described by Peattie (Peattie, D.A., 1979). 
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5.3. Results and discussion 

5.3.1. EMSA for model system of A site RNA and streptomycin 

          The model system of A-site RNA and streptomycin for optimizing the EMSA 

conditions was adopted because streptomycin has been proven to bind to A-site RNA 

through a number of biochemical assays such as protection assays (Moazed, D. & 

Noller, H. F, 1987), crosslinking assays (Gravel, M. et al., 1987), and mutagenesis data 

(Pinard, R. et al., 1993; Melancon, P. et al., 1988). These conditions were employed 

because the H69 RNA and peptide were comparable in size to the A-site RNA and 

streptomycin system.  

           In the gel picture (Figure 5.4.), the bands corresponding to the complex formation 

between A-site RNA and streptomycin and the uncomplexed RNA are observed. Since 

the mobility of the molecules through polyacrylamide gels is partly based on their size, 

the bands for the A-site RNA-streptomycin complex move slower than the uncomplexed 

RNA. The lower bands on the bottom of the gel represent the uncomplexed RNA and 

the upper bands correspond to the complex between RNA and streptomycin. It is 

observed that increasing concentrations of streptomycin lead to darker bands for the 

complex as well as a gradual shift in the band for complex.  From the shift in the 

location of the complex bands, it seemed that at 40 mM concentrations of streptomycin, 

the entire amount of RNA is in complex with streptomycin, although it was somewhat 

difficult to analyze due to the smearing of the bands. The chosen ionic conditions 

provided by the HEPES buffer appeared to be appropriate for stabilizing complex 

formation and the chosen matrix of a 15% polyacrylamide gel was also suitable for 

analyses of the RNA-drug complex. Streptomycin is known to bind to the A-site RNA 
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with an approximate Kd of > 400 M (Gromadski, K.B. & Rodnina, M.V., 2004); thus, the 

estimated Kd from the EMSA shown here is in the appropriate range. 

 

                             

Figure 5.2. The picture of the native polyarylamide gel showing bands of the free A-site 
RNA and the A-site RNA complexed with streptomycin under the conditions described 
in the Materials and methods section is given. 
 
 
5.3.2. EMSA for H69 and NQVANHQ-NH2 peptide 

           After successfully monitoring the formation of A-site RNA and streptomycin 

complex through EMSA, similar assay conditions were applied for observing H69 and 

NQVANHQ-NH2 peptide complex formation. A band corresponding to the uncomplexed 

RNA H69 was seen, but a band corresponding to complex of peptide and RNA was not 

detected (Figure 5.3). Many conditions of buffer, gel matrix (%, 

acrlyamide:bisacrylamide, etc.), ratios of peptide to RNA, incubation times, and loading 

conditions were tried, but unfortunately none were successful. One reason for not 

observing the band for complex was thought to be due to dissociation of the complex in 

the gel matrix. In order to overcome this issue, the native gels were prepared with 

different ratios of acrylamide to bisacrylamide. However, the band corresponding to the 

complex was still not observed. The gels were also run at different temperatures such 
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as at 4 °C and at room temperature, but there was no positive outcome. In order to 

change the ionic conditions during the complex formation, different buffer systems were 

tried, but again the bands representing the complex in the gels was not present. Surface 

plasmon resonance (SPR) experiments were also attempted, but poor results here 

suggested that the association/dissociation kinetics for the peptide-RNA complex (H69-

NQVANHQ-NH2) are not suitable for analysis by either method. After many attempts, 

this approach was abandoned.  

 

Figure 5.3. The native gel image of EMSA for detecting the complex between H69 and 
the peptide NQVANHQ-NH2 is shown. Lane 1 is the control having only RNA H69, lanes 
2-11 show RNA in the presence of increasing concentrations of peptide (350, 400, 450, 
500, 600, 700, 800 M, 1 mM, and 5 mM, respectively).  
 
 
 
5.3.3. Fe-EDTA reaction results for H69 and NQVANHQ-NH2 peptide 
 
           The probing reactions for studying the binding site of NQVANHQ-NH2 peptide on 

H69 RNA employing [Fe(EDTA)]2- solutions were carried out in the buffer used for 

binding the phage library with H69 during biopanning (0.1% TBST: 50 mM Tris-HCl, pH 

7.5, 150 mM NaCl, 0.1% Tween-20). The peptide concentrations used were 0.2, 2, 20, 

and 200 M. The A and U sequencing reactions for determining the positions of bands 

were carried out with 3’-32P-UUU RNA (unmodified H69) (Figure 5.4).  In this assay, 
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some bands showed slight changes in the presence of peptide. However, this sort of 

trend was not observed at any particular position (Figure 5.5.) and the results were not 

reproducible, even under a variety of conditions that were tried. Thus, the Fe-EDTA 

assay was also determined to be unsuccessful. 

 

 
 
 
Figure 5.4.  The secondary structures of H69 and UUU RNAs used in this assay are 
shown ( represents the 32-P labeled end).  
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Figure 5.5. The gel image of the Fe-EDTA reaction performed with H69 and 
NQVANHQ-NH2 peptide complex is shown. Lanes 1& 2 are the H69 RNA alone, lane 3 
is UUU RNA, lane 4 is alkaline hydrolysis of H69, lane 5 is the A reaction, lane 6 is the 
U reaction, lanes 7 & 8 are the alkaline hydrolysis of H69, lane 9 is the Fe-EDTA 
reaction of H69 only, and lanes 10-13 represent RNA in the presence of increasing 
concentrations of NQVANHQ-NH2 peptide (0.2, 2, 20, and 200 M, respectively).  
 
 
 
5.3.4. Results for inline-probing using H69 and NQVANHQ-NH2 peptide 
   
            The presence of the 2’-OH group in the RNA makes it highly susceptible to self-

cleavage under physiological conditions. The spontaneous cleavage of the 

phosphodiester linkages occurs through intramolecular transesterification reactions 

(Soukap & Breaker, 1999). This property of RNA is enhanced under acidic or alkaline 

conditions. The reaction mixtures for this assay were prepared under alkaline 

conditions. The varying concentrations of the peptide with 5’ labeled H69, used in the 

reaction mixtures were: 5, 10, 20, 24, 26, 28, 40, 50, 60, 80, and 100 M. RNase T1 
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enzyme digestion reactions were done to precisely ascertain the positions of guanine 

nucleotides in the sequence of H69. The reaction mixtures were run on thin 

polyacrylamide gels to view the different intensities of the bands of the RNA and the 

complex. The intensities of the bands of the complex reaction mixtures were expected 

to decrease at certain positions of the RNA sequence indicating the presence of bound 

peptide. However, this manifestation of decreased intensity of the bands at certain 

nucleotide positions was not noticed (Figure 5.7). Thus, the binding site of the peptide 

NQVANHQ-NH2 was not determined through this assay. As with the other assays 

mentioned in this chapter, a variety of conditions were tried, but none were successful. 

 

 

Figure 5.6. The gel image of the inline-probing assay of H69 and the reaction mixtures 
having varying concentrations of the peptide NQVANHQ, run on 20% thin 
polyacrylamide gel, is shown. AH = alkaline hydrolysis, T1 = RNase T1. 
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5.4. Conclusions 

           The gel shift assay is an established method for observing the complex formation 

for a variety of systems such as the TAR RNA-Tat peptide (Shah, K. et al., 1996), and 

DNA binding proteins (Garner, M.M. & Revzin, A. 1981). The assay was first optimized 

for the A-site RNA and streptomycin complex, and the complex of the RNA and the 

aminoglycoside streptomycin was observed. On the other hand, when the same gel 

conditions were applied for examining the H69 and peptide NQVANHQ complex, the gel 

bands corresponding to the complex were not observed. This could be attributed to fast 

on/off kinetics of binding of peptide to H69, as compared to the A-site RNA and 

streptomycin (complex involving electrostatic interactions), or the instability of the 

peptide-H69 complex in the gel matrix. In addition, previous work in the literature 

regarding the success of EMSA mostly involved charged small molecules or dye-like 

molecules with strong binding.  

           For determining the specific locations of binding of the peptide on the H69 

hairpin, two recognized probing assays were performed, Fe-EDTA cleavage and the 

inline-probing assay. Unfortunately, despite many attempts, these assays were not 

successful in giving any conclusive or reliable information about the binding site of the 

peptide. As a result, the binding of the peptide NQVANHQ-NH2 with H69 was monitored 

through electrospray ionization (ESI) mass spectrometry that was discussed thoroughly 

in the previous chapter.  

           Further experiments will be required to determine the binding site, such as more 

elaborate mass spectrometry experiments or NMR spectroscopy. Furthermore, the 

peptide is hydrophobic in nature and there is not much literature available describing 
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assays for studying hydrophobic peptides and RNA, therefore, new assays need to be 

developed for studying these kinds of interactions. Currently, work is in progress by 

another student in the laboratory to map the site of NQVANHQ-NH2 binding on the 23 S 

rRNA in 50 S subunit. 
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   CHAPTER 6 

Conclusions and future directions 

 

6.1. Conclusions 

           The problem of antibiotic resistance demands for the development of new 

antimicrobials. The ribosome is a well-known target for many antibiotics. The 

challenging work of ribosomal crystallography performed in Ada E.Yonath, Thomas A. 

Steitz, and Venkatraman Ramakrishnan labs was recognized worldwide when the Nobel 

Prize in Chemistry in 2009 was awarded to these scientists. Crystal structures of the 

ribosome and its subunits have led to the exploration of novel regions of bacterial 

pathogens as targets, in addition to the acknowledged ones such as A site of the 

decoding region (Tenson, T. et al., 2006). Helix 69 (H69) rRNA has been chosen as a 

target for the present thesis studies due to its location in the interface region of a 

functionally active ribosome. H69 is a 19-nucleotide stem-loop motif present in 23 S 

rRNA of large or 50 S subunit having pseudouridine () at positions 1911, and 1915 

and a methylated pseudouridine () at position 1915. It is recognized to participate in 

many vital stages of translation such as subunit association, where it participates in an 

important RNA-RNA bridge B2a with h44 of small subunit, translocation of tRNAs, and 

ribosome recycling (Ortiz-Meoz, R.F. & Green, R., 2010; Yonath, A. et al., 2003; 

Yonath, A. et al., 2004; Kipper, K. et al., 2009; Klaholz, B.P. et al., 2004; Pai, R.D. et al., 

2008). Mutational studies involving complete deletion of H69 made 50 S subunit 

variants to have most severe in vitro reassociation efficiency and mutations of loop 

residues influenced initiation factor dependent 70S initiation complex formation (Kipper, 
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K. et al., 2009, Ali, I.K. et al., 2006). In addition, H69 has been shown to be exposed in 

the cell in unassembled 50S subunit and could be targeted by small molecules 

(Merryman, C. et al., 1999). Therefore, based on the amplitude of functions involving 

H69 and its vital position in the ribosome, it fulfills the conditions for an antimicrobial 

target.  

          Phage-display methodology was employed in pursuit of finding small molecules 

such as peptides that could bind H69 and disrupt protein synthesis by interrupting the 

formation of intersubunit bridge in the ribosome. This molecular biology based tool has 

been successfully applied for identification of peptide agonists and antagonists for 

receptors (Pillutla, R.C. et al., 2002), recognition of targets for obstruction of tumour-

specific angiogenesis (Trepel, M. et al., 2002), discovery of peptide drug candidates 

(Ladner, R.C. et al., 2004) and vaccine development (Wang & Yu, 2004). In this work, 

four rounds of selection were performed with different levels of stringency for 

experimental conditions such as amount of immobilized biotinylated H69 (target), the 

nature of the blocking solution, the binding time of phage library with the target H69, the 

number of washes, and the timings of odd and even washes. All of these conditions 

have been clearly described in Chapter 2. After sequencing phage clones of the fourth 

round, two peptide sequences dominated the phage pool, STYTSVS and NQVANHQ. 

           The NQVANHQ peptide was found to bind H69 RNA with a low micromolar 

dissociation constant. The later sequence was a unique sequence for which no 

consensus appeared, but it contained an abundance of amino acid residues that are 

also present in the ribosome recycling factor, RRF, and known to make contacts with 

H69 (Pai, R.D. et al., 2008). The crystal structure of RRF bound to 70 S ribosome 
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shows the amino acids present on one face of the -helix 1 in domain 1 of RRF 

interacting with nucleotides of H69. The amino acids include serine 17 (S17) interacting 

with 1917, valine 20 (V20) interacting with A1916 and m31915, histidine 23 (H23) 

and aspargine (N24) interacting with C1914 (Pai, R.D. et al., 2008). Thus, the conditions 

optimized for selection of peptides against H69 RNA and employing phage display were 

successful. 

            For preliminary evaluation of the binding affinity of these peptides with H69, 

fluorescence and enzyme-linked assays were applied. The peptide sequences 

NQVANHQ and STYTSVS were chemically synthesized on the Tentagel beads. These 

beads were incubated with fluoresecent-labeled H69 for fluorescence assay and biotin-

labeled H69 for enzyme-linked assay. For the fluorescence assay, the fluorescence 

intensity of the NQVANHQ beads was observed to be higher than STYTSVS beads 

indicating that peptide NQVANHQ has higher affinity for H69 as compared to 

STYTSVS. The peptides NQVANHQ and STYTSVS were also probed with Quantum 

dots (Q-dots). The peptide beads were incubated with F-H69 and then with Q-dots 

(having anti-fluorescein antibody). The results of the Q-dots were in accordance with the 

green fluorescence beads and more clearly showed that peptide NQVANHQ had higher 

affinity for H69 as compared to STYTSVS.  

The fluorescence-based assay was not very convenient due to the longer 

incubation times and high number of washing steps required for observing the results. 

In addition, the affect of the attachment of the peptide to the bead on the affinity of 

peptide to RNA was not resolved. Therefore, binding of NQVANHQ was further 

validated by using a more sensitive method, namely electrospray ionization (ESI) mass 
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spectroscopy. There is convincing evidence in literature for employing ESI-MS for 

detecting noncovalent complexes of biological nature (Sannes-Lowry, K.A. et al., 1999). 

ESI-MS is a speedy and reliable technique for assessing the stoichiometry and the 

apparent dissociation constants (Kds) of complexes such as aminoglycosides neomycin 

and streptomycin bound with the TAR RNA, and tat peptide-TAR RNA complex. In this 

dissertation work, ESI-MS studies involved direct titration experiments in which the RNA 

(H69 and its variants) concentration was kept constant and lower than the expected Kd 

of the complex. The ESI-MS has some limitations due to the use of ammonium acetate 

buffer for its experiments since the presence of cations Na+ and K+ form abundant RNA 

adducts and this makes the RNA spectra difficult to interpret; however, studies have 

shown that the RNA-peptide complex is able to tolerate high concentrations of NH4OAc.  

            The apparent dissociation constant obtained for the H69 and NQVANHQ-NH2 

was in the low micromolar range (11  1 M). This value is comparable to that of 

aminoglycoside antibiotics binding to the A-site RNA (1 to 10 µM) (Wong, C.H. et al., 

1992; Fourmy, D. et al., 1996; Wang, Y. et al., 1996;  Sannes-Lowry, K.A. et al., 2000; 

Llano-Sotelo, B. et al., 2002; Kaul, M. et al., 2004), as well as with H69 (8 M) (Duc, A. 

thesis).  However, this dissociation constant is to be considered relative rather than the 

absolute value since the fraction of the bound peptide was observed to be low even at 

more than saturating concentrations of peptide. The low observance of fraction bound 

also reveals that the key driving force behind the complex formation may be 

hydrophobic interactions. The stoichiometry of the interaction of this peptide with H69 

was predominantly 1:1 suggesting the interaction to be relatively specific.  
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            The ESI-MS experiments were also carried out with H69 variant UUU RNA 

(having uridines instead of pseudouridines at positions 1911, 195, and 1917) and 

peptide NQVANHQ-NH2. The relative dissociation constant (Kd) obtained for UUU-

NQVANHQ-NH2 complex at 1:1 stoichiometry was 19  2 M. The higher value of Kd 

calculated for this complex revealed that the presence of all three pseudouridine 

residues positively contributes towards binding of this peptide to H69. To learn more 

about the role of individual pseudouridines at positions 1911 and 1915 towards binding 

of the peptide, ESI-MS experiments were performed with two H69 variants, U and 

U. The apparent dissociation constant (Kd) calculated for U was 28  5 M and 

for U was 28  4 M. The observed 2.5-fold decrease in the apparent dissociation 

constant for the 1:1 complex of RNA and the peptide suggests that the peptide binding 

site is located at or near the loop region containing the pseudouridines at positions 1911 

and 1915. This also reveals that the presence or lack of modifications influences the 

RNA stability, which further influences the binding of peptide. 

           The effect of pH on the complex formation of H69 and UUU RNA with 

NQVANHQ-NH2 peptide was studied at two different values, 7.0 and 5.2. The selection 

of the pH values was based on the pH-dependent conformational changes observed for 

the loop region of H69 (Abeysirigunawardena, S. & Chow, C.S., 2008). The three-fold 

decrease of the apparent dissociation constant for the 1:1 complex of RNA and the 

peptide indicated that either protonation of the RNA or the peptide structure influenced 

this change in binding of the two species. Until further experiments are done, we will not 

know the protonation site or specific contributions to the binding interactions. 
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            For ascertaining the specificity of the peptide for H69, its binding affinity was 

tested with related RNA such as human H69 and unrelated RNAs such as helix 31 and 

A-site rRNA. The peptide showed three-fold lower affinity than the target H69 RNA for 

all these RNAs suggesting that the peptide has features that are suitable for developing 

it as a lead compound for novel antimicrobial. 

           For determining the binding site of the peptide on H69 RNA, various assays were 

employed such as EMSA, Fe-EDTA reaction, and inline-probing assay. Unfortunately, 

none of the assays gave reliable information about the binding site of the peptide.  The 

presence of greater hydrophobic character, reduced electrostatic component and fewer 

hydrogen bonding moieties in the NQVANHQ-NH2 peptide might have contributed 

towards the negative results of these assays.  Further experiments will be required to 

determine the binding site, such as more elaborate mass spectrometry experiments or 

NMR spectroscopy. 

 

6.2. Future directions 

           The NQVANHQ peptide selected for H69 employing phage-display library shows 

moderate binding with the target RNA. This could be attributed to the fact that since 

phage display technique involves live bacteria for amplification of phage, the peptide 

sequences (strongest binders) that will interfere with protein synthesis in bacteria and 

may not actually survive the selection process. Thus, the affinity and specificity of 

NQVANHQ peptide for H69 RNA needs to be improved by understanding the 

contribution of individual amino acid side chain functional groups through alanine 

scanning mutagenesis. The amino acid alanine is mostly used because of its small and 
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inert methyl functional group. In alanine scanning, this smallest chiral amino acid, 

alanine, is used to substitute each non-alanine residue one at a time. This process, if 

used with NQVANHQ, will result in six different variants of the parent peptide having 

alanine at desired positions. In addition, double-alanine scanning could be carried out 

for getting more insight into the roles of individual amino acid or to consider possible 

cooperative effects. The binding of the variant peptides could be monitored by ESI-MS 

or some other biochemical technique. The substitution of key amino acid residue(s) with 

alanine may cause diminished binding activity, thus relating to the important role of that 

particular amino acid(s) in the parent peptide. Therefore, alanine scanning will enable 

us to quickly determine each individual amino acid's contribution to the peptide's 

functionality.  

            Applying the peptidomimetic chemistry, different formats of the parent peptide 

NQVANHQ could be synthesized and characterized for their binding affinities towards 

H69. The examples include -peptides (Gelman, M.A. et al., 2003), peptides having D-

amino acids (Huq, I. et al., 1999), and peptoid-based sequence (Simon, R.J. et al., 

1992). The binding affinity of these peptide sequences could be monitored using ESI-

MS and compared with parent peptide NQVANHQ.  

            Another approach for improving the affinity of the peptides from phage library is 

the construction of peptide sequences with the help of split-pool peptide synthesis. In 

this approach, the knowledge from the alanine-scanning studies will be applied. The 

amino-acids whose removal in alanine scanning resulted in diminished activity will be 

kept constant. The amino-acids at other positions will be varied with all ninteen amino-
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acids. Thus, peptide library will be generated which could then be used for further 

binding experiments for selecting the high affinity peptide. 
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           Peptides binding to helix 69 (H69) of domain IV or residues 1906 to1924 of E. 

coli 23 S rRNA were selected from a heptapeptide phage library. An experimental 

system including biotin labeling of RNA and then affinity selection through multiple 

rounds was followed. After sequencing phage clones of the fourth round, two peptide 

sequences dominated the phage pool, STYTSVS and NQVANHQ. The later sequence 

was a unique sequence that contained an abundance of amino acid residues that are 

also present in the ribosome recycling factor, RRF, and known to make contacts with 

H69. The phage-display methodology demonstrated the feasibility of rapid ligand 

identification, and isolation of small peptides that bind to 23 S rRNA in an effort to 

discover new RNA-binding motifs that have potential therapeutic applications. 

For evaluating the preliminary binding affinity of these peptides with H69, 

fluorescence assays were applied. For this assay, the fluorescence intensity of 

NQVANHQ Tentagel beads was observed to be higher than STYTSVS Tentagel beads, 

indicating that peptide NQVANHQ has a higher affinity for H69 as compared to 
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STYTSVS. The higher binding of the NQVANHQ peptide was further validated with a 

more sensitive method known as electrospray ionization (ESI) mass spectroscopy (MS). 

The apparent dissociation constant (Kd) obtained for H69 and NQVANHQ-NH2 was in 

the low micromolar range (11  1 M) at pH 7.0 in 150 mM ammonium acetate buffer. 

This value is comparable to that of aminoglycoside antibiotics binding to the A-site RNA 

and H69 (1 to 10 µM).  

The ESI-MS experiments with H69 variant UUU RNA and peptide NQVANHQ-

NH2 gave a relative dissociation constant (Kd) at 1:1 stoichiometry as 19  2 M at pH 

7.0. The higher value of Kd for this complex revealed that the presence of pseudouridine 

residues positively contributes towards binding of this peptide to H69. Consequently, to 

learn about the role of individual pseudouridines at positions 1911 and 1915 towards 

binding of the peptide, ESI-MS experiments were performed with two H69 variants, 

U and U. The apparent dissociation constants (Kds) for the 1:1 complex for these 

two RNAs decreased by 2.5-fold, suggesting that peptide binding site is located at or 

near the loop region of H69, which contains the pseudouridines at positions 1911 and 

1915. In addition, the effect of pH on the complex formation of H69 and UUU RNA with 

NQVANHQ-NH2 was studied at two different values (7.0 and 5.2). There was a three-

fold decrease of the apparent dissociation constant for the 1:1 complex of RNA and the 

peptide, indicating that either protonation of the RNA or the peptide structure influenced 

this change in binding of the two species. 

The specificity of the peptide for H69 was tested with related RNA such as 

human H69 and unrelated RNAs such as helix 31 and A-site rRNA. The peptide showed 

three-fold lower affinity for all these RNAs compared to the target H69, suggesting that 
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the peptide has features that are desirable for developing it as a lead compound for 

novel antimicrobials. 
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