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CHAPTER 1 - INTRODUCTION TO MODIFIED HELIX 69 RIBOSOMAL RNA AND ITS IMPORTANCE 

IN COMBATING ANTIBIOTIC RESISTANCE 

 

1.1. Introduction:  DNA, RNA, ribosomes, and protein synthesis  

 

       Deoxyribonucleic acid (DNA) works in concert with polymerases, proteins, ribosomes, 

ribosomal RNA (rRNA), messenger RNA (mRNA), and transfer RNA (tRNA) to enable expression 

of genetic information, translation of proteins, and performance of essential cellular processes. 

Less than three decades following the deciphering of the structure of DNA, Thomas Cech and 

Sidney Altman were awarded the 1989 Nobel Prize in Chemistry for their ground-breaking 

discoveries of auto-catalytic RNAs, ribozymes isolated from Tetrahymena thermophila.1 Cech et 

al. uncovered significant properties of RNAs after isolating and characterizing the complex 

structures of ribozymes and their abilities to self-splice their introns. Ribozymes changed the 

conventional view that only proteins performed enzymatic functions. Altman et al. 

demonstrated the broader implications of catalytic activity of RNA through observations of 

another ribozyme, ribonuclease P (RNase P), in catalytic splicing reactions without the 

assistance of ribo-proteins.2 These breakthroughs suggested novel applications of nucleic acids 

within drug discovery, and the development of biomarkers, probes, diagnostics, and 

therapeutics. They have sparked greater interest in structure-function relationships of nucleic-

acid-based motifs and their potential applications as novel therapeutics and in diagnostic 

technologies. As an introduction to this dissertation and its focus to develop novel applications 

of nucleic acids, it is important to first review the current knowledge of nucleic acids and 

ribosome structure-function roles in vivo, as well as the process of protein synthesis. 
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1.1.1. Deoxyribonucleic acids vs. ribonucleic acids  

 

       Nucleic acids were first discovered by F. Miescher in 1868,3 but it wasn’t until more than 

eight decades later that a crystal structure of deoxycytidine, representing the first published 

molecular structure of a DNA nucleoside, was presented in 1951 by Furberg.4 This work laid the 

groundwork for subsequent nucleic acid structure studies, leading to our current understanding 

of the geometries of deoxy- and ribonucleosides.4 Two years later, the correct double-helical 

structure for deoxyribonucleic acid (DNA) was proposed by J. Watson and F. Crick, marking a 

new era for chemical and biological sciences.5 Analysis of DNA macro-molecular structures 

through X-ray crystallography diffraction maps generated by M. Watkins, and R. Franklin,6 the 

renowned Watson and Crick model of two anti-parallel chains of repeating subunits 

participating in intra-strand hydrogen bonding was proposed (Fig. 1.1 and Fig. 1.2).5,6 These 

hydrogen-bonding, base-pairing, and base stacking interactions of deoxy- and ribonucleotides 

were later explained as London dispersion forces7 attributed to hydrophobic effects within the 

intra-strands having stabilizing forces within pyrimidine and purine bases of DNA and 

ribonucleic acid (RNA) (Fig. 1.1). In addition to London dispersion forces, the Watson-Crick 

base-pairing model includes repeating molecular subunits of nucleotides, consisting of pentose 

sugars, phosphate groups, and heterocyclic amines, or nucleobases (Fig. 1.1).8 

       The nucleobases of DNA are derived from six-membered ring pyrimidines and five-

membered ring purines.  The most common purines of DNA are adenine (A) and guanine (G) 

that interact with the following major pyrimidines: cytosine (C) and thymine (T) (Fig. 1.2). 

Notably, a second group of nucleic acids of similar structure, ribonucleic acids (RNA), were later 
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characterized and found in abundance within the cytoplasm of the cells and viruses. The 

chemical structure of RNA is very similar to that of DNA, with two very important differences: 

(a) RNA contains the sugar ribose, while DNA contains deoxyribose (Fig. 1.3), and (b) RNA has 

the nucleobase uracil (U) whereas DNA contains thymine. Both DNA and RNA are vital cellular 

macromolecules that provide both structural and informational diversity. They are essential 

molecules for all kingdoms of life, and work synergistically to execute replication, translation, 

transcription, and even catalysis.9   

  

 

 

               

 

Figure 1.1. Purines present in both DNA and RNA. Adenine (A) and guanine (G) are present in 

both DNA and RNA. Cytosine (C) is the only pyrimidine present in both DNA and RNA. Thymine 

(T) is present in DNA, whereas uracil (U) is present only in RNA.  The basic structural 

components of ribonucleic and deoxyribonucleic acid chains are shown.  Watson-Crick base 

pairing by deoxyguanosine (gray) forms a triple hydrogen-bond base pair with deoxycytosine 

(purple), and deoxyadenosine (turquoise) forms a double hydrogen-bond base pair with 

thymidine (orange).  

cytosine (C) 

(DNA and RNA) 

guanine (G) 

(DNA and RNA) 

adenine (A) 

(DNA and RNA) 

thymine (T) 

    (DNA) 

uracil (U) 

(RNA) 
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Figure 1.2. Schematic representation of Watson-Crick (B form) DNA.  A double helical DNA 

cartoon model shows the major and minor grooves of the polynucleotide chains connected by 

complementary base pairing (double helix).  The distance traveled along the helix axis for one 

complete helix turn, or 360° rotation, is the pitch (10 base pairs per turn), in which each base 

pair is twisted 36° clockwise with respect to the previous base pair.  Grooves between the two 

sugar-phosphate backbones of the double helix have uneven spacing along the double helix and 

are labeled as the major and minor groove sides of the base pairs.10   

 

       In contrast to DNA, RNA molecules are typically single stranded and can adopt complex 

three-dimensional structures. Devoid of 2'-hydroxyl groups in its sugar moieties, RNA is stable 

against oxidative damage; however, DNA intrinsically has more chemical stability than RNA with 

regard to hydrolysis. Ribo- and deoxyribonucleosides furanose sugars (Fig. 1.3a and Fig. 1.3b) 

have two main non-planar modes of puckered rotations in envelope or twist forms, C3'-endo 
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(Fig. 1.3c) and C2′-endo (Fig. 1.3d), in contrast to the planar ring systems of pyrimidines and 

purines.11  

 

a)                                                                 b) 

                   

c)                                                                             d) 

 

Figure 1.3. Definition of sugar/furanose puckering conformations in nucleic acids. These 

variations of sugar puckering are modes of pseudorotations of phase angles and torsion angles 

of furanose crystallographically determined by analysis of data of the most frequent modes of 

puckering.12 This is figure is a representation of the most frequently observed furanose 

pseudorotation angles, and they are commonly referred to as dominate puckering modes of 

deoxy- (a) and ribonucleosides (b), C3′-endo (c) and C2′-endo (d). Four of the five atoms are in a 

single plane and the fifth atom (c) C3´-endo or (d) C2´-endo positions are either on the same or 

opposite side of the plane relative to the C5´ atom.   

 

Molecular constraints of pentose sugars and phosphodiester linkages of the backbone chains of 

both DNA and RNA help to form complex secondary and tertiary structures often identified in 
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single- and double-stranded DNA and RNAs (Fig. 1.4). Notably, the presence of a 2'-hydroxyl 

group can hinder RNA from exhibiting long stretches of double-helical structures as seen in Z-, 

B-, and A-DNA (Table 1.1). Despite this fact, A-form RNA can mimic the structures of DNA 

helices by folding short stretches of single strands. Once various sensitive spectroscopic 

techniques were employed to further characterize RNA structures, unique three-dimensional 

motifs attributed to distinct biochemical processes emerged. Studies on RNA revealed an 

impressive array of structural variations and flexibilities.13   

 

Table 1.1.  General properties of A-form, B-form and Z-form helices. 

Feature                                                 A-form (DNA)[a]         A-form (RNA)          B-form (DNA)[b]       Z-form 

(DNA)[c] 

Helical sense (handedness)              right               right      right                       left 

Sugar pucker conformation             C3´-endo               C3´-endo     C2´-endo                C3´-endo 

(purines) 

Helix rise/ bp (Å)                     2.6                2.8      3.4          3.7 

Experimental conditions can give rise to different forms of helices in DNA and RNA. [a]A-form DNA 

formed under hydrated conditions.  [b]B-form DNA formed under hydrated conditions. [c]Z-form DNA is 

observed under high-salt conditions. 

 

       Extensive and diverse tertiary structures emerged from studies to explore novel 

biomolecular interactions. A variety of structural motifs in both DNA and RNA, such as hairpin 

loops and stems that form between nearby self-complementary sequences, double/single- 

stranded regions, loop-loop kissing hairpin interactions, internal loops, junctions, bulges, and 

pseudo-knots (Fig.1.4).14  
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1.1.2. Basic structure and function of ribosomes 

 

       Although DNA and RNA are intrinsic components of eukaryotic and bacterial cells, it is 

important to note that they do not work alone in the processes of translating and transcribing 

genes into proteins; rather, macromolecular warehouses, such as ribosomes, house collective 

cellular processes with the ultimate goal of generating essential proteins for proper growth and 

function of an organism.15 Ribosomes are synthesized within the nucleolus of cells and can 

concentrate within the cytoplasm, chloroplasts, and mitochondria, and function as the 

backbone for many molecules during translation. The complex has room for binding protein-

synthesis-enhancing molecules of various structures.16 Ribosomes, tRNA, and mRNA use the 

information of the genetic code to assemble thousands of functional proteins from amino acids. 

These protein products ultimately govern the function and metabolic activities of cells and 

performance of an organism.17 The ribosome houses a myriad of RNA-RNA and RNA-protein 

contacts that are critical for its function. 

       Ribosomes were first observed in the mid-1950s by cell biologist George Palade. He used 

electron microscopy to characterize cellular granules. The term ribosome was proposed by   
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Figure 1.4. Both DNA and RNA have structural diversity demonstrated by various motifs.14 

 

Richard B. Roberts in 1958.18 Since then, advancements in X-ray crystallography,19 electron 

cyromicroscopy (cryo-EM) techniques,20 site-directed mutagenesis,21 immunoelectron 

microscopy22 and probing studies,23 have provided a better analysis of the structures and 

functions of key components of ribosomes.24 Assembled ribosomes comprise up to three rRNA 

molecules, and a variable number of proteins. Combinations of rRNAs and proteins form two 

unequally sized subunits characterized by Svedberg units of sedimentation rates (S) after 

centrifugation and are detailed by cryo-EM interpretations of the atomic structures of the 
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ribosome at moderate levels of resolution (< 3.5-5.5 Å) of E. coli 50S subunits.25,26 Probing 

studies with hydroxyl radicals assisted in the development of model systems of bacterial 

ribosomes.23 The significance of ribosomes was suggested by Brenner, Jacob and Meselson,27 

and their key role in the Central Dogma of Molecular Biology was first proposed by Francis 

Crick.15 The Central Dogma of Molecular Biology (Fig. 1.5) summarizes the key processes of 

transcription and translation, which are essential for the replication and viability of eukaryotic 

and bacterial cells. 

                                                       

Figure 1.5. Schematic representation of the Central Dogma of Molecular Biology.15 An arrow 

from RNA to protein represents protein sequences being determined by RNA templates. 

 

       Early X-ray crystallographic data revealed the basic outlining shape of the bacterial and 

eukaryotic ribosomes. Stucturally, an assembled ribosome displays a series of small grooves, 

tunnels, and platforms with the basic components of the large and small subunits (Fig. 1.6).28 

Ribosomal anatomy has been structurally categorized to include the following regions:  (1) the 

central protuberance or head located on the 5S RNA; (2) a ridge; (3) the peptidyl-transferase 

center (PTC) for peptide-bond formation; (4) the stalk of the 30S subunit of the 23S RNA, 

composed of the ribosomal proteins and functioning as the binding site for ribosomal factors 

involved in translation; (5) the base of the stalk (containing proteins that function to 

simultaneously bind to RNA helices 43 and 44 (H43/44); (6) the platform of the small subunit 
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and mRNA binding site; (7) the head of the 50S subunit with a groove containing translocation 

factors, peptidyl-transferase center, and the 5S RNA; and (8) the back and the front regions, 

representing the surface areas of the large and small subunits, respectively.28  

 

Figure 1.6. General features of ribosomal RNA. Roughly 20 to 30 nanometers in diameter, 

ribosomes are large RNA-protein complexes. A detailed X-ray crystallography view of the 

interface between the small and large ribosomal subunits and the conformation of the peptidyl- 

transferase center in the context of the intact bacterial ribosome (70S) from Escherichia coli is 

shown at a resolution of 3.5 Å (PDB ID 4V4Q).  Below this figure is an image outlining the 

following key ribosomal components: ridges (circled 1), stalk, head, platform, back (circled 2), 

front, base, and peptidyl-transferase center of this complex.28 
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       As a separation tool to analyze ribosomal components, ultracentrifugation yields intact or 

whole ribosomes (70S) as well as the separated large (50S) and small subunits (30S) (Fig. 1.7).29 

Early X-ray crystallographic data revealed the basic outlining shape of the bacterial and 

eukaryotic ribosomes and included their basic components. Various atomic-resolution 

ribosome structures have been solved for the 30S and 50S subunits as well as the whole 70S 

ribosome. The ribosomes from diverse species, including Escherichia coli,30 Haloarcula 

marismortui,31 and Thermus thermophus have been crystallized.32,33 Noller and collogues 

published results with complete bacterial ribosomes with more than 50 different proteins.34 

The laboratories of Steitz, Noller, Ramakrishnan, Yonath, Cate, and Yusupov, have 

revolutionized our understanding of the ribosome through X-ray crystallography.33-38,40 Yusupov 

et al. solved a 5.5-Å resolution structure of the complete ribosome incorporating tRNA and 

mRNA.34 High-resolution structure studies provided the opportunity to more closely examine 

other features within the ribosome such as the aminoacyl (A), peptidyl  (P), and exit (E) sites 

(Fig. 1.8). Ribosomal structural studies using cryo-electron microscopy, X-ray crystallography, 

and scanning microscopy, lead to refined structures and deeper insights into their remarkable 

structures and functions,35 resulting in researchers V. Ramakrishnan,36 T. Steitz,37 and A. E. 

Yonath38 being awarded the Nobel Prize in Chemistry (2009) for significant advancements in the 

knowledge of structure and function of ribosomes from X-ray crystallography maps of the 

positions for hundreds of thousands of ribosomal atoms at the atomic level.   
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Figure 1.7. Eukaryotic versus bacterial ribosomal complexes. The large and small subunits of 

the ribosome form inter-subunit bridges to create an assembled ribosome. Eukaryotes have a 

complete assembled 80S monosome comprising a 40S small subunit (SSU) that includes the 18S 

rRNA of 1900 nucleotides (nt), and a 60S large subunit (LSU) composed of 120-nt 5S rRNA, and 

a 4718-nt 28S RNA, and a 160-nt 5.8S subunit that is bound to ~49 proteins.36 The two units 

comprising the bacterial 70S ribosome are the small (30S) and large (50S) subunits. The 30S 

subunit has a RNA subunit of 1540-nt bound to 21 proteins, whereas the 50S subunit consists of 

a 120-nt 5S rRNA and a 2900-nt 23S rRNA bound to 34 proteins.39 

 

1.1.3. Protein synthesis 

 

       Collectively, S. Brenner, F. Jacob, and M. Meselson determined through radioactive tracing 

methods, or “pulse-chasing” basic mechanisms of how ribosomes enable protein synthesis (Fig. 

1.8), the "missing link" of the Central Dogma of Molecular Biology.27 Noller was the first to 

show that rRNA plays a crucial role in the catalysis of peptide-bond formation.40  The ribosomes, 
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are the hosts for the translation process within cellular organelles. The average number of 

ribosomes within growing E. coli cells is ~20,000;41 and protein synthesis on one E. coli 

ribosome occurs at an impressive rate of 21 amino acids/second.42 Overall, the intrinsic 

components of eukaryotic and bacterial cells have been identified and extensively studied 

through atomic-scale resolution of the ribosome, as mentioned in the previous section; 

however, there are additional specialized features found within the ribosome complex that 

scientists are still studying in order to gain greater insight into their proposed roles, dynamics, 

structures, and key interactions with other macromolecules (i.e., proteins, tRNA, mRNA). 

        RNA polymerase directs the process by which mRNA copies a gene. The process of 

translation can be summarized in five general steps: (1) activation of transfer RNA with N-

formyl-methionine, (2) initiation, (3) elongation, (4) termination, and (5) post-translational 

processing.43 This process begins with mRNA molecules copying instructions from chromosomal 

DNA, followed by various amino acids as building blocks of proteins, being carried to the 

ribosome by tRNA thereby initiating polypeptide chains synthesis in a specific sequence and 

order. From high-resolution structures of the E. coli ribosome, translocation events can be 

monitored, subsequently involving movement of mRNA and tRNAs over a distance of ~50 Å in 

crystal structures on the ribosomal subunits44 providing data from directed hydroxyl radical 

probing and cryo-EM studies.45,46 Initiating protein synthesis, tRNA has an N-formyl-methionine 

(fmet) that recognizes the AUG codon through its UAC anticodon. The tRNAfmet binds in the 
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Figure 1.8. Overview of the function of the ribosome during transcription and translation 

within a cell. (a) Transcription and translation are shown in a bacterial cell. (b) The large and 

small ribosomal units at the beginning of protein translation in the peptidyl-transferase center  

and E, P, and A represent the exit, peptidyl, and acceptor sites of the ribosomal RNA, 

respectively. The clover-leaf structure of the initiating tRNA is shown in blue with its anticodon 

binding to the starting codon of the messenger mRNA.   

 

P site.47 The next step is for a second tRNA to approach the mRNA in the A site and start growth 

of the peptide chain.47 The A site needs to be vacated in order to bind the next aminoacyl-tRNA 

to the ribosome.43 In the final stage, the newly formed peptide chain dissociates from the 

ribosome upon hydrolysis at the last amino acid. Throughout these aforementioned steps, the 

ribosome holds the tRNAs in different conformations within its binding sites, to subsequently 

 

a) cell 
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pass through the A, P, and E sites located at the interface between the two subunits of the 

ribosome.48    

       Processes of initiation, elongation, and termination are repeated to allow more proteins to 

be synthesized (Fig. 1.9). First, a correct match with the anticodons of a tRNA needs to be 

identified to form a peptide bond, thus initiating the formation of a peptide chain to encode for 

a protein. Next, elongation of the peptide begins and an appropriate tRNA reads the next 

codon. The translocation, or movement of tRNA within the ribosomal 50S and 30S subunits, 

includes a peptidyl-tansferase reaction and movement of a peptidyl tRNA to the large subunit 

from the P and A sites to the E and P sites, respectively, while their anticodon ends remain 

bound to the small subunit (Fig. 1.9).49,50 Finally, termination of protein synthesis occurs when a 

stop signal codon is reached on the mRNA.   

           

Figure 1.9. Translocation within the ribosomal 50S and 30S subunits. A peptidyl tRNA is 

located in the P site (solid red circle) and aminoacyl tRNA is in the A site (open blue circle) (a).  

The colored circles represent the amino acids attached to the 3' ends of the tRNAs. After 

peptide-bond formation, deacylated tRNA is in the P/P state and peptidyl tRNA extended by 

one amino acid is in the A/A state (b). The acceptor ends of the deacylated tRNA and the 

peptidyl tRNA are spontaneously translocated relative to the 50S subunit, resulting in P/E and 

A/P hybrid states, respectively (c) followed by movement of the anticodon and deacylation of 

the tRNA becomes deacylated (d).51,52 Note abbreviations: aminoacyl (A), peptidyl (P), and exit 

(E) sites.   
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1.2. Pseudouridine and 3-methylpseudouridine: significance of modified nucleotides 

 

       Database entries of more than 100 published naturally occurring modified nucleotides53 are 

frequently updated; however, many of their biological functions are just beginning to be 

elucidated.54 An array of structural diversity of post-transcriptional modifications for RNA exist 

(Table 1.2). Nearly all functionally important RNA molecules, including rRNAs, tRNAs, and 

mRNAs, contain nucleotide modifications.55 Evidence of the importance of methylation within 

RNA was acknowledged in recent studies on N6-methyladenosine (m6A), the most prevalent 

internal (non-cap) modification present in the mRNA of all higher eukaryotes.56 The exact 

role(s) of m6A modification remains to be determined; however, recently published work 

highlights its importance in basic biological functions, disease, cell viability, and development, 

including newly discovered roles in translation status and lifetimes of mRNA.54 Furthermore, 

both natural and synthetically produced modified nucleosides and nucleotides such as  5´-O-(1-

thio)-nucleoside triphosphate57,58 and 2-aminopurine ribonucleoside57 have significance in 

biochemical regulation and applications in chemistry, pharmacology and biochemistry as 

probes to study RNA structure, function and conformational changes, respectively.59  

       Of the known naturally occurring modified nucleotides, pseudouridine (5--D-

ribofuranosyluracil;; psi) constitutes 8% of the uridines found in the large subunit rRNAs (Fig. 

1.10).60 Although detailed structural and functional dynamics of the ribosome, its role in protein 

synthesis, and the locations of modified nucleotides in the rRNA have been extensively 

reported, further deciphering of the importance of nucleotide modifications and their impact 

on eukaryotic and bacterial translation still remains.61 As nature’s most abundant modified 
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base,  has been identified in many different types of RNAs.62 Discovered by Davis and Allen in 

1957, is the C-glycosidic isomer of uridine63 and was structurally characterized by Cohn.64 

Despite its known presence for many decades, the biological roles of have remained poorly 

understood.65,66 Notably,  was the first modified nucleoside identified in cellular RNA, and 

later shown to be broadly distributed in all kingdoms of life,67 including archaebacteria, 

eubacteria, and eukaryotes (RNA Modification Database and Modomics Database).67  

Table 1.2. Nomenclature for pseudouridine family of post-transcriptionally modified 
nucleosides.  
Common Name                                                             Symbol                

pseudouridine67                                         
 

1-methylpseudouridine68                          m1


       
 

2´-O-methylpseudouridine69
       m         

 

Figure 1.10. Illustration of isomerization of 1-ribosyluracil to pseudouridine.67 

        

       Typical of most modified nucleotides, arises by site-specific, enzymatically catalyzed 

modification of uridine within RNA by  synthases (i.e., enzymes responsible for 

isomerization).70 This post-transcriptional process is termed pseudouridylation.62 Derivatives of 
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, such as 3-methylpseudouridine (m3
, are also found in nature.71 In comparison to uridine, 

 shows inherent structural differences; more specifically,  typically has a 3′-endo sugar 

pucker and can participate in more extensive base-stacking interactions.72 The C-C glycosidic 

linkage also gives  more conformational flexibility and rotational freedom.73 Furthermore, 

has an extra hydrogen-bond donor (N1H) that can participate in interactions with 

neighboring groups.74 Within an RNA helix, a N1H H-bond can also form with a water 

molecule to bridge with the preceding phosphate group.75 Such an interaction could alter RNA 

stability and impact its functions in vivo.  

       Although some functional roles have been attributed to modified RNAs, the majority of 

them appear to serve in fine-tuning and regulating RNA structure.76 The locations of modified 

nucleotides tend to cluster at sites of functional biological importance, e.g., the anticodon loop 

of tRNA,77 the PTC of the large subunit rRNA,78 and the decoding region of the small ribosomal 

subunit.78 Naturally found RNAs (i.e., tRNAs, rRNAs, and spliceosomal small nuclear RNAs 

(snRNAs) have been reported to contain s; and it is appears abundantly clustered within the 

PTC with conservation over a broad range of organisms, originally suggesting its potential 

significance with respect to protein synthesis.65 
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1.3. Helix 69 (H69) motif of Escherichia coli 23S ribosomal RNA 

 

       There are six large domains within E. coli 23S rRNA that form intricate, compact, and unique 

secondary and tertiary structures (Fig. 1.11).32 Of great importance to this study is the 1920-

stem-loop region of domain IV of E. coli 23S rRNA, commonly referred to as helix 69 (H69), 

which has been found to be a highly conserved motif localized at the inter-subunit bridge 

region of the ribosome (Fig. 1.11).35 Inter-subunit bridges were identified by footprinting and 

chemical modification experiments and later confirmed by cryo-EM and crystallographic studies 

of the domains that undergo molecular motion during protein synthesis and participate in both 

RNA-RNA and protein-RNA contacts between the large and small ribosomal subunits.79,80    

       The inter-subunit bridge known as B2a in E. coli 70S ribosomes involves both the large (50S) 

and small (30S) subunit rRNAs, with H69 positioned directly at the interface of the two subunits 

(Fig. 1.12a). There are nine s in E. coli 23S rRNA (Fig. 1.12b). This dynamic region of the 23S 

ribosome contains two s at positions 1911 and 1917 and an m3
at position 1915 (Fig. 

1.12b).81 H69 also contains a G•U mismatch in the stem region, which displays greater base-

stacking overlap on the 5' side of U than with the Watson-Crick base pairs (Fig. 1.12b).  
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Figure 1.11. A schematic of the secondary structure of the 3′ half of E. coli 23S rRNA and 

locations of pseudouridine () and 3-methylpseudouridine (m3
). A map of domain IV of E. 

coli 23S rRNA is shown with the location of the H69 stem-loop region enclosed by a dotted 

rectangular blue box (the 5′ half is not shown). The positions of the pseudouridines and 3-

methylpseudouridine are labelled as follows:  (red circle) and m3
 (green triangle). The image 

is adapted from (http://www.rna.icmb.utexas.edu).80 

 

 

 

http://www.rna.icmb.utexas.edu/
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1.3.1. Proposed roles of pseudouridine in H69  

 

       Ofengand noted that 1917 is likely to have a unique function, because results from the 

deletion of the three conserved s in H69 showed only position 1917, which is universally 

conserved, to have a strong effect.81 Similar studies by Liiv et al. revealed that E. coli ribosomal 

activity is affected by modifications in the loop region of H69; mutation of 1917C, but not 

1911C or 1915C, caused inhibition of polysome formation and translation.82 Their findings 

implied that pseudouridylation of U1917 might have a special role in ribosome synthesis. These 

studies highlight the significance of  in bacteria. A similarly important role of  in eukaryotic 

systems was highlighted in yeast mutational studies by Liang et al.83 Their results showed that 

blockage of one to two of H69’s five s have no detectable effects on cellular growth; however, 

loss of three to five modifications impaired growth and caused ribosomal defects. In the 

absence of , levels of rRNA and amino-acid incorporation in vivo were reduced to a range of 

20 to 60%.84 Consequently, the observed major effects of loss of modification in H69 indicate 

that the modified bases influence both ribosome synthesis and function in synergistic ways.84 

 

1.3.2. H69: significant contacts and functions 

 

       The ribosome has subunits that connect through inter-subunit bridges, offering a channel 

for mRNA to flow through and tRNA to dock to the acceptor (A), peptidyl-transferase (P), and 

exit (E) sites (Fig. 1.12 and 1.13). As one of the 12 known inter-subunit bridges studied by 

Yusopov and co-workers, bridge B2a of the large subunit protrudes and makes contact with 

helix 44 (h44) of the smaller subunit, also referred to as the decoding region.79   
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Figure 1.12. Significant ribosomal contacts of H69. Universally conserved H69 contacting the A-

site region known to be the acceptor site (yellow) and P-site (green) tRNAs. Four residues of 

H69 have contact with the 30S subunit (red).84  

        

Schuwirth et al. revealed additionally important subunit contacts by H69 in crystal structures of 

the E. coli 70S ribosome at 3.5 Å.85 Consequently, this work supports a view that H69, as a part 

of bridge B2a, has significant structural flexibility and may be involved in signal transmission 

between the two subunits at different stages of translation.88 Another major finding is that H69 

can function as what appears to be a molecular relay mechanism or communication pathway 

between the large and small subunits. H69 dynamics includes movement between two 

different conformations while protruding from the surface of the large subunit to interact with 

the small subunit and simultaneously participating in subunit association (Fig. 1.13a).86
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 a)                                                                        b)                                                            c) 

 

 

Figure 1.13. Three different model views of H69.  (a) A closer view of H69 within the ribosome. 

Cryo-EM studies of E. coli ribosomes revealed that H69 is a component of both the A- and P-

tRNA binding sites within the large 50S subunit where the inter-subunit bridge B2a is 

located.87,88Important nucleotide contacts are shown as colored circles; H69 simultaneously 

contacts the P-site tRNA (red and green), and the A-site tRNA (black, orange, and pink).91 The D-

stem junction of the A-site tRNA by the loop residues 1913 - 1915 as well as the P-site tRNA 

binding site by backbone-backbone interactions with stem nucleotides 1908, 1909, and 1922, 

corresponding colored triangles match colored circles in the  P-site and A-site tRNA binding 

sites of the ribosome.103 Triangles indicate  or m3
 (b). H69 from the structure of the 50S 

ribosomal subunit of Deinococcus radiodurans (identical to that of E. coli), (c) generated with 

PyMOL (DeLano Scientific), modelled with unmodified uridines (PDB entry 1NKW).89 

      

Additional dynamic shifting movements of H69 were observed by Ramakrishnan and co-

workers in a 2.8-Å-resolution structure of T. thermophilus 70S ribosomes.33 Complexed with 

mRNA and tRNA, H69 was observed to be dynamic as it shifted toward the 30S subunit with 

outward base flipping of residue A1913, thus forming a hydrogen bond to the 2′ hydroxyl of 
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ribose 37 of the A-site-bound tRNA anticodon stem–loop.90 These conformational changes 

included the displacement of H69 during the dissociation step of protein synthesis.90 Specific 

pH-dependent changes in synthetic, modified H69 constructs were observed through circular 

dichroism spectroscopy, thermal melting analysis, and NMR spectroscopy, providing further 

evidence that H69 is both structurally and functionally dynamic in solution.33,90 

       Studies conducted by Wilson et al. helped to further reveal the essential roles of H69 in 

subunit association through RNA-RNA and RNA-protein interactions when they reported their 

findings of both H69-RNA and H69-protein contacts during translation termination.91 

Specifically, ribosome structures have also revealed H69 interactions with proteins required for 

the final release step of protein translation, and recycling factors (RRF)91 necessary for 

promoting the dissociation of the large and small ribosomal subunits.92,93,94 Wilson et al. 

published their findings of RRF contacting H69 and the subsequent resulting conformational 

changes in the bridge B2a.91 Their study revealed contacts between H69 and RRF involving 

highly conserved amino acid residues E122 and V126 as they interacted with m3
1915 of H69, 

and as V130 interacted with A1916.91 Ultimately, these H69-protein and H69-RNA interactions 

emphasize the importance of H69 in proper functioning of the ribosome during protein 

synthesis. Thus, continued structural and dynamics studies will provide insight into the 

biological function of H69.91 

1.4.  Antibiotic resistance and implications 

       Bacterial and eukaryotic ribosomes both house cellular processes with the ultimate goal of 

generating essential proteins for proper growth and function of an organism,15 but their 
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evolutionarily conserved structural features vary enough to be exploited for the development 

of effective drugs, such as anti infectives or antibiotics95 and effectively interfere with 

important cellular processes in bacteria (Table 1.3).96 Antibiotics can selectively target either 

the small or large subunits of the invading microbe through mechanisms that involve the A or P 

sites of the decoding region or PTC, without targeting the ribosome function in the host.97 For 

example, the large ribosomal subunit (50S) is targeted by many classes of antibiotics (e.g., 

erythromycin, clarithromycin and roxithromycin, chloramphenicol, and clindamycin) that can 

block peptide-bond formation.95,97 

       Infectious microbes have the ability to adapt through changes in an effort to survive and 

replicate.98 Development of resistance in the antibiotic target site is an acquired mechanism for 

excluding or inactivating antibiotics. Other changes include modifications of the antibiotic to 

preclude binding, or alterations that affect the ability of antibiotics to reach their target.99 For 

example, cephalosporinase-resistant bacteria modify their peptidoglycan cell wall and often use 

pump systems fueled by ATP to filter and eliminate specific antibiotics out of their cells.100 

Alternatively, some antibiotic resistant microbes have developed the ability to chemically or 

structurally modify their target so that the antibiotic no longer has a recognizable target or 

ability to bind the target and otherwise cause a bactericidal and bacteriostatic effect.100 

              The Centers for Disease Control and Prevention (CDC)101 monitored and reported 

emergence of antibiotic resistance in bacterial pathogens from 1980 to 2000 (Fig. 1.14) for 

methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant enterococci (VRE) 

and fluoroquinolone-resistant Pseudomonas aeruginosa (FQRP), and their data analysis 
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illustrates the alarmingly rapid spread of antibiotic resistant microbes exposed to common 

antibiotics.   

  

Table 1.3. Antibiotic classes and modes of action 

 Class                           Example  Condition  Cellular target 

beta-lactams                      penicillin  skin   cell walls/inhibition of cellular walls 

 ampicillin ear                                            

 amoxicillin urinary tract 

macrolides              
         erythromycin  respiratory tract ribosome/inhibition of protein synthesis 

aminoglycosides        gentamicin     ribosome/inhibition of protein synthesis 

              kanamycin         

              streptomycin 

flouroquinolones       floxacin  respiratory tract nucleus/inhibition of DNA synthesis 

tetracyclines             doxycycline skin                       ribosome/inhibition of protein synthesis 

              demeclocycline  urinary tract         ribosome/inhibition of protein synthesis 

cyclic peptides            vancomycin       fever                      ribosome/inhibition of protein synthesis 

                                                                         gonorrhea 

Adapted from Physician’s Desk 59th ed. Montvale, N.J. Thomson PDR, 2005. 
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Figure 1.14. Continued emergence of antibiotic resistance. CDC National Survey Data (2013) 

data of resistant strains of infectious microbes.  MRSA = methicillin-resistant Staphylococcus 

Aureus. VRE = vancomycin-resistant Enterococci. FQRP = fluoroquinolone-resistant 

Pseudomonas aeruginosa. Data graph adapted from CDC’s 2013 report, “Resistant Strains 

Spread Rapidly”.101,102  

 

       The Centers for Disease Control and Prevention released their 2013 report of bacterial 

strains that have “concerning”, “serious” or “urgent threat” levels in the United States and 

included as infectious microbes that have caused adverse health effects in more than two 

million people each year exhibiting antibiotic-resistant strains of bacteria and have been 

attributed to more than 23,000 deaths in 2013.101 The CDC continues to report the emergence 

of antibiotic resistance, and this information has been useful for the development of new ideas 

for combating the alarming rate of antibiotic resistance.102 As of 2013, greater than half of the 

antibiotics produced in the United States are disproportionately used in agricultural 

applications such as livestock and agricultural feed rather than human use, contributing to the 

emergence of accelerated rates of antibiotic resistant strains of human and animal pathogenic 

microbes.103 Most strains of the staphylococcal infections in the United States have been 
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reported to be resistant to penicillin.104 The CDC has listed the most “serious” antibiotic 

resistant microbial threats to include vancomycin-resistant Enterococcus (VRE) and methicillin-

resistant Staphylococcus aureus (MRSA).103 Finally, reported as “urgent threats” were 

Clostridium difficile, carbapenem-resistant Enterobacteriaceae (CRE), and Neisseria 

gonorrhoeae.  Fluoroquinaolone-resistant strains of Clostridium difficile have been reported by 

the CDC to be responsible for 250,000 infections, 14,000 mortalities, and excess medical costs 

of more than $1 billion each year.105 Carbapenem-resistant Enterobacteriaceae (i.e., 

Kleibsella and E. coli bacteria), or CRE, cause 9,000 infections and 600 deaths each year and are 

resistant to multiple antibiotics. Half of hospital patients who acquire CRE bloodstream 

infections die.106 Listed by the CDC as the second most commonly reported notifiable infection, 

drug-resistant Neisseria gonorrhoeae is another microbe of urgent threat in the U.S.  

Approximately one-third of the 820,000 Neisseria gonorrhoeae infections reported in 2011 

were resistant to at least one antibiotic (i.e., tetracycline, cefixime).103,104 

       Consequently, scientists are focusing on a long-term solution to address the emergence of 

antibiotic resistance in bacterial pathogens. For example, a potential solution was presented by 

the U.S. Food and Drug Administration (FDA) on December 11, 2013 through the release of 

“Guidance #213”,107 a document listing recommendations designed to give direction to drug 

companies to voluntarily revise FDA-approved labeled use and conditions of common 

antimicrobials applied in medical health for humans. They desired more regulated use outside 

of human medical applications (i.e., agricultural applications, such as livestock and agricultural 

feed).  Ultimately, the Guidance #213 document requests 26 major manufacturers of antibiotics 

(~60% of American pharmaceutical drug producing companies) to change antibiotic product 
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labeling so that they cannot be marketed and used for livestock and agriculture to reduce 

incidences of antibiotic resistance.107   

1.5. H69 as a viable biological target 

 

       The general requirements for effective anti infectives have been extensively reported and 

can be summarized to have the following five properties: (1) ability to reach its target; (2) ability 

to retain its active form; (3) appropriate binding affinity once bound to the target site; (4) 

selectivity and binding specificity to the target; and (5) ability to interfere with important and 

essential functions carried out by the target and/or key biomolecular systems.99 Helix 69 has 

been targeted by aminoglycoside antibiotics that have been shown to negate subunit 

dissociation and recycling of H69 bacterial ribosomes.91,94,108,109 Aminoglycoside binding to 

chemically synthesized motifs representing the E. coli and human H69 was detected and 

quantified by Agris et al. using thermal denaturation, circular dichroism spectroscopy, and 

isothermal titration calorimetry.110 Their findings suggest bacterial H69 as a viable target for 

neomycin, tobramycin, and paromycin, with a significantly lower affinity for human H69.110 

Interestingly, Agris et al. also found that the presence of conserved modified nucleotides, 

1911, 1915, and 1917, did not significantly affect the binding of paromomycin.110  Despite 

this, the higher affinity of the bacterial H69 for aminoglycosides over eukaryotic H69 supports 

the hypothesis that H69 is a viable target for new anti infectives. The aforementioned studies 

examine the different responses of a key rRNA motif RNA, which is highly conserved between 

bacterial and eukaryotic ribosomes and is already known as a target for anti-microbials.  Helix 

69 may potentially be a valid target for the development of more effective antibiotics.110  
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CHAPTER 2 - SELECTING DNA APTAMERS 

 

2.1. Background of SELEX and aptamers 

 

       In vitro selection by systematic evolution of ligands by exponential enrichment (SELEX) is a 

combinatorial chemistry technique used to discover novel biomolecules with useful 

functionalities.113 SELEX was first described by Tuerk and Gold111 as a technique to develop 

ligands for protein targets, and within the same year, Ellington and Szostak112 reported SELEX of 

nucleic acids for small molecules targets. Ellington and Szostak coined the term “aptamers”, 

merging the Latin word "aptus" and the Greek word "meros”, which mean "suitable, adjusted, 

or to fit" and "particle", respectively.114 SELEX enriches nucleic acid libraries by using the 

polymerase chain reaction (PCR), and generates ligands with diverse secondary and tertiary 

structures to function as specific binders for a given target.113 Other pioneers of in vitro 

selection were Robertson and Joyce.114 All three groups explored complex libraries of 

randomized sequences of oligonucleotides with ~1015 in population diversity for screening of 

high-affinity, ligand-binding RNA molecules against various targets.113,114,116 Today, many 

variations of SELEX have been reported that generate aptamers against new biomolecular and 

small molecular targets, taking advantage of varying selection and counter-selection 

conditions.115 Famulok et al. have demonstrated the ability of aptamers to show high levels of 

affinity and selectivity of an RNA/L-arginine aptamer (Kd = 330 nM) with nearly a 200-fold 

improvement over the tightest binding arginine ligand known to date.116 
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2.2. Using systematic evolution of ligands by exponential enrichment (SELEX) for generating 

highly specific target-binding ligands  

 

       The standard experimental method of SELEX consists of iterative rounds of selection of 

sequences that bind to a target molecule through oligonucleotide library-target binding, 

washing, elution, and amplification, resulting in a gradual enrichment of the library with 

sequences exhibiting increased affinity for the target molecule.113-117,119 Iterative rounds of 

standard SELEX consist of the following four main stages: (1) incubation of the library with the 

target molecule; (2) separation of the complexes with the target from non-bound 

oligonucleotides; (3) amplification of the bound oligonucleotides by PCR for successive rounds; 

and (4) cloning of the enriched library and sequencing of select rounds for characterization and 

structural analyses (Fig. 2.1).113-117,119  Typically, during the initial rounds of SELEX, individual 

sequences are not highly represented, and the process should therefore be performed under 

low stringency conditions first (e.g., low salt concentration, fewer washes, etc.) to ensure 

recovery of unique functional sequences. The stringency conditions are increased in 

subsequent rounds to help achieve higher frequency tighter binding of ligands to the target.117 

Ultimately, rounds of in vitro selection are performed to reduce the number of weakly 

functional sequences, and increasing stringency during this process helps further enrich the 

library pool and obtain the best sequences. Finally, SELEX is complete when the activity of the 

DNA pool reaches a plateau, showing that a further increase in stringency will not result in an 

increased DNA pool activity.119  
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Figure 2.1. Overview of standard SELEX method. Following incubation of a target molecule 

with a library of randomized DNA sequences, target-DNA complexes are separated and 

amplified, and those with affinity to the target are recovered for repeated cycles of incubation, 

separation, and amplification until the sample is enriched with sequences that display high 

affinity for the target. Select nucleic acid library molecules are cloned and sequenced between 

cycles, or alternatively after the final cycle of SELEX.118  

 

2.2.1. Experimental rationale of SELEX   

 

       Random sequence libraries generate molecular diversity necessary to isolate unique and 

rare aptamers that can interact with the target. When designing the initial DNA library, the 

randomized sequences chemically synthesized will have molecular diversity dependent on the 

number of randomized nucleotide positions (i.e., a library containing a 20-nt random region has 

1.2 × 1024 individual sequences) and the sample size (volume) selected for use within the 

experiments. For example, a 1.2 × 1024 oligonucleotide library from a 1 µmol-scale, solid-phase 
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DNA synthesis would actually be limited to 1014 to 1015 individual sequences because of 

practical reasons.  

2.2.2. Basic parameters and design   

 

       Crystal structures or NMR solution structures of aptamers bound to their targets help 

provide information about the scaffolds and arrangement of aptamer chemical surfaces that 

are favorable for specific target binding interactions.119 Aptamers generated by the SELEX 

method can form complex three-dimensional structures and have various chemical properties, 

leading to selective binding towards their target, in which correctly positioned hydrogen-

bonding and phosphate-group interactions dictate sequence-specific binding.114 Aptamers can 

be designed from single-stranded RNA or DNA for binding to a variety of targets including small 

molecules/proteins to whole cells.115,120 Aptamer target binding affinities and specificities have 

been reported in the range from µM to nM.113,114,118,119 Basic properties of aptamers include 

complex three-dimensional structures that have electrostatic interactions with their targets121 

(e.g.,  van der Waals; hydrogen bonding; and base stacking).114,115,119,121   

 

 

2.2.3. SELEX generated aptamers as highly specific binding ligands 

 

       Interestingly, nucleic-acid-based aptamers can exhibit multiple folded structures and 

unusual conformations, including double-stranded regions, non-standard base pairs, hairpin 

loops, triplexes, quadruplexes, multi-stem junctions, pseudoknots, nucleotide bulges, and loop-

loop “kissing” interactions120 between two hairpin structures or involving internal loops and 
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bulges (see Fig. 1.4).121 Consequently, oligonucleotides have been proposed as potential 

drugs122 that can bind tightly to targets based on complementarity of their three-dimensional 

structures and functional group display rather than just their sequences.123 A well-known 

example of loop-loop “kissing” interactions between two hairpin structures has been observed 

and reported by Toulme et al. with DNA aptamers selected to bind to other RNA targets such as 

human immunodeficiency virus type-1 trans-activation-responsive (TAR) RNA element (Fig. 

2.2).124     

                                             

                        

Figure 2.2. Example of DNA/RNA kissing complex motif.137 Hairpin-hairpin or loop-loop 

“kissing” interactions between two hairpin structures have been observed and reported by 

Toulme et al. with DNA aptamers selected to bind human immunodeficiency virus type-1 trans-

activation-responsive (TAR) RNA.  Only the apical regions of TAR and IV-04 (25–46 nt) are 

represented. The consensus region of DNA aptamer (IV-04) the apical loop binds with the apical 

region of HIV TAR RNA (20–42 nt).140 

 

 

       Aptamers have the potential to achieve a higher degree of specificity for their targets than 

antibodies.122 Aptamers have been noted for their remarkable specificity, discriminating on the 

basis of subtle target structural differences such as the presence or absence of hydroxyl and 



35 
 

 

 

methyl groups.125 Amazingly, theophylline aptamers were characterized with greater than 

10,000-fold binding preference for the target over caffeine, which differs from the theophylline 

structure by only one methyl group.127  

 

 2.3. Aptamers: novel therapeutics generated by in vitro selection  

 

       The application of aptamers as therapeutics and diagnostics within the global market has 

grown rapidly since 2009 (valued at $10 million), and was projected to have a value of $1.8 

billion by 2014.126 The first FDA clinically approved aptamer based drug, Pegaptanib (Macugen), 

was developed for treatment of age-related macular degeneration (AMD).127 In addition to this 

nanochemical application of aptamers, recent advancements with applications within 

electrochemical sensors for environmental pollutants have been reported.128 Since the 

commercialization of aptamers, many biotechnological companies have designed aptamers or 

Aptabodies™ modified with sugars, fatty acids, amino acids, synthetic compounds, cofactors, 

and metal ions.129  

 

2.3.1. Basic properties and applications 

 

       Aptamers offer advantages over antibodies as functional, high-affinity, specific binders or 

inhibitors, as they require only a small quantity of pure target for the selection process.124 

Traditional rational drug discovery typically consumes large amounts of time and resources, as 

well as extensive information about the exact binding site or target. However, aptamers elicit 
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little or no immunogenicity in therapeutic applications and can be engineered completely in 

vitro with highly discriminating molecular recognition.130 Thus, these intrinsic properties have 

shown promise as an alternative for food safety control.131 Furthermore, in cell-culture 

experiments and animal studies, aptamers do not exhibit intrinsic toxicity.132 For these reasons, 

aptamers have the potential to be used as novel drugs.133 

       Unfortunately, limitations exist for obtaining in-depth structural information on aptamers. 

Often, aptamer structures are limited to secondary structure predictions from software analysis 

programs such as Mfold.134 These computer-predicted secondary structures have a high degree 

of uncertainty, with even less information about the aptamer-target interactions. Further 

advancements in structure determination based on nucleic acid sequences could render more 

value and utility to aptamers as commercially viable biomolecular tools.  
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CHAPTER 3 – PURPOSE:  ISOLATION AND ANALYSIS OF DNA APTAMERS BY SELEX FOR H69  

  

3.1. Research proposal and thesis statement  

 

       Ribosomes are promising target macromolecules with functional importance for novel drug 

development. This importance has become increasingly clear because the ribosome is the heart 

of essential cellular functions, namely protein synthesis, and the rRNA is already a known target 

for anti-infectives. We propose that bacterial wild-type H69 rRNA would be a viable biological 

target for the development of DNA ligands or aptamers as novel anti-infectives. Importantly, 

the general requirements for effective anti-infectives have been reported extensively135 and 

can be summarized to have the following five desired properties: (1) ability to reach the target; 

(2) ability to retain an active form; (3) have appropriate binding affinity once bound to the 

target site; (4) selectivity and binding specificity to the target; and (5) ability to interfere with 

important and essential functions carried out by the target and/or key biomolecular systems.  

Importantly, DNA molecules have been proven to be stable both in vitro and in vivo, and nucleic 

acid-based aptamers would be ideal ligands due to their diversity of structures and ability to 

build in chemical stability or new recognition motifs. Notably, H69 has already been targeted by 

aminoglycoside antibiotics, which negate subunit dissociation and recycling of bacterial 

ribosomes.136,137 Specifically, aminoglycoside binding to chemically synthesized RNA motifs 

representing E. coli and human H69 was detected and quantified by Agris et al. using thermal 

denaturation, circular dichroism spectroscopy, and isothermal titration calorimetry. Their 

findings are significant, because they suggest bacterial H69 as a viable target for neomycin, 

tobramycin, and paromycin, with a significantly lower affinity for human H69.138   
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       Furthermore, Agris and coworkers also found that the presence of conserved modified 

nucleotides, 1911, 1915, and 1917, did not significantly affect the binding of 

paromomycin. Despite this finding, the higher affinity of aminoglycosides for H69 over 

eukaryotic H69 supports the hypothesis that H69 is a viable target for new anti-infectives. Also 

of note is the fact that bacterial 70S ribosomes are more vulnerable to aminoglycoside 

antibiotics than eukaryotic 80S ribosomes because of differences in drug uptake.151 

Consesquently, results from the aforementioned studies examining the different responses to 

anti-microbials between bacterial and eukaryotic ribosomes suggest the ability to identify 

highly selective antibiotics. The multiple biological functions of H69 have also generated 

interesting and as of yet unanswered questions. In particular, can tightly bound molecules with 

high specificity and affinity for specific RNA conformational states inhibit or reduce binding and 

dynamics of H69 necessary for basal levels of protein synthesis and proper functioning of 

bacterial cells? An answer to this question would provide significant contributions to the 

understanding of a broader scope of the role of H69 in protein synthesis and vital cellular 

processes, as well as further insight into the significance of the abundance of modified bases 

(i.e., pseudouridine and methylpseudouridine) within the hairpin and stem regions of H69.   

       This dissertation work approaches H69 as a highly conserved region of the ribosomal large 

subunit with importance for protein synthesis,139 because H69 has been implicated in key 

intermolecular contacts between ribosomal subunits. H69 is also of interest because it has an 

abundance of conserved modified nucleotides. Understanding the role of pseudouridine within 

the sequence-conserved H69 rRNA motif may provide additional insight into the functional 

roles of H69 and strengthen its potential as a target for the development of DNA-based 
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therapeutics. Through an in vitro selection approach, our desire is to generate specific ligands 

for H69, commonly classified as "aptamers". Our specific aim is to generate and test DNA 

aptamers for their effectiveness to bind to H69, and evaluate their usefulness as potential 

replacement molecules of currently ineffective antimicrobials for resistant pathogenic 

microorganisms.  

       The proposed target for this study, bacterial H69, is structurally unique from the human 

analogue. Our research focus is to identify promising new ligands that specifically recognize and 

bind with high affinity to such key regions of bacterial ribosomes. Identification of aptamers 

that are specific for H69 may assist in the confirmation of this modified RNA motif as a new 

antimicrobial drug target site. 

       Expanding upon our current knowledge of the H69 motif and the role of s, this study 

seeks to explore potential binding interactions of H69 with a randomized DNA library containing 

ligands that may potentially serve as tools for structure and function regulation, such as 

disruption of essential protein synthesis processes.  Because our library is designed to generate 

a large number of DNA aptamers, we hypothesize that these ligands will display both sequence 

and structural diversity. Ultimately, as DNA aptamer candidates emerge, we seek to 

characterize their interactions with the synthetic H69 motif as a model for the natural 

molecular target. This work will address the question of whether selected DNA ligands 

generated against H69 will bind with high specificity and affinity. The long-term goal of this 

project is inhibiting or reducing the functionality of H69 in bacterial protein synthesis and 
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possibly provide greater insight into the effectiveness of nucleic-acid-based molecules as highly 

specific ligands for rRNAs.    

 

3.2. Purpose and specific aims 

 

       DNA aptamers have been applied for diagnostic and therapeutic applications. Our specific 

aim was to generate and characterize DNA aptamers for their efficacy in binding to H69. The 

focus of this dissertation was to develop aptamers through in vitro selection methods using a 

synthetic RNA construct representing bacterial H69 as the target and closely related RNAs in 

counter-selection experiments. Our primary short-term goal was to first isolate aptamers with 

affinity and selectivity for wild-type H69 from a random DNA library and immobilized RNA 

target. The aptamers were identified through cloning and sequencing, secondary structure 

analysis, and determination of their theoretical thermodynamic stabilities. In this approach, 

DNA consensus sequences and common secondary structural motifs for H69 targeting were 

discovered. In the last step, the aptamers were characterized for their binding affinities and 

selectivities for the modified H69 construct as well as unmodified and unrelated RNA 

sequences. As a future goal, the potential of these DNA aptamers to inhibit ribosome function 

and to serve as novel therapeutics will be explored, applying the resultant aptamers to counter 

antibiotic resistance in pathogenic organisms. Furthermore, we anticipate future applications to 

include validation of H69 as a viable target and increasing our understanding of the role of 

modified nucleotides in the ribosome. Finally, as a secondary goal, generated DNA aptamers 

may also function as potential probes for modified nucleotides. As such, DNA aptamers may be 
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employed experimentally to characterize H69 modification states and to probe their 

significance in RNA structure and function within cellular systems. 
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CHAPTER 4 – EXPERIMENTAL APPROACH:  SELECTION AND CHARACTERIZATION OF DNA 

APTAMERS FOR H69 

 

4.1. Experimental design and methodologies  

 

       DNA aptamers have shown great promise as functional single-stranded biomolecules that 

exhibit tight binding and high specificity for various targets.140 In this study, we optimized a 

series of methods (Fig. 4.1) to generate DNA aptamers that fold into three-dimensional 

structures and bind to bacterial H69. 

4.2. Approach to isolate and characterize DNA aptamers for H69 by monitoring diversity and 

percentage of library bound 

 

       The focus of the work described in this chapter is generation, isolation, and characterization 

of specific and H69-binding DNA ligands through SELEX. The following methods were utilized: 

(1) biotinylation and immobilization of chemically synthesized wild-type H69 to streptavidin-

coated surfaces; (2) challenging the initial round of the DNA library against streptavidin-coated 

surfaces to eliminate DNAs with affinity for streptavidin; (3) recovery of the DNA library, 

excluding molecules with affinity for streptavidin, and performing subsequent rounds of in vitro 

selection against immobilized biotinylated H69; (4) PCR amplification of the DNA library  in 

successive rounds of SELEX with a biotinylated primer and capturing of the undesired opposing 

single strand with streptavidin-coated magnetic beads; (5) quantification of the DNA library and  

determination of percentage bound to immobilized H69 in each round; (6) cloning and isolation 

of vectors transformed with DNA ligands with affinity for H69; (7) capillary sequencing of select 
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clones to identify sequences of the DNA molecules with affinity for H69; (8) characterization of 

secondary structures of the sequenced DNA ligands from the randomized library by searching 

                        

 

Figure 4.1. Summary of experimental approach for aptamer selection in eleven steps. 

 

for sequence homology and consensus; (9) analysis of the sequences and structures of select 

DNA ligands by computational analysis with programs such as Mfold and Clustal W; (10) 
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radiolabeling of H69 with 32P to perform electrophoretic mobility shift assays (EMSAs); (11) PCR 

amplification of select DNA aptamers using fluorescently labeled primers to generate dye-

tagged sense-strand DNA aptamers against H69 for future binding and probing studies; and (12) 

performance of fluorescence binding assays.  

       In this experiment, RNAs representing H69 were biotinylated and immobilized onto 

streptavidin-coated surfaces. Next, SELEX was carried out with the biotin-labeled H69.  Fifteen 

rounds of SELEX were done with an initial DNA library of 84 nucleotides containing a 40-nt 

random sequence region, in which the theoretically possible sequences for the initial DNA 

library diversity with 84 nucleotides containing a 40-nt randomized region was determined to 

be 1.2 x 1024 sequences using the following equation: 

 

Initial library diversity = 4N, in which N = the length of randomized sequence                    (Eq. 4.1) 

 

Data were obtained for the initial and final amount (moles) of the DNA library before and after 

incubation during successive rounds in which the percentage of library bound (% Bound) is 

calculated from ni (initial moles of the DNA library before incubation with the target during 

SELEX) and nf (the final moles of DNA) monitored by UV-VIS spectroscopy:   

 

% Bound = ((ni – nf)/ni)(100)                                (Eq. 4.2)  
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Measurement of the experimental diversity of the DNA library was determined by using the 

expression described by Eq. 4.3: 

 

Library diversity = (n) (Avogadro’s #) (% library bound)             (Eq. 4.3) 

in which n = moles used in each round of SELEX. 

 

4.3. Experimental procedures   

 

4.3.1. Preparation of a randomized 84-nt oligonucleotide ssDNA library and DNA primers for 

SELEX 

 

       A synthetic ssDNA library, including a random sequence of 40 nucleotides flanked by two 

primers with binding sequences for PCR amplification and cloning (5'- 

gccggatccgggcctcatgtcgaa-N40-agctcagaagaaacgctcaa-3'), was designed, and purchased from 

Midland Certified Reagents (Midland, Texas). The molar extinction coefficient or molar 

absorptivity (ε) for the ssDNA library was 554,400 M-1cm-1. A forward primer (5'-

gccggatccgggcctcatgtcgaa-3'), a reverse primer (5'-ttgagcgtttattctgagct-3'), and a biotinylated 

reverse primer (5'-biotin-ttgagcgtttattctgagct-3') were used for PCR amplification and ssDNA 

generation. All of the aforementioned oligonucleotides were synthesized by Midland Certified 

Reagent Company (Midland, Texas) and purified by 15% preparative denaturing (8 M urea) 

polyacrylamide gel electrophoresis (PAGE). The DNA was visualized with a handheld UV lamp 

when the gel was placed directly on a fluorescent TLC (thin-layer chromatography) plate.   
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4.3.2. Preparation of H69 and biotin-H69  

 

       N3-methylpseudouridine (m3
) and pseudouridine () were successfully incorporated into 

modified H69 (m3
) RNA, (5'-GGCCGAACm3

AAACGGUC-3', ε = 188,869 M-1cm-1), by 

utilizing solid-phase RNA synthesis with phosphoramidites prepared by J. Herath using a 

method developed by Chui and coworkers.141 The synthetic RNAs were deprotected according 

to the Dharmacon Research, Inc. protocol and then gel purified on a 20% (8 M urea) denaturing 

polyacrylamide gel. This modified H69 was biotinylated at the 5' end using Pierce (Rockford, IL) 

E-Z-link Iodoacetyl-LC-Biotin.  First, 1000 pmoles of gel purified modified H69 was denatured by 

boiling for 2 min and immediately placing on ice. A kinase reaction was then performed by 

adding 1 PNK (T4 polynucleotide kinase) buffer, 1 mM ATPS, and 30, 150 or 300 units of PNK 

per reaction on ice, then incubated in the dark at 37 °C for 2 h. The samples were then heated 

at 70 °C for 10 min to inactivate PNK. Once the kinase reaction was completed, the H69 

reaction mixture was dried and prepared for coupling with NIBH (N-iodoacetyl-N'-

biotinylhexylene) (Fig. 4.2a). The NIBH was pre-warmed in a 55 °C water bath for 1 min.  At the 

end of the coupling step, 90 mM K3PO4, (pH 8) and 2 mM of NIBH in DMF (dimethylformamide) 

were added to each sample for a total volume of 50 L. The samples were incubated in the dark 

at 50 °C for 1 h. A fraction of each H69-biotin sample was dried and then run on 15% denaturing 

(8 M urea) PAGE, and visualized to determine the percent efficiency of the biotin-labeling 

reaction. After verification of the biotin label on H69 (Fig. 4.2b) by visualization on a 

polyacrylamide gel, the sample was desalted by using microcon YM-3 filters. Matrix Assisted 

Laser Desorption Ionization Mass Spectrometry (MALDI-MS) was performed to confirm 

biotinylation of H69. 
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Figure 4.2. Application of a biotin tag for immobilization of H69.  N-iodoacetyl-N'-

biotinylhexylene), or biotin (blue circle) (a) is shown as the tag used to immobilize H69 onto 

streptavidin-coated magnetic Dynal beads M-270 (green oval) (b). 

 

 

4.3.3. Preparation of Dynal® magnetic beads for immobilization of 5'-biotinylated 

m3
H69 rRNA  

 

       Streptavidin-coated magnetic Dynal® M-270 beads were pre-treated according to the 

manufacturer’s protocol. Next, 500 pmoles of 5'-biotinylated m3
 were mixed with 100 L 

of pre-treated beads (1 mg of Dynal® M-270 beads having a binding capacity of 700 pmoles, and 

10 L of bead suspension being equal to 70 pmoles). The RNA-bead solution was gently mixed 

and incubated at room temperature with rotational motion at 600 RPM for 30 min, followed by 

a 1 minute spin down to separate the unbound from bound RNA. The supernatant was 

removed to determine the remaining concentration of unbound 5'-biotinylated m3
 by 

UV-VIS spectroscopy and for the calculation of percent of 5'-biotinylated m3
bound to the 

magnetic beads. 

4.3.4. Preparation of single-stranded DNA library   
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       The initial dsDNA library was generated by PCR amplification from the randomized 84-nt 

DNA library pool and ssDNA was prepared using a biotinylated reverse primer and non-

biotinylated forward primer. To obtain ssDNA for subsequent SELEX rounds, the resulting 

biotinylated dsDNA PCR product was separated into two strands (i.e., ss-biotinylated antisense 

DNA strand separated from the sense non-biotinylated strand). First, 300 pmoles of PCR 

generated biotinylated dsDNA product was heated at 94 °C for 5 min and kept at room 

temperature for up to 15 min prior to binding to streptavidin-coated magnetic beads (Fig. 

4.2b). Next, an aliquot of 10 L of pre-washed magnetic beads were incubated with 300 – 1,000 

pmoles of the DNA library to give a final volume of 300 L in binding buffer D (50 mM Tris-HCl, 

pH 7.5, 10 mM MgCl2, 50 mM NaCl, 1 mM dithiothreitol). This dsDNA mixture was incubated 

with streptavidin-coated Dynal® magnetic beads for 30 min at 20 °C to trap the ss-biotinylated 

DNA strand and mixed at 1050 RPM using an Eppendorf Thermomixer Mastercycler Gradient 

5331. Next, a magnetic stir bar was used to aggregate the magnetic streptavidin-coated beads 

and allow efficient removal of the supernatant containing the desired sense strand (i.e., non-

biotinylated sense ssDNA). Finally, the biotin-strand capturing for separation of the sense 

strand was confirmed by agarose gel analysis and super-shift assays.  All samples were run on a 

1% agarose gel at 90 V/cm for 1 h with NEB© 100-bp ladder (New England Biolabs, USA; NEB 

#3231). Double-stranded biotinylated DNA PCR products allowed to bind to streptavidin-coated 

beads were subsequently incubated with and without streptavidin solutions. Next, samples 

containing double-stranded biotinylated antisense strands and non-biotinylated sense strands 

of the DNA library (Fig. 4.3) were treated with a 0.25 M streptavidin solution (SA). Following 
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incubations with the streptavidin solution, biotinylated non-sense strands were captured and 

separated from non-biotinylated sense strand for recovery and use of non-biotinylated sense 

strands library samples in SELEX rounds to be challenged against the targeted biotinylated-H69.   

        

4.3.5. Direct-bead PCR  

 

       SELEX experiments were performed with streptavidin magnetic beads, Dynal® M-270 

streptavidin-coated beads (Dynal Biotech, Norway), Taq DNA polymerase (Promega 

Corporation, USA) was used for amplification after each selection round, and the resulting 

products were purified with a PCR Clean-Up System (Promega Corporation, USA) according to 

the manufacturer’s instructions. First, a streptavidin challenge protocol for round 0 of SELEX 

was performed with the isolated ssDNA library. Using the recovered denatured/renatured 

supernatant of the ssDNA library, 300 - 1,000 pmoles were challenged against streptavidin-

coated beads without H69 (to eliminate any DNA ligands with affinity for streptavidin), and 

incubated for 30 min at 20 °C with a rotational velocity of 1050 RPM. The percentage of bound 

library to streptavidin beads was determined.  Rounds 1 – N were carried out with 300 pmoles 

of ssDNA mixed with double deionized H2O to a final volume of 50 L and denatured at 94 °C 

for 5 min, and then immediately renatured on ice for 10 min. Following renaturing, 240 L of 

binding buffer B (10 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 50 mM NaCl, 1 mM dithiothreitol) and 

30 L Dynal® M-270 magnetic beads precoated with 5'-biotinylated m3
H69 at a molar 

ratio of 1:75 of biotin-H69:DNA library (2 pmoles of  RNA to 150 pmoles of DNA) were mixed. 

The randomized 84-nt DNA library pool of about 1014 candidates 
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Figure 4.3. Confirmation of biotinylated DNA library by super-shift assay. DNA library strand 

separation was verified by using a streptavidin solution for the super-shift assay. The double-

stranded DNA library is biotinylated by PCR with a reverse biotinylated primer (blue circle) and 

a forward non-biotinylated primer. To isolate the single-stranded DNA library, the PCR-

amplified library was separated by heat treatment. This sense-strand, non-sense-strand 

separation was performed by incubation of biotinylated double-stranded PCR-amplified DNA 

library captured using a 0.25 M streptavidin solution (green oval). Ultimately, to obtain ssDNA 

for subsequent SELEX rounds, the resulting biotinylated dsDNA PCR product was separated 

from the non-biotinylated strands by heating at 94 °C for 5 min and allowed to equilibrate at 

room temperature followed by incubation with streptavidin-coated Dynal® magnetic beads for 

30 min at 20 °C to trap the ss-biotinylated DNA strand. This step was done at 1050 RPM using 

an Eppendorf Thermomixer Mastercycler Gradient 5331. The recovered sense strands could 

then be incubated with immobilized biotinylated-H69 during rounds #1-15 of SELEX.  
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were mixed with biotin-H69 immobilized to either streptavidin-coated 96-well plates or 

magnetic beads (Fig. 4.4). Incubations were performed at 20 °C for 30 min with a rotational 

velocity of 1050 RPM. Once the incubations were complete, the beads were pelleted and the 

supernatant was recovered to determine the percentage of 84-nt library bound to H69. 

Enrichment of the 84-nt library still bound to H69/streptavidin-coated beads was performed by 

direct-bead PCR. Direct-bead PCR was performed by amplifying a mix of the pelleted beads 

(containing the immobilized biotin-H69 with the DNA library from the SELEX round) and buffer 

(200 M MgCl2, 200 M dNTPs, 4 M each of forward and reverse primers, 10 reaction buffer, 

Taq polymerase (1 unit ~ 0.5 L)) in a final reaction volume of 50 L (Table 4.1).   

 

Table 4.1. Direct-bead PCR amplification of H69-bound DNA library  

Steps of cycles                         Temperature     Time   

Denaturing 96 °C   20 sec 

2.  Annealing 

3.  Extension 

4.  Repeat steps 1-3 for 30 cycles 

56 °C 

60 °C                            

  20 sec 

    4 min 
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Figure 4.4. Summary of SELEX procdedure.  Experimental design to isolate and characterize 

DNA aptamers against H69.  SELEX rounds involve of the repetition of successive steps of 

incubation of the library pool with the target, partition of the unbound from bound, and 

enrichment by direct-bead PCR amplification of aptamer candidates.  Steps #1-5 show the 

generation of the ssDNA synthesized randomized DNA oligonucleotide library, incubation, 

partition of non-binders, and library enrichment. Step #6 represents the repetition of 

successive steps that consist of binding, partitioning of  the library and the target molecules 

until the H69 binders are enriched through PCR amplification.  The new enriched pool of 

selected ssDNA ligands are then used as the starting material for the successive rounds of 

selection until the diversity of the library is significantly reduced (typically 6 to 20 rounds). 

 

4.3.6. Cloning and sequencing  

 

       Select ssDNAs were amplified by PCR using unmodified forward and reverse primers and 

then cloned into the pCR®4.1-TOPO vector. Plaques of positive DNA inserts from selected PCR 

products of SELEX rounds from the 3rd, 4th, 5th, 6th, 7th, 8th, and 11th (streptavidin-coated beads) 
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and the 9th 13th, 14th, and 15th (streptavidin-coated plates) were cloned into pCR®4.1-TOPO 

using TOPO® TA Cloning® Kit (Carlsbad, CA) according to the manufacturer's instructions,142 and 

E. coli cells (DH5α) were transformed via heat shock. All clones were isolated using a QIAprep® 

Miniprep Kit (Germany). The clones with inserted DNA fragments were confirmed by PCR 

amplification using primers complementary to the sequence of the M13 region of the plasmid. 

Positive clones with full-length inserts were confirmed and analyzed on agarose gels stained 

with ethidium bromide. Successful clones were transformed and grown on agar plates with 50 

g/mL ampicillin at 37 °C for 10-15 h. Plasmid transformation efficiency (TfE), reported as # of 

transformants/g DNA, was monitored and calculated according to Eq. 4.3, in which C = the 

number of colonies, Vt = the total volume of transformation mix (tmix) plated, and DF = dilution 

factor: 

 

TfE =  

(#of C/10 pg puC19 + insert) (106 pg/g) (300 l Vt/10-50 L plated tmix) (DF)        (Eq. 4.3) 

 

 

Plasmids containing individual aptamer sequences were prepared using the Qiagen Mini-Prep 

Kit (Valencia, CA). DNA sequencing was performed on a CEQ 8000 capillary DNA sequencer 

(Beckman-Coulter) following the manufacturer's recommended procedures. Base calling 

following the sequencing procedure was performed with the CEQ 8000 package. Overnight 

cultures were grown from single colonies of E. coli strains at 37 °C in rich liquid media 2 YT (16 

g/L tryptone, 10 g/L yeast extract, 5 g/L NaCl) supplemented with ampicillin (100 μg/mL). 
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Culture densities were monitored for 12 h after induction until the cell growth density 

measured at OD600 was within a range of 0.5 – 0.6.   

 

4.3.7. Identification of sequence consensus by Clustal W and Mfold structure prediction   

 

       The consensus of primary sequences for cloned and sequenced DNA ligand candidates from 

select SELEX methods utilizing streptavidin-coated magnetic bead immobilization and 

streptavidin-coated plates immobilized with H69 were generated for the DNA aptamer 

candidates. Primary sequence homology and identification of consensus sequences between 

sequenced rounds were identified using the Clustal W143 multiple sequence alignment 

computer program.144 Secondary sequence predictions and values for theoretical standard-

state free energies were performed for sequences showing homology. Both secondary 

structural predictions and standard-state free energies for select sequenced DNA aptamers 

were obtained using Mfold© algorithms with the Mfold© software package (version 2.3) by 

Zuker and Jaeger. 

  

4.3.8. Radiolabeling of wild-type H69 for electrophoretic mobility shift assays (EMSAs)   

 

       For the evaluation of dissociation constants of H69-DNA aptamer complexes, EMSAs were 

performed for 20 sequenced DNA ligands as preliminary binding affinity studies with wild-type 

H69 (Fig. 4.5). Single-stranded sense strands of DNA aptamer candidates #1-20 were generated 

by direct PCR amplification from isolated clones and prepared using sense strand by capturing 
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(See section 4.3.4. Preparation of single-stranded DNA library). Dissociation constant (Kd) 

values of H69-DNA aptamer complexes were deduced from the shift of 1 nM of [32P] 5'-end-

labeled H69 in the presence of an increasing concentration of DNA aptamer. [32P] 5'-end-

labeled H69 (1 nM) was incubated with DNA aptamers for 10 min at 23 °C in binding buffer B 

and resolved by EMSA with either 20 or 10% (19:1) crosslinked polyacrylamide gels with 0.5 

TBE buffer at 10 mA. The gel was pre-run at 10 mA for 30 min. The gels were developed inside a 

cassette at -80 °C for 16-24 h and visualized for quantification of bound and unbound H69 on a 

Typhoon phosphorimager (Molecular Dynamics) and quantified using ImageQuant® software 

(Molecular Dynamics).   

4.3.9. Preparation of FAM-DNA   

 

       A 5'-fluorescein-labeled DNA aptamer construct with one less guanosine at the 5' end to 

eliminate the phenomenon of purine-quenching effects was synthesized and purified by 

Integrated DNA Technologies (Coralville, Iowa) for FAM-H69DNAaptamer18: 

(5'-FAM-cggatccgggcctcatgtcgaaCTCCCCGGGCACTATTTCCTGGGACTAGTTCTGCAGGTTTttgagcgtttattct-

gagct-3').  
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Figure 4.5. Model analysis of electrophoretic mobility-shift assays (EMSA) for DNA ligands. 

Assays performed with DNA ligands incubated against [32P] 5'-end-labeled H69 are proposed to 

form complexes if the DNA ligands bind to target RNA. SELEX-generated DNA ligands incubated 

with varying concentrations of H69 in the ranges near to their dissociation constant (Kd) would 

show the concentration of DNA aptamer to be inversely proportional to the band intensity of 

labeled H69 (a). Observations of possible intermediate complexes and/or higher-order 

structures (b). Corresponding with the decrease in band intensity of [32P] 5'-end-labeled H69, 

DNA aptamers with affinity for H69 would form bound complexes (c) and be visible by EMSA as 

an increase in band intensity (a).   

  

4.3.10. Fluorescence experiments and determining dissociation constants (Kds) 

 

       To determine dissociation constants of select SELEX-generated DNA aptamer candidates for 

H69 by relative fluorescence measurements, the dye-tagged H69DNAapt18 was used. Titrations 

were performed with increasing concentrations of wild-type H69, unmodified H69 motifs, or 

unrelated sequence A-site rRNA (duplicates were only performed for wild-type H69). Solutions 

of 300 nM FAM-H69DNAapt18 in binding buffer C (10 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 50 
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mM NaCl) were titrated against a concentration range of RNA from 0 – 1,500 nM. Fluorescence 

emission spectra were monitored over a range of wavelengths (i.e.,  = 500-650 nm) and 

excited at 517 nm, (i.e., excitation band pass of 2.5 mm slit width and emission slit width of 10 

mm). All measurements were taken at 37 °C, and samples were pipeted up and down while 

incubating inside a cuvette within the cuvette holder of the spectrometer for 2 min before 

fluorescence intensities were measured. Then, aliquots of the RNA were added sequentially, 

with 2 min of equilibration time before each fluorescence measurement. Fluorescence 

experiments were performed on a Cary Eclipse luminescence spectrometer, and Kaleidograph 

was used to analyze the data. Fluorescence intensities were corrected for volume changes 

according to the relationship of Fi,corr = (Fi,obs) (Vi/V0), in which Fi,corr is the corrected intensity for 

point i of the titration, Fi,obs is the measured intensity at point i, Vi is the volume after the ith 

addition, and V0 is the initial volume (initial reaction volume 200 L). The data were fit to the 

expression described by Eq. 4, where Kd is defined as the apparent dissociation constant, [RNA] 

is the concentration of RNA ranging from 0 – 1,500 nM, [DNA] is the concentration of the DNA 

(held constant at 300 nM), and c is a constant that relates fluorescence intensity to 

concentration: 

  (Eq. 4.4) 

 

       The Kd values for simple binding were determined by plotting Fr (relative fluorescence) 

against the total RNA concentration, [RNAt], in which Fr represents the fraction of fluorescence 

intensity due to the bound species used in the following equation: 
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Fr = (F0,corr – Fi,corr)/ (F0, corr – FF,corr)                                                                                      (Eq. 4.5) 

 

The values in Eq. 4.5 are defined as follows: 1) sample at the initial point F0,corr (all free); 2) Fi,corr 

is the sample at point i in the titration; and 3) FF,corr  represents the sample at the final titration 

point (all bound).145   
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CHAPTER 5 – RESULTS:  CHARACTERIZATION OF DNA APTAMERS FOR H69 

 

       SELEX is an efficient and effective screening method for selecting DNA ligands (aptamers) 

against H69. Initial amplification of the synthesized 84-nt DNA library containing a 40-nt 

randomized sequence region yielded aptamers that exhibit moderate (M) affinity for 

biotinylated wild-type H69. The m3
H69 was immobilized to both streptavidin-coated 

plates and magnetic beads for in vitro selections (11 rounds on magnetic streptavidin-coated 

beads and 15 rounds on 96-well streptavidin-coated micro-titer plates). Percentages of bound 

DNAs in the library were monitored during SELEX by using UV-Vis spectroscopy and used for 

estimations of pool diversity. The best results were obtained when rotational incubation on 

sphere-shaped surfaces was used instead of the forward and backward rocking incubation 

method used on the 96-well streptavidin-coated titer plates. Once the diversity of the library 

was reduced to approximately 1  104 molecules using the SELEX method with magnetic beads, 

the DNA samples were pooled and cloned for further isolation and characterization by 

sequencing and binding assays.   

 

5.1. Biotin-strand capturing for separation of sense strand and non-sense strands confirmed 

by agarose gel analysis and super-shift assays 

 

       Each SELEX round was performed using single-stranded DNA for single-stranded aptamers 

against H69. A biotinylated DNA primer was used in PCR to generate a tagged antisense strand. 

To obtain ssDNA, the resulting biotinylated dsDNA PCR product was separated into two strands 

by heating and cooling (i.e., the antisense ss-biotinylated DNA strand was separated from the 
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sense non-biotinylated strand) followed by incubation with streptavidin-coated Dynal® 

magnetic beads and collection of the supernatant. The separation of the biotinylated antisense 

strand was confirmed by super-shift assays (Fig. 5.1). Super-shifting of the biotinylated 

antisense strand with streptavidin was observed by gel electrophoresis. The sense strand DNA 

could be verified as being single stranded, because there was an absence of super-shift upon 

incubation of the recovered supernatant (single-stranded non-biotinylated DNA library) with 

the streptavidin solution (lane #7 of Fig. 5.1). 

5.2. SELEX generated DNA aptamers against H69 with streptavidin-coated 96-well plates and 

Dynal® magnetic beads 

 

       Two alternative methods of incubation were selected and compared, specifically, a 

rotational incubation on sphere-shaped streptavidin surfaces (beads) versus 96-well micro-titer 

plates using a forward and backward rocking incubation method. Twelve rounds of SELEX were 

performed on streptavidin-coated magnetic beads, and fifteen were performed using 

streptavidin-coated plates. The first binding analysis was monitored as the percent of bound 

DNAs in the library during SELEX by using UV-Vis spectroscopy. Evolution of the DNA library was 

also monitored by using UV-VIS spectroscopy until a plateau in the percent bound was reached 

(i.e., no significant change in the percent DNA bound in each successive round of SELEX). At this 

point, the in vitro selection process was considered to be complete. SELEX performed using 

streptavidin-coated plates showed a fluctuating trend of increasing and decreasing percentages 

of bound DNA ligands between successive rounds #1 -15 (Fig. 5.2). An overall trend of 

increasing percentage of bound DNA library to H69 with each successive round was observed 

for SELEX performed using streptavidin-coated magnetic beads of 77% between successive 
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rounds  #1 -11 (Fig. 5.2). The best results were obtained when rotational incubation on sphere- 

shaped surfaces was done instead of the forward and backward rocking incubation method 

used on the 96-well streptavidin-coated micro-titer plates. Overall, preliminary percentage of 

the bound DNA library results indicate that screening DNA aptamer candidates against H69 

utilizing biotinylated m3
H69 immobilized on streptavidin-coated beads was more 

effective than using the streptavidin-coated plate method (Fig. 5.2).  

 

 

Figure 5.1. Super-shift assay for biotin-strand capture for separation of the sense and 

antisense-strands. Results were confirmed by agarose gel analysis and super-shift assays to 

generate the initial single-stranded DNA library as follows: lane #2: DS+b (biotinylated double-

stranded DNA library); lane #3: (DS+b)+SA (biotinylated double-stranded DNA library incubated 

with streptavidin solution); lane #4: SS+b (biotinylated single-stranded DNA library); lane #5: 

SS+b (biotinylated single-stranded DNA); lane #6: SS (non-biotinylated single-stranded DNA 

library); lane #7: SS + SA (single-stranded DNA library incubated with streptavidin solution); and 

lane #8: (SS+b) + SA (biotinylated single-stranded DNA library incubated with streptavidin 

solution). All samples were run on a 1% agarose gel at 90 V for 1 h with a 100 bp ladder (lane 

#1). 
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               a)       

 

              b)  

        

Figure 5.2. Results of binding of DNA library pools from SELEX rounds. H69 binders were 

generated by the SELEX process. Percent bound of DNA library was determined by UV-Vis 

spectroscopic monitoring of starting and ending amount (pmoles) of library recovered within 

the supernatant. SELEX rounds were challenged with 5'-biotinylated-m3
immobilized to 

streptavidin-coated 96-well micro-titer plates (a). Results from SELEX rounds challenged with 5'-

biotinylated-m3
 immobilized to streptavidin-coated magnetic beads (b).  
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5.3. Inverse proportionality of reduced diversity to increased percent DNA bound confirmed 

with each successive round 

 

       Evolution of the DNA library was monitored using UV-VIS spectroscopy. There was a broad 

range of binding affinities exhibited by the diverse pool of selected DNA ligands to H69 (Fig. 

5.2). With each successive round, unbound DNA library ligands were washed away before the 

PCR amplification step. The DNA library populations having affinity for H69 were enriched 

during the SELEX process with each subsequent round of incubations with immobilized H69 

using direct-bead PCR amplification. Ultimately, this enriched library population of binders to 

H69 was expected to exhibit lower sequence diversity with each subsequent round. The 

predicted diversity level could be determined by using the information of percent bound and 

UV-Vis quantification of products for each round (Eq. 4.3). The diversity of the library was 

reduced to approximately 1  104 molecules using the SELEX method with magnetic beads 

(Table 5.1). The final round of SELEX represented the maximum enrichment of the DNA library 

to be cloned and sequenced for identification of DNA aptamer candidates, and rounds #9, 13, 

14 (plates) and 3, 4, 5, 6, 7, 8, and 11 (beads) were chosen for cloning and sequencing analysis 

and identification of the DNA aptamer candidates (Table 5.1).   

 

5.4. Sequencing and cloning results   

 

       Once SELEX was complete, a total of 120 clones were isolated representing ten plasmid 

DNA clones each from SELEX rounds #3, 4, 5, 6, 7, 8, and 11 (streptavidin-coated magnetic-

beads), ten plasmid DNA clones from SELEX rounds #9, 13, 14, and 20 clones from round  #15 
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(streptavidin-coated plates). Positive transformants were analyzed by colony PCR using the 

combination of the cloning vector-specific M13 forward (5'-gaattcgccctt-3') and M13 reverse 

primers (5'-agggcgaattctgc-3') from the E. coli colonies. Plaques of 100 DNA inserts were 

 

Table 5.1.  SELEX round diversity for DNA pools challenged with 5’-biotinylated-m3
 

SELEX Percent bound 

(magnetic beads) 

Estimated 

diversity value 

(DNA library 

members) 

Round 0 23 1  1013 

Round 1 15 10  1012 

Round 2 22 2  1012 

Round 3 23 3  1011 

Round 4 34 9  1010 

Round 5 43 7  109 

Round 6 47 2  108 

Round 7 47 5  105 

Round 8 50 8  103 

Round 9 66 5  103 

Round 10 56 8  102 

Round 11 
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5  102 

 

 

selected for capillary gel electrophoresis sequencing and 58% of the sequenced clones were 

positive and unambiguously identified to contain full-length 84-nt DNA insert with both flanking 

primer regions of the cloning vector (i.e., M13 forward and reverse primers) and the complete 
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forward and reverse PCR flanking primer sequencings of the 40-nt randomized region of the 84-

nt DNA library (Fig. 5.3).   

 

 

 

Figure 5.3. Sequence results for DNA library. Aptamers sequenced represent rounds #3, 4, 5, 6, 

7, 8, and 11 (streptavidin-coated magnetic beads) and rounds #9, 13, 14, and 15 (streptavidin-

coated plates). The randomized 40-nt region (red) is flanked by both forward and reverse 

primers (blue). 

      

5.6. Clustal W sequence analysis identified consensus sequences  

 

       The web-based sequence alignment computer program, Clustal W, 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/) was used to further analyze these positively 

sequenced clones. Clustal W identified 20 sequences showing significant sequence homology 

within the 40-nt randomized region (Fig. 5.4). They were then assigned to the following groups 

according a consensus of their primary sequences: group 1 (i.e., aptamers #1, 2, 4, 5, 7, 9, 10, 
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11, 14, 15, 16, and 20); group 2 (i.e., aptamers #8, 18, and 19; and group 3 (i.e., aptamers # 3, 6, 

12, 13, and 17). Group 1 was the largest and has a consensus sequence of 5'-

ACGCGGACCTAACACACACCTCCCCCAACCACCCCACCC-3' and group 2 has a consensus sequence 

of 5'-GGGACTATTTCCTGCACGTT-3' (Fig. 5.4). Finally, sequences from group 3 represented an 

“orphan” group, as they did not exhibit any sequence homology aptamers from groups 1 or 2. 

Despite this, all groups were included for further analysis by Mfold to identify secondary 

structural homology and possible shared common motifs.   

 

 

 

Figure 5.4. Clustal W multiple sequence alignment data consensus sequences of DNA library.  

Alignment results from Clustal W data analysis of SELEX products of rounds challenged against 

biotin-labeled H69 immobilized to streptavidin-coated magnetic beads. Groups of consensus 

sequences were found for the 40-nt randomized regions and include group 1 (shaded grey), 

group 2 (outlined in black), and group 3 (no box or shading). 
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5.7. Mfold analyses predicted diverse secondary structures for consensus sequences 

 

       The Mfold© package (version 2.3)135 uses free energy rules to determine optimal and 

suboptimal secondary structures of single-stranded DNA molecules, and was used to obtain 

secondary structural predictions for select sequenced DNA aptamer candidates as well as their 

theoretical standard-state free energies. The Mfold results were used to identify secondary 

structural motif regions for classification of the 20 DNA aptamers into families. Each aptamer 

that was analyzed for both untruncated (84-nt) and truncated (40-nt) sequences showed at 

least one secondary structural motif (i.e., hairpin, bulge, etc.), and many exhibited more unique 

and diverse secondary structures while simultaneously exhibiting conserved motifs with other 

aptamers of the library. Also, Mfold analysis of aptamers #8 and 18 revealed hairpin loops of 

similar size (20-nt) and sequence to their target, H69 (19-nt). As expected, a full-length 80-nt 

(untruncated) aptamer Mfold standard-state free energies (G° in kcal/mol) were greater 

(thermodynamic stabilities) compared to the corresponding 40-nt (truncated) (Table 5.2). The 

Mfold secondary structural predictions represent possible folding with minimized energy levels 

for the aptamer candidates, and only approximations of their G° values can be determined 

from the prediction methods.   

       Overall, our results from secondary structures predicted by Mfold for untruncated full-

length aptamers #1-20 reveal both primary sequence homology motifs (i.e., hairpin loops, 

bulges, etc.) and were assigned to five families. Family I includes aptamers #8 and #18. Next, 

family II consists of aptamers #3, 6, and 12 (blue) (Fig. 5.5). Family III consist of aptamers #3, 13 

and 19 (red) (Fig. 5.5). Family IV consists of aptamers #1, 7, 9, 11, 14 and 16 (green) (Fig. 5.5).  
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Table 5.2. Thermodynamic analysis of cloned and sequenced H69-aptamers. 

Aptamer #      Sequenced randomized region of DNA aptamers                    G° [a]   G° [b] 

kcal/mol          kcal/mol 

1   CGCGGACCTAACACACACCTCCCCCAACCACCCCACCCCA   +0.61    -3.35 

2  ACGCGGACCTAACACACACCTCCCCCAACCACCCCACCCC   +0.61                   -17.31 

3  CTCGGCCCCCTTTGACCAAAGAGAGAACAAAAAAATAAA   -2.22    -6.03 

4   ACGGACCTAACACACACCTCCCCCAACCACCCCACCCC--   +0.61    -3.51 

5   CGACGGACCTAACATCAACCTGCCCCCAACCACCCTCAC   +0.80    -3.91 

6   TTTATCCCTCACATGGGAAACTTCCGTACGCCTATGAGTT    -1.57    -6.17 

7   ACGCGGACCTAACACACACCTCCCCCAACCACCCCACCC   +0.61    -3.04 

8   CTAAAGGGACTATTCCTGCACGTTTAAACGAATTCGACCCT                       -4.09    -9.13 

9   ACGCGGACCTAACACACACCTCCCCCAACCACCCCACCC-   +0.61    -3.64 

10   AACGACGGAACCTAAACAACAACAACCTACCCCCAACCAC   +1.20    -4.58 

11   ACGCGGACCTAACACACACCTCCCCCAACCACCCCACCCC   +0.61    -3.64 

12   GCCCTGCCCGCATACCTCACTTCTTTCTAGACCCACACTC   +0.42    -6.15 

13   CAGGTCGCTTACGCCCGCTGCCCCACTCAACCAACCACCT    -0.64    -6.08 

14   ACGCGGACCTAACACACACCTCCCCCAACCACCCCACCCC   +0.61    -3.64 

15   TACCTAGATCCCCCTCTCCAACCCTTCGCTAACCTACCCC   +0.27    -3.95 

16  ACGCGGACCTAACACACACCTCCCCCAACCACCCCACCCC   +0.61    -3.64 

17  TGCAAGGTTTCAACAAGCAATTCAGCACACATTTGCAGCA    -1.65    -6.13 

18  CTCCCCGGGCACTATTTCCTGGGACTAGTTCTGCAGGTTT    -4.15    -8.13 

19   GGGACTATTTCCTGCACGTTTAGGATCTGAATTCGACCC-    -0.87    -7.84 

20   CGACGGACCTAACACAACCTCACCCCAACCACCCCACCCC    +0.70    -3.91 

The identification of 20 clones with the consensus sequence in the randomized region:  

Standard-state free energy of reactions (G° in kcal/mol) of both 40-nt[a] length (truncated) and 
80-nt[b] length (untruncated) are reported for sequenced clones of SELEX DNA library. 
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Family V includes aptamers #4, 5, 10 and 20 (orange) (Fig. 5.5). Aptamers lacking sequence or 

structural consensus matching any of the aforementioned families were not assigned a color 

(i.e., aptamers #2, 15 and 17) (Fig. 5.5). Conserved secondary structural motifs of 

H69DNAaptamers were identified that correspond with the target’s 19-nt hairpin loop (Fig. 

5.6). Interestingly, one of the selected DNA ligands (H69DNAapt18) contained a conserved 20-

nt hairpin-loop motif with complementarity to the loop region of the targeted E. coli wild-type 

H69. This 20-nt hairpin motif of H69DNAapt18 retained its conserved 20-nt motif within the 

truncated 40-nt Mfold structural prediction representing only the randomized region of the 84-

nt DNA library (Table 5.3). Thermodynamic analysis of cloned and sequenced H69-aptamers 

were performed and among the 120 clones, 100 individual sequences were identified, 20 of 

which were found to have a consensus sequence by Clustal W software analysis, and their 

secondary structures were investigated using the Mfold program.149   
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Figure 5.5. Mfold family grouping results from SELEX with magnetic beads for aptamers #1-20. 

Predicted structures include both the flanking and randomized regions of the full-length 84-nt 

aptamers. These 20 sequences were divided into five families containing the following 

aptamers: family I (#8, #18 shown in yellow), II (#3, #6, #12 shown in blue), III (#13, #19 shown 

in red), IV (#1, #7, #9, #11, #14, #16 shown in green), and V (#4, #5, #10, #20 shown in orange). 

Aptamers without a family are not highlighted.  
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Table 5.3. Conserved hairpin motifs of aptamers #8 and 18. 

Aptamer       Length (nt)                           Sequence (5'→3')                    DNA loop regions (5'→3')                                                                

 

apt #18             84                           gcggatccgggcctcatgtcgaaCTCCCCGGGCACTATTTCCTGGGA                            GCACTATTTC 

                                                                  CTAGTTCTGCAGGTTTtcgagtcttctttgcgagtt              
                                                                      (untruncated H69DNAapt18) 
 

 

apt #18             40                    CTCCCCGGGCACTATTTCCTGGGACTAGTTCTGCAGGTTT                          GCACTATTTC  
                                                                                (truncated H69DNAapt18)

 

 

 

apt #8              84                                gcggatccgggcctcatgtcgaaCTAAAGGGACTATTCCTGCA                                    GACTAT 

                                                                  CGTTTAAACGAATTCGACCCTtcgagtcttctttgcgagtt                                            TTTAA                             

                                                                                       (untruncated)      

                                                    
 

 

apt #8              40                             CTAAAGGGACTATTCCTGCACGTTTAAACGAATTCGACCCT                                                         GACTAT  

                                                                                         (truncated)                                 TTTAA  
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Figure 5.6. Conserved hairpin motifs of aptamers #8 and 18. Untruncated 84-nt aptamer#18 

(a) versus truncated 40-nt length aptamer #18 (b) has a conserved sequence and hairpin apex 

loop region (blue).  Untruncated 84-nt aptamer#8 (c) versus truncated 40-nt length aptamer #8 

(b) has a conserved sequence and hairpin apex loop region (purple). 

a) b) 

c) d) 
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5.8. Diversity of DNA structures  

 

        Primary sequence and secondary structural information on the DNA aptamer candidates 

were obtained to identify a consensus and level of diversity. Complete predicted Mfold 

structures of full-length (84-nt) and truncated (40-nt) aptamer # 18 are shown in Figures 5.7 

and 5.8 and (see Appendix Figures A1-A37 for full structures of untruncated and truncated 

aptamers #1-7, and #9-17, and #19-20).   

  

Figure 5.7. Mfold structrual analysis of untruncated aptamer #18. 
Mfold Structural Analysis                                                                                                                               Aptamer #18 

Length:                                                                                                                                                                84-nt 

                                                                                                                                                                              (untruncated) 

Sequence:  

                                      5´-gccggatccgggcctcatgtcgaaCTCCCCGGGCACTATTTCCT                     

                                            GGGACTAGTTCTGCAGGTTTttgagcgtttattctgagct-3´ 

2° structural motifs:                                                                                                                                        hairpin loops:   

                                                                                                                                                                             L1, L2 and L3                 

                                                                                                                                                                             internal loop: 

                                                                                                                                                                             IL1 

Family:                                                                                                                                                                I 
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Figure 5.8. Mfold structrual analysis of truncated aptamer #18. 

Mfold Structural Analysis                                                                                                                               Aptamer #18 

Length:                                                                                                                                                                84-nt 

                                                                                                                                                                              (truncated) 

Sequence:  

5´-CTCCCCGGGCACTATTTCCTGGGACTAGTTCTGCAGGTTT-3´ 

2° structural motifs:                                                                                                                                        hairpin loop:   

                                                                                                                                                                             L1                                                                                                                                                                              

Family:                                                                                                                                                                I 

 

 

    

5.9. Dissociation constants for H69DNAapt18: binding to wild-type H69 observed by EMSA  

and fluorescence titration experiments 

 

      Aptamers presumed to have affinity for wild-type H69 based on primary sequence and 

secondary structural analysis were selected to be further characterized by EMSA experiments. 
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Electrophoretic mobility shift assays (EMSAs) of DNA/RNA complexes were used to determine 

apparent binding constants for aptamers #1-20. Preliminary binding results from EMSA gel 

analysis were crude and show moderate binding affinity (nM range) for H69 (Table 5.4.). 

Although EMSAs of DNA/RNA complexes were not clearly detected for all 20 selected aptamers, 

preliminary binding experiments with aptamers against radiolabeled H69 revealed formation of 

complexes with aptamers #16, 17, and 18 in the mid nM range (Figs. 5.9, 5.10, and 5.11). All 

other EMSA results for aptamers #1-15 and aptamers #19-20 are shown in Appendix Figures 

A38 - 58. These experiments were not repeated due to the large amount of material required 

and limitations of the chemically synthesized target H69 as well as the individual aptamers. 
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Figure 5.9. Preliminary EMSA binding results for DNA aptamer #16. EMSA gel was performed 

on a 10% non-denaturing polyacrylamide gel with 0.5 TBE running buffer and run for 1 h at 15 

mA. H69 was denatured at 94 °C for 1 min and cooled to refold for 2 h at 37 °C.  [32P] 5'-end-

labeled wild-type H69 (1 nM) was pre-incubated at 37 °C for 15 min in buffer containing 50 mM 

Tris-HCl pH 7.5, 10 mM MgCl2, 50 mM NaCl. DNA aptamer #16 has an increasing concentration 

(0 – 150 nM) incubated with 1 nM of H69. A dark arrow indicates evidence of [32P]-H69 forming 

complexes with DNA aptamers (≥ 10 nM). The complex was difficult to visualize; however, a 

decrease in the amount of uncomplexed material is evidence for a binding event. 
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Figure 5.10. Preliminary EMSA binding results for DNA aptamer #17. Reaction conditions are 

the same as in EMSA experiment from Fig. 5.9. Secondary Mfold structure prediction of 

aptamer #17 is pictured above EMSA gel analysis for aptamer #17 of increasing concentration 

(0 – 70 nM) incubated with 1 nM of H69. A dark arrow indicates evidence of [32P]-H69 forming 

complexes with DNA aptamer #17 (≥ 60 nM). 
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Figure 5.11. Preliminary EMSA binding results for DNA aptamer #18. Reaction conditions are 

the same as in EMSA experiment from Fig. 5.9. Secondary Mfold structure prediction of 

aptamer #18 is pictured above EMSA gel analysis for aptamer #18 of increasing concentration 

(0 – 70 nM) incubated with 1 nM of H69. A dark arrow indicates evidence of [32P]-H69 forming 

complexes with DNA aptamer #18 (≥ 60 nM).   
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Table 5.4. Summary of apparent dissociation constants (Kds) from EMSA binding experiments. 

APTAMER #    Kd (nM) 

8 80 

9 60 

10 90 

11 90 

16 100 

17 70 

18 70 

All Kd values are reported in (nM) range. No binding was observed for aptamers #1-7, 12-15, 

and 19-20. 

  

5.10. Fluorescence titration comparison binding studies: DNA aptamer #18 binding results   

 

       DNA/RNA complexes were further characterized by fluorescence titration assays to confirm 

the previous binding assays (i.e., monitoring of percent bound in SELEX rounds and EMSAs). 

Based on the combined results from the monitoring of the percent bound of DNA library to H69 

during SELEX rounds and analysis of the aforementioned complexes observed from EMSA 

assays, DNA aptamer #18 was chosen to be synthesized with a fluorescein tag for further 

binding characterization to H69 and related constructs. Binding of the isolated, sequenced, and 

characterized DNA aptamer #18 to H69 constructs and A-site rRNA were monitored by a 

decrease in the fluorescence emission intensity of the attached fluorescein dye. Fluorescence 

quenching upon binding of fluorescently labeled ligand (300 nM) was observed in the range of 0 

– 1,000 nM for modified and unmodified H69 constructs (i.e.,  and UUU), and unrelated A-
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site rRNA during titrations. Fluorescence data were collected until saturation was reached and 

data were fitted to a binding curve using for relative fluorescence (Fr) free RNA.   

       Interestingly, the conserved motif of DNA aptamer #18 also exhibits sequence 

complementarity to the wild-type H69 loop region that may be partially responsible for 

selectivity and high affinity binding by fluorescence titrations with wild-type H69. Fluorescence 

titration comparison binding studies show that DNA aptamer #18 has greater affinity for wild-

type H69 (m3
) over unmodified H69s (UUU) and more than 100-fold greater affinity over 

the unrelated A-site rRNA. The truncated FAM-H69DNAaptamer18 was not synthesized and the 

dissociation constants for wild-type H69 were not measured and compared. Fluorescence 

titrations of modified or unmodified H69 constructs with FAM-H69DNAapt18 provided spectra 

used for determining dissociation constants for DNA aptamer #18. Fluorescence titration 

experiments did not exhibit large differences in aptamer #18 dissociation constants. All had 

modest affinity in the low M range. The trend in the relative affinities for binding to 

fluorescently labeled DNA aptamer #18 was found to decrease in the order:  m3
 >  > 

UUU > A-site (Figs. 5.12 – 5.15).  
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Figure 5.12. Relative binding affinities of fluorescently labeled DNA aptamer #18 to A-site 

rRNA.  The dissociation constant of the fraction of A-site bound to F-H69DNAapt18 aptamer 

obtained by fitting data to quadratic Equation 4.4 is >100 uM (R2=0.99). An estimated Kd from 

visual analysis of the half-maximal binding of rRNA could not be determined from the range of 

A-site rRNA concentrations tested. 
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Figure 5.13. Relative binding affinities of fluorescently labeled DNA aptamer #18 for UUU. The 

dissociation constant of the fraction of UUU bound to F-H69DNAapt18 aptamer obtained by 

fitting data to quadratic Equation 4.4 is 22 M (R2=0.99). The estimated Kd obtained from visual 

analysis of the half-maximal binding of UUU to F- H69DNAapt18 is ~6 M. 
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Figure 5.14. Relative binding affinities of fluorescently labeled DNA aptamer #18 for .   

The dissociation constant of the fraction of  bound to F-H69DNAapt18 aptamer 

determined by fitting to Equation 4.4 is 14 M (R2=0.96). The estimated Kd obtained from visual 

analysis of the half-maximal binding of  to F-H69DNAapt18 is ~4 M.   
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Figure 5.15. Relative binding affinities of fluorescently labeled DNA aptamer #18 for m
. 

The dissociation constant of the fraction of m
 bound to F-H69DNAapt18 aptamer 

calculated by fitting to Equation 4.4 is 1 M (R2=0.96). The estimated Kd obtained from visual 

analysis of the half-maximal binding of  to F-H69DNAapt18 is ~300 nM.  
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CHAPTER 6 – DISCUSSION:  DNA APTAMERS SELECTIVE FOR WILD-TYPE H69 

 

       Our research goals were to identify DNA ligands from a randomized library that could be 

generated with moderate (low M) affinity and selectivity for wild-type H69, a highly conserved 

motif participating in the inter-subunit bridge B2a of ribosomes.80 This 19-nt hairpin-loop 

structure contains three conserved pseudouridine () modifications at positions 1911, 1915, 

and 1917, in which 1915 is further modified to 3-methylpseudouridine (m3
).81 Helix 69 plays 

important roles in protein synthesis, and the development of novel therapeutics based on DNA 

aptamers targeting H69 would be helpful to counter emergent bacterial resistance. 

              

6.1. SELEX optimization and DNA aptamer consensus sequences  

 

       DNA library pools were selected within 11 rounds of SELEX, and the products were 

confirmed by agarose gel super-shift assays between each SELEX step. After the repetition of 

successive steps of incubation, partitioning, and amplification, the unbound oligonucleotides 

were removed and binders with affinity for H69 were enriched through PCR amplification. The 

initial 84-nt DNA library with an initial diversity of 1 × 1013, was incubated with wild-type biotin-

H69 using two methods of immobilization (i.e., 96-well plates and streptavidin-coated magnetic 

beads). The newly enriched pool of selected ssDNA ligands served as the starting library for 

successive rounds of selection until the final diversity of the library was reduced to 

approximately 1  104, representing an enriched pool of H69-specific aptamer candidates. This 

refined library was obtained after the 11th round of SELEX performed without the need to 
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increase the selection stringency between subsequent rounds (incubation times, buffer 

conditions, etc.). Specifically, successive rounds of SELEX showed an overall increase in affinity 

of the DNA library for wild-type H69. Our best percent of the bound library was achieved using 

rotational incubation with H69 bound to streptavidin-coated magnetic beads coupled with 

direct bead PCR rather than the initial experimental method (i.e., rocking incubation with H69 

bound to streptavidin-coated 96-well plates). The more uniform incubation achieved with the 

rotational incubation method and H69-bound beads versus plates, presumably maximized the 

surface area for the DNA library to bind, thus explaining the observed increase in percent 

bound of DNA library with subsequent rounds of SELEX.  

      Analyses of H69-binding DNA aptamers using Clustal W and Mfold (see Section 6.3 for 

discussion of Mfold results) combined allowed for groupings based on homology of either 

primary or secondary structure. DNA aptamers were assigned to three groups based on Mfold 

folding results as follows: group 1 (i.e., aptamers #1, 2, 4, 5, 7, 9, 10, 11, 14, 15, 16, and 20); 

group 2 (i.e., aptamers #8, 18, and 19; and group 3 (i.e., aptamers # 3, 6, 12, 13, and 17). Group 

1 consensus sequence = 5'-ACGCGGACCTAACACACACCTCCCCCAACCACCCCACCC-3') followed by 

group 2 consensus sequence = 5'-GGGACTATTTCCTGCACGTT-3'). Group 3 did not show a 

consensus sequence and thus represented an “orphan” group.   

 

6.2. Determination of selectivity and affinity of DNA aptamers for wild-type H69  

 

       The affinity and selectivity of H69DNAapt18 and H69DNAapt8 for wild-type H69 were 

determined by EMSAs and fluorescence titrations. The dissociation constants of the aptamers, 
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i.e., H69DNAapt18 and H69DNAapt8, and wild-type H69 were determined by EMSAs to be 

within the range of 70-80 nM. The error could not be determined due to a low amount of 

synthetically modified RNA and inability to repeat the experiments. Fluorescence titrations 

were employed to characterize the specificity of aptamer H69DNAapt18 for wild-type H69 by 

direct comparisons of the dissociation constants between the aptamer and related RNA 

constructs related (wild-type, , and UUU) as well as an unrelated RNA (A site). Plots of 

fluorescence titrations of F-H69DNAapt18 bound to wild-type H69 and related RNA constructs 

( and UUU) as well as unrelated A-site rRNA did not reach saturation within the ranges 

tested.  Therefore, both extrapolated Kd values from calculations using Equation 4.4 (Figures 

5.12 – 5.15). The apparent dissociation constants (Kds) of aptamer H69DNAapt18 were 

determined by fluorescence intensity measurements of a 5′-fluorescein-tagged variant in the 

presence of increasing concentrations of H69 constructs or the unrelated A-site RNA. The Kds 

are as follows:  [m3
 (wild-type H69)] = 1 ± 0.95 M; [] = 12 M; [UUU] = 22 M; and 

[A-site] >100 M). As shown in Table 6.1, the strongest binding (i.e., Kd = 1 ±0.95 µM) was 

observed between H69DNAapt18 and wild-type H69. The dissociation constant was increased 

to 12 µM for H69DNAapt18 and  when N3-methylation at 1915 was not present in the 

RNA. A further increase in Kd (decreased affinity) was observed between H69DNAapt18 and 

UUU (22 µM), the unmodified H69 without pseudouridylations or N3-methylation. The binding 

between H69DNAapt18 and A-site RNA was the weakest (Kd >100 µM). Although, the 

extrapolated Kd values of H69DNAapt18 for m3
, , and UUU are approximately 3-fold 

greater than the visually estimated values (Table 6.1), the overall trend of decreasing order of 
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binding affinities of H69DNAapt18 for wild-type H69 versus variants remained conserved for 

both methods used to obtain Kds (i.e., m3
 >  > UUU > A-site). 

Table 6.1.  Comparison of Kd values of aptamer #18 binding to wild-type H69 and various 
rRNA motifs. 

DNA Aptamer Targets/RNA Constructs Structures:   

 

RNA type   Kd [M] [a]  Kd
[c]  

   

m3
 (wild-type H69) 1 ± 0.95[b]   ~300 nM 

 (unmethylated H69)  14   ~4 M 

UUU (unmodified H69) 22   ~6 M 

A-site (16S rRNA) >100   N.D. 

Experimental conditions for all fluorescence titrations were performed in 20 mM Tris-HCl (pH 7), 140 mM, NaCl, 5 

mM MgCl2 with 2 min incubation times between each sample reading . 
 [a]

Kd estimates were obtained using 

Equation 4.4 and Kds were averaged from spectral values measured at  = 510 nm and 520 nm. 
[b]

The Kd values and 

standard deviation were measured and calculated from the average of two independent m
3
fluorescence 

titration experiments. 
[c]

These values represent an estimate of Kd by visual inspection of the binding curve at the 

half-maximal binding of rRNA to F-DNAH69apt18.  
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       These results demonstrate that H69DNAapt18 can recognize wild-type H69 sequence 

specifically, and suggest that the binding affinity could be subjected to subtle variations in 

structure or capabilities to form different intermolecular interactions of the H69 variants at 

different modification states. Furthermore, this is the first time that a DNA aptamer generated 

through SELEX is shown to recognize specific RNA modifications, and H69DNAapt18 exhibits 

greater binding affinity compared to a peptide or aminoglycoside binder of H69 (Table 

6.2).146,147Aminoglycosides naturally target RNA with high affinity and have been shown to bind 

to H69 with M affinity (Table 6.2).147      

 

Table 6.2.  Comparison of dissociation constant Kd values of aptamer #18 binding to wild-type 
H69 and various rRNA motifs to H69 binding phage display generated heptapeptide, 
NQVANHQ-NH2 and aminoglycoside, neomycin. 

RNA Target Kd at pH 7.0 (M) Kd at pH 7.0 (M) Kd at pH 7.0 (M)  

 (RNA+ H69DNAapt18) 
by fluorescence  

(RNA + NQVANHQ-
NH2) by ESI-MS 

(RNA + neomycin) by 
ESI-MS 

m3
 1 ± 0.95 11 ± 1 3.0 ± 0.6 

UUU 22 19 ± 2 1.4 ± 0.6 

A-site > 200 49 ± 10        - 

 14 4.6 ± 1.7 1.2 ± 0.4 

Human H69 N.D. 50 ± 8 N.D. 

      

6.3. Mfold structural analysis of DNA aptamers and potential kissing-kissing loop interactions 

between H69DNAapt18 and H69 

 

      Our experimental approach was designed to generate H69-DNA aptamer candidates with 

diversity in both their primary sequences and secondary structures. Mfold analysis was carried 

out on 20 of the selected DNA aptamers, both the untruncated (84-nt) and truncated (40-nt) 

forms. Mfold structures revealed similarities within the number and types of motifs present 
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within predicted secondary structures of the potential H69-DNA aptamers, and thus were 

divided into five families (Figure 5.4) containing the following aptamers: family I (#8, #18), II 

(#3, #6, #12), III (#13, #19), IV (#1, #7, #9, #11, #14, #16), and V (#4, #5, #10, #20). Aptamers #2, 

15, and 17 did not exhibit significant structural similarity with any of the aforementioned 

families and therefore were excluded from a family assignment.         

       Aptamers H69DNAapt18 and H69DNAapt8,  were both assigned to group 2 (Clustal W) as 

well as family 1 (Mfold), and exhibited features in their secondary structures that are ideal for 

binding to H69. A 20mer stem-loop structure in H69DNAapt18 was identified by Mfold 

predictions, in both the truncated and untruncated constructs (Fig. 6.1a). In H69DNAapt8, two 

hairpin structural motifs were observed in the Mfold predicted secondary structure (Fig. 6.1b). 

As shown in Fig. 6.2, the 20mer hairpin motif in H69DNAapt18, from residues 28 to 47, shows 

sequence complementarity to H69 (from 1906 to 1924, E. coli numbering). The loop region of 

this 20mer motif is proposed to potentially form initial interactions with the loop region of H69 

by multiple base-pairing possibilities (Table 6.3). Similarities in sequences in secondary 

structures were also observed between the 20mer hairpin in H69DNAapt18 and the 13mer 

hairpin in H69DNAapt8, which exhibited sequence complementarity to H69 in the loop regions 

(Table 6.3). The 10mer hairpin in H69DNAapt8 also shows certain sequence complementarity to 

H69, as shown in Table 6.3, however the sequence context is very limited for base-pair 

formation. These results suggest that the hairpin motifs in DNA aptamers H69DNAapt18 and 

H69DNAapt8 may form extensive DNA/RNA duplexes with H69, initiated by the so called 

“kissing” loop-loop interactions within the loop regions.124 Furthermore, these kissing loop 

residues within the proposed H69/aptamer duplexes are conserved, specifically  A1913, 1915, 
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A1916, and 1917 (wild-type H69)82 are conserved within all phylogeny, and H69DNAapt18 

residues T37, A38, T40 and T41 appear in both the untruncated and truncated forms as well as 

exhibit significant conservation with H69DNAapt8 residues T35, A36, T37, and T38.  The 

aforementioned observed conservations for H69 and the DNA aptamers suggests that these 

residues may be essential for H69/aptamer binding and possible kissing loop formation. 

                           

 

Figure 6.1. Conserved hairpin motifs and proposed interactions of H69 and truncated 

H69DNAapt18 and truncated H69DNAapt8. (a) Truncated H69DNAapt18 is shown with one 

conserved motif boxed in dotted rectangles matching the conserved motif of the corresponding 

full-length untruncated H69DNAapt18. (b) H69DNAapt8 is shown to have two conserved motifs 

boxed in grey and green dotted rectangles matching the conserved motifs of the corresponding 

untruncated H69DNAapt8.  Furthermore, these conserved apex loop regions of H69DNAapt18 

and H69DNAapt8 share the common sequence 5′-ACTATT-3′.                                                                    

a) 
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Figure 6.2. Hairpin motifs of aptamer versus target with kissing loop structure.  H69DNAapt18 

exhibits complementarity to the wild-type H69 loop region.  The 19-nt hairpin loop structure of 

H69 of E. coli 23S ribosomal RNA (a) has conserved regions and complementarity to 20-nt 

hairpin H69DNAapt18 (b). The 3-methylpseudouridine of wild-type H69 at the apex of its 

hairpin loop, dotted oval (black), designated as residue 1915 (E. coli numbering) with base-pair 

complementarity to the apex region of positions 37 and 38 dotted oval (black), of H69DNA 

apt18 (b).  Conserved nucleotide bases are boxed (red), and complementary bases are circled 

(blue).  Pseudouridine position 1917 of wild-type H69 (a) highlighted within a dotted oval 

(black) also shows base-pair complementarity to position 40 in a dotted oval (black) of 

H69DNAapt18 (b).   

H69 H69DNAapt18 
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Table 6.3.  Proposed base pairing of hairpin apex region of DNA aptamers duplexed with H69.  

All proposed bonding interactions within the duplex sequence are in bold letters. 

hairpin              H69/aptamer duplex sequence           m3
-Am3

-T       -A          
-T        A-T                                                              

                                                                               1912  1913  1914      1915       1916   1917   1918 

H69                       5'  A A C m3
A A  3'                                  1              1             1            -          2    

H69DNAapt18    3'   T T  T  A  T  C  A C  5' 
                                                                                   41     40      39      38      37     36       35        34 

 
                                                                                  1912  1913  1914       1915    1916   1917   1918 

H69                       5'  A A  C m3
A A  3'                                  1              1              -           1          1   

H69DNAapt8       3' T  T         A   T  C  A  -  5' 
                                      38      37                        36       35        34        33      

    
                                                                                                     1912  1913  1914    1915     1916   1917   1918 

H69                       5' A A C m3
A A  3'                                    1              -              1            1          1 

H69DNAapt8       3' -  -  -      A   A  T  T  5' 
(truncated)                                   34          33       32        31 

        

       In conclusion, H69-binding DNA aptamers with diversities in sequences and structures were 

generated by SELEX experiments, which employed streptavidin-coated magnetic beads. 

Aptamers H69DNAapt18 and H69DNAapt8 were shown to bind wild-type H69 with dissociation 

constants of 70-80 nM by EMSA. H69DNAapt18 also exhibited differential specificities towards 

H69 of different modification states. Mfold analysis on DNA aptamers H69DNAapt18 and 

H69DNAapt8 suggests that a DNA/RNA hybrid duplex may form between the hairpin motifs in 

the DNA aptamers and H69, resulting from potential “kissing” loop-loop interactions.      
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Figure 6.3. Possible complementary base pairs of the proposed kissing-kissing loop-loop 

RNA/DNA duplexes of aptamers #8 and #18 bound to the apex region of H69.  Proposed 

Watson-Crick (i.e., -T; A-T148; and -A149) and non Watson-Crick base pairing (i.e., m3
-A; 

m3
-T) are illustrated as from the hairpin loop regions of the aptamer/H69 complexes.  
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CHAPTER 7 - FUTURE DIRECTIONS 

 

7.1. Future directions: H69-DNA aptamer drug development 

 

       The DNA aptamers selected for binding to H69 provide interesting tools for further studies 

of the ribosome. We have obtained one DNA aptamer that can bind selectively to wild-type 

H69. Further work to enhance affinity and selectivity in vivo could then lead to assays and 

inhibition of protein synthesis within infectious microbes. To ascertain the ability of 

H69DNAapt18 to bind to E. coli wild-type H69 during the assembly of the 50S and 30S subunits 

for protein synthesis, we propose whole ribosome binding studies to monitor the effect of  

aptamers on ribosome assembly and/or protein synthesis. The H69-DNA aptamers developed in 

this study may be optimized, and at the same time, 70S ribosome formation assays should be 

developed to further evaluate the potential of aptamers as novel therapeutics.  

        In this work, we employed in vitro binding assays, namely EMSA and fluorescence titrations 

with a labeled aptamer. Our approach should be extendable to further study of the interactions 

of all of the DNA aptamers that were selected and exhibited formation of complexes with H69 

(i.e, aptamers #1-7, 9-17, and 19-20). The identity of the specific nucleotides and base pairs 

involved in the proposed DNA/RNA complexes remain unknown; therefore the design of 

experiments that can identify which residues of the stem and loop regions of H69DNAapt18 are 

involved in key contacts with H69 (i.e., chemical footprinting and mutation analysis) are 

desired. Additional binding studies (i.e., surface plasmon resonance and electrospray ionization 

mass spectrometry) would be ideal to evaluate the binding affinities of the conserved truncated 

c) 
c) 
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motifs versus the untruncated forms of promising DNA aptamers identified as high-affinity 

binders by fluorescence titration assays.     

             Our results suggest that H69DNAapt18 has the ability to specifically recognize modified 

nucleotides and methylated sites of RNA motifs. The observed modest discriminating binding 

selectivity of H69DNAapt18 for m3
over  and UUU suggests that H69DNAapt18 may 

be able to recognize variations in modified versus unmodified bases. It would be interesting to 

expand this research and explore the potential of H69DNAapt18 as a probe for pseudouridine 

and methyl-pseudouridine within wild-type H69 and its unmodified constructs. This binding 

affinity and specificity needs to be confirmed by additional experiments to provide greater 

insight into whether H69DNAapt18 has varying binding affinity for modified versus unmodified 

RNA nucleotides (i.e., uridine, pseudouridine and methylpseudourine) in different sequence 

contexts. Additional characterization of the properties of H69DNAapt18 would clarify its 

potential use in vitro and/or in vivo as an “RNA modification probe” and provide insight into the 

structural and functional roles of natural modified nucleotides. Importantly, designing a higher 

affinity DNA aptamer as a probe could potentially help explore additional biological roles of 

pseudouridine present in the ribosome as well as shed more light on the significance of 

methylation in natural RNA motifs that are rich in modified nucleotides. 

       Ideally, our original DNA library generated by SELEX may have greater binding affinity for 

H69 by changing the stringency conditions between successive rounds.  Essentially, increased 

stringency may affect the percentage of DNA library bound s for the earlier rounds of selection 

(i.e., lower percent bound in initial rounds).  We propose that SELEX experiments could be 
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repeated for the initial DNA library by including changes in the stringency  (i.e., binding time, 

number of washes, buffer salt conditions) to further enhance the overall selectivity and 

diversity of the DNA library with successive rounds.  Specifically, the SELEX binding time could 

be modified to include incremental decreases in times of incubation for every 3 - 5 rounds (30 

min - 15 min) and washing cycle times may be increased (i.e., 2 - 5 washes after every 3 rounds 

of SELEX).  

       Furthermore, our reported fluorescence binding assays are incomplete and therefore can 

be enhanced to include more statistical analysis, internal fluorescence tagging, and anisotropy. 

Enhancements to the quality and sensitivity of detection of binding interaction between 

H69DNAapt18 and H69 may be achieved by employing the following changes in the 

fluorescence binding assay methodologies: (1) perform additional fluorescence binding 

experiments with target and DNA aptamers in duplicates (i.e., report of statistical analysis and 

error bars for relative florescence) and report data of relative fluorescence vs. increasing 

concentration of target RNA constructs (UUU, m3
, and A-site rRNA); (2) repeat 

fluorescence titration experiments utilizing an internal fluorophore tag on the 5´end of the 

stem-hairpin motif; and (3) perform fluorescence anisotropy with fluorescently tagged DNA 

aptamers against  increasing concentrations of H69 and target RNA constructs. Ideally, larger 

RNA constructs and full-length ribosomal RNA would also be tested for binding.   
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       H69/DNA aptamer site-targeting assays to evaluate binding specificities for the stem versus 

loop regions can be designed to further characterize the affinity of H69DNAapt18 for wild-type 

H69. Truncated (40 nt) length H69DNAapt18 representing the 5´and  3´ ends of the stem and 

loop regions can also be employed within EMSA and fluorescence binding assays to monitor 

evidence of DNA/RNA complex formation for the individual stem regions of H69DNAapt18 to 

radiolabeled or fluorescently labeled H69 vs. the complete stem-hairpin of H69DNAapt18. 

Evidence of stem vs. complete stem-hairpin DNA/RNA complex formation could be monitored 

using a broader range of DNA concentrations (0-20 M) and buffer conditions ideal for fully 

assembled ribosomes (i.e., 100-150 mM KCl or NH4Cl).  If results show Kd constants for the fully 

assembled stem-hairpin H69DNAapt18 as lower or equivalent to the binding affinity to the 

stem region of the DNA aptamer, this could further support a hypothesis that H69DNAapt18 

preferentially binds to the loop region of H69.  Furthermore, complete stem-loop 

H69DNAapt18 incubated with increasing concentrations of point mutation variants of 

fluorescently labeled or radiolabeled H69, may be challenged against increasing concentrations 

of H69DNAapt18. Modified analogs of H69, where the loop region has point mutations of the 

wild-type sequence, can be employed in inhibition assays to further characterize which residues 

of the H69 loop are key for complex formation with H69DNAapt18.  

       Additionally, the identity specific residues proposed in kissing-kissing hairpin motifs of the 

observed DNA/RNA complexes need to be further characterized.  More sensitive binding 

analyses can be performed with electrospray ionization mass spectrometry (ESI-MS) and 

nuclear magnetic resonance spectroscopy (NMR) to elucidate the specific residues of H69 that 

are proposed to interact with H69DNAapt18 in solution. Footprinting binding assays may be 
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employed using aniline-induced cleavage to gain more reliable information about the binding 

sites of the aptamer to H69 and specific residues proposed to contact H69DNAapt18 observed 

through DNA/RNA complex formations.  Specifically, the proposed non-Watson-Crick base pairs 

(i.e., m3
 and  binding with T and A) within the loop regions of the loop-loop kissing hairpin 

motif model of both the conserved truncated and untruncated loop regions of H69DNAapt18 

and H69DNAapt8 need to be further characterized.   

       Finally, to evaluate the effectiveness of H69DNAapt18 as a potential drug, ribosome 

assembly inhibition assays can be employed. Whole ribosomal RNA binding assays for E. coli can 

be designed to analyze H69DNAapt18’s ability to affect proper rRNA assembly and provide 

greater insight into its potential to disrupt protein translation. Absence of the whole 70S 

ribosome in the presence of DNA aptamer would suggest H69DNAapt18 would have the ability 

to inhibit ribosomal assembly. A ribosomal assembly inhibition assay would allow for 

comparison of complexes formed between individual ribosomal subunits (i.e., 30S and 50S) and 

formation of 70S rRNA in the presence and absence of FAM-H69DNAapt18, by way of 

monitoring changes of fluorescence as a result of binding of FAM-H69DNAapt18 to H69 during 

70S ribosome formation.   

 

7.2. Applications of selected DNAs as probes  

 

        The development and application of a probe for modified nucleotides such as 

pseudouridine in other sequence or structural contexts may provide a greater understanding of 

their biological significance in rRNA or other natural RNAs. Such a tool might prove useful for 
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studies exploring the roles of pseudouridine in vivo. Exploring the application of H69DNAapt18 

as an in vivo probe of H69 would support its potential role in disruption of ribosomal assembly 

and protein synthesis. Other studies have linked increased levels of oxidized urinary  with 

neurodegenerative conditions such as Alzheimer's and Parkinson's diseases.150 Therefore, a 

probe may be useful for both in vitro and in vivo studies to further characterize these 

systems and to further explore biologically significant roles of  and link to microbes and 

diseases. 

7.3. Counter-selection aptamers: SELEX against human H69 analog with DNA aptamers   

 

       Overall, this study provides a reference point for the development of DNA aptamers that 

identify modified nucleotides and/or methylation sites in bacterial RNA, or could possibly 

function as novel therapeutics to help combat antibiotic resistance. Our work demonstrates 

how selection-based approaches may be used in the discovery of potential RNA-binding 

therapeutics, and provides a framework for selecting other DNA-binding molecules with the 

desired properties of RNA targeting. However, these results also show the need to evaluate the 

potential of DNA aptamers to bind selectively to the target RNA. Therefore, counter-selection 

experiments should be carried out, such as employing the human analogue to remove DNAs 

lacking selectivity for the bacterial RNA. Those aptamers would then be evaluated for their 

potential as selective therapeutics targeting only bacteria (Fig. 7.1). Differences in the sequence 

of bacterial versus human H69 are present in both the stem and loop regions of the hairpin, 

which are important to exploit during the development of effective and highly selective 

aptamers. Specifically, human H69 is void of m3
 within the apex region corresponding to 
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position 1915 of E. coli. Presently, our data indicate that the observed selectivity of the 

H69DNAapt18 aptamer for wild-type H69 may be attributed to varying binding affinities 

contingent upon the presence or absence of modified bases (i.e., or m3
). Therefore, 

counter-selections with unmodified H69 variants would be useful. Finally, experiments that 

provide greater structural characterization of H69DNAapt18 binding to H69 would enhance our 

knowledge of the binding mechanism and formation of the observed DNA/RNA complexes, and 

potentially provide greater insight into the structural roles of  and m3
 in within H69.   

 

Figure 7.1. Structural comparison of bacterial versus human H69. The E. coli domain IV of 23S 

rRNA (left) is structurally distinct (red) when compared to eukaryotic of 28S rRNA 

(5; or human H69)151 (right). 
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APPENDIX 

Figure A1.  Mfold structural analysis of  untruncated aptamer #1. 

 Mfold Structural Analysis                                                                                                                               Aptamer #1  

Length:                                                                                                                                                                84-nt                

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaCGCGGACCTAACACACACCTCCCCCAACCACCCCACCCCAagctcagaagaaacgctcaa - 3´ 

 

2° structural motifs:                                                                                                                                         hairpin loops:   

                                                                                                                                                                              L1, L2 and L3 

Family:                                                                                                                                                                IV 
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Figure A2.  Mfold structural analysis of truncated aptamer #1. 

Mfold Structural Analysis                                                                                                                               Aptamer #1  

Length:                                                                                                                                                                40-nt                

                                                                                                                                                                              (truncated) 

Sequence:  

5´- CGCGGACCTAACACACACCTCCCCCAACCACCCCACCCCA-3´ 

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1 
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Figure A3.  Mfold structural analysis of  untruncated aptamer #2. 

Mfold Structural Analysis                                                                                                                               Aptamer #2  

Length:                                                                                                                                                                84-nt                

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- agctcagaagaaacgctcaaACGCGGACCTAACACACACCTCCCCCAACCACCCCACCCCttgagcgtttttctgagct -3´ 

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1 
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Figure A4.  Mfold structural analysis of  truncated aptamer #2. 

Mfold Structural Analysis                                                                                                                               Aptamer #2  

Length:                                                                                                                                                                40-nt                

                                                                                                                                                                              (truncated) 

Sequence:  

5´-ACGCGGACCTAACACACACCTCCCCCAACCACCCCACCCC-3´ 

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1 
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   Figure A5.  Mfold structural analysis of  untruncated aptamer #3. 

Mfold Structural Analysis                                                                                                                               Aptamer #3  

Length:                                                                                                                                                                84-nt                

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaCTCGGCCCCCTTTGACCAAAGAGAGAACAAAAAAATAAAagctcagaagaaacgctcaa -3´ 

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1, L2 and L3 

Family:                                                                                                                                                                 II 
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   Figure A6.  Mfold structural analysis of  truncated aptamer #3. 

Mfold Structural Analysis                                                                                                                               Aptamer #3  

Length:                                                                                                                                                                40-nt                

                                                                                                                                                                              (truncated) 

Sequence:  

5´-CTCGGCCCCCTTTGACCAAAGAGAGAACAAAAAAATAAA-3´ 

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1 
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Figure A7.  Mfold structural analysis of  untruncated aptamer #4. 

Mfold Structural Analysis                                                                                                                               Aptamer #4  

Length:                                                                                                                                                                84-nt                

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- ccggatccgggcctcatgtcgaaACGGACCTAACACACACCTCCCCCAACCACCCCACCCCagctcagaagaaacgctcaa-3´  

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1, L2 and L3 

Family:                                                                                                                                                                 V 
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Figure A8.  Mfold structural analysis of  truncated aptamer #4. 

Mfold Structural Analysis                                                                                                                               Aptamer #4  

Length:                                                                                                                                                                40-nt                

                                                                                                                                                                              (truncated) 

Sequence:  

5´-ACGGACCTAACACACACCTCCCCCAACCACCCCACCCC-3´ 

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1 
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 Figure A9.  Mfold structural analysis of  untruncated aptamer #5. 

Mfold Structural Analysis                                                                                                                               Aptamer #5 

Length:                                                                                                                                                                84-nt                

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaCGACGGACCTAACATCAACCTGCCCCCAACCACCCTCACagctcagaagaaacgctcaa-3´ 

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1, L2 and L3 

Family:                                                                                                                                                                V 
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   Figure A10.  Mfold structural analysis of  truncated aptamer #5. 

Mfold Structural Analysis                                                                                                                               Aptamer #5 

Length:                                                                                                                                                                40-nt                

                                                                                                                                                                              (truncated) 

Sequence:  

5´-CGACGGACCTAACATCAACCTGCCCCCAACCACCCTCAC-3´ 

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1 
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   Figure A11.  Mfold structural analysis of  untruncated aptamer #6. 

Mfold Structural Analysis                                                                                                                 Aptamer #6 

Length:                                                                                                                                                     84-nt                

                                                                                                                                                                 (untruncated) 

 

Sequence:  

5´- gccggatccgggcctcatgtcgaaTTTATCCCTCACATGGGAAACTTCCGTACGCCTATGAGTTttgagcgtttattctgagct -3´ 

2° structural motifs:                                                                                                                              hairpin loop:   

                                                                                                                                                                 L1, L2 and L3 

Family:                                                                                                                                                                 II 
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 Figure A12.  Mfold structural analysis of  truncated aptamer #6. 

Mfold Structural Analysis                                                                                                                               Aptamer #6 

Length:                                                                                                                                                                40-nt                

                                                                                                                                                                              (truncated) 

Sequence:  

5´-TTTATCCCTCACATGGGAAACTTCCGTACGCCTATGAGTT-3´ 

2° structural motifs:                                                                                                                                         hairpin loops:   

                                                                                                                                                                              L1 and L2 
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Figure A13.  Mfold structural analysis of  untruncated aptamer #7. 

Mfold Structural Analysis                                                                                                                               Aptamer #7 

Length:                                                                                                                                                                84-nt                

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaACGCGGACCTAACACACACCTCCCCCAACCACCCCACCCagctcagaagaaacgctcaa -3´ 

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1, L2 and L3 

Family:                                                                                                                                                                 IV 
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Figure A14.   Mfold structural analysis of truncated aptamer #7. 

Mfold Structural Analysis                                                                                                                               Aptamer #7 

Length:                                                                                                                                                                40-nt                

                                                                                                                                                                              (truncated) 

Sequence:  

5´-ACGCGGACCTAACACACACCTCCCCCAACCACCCCACCC-3´ 

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1  
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  Figure A15.  Mfold structural analysis of  untruncated aptamer #8. 

Mfold Structural Analysis                                                                                                                               Aptamer #8 

Length:                                                                                                                                                                84-nt                

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaCTAAAGGGACTATTCCTGCACGTTTAAACGAATTCGACCCTttgagcgtttattctgagct -3´ 

2° structural motifs:                                                                                                                                         hairpin loops:   

                                                                                                                                                                              L1, L2, L3 and           

                                                                                                                                                                              L4  

                                                                                                                                                                              Internal loop: 

                                                                                                                                                                              IL1 

Family:                                                                                                                                                                 I 
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Mfold Structural Analysis                                                                                                                               Aptamer #8 

Length:                                                                                                                                                                40-nt                

                                                                                                                                                                              (truncated) 

Sequence:  

5´-CTAAAGGGACTATTCCTGCACGTTTAAACGAATTCGACCCT-3´ 

2° structural motifs:                                                                                                                                         hairpin loops:   

                                                                                                                                                                              L1 and L2 

 

  Figure A16.  Mfold structural analysis of  truncated aptamer #8. 
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   Figure A17.  Mfold structural analysis of untruncated aptamer #9. 

Mfold Structural Analysis                                                                                                                               Aptamer #9 

Length:                                                                                                                                                                84-nt                

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaACGCGGACCTAACACACACCTCCCCCAACCACCCCACCCagctcagaagaaacgctcaa-3´ 

2° structural motifs:                                                                                                                                         hairpin loops:   

                                                                                                                                                                              L1, L2, L3 and                                                                                                                                                                               

Family:                                                                                                                                                                 IV 
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Mfold Structural Analysis                                                                                                                               Aptamer #9 

Length:                                                                                                                                                                40-nt                

                                                                                                                                                                              (truncated) 

Sequence:  

5´-ACGCGGACCTAACACACACCTCCCCCAACCACCCCACCC-3´ 

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1  

 

Figure A18.  Mfold structural analysis of  truncated aptamer #9. 
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   Figure A19.  Mfold structural analysis of  untruncated aptamer #10. 

Mfold Structural Analysis                                                                                                                               Aptamer #10 

Length:                                                                                                                                                                84-nt                

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaAACGACGGAACCTAAACAACAACAACCTACCCCCAACCACagctcagaagaaacgctcaa-3´ 

2° structural motifs:                                                                                                                                         hairpin loops:   

                                                                                                                                                                              L1, L2,  and L3                                                                                                                                                                            

Family:                                                                                                                                                                 V 
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 Figure A20.  Mfold structural analysis of truncated aptamer #10. 

Mfold Structural Analysis                                                                                                                               Aptamer #10 

Length:                                                                                                                                                                40-nt                

                                                                                                                                                                              (truncated) 

Sequence:  

5´-AACGACGGAACCTAAACAACAACAACCTACCCCCAACCAC-3´ 

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1  
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 Figure A21.  Mfold structural analysis of untruncated aptamer #11. 

Mfold Structural Analysis                                                                                                                               Aptamer #11 

Length:                                                                                                                                                                84-nt                

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaACGCGGACCTAACACACACCTCCCCCAACCACCCCACCCCagctcagaagaaacgctcaa-3´ 

2° structural motifs:                                                                                                                                         hairpin loops:   

                                                                                                                                                                              L1, L2, L3                                                                                                                                                        

Family:                                                                                                                                                                 IV 
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Figure A22.  Mfold structural analysis of truncated aptamer #11. 

Mfold Structural Analysis                                                                                                                               Aptamer #11 

Length:                                                                                                                                                                40-nt                

                                                                                                                                                                              (truncated) 

Sequence:  

5´- ACGCGGACCTAACACACACCTCCCCCAACCACCCCACCCC-3´ 

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1  
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   Figure A23.  Mfold structural analysis of untruncated aptamer #12. 

Mfold Structural Analysis                                                                                                                               Aptamer #12 

Length:                                                                                                                                                                84-nt                

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaGCCCTGCCCGCATACCTCACTTCTTTCTAGACCCACACTCagctcagaagaaacgctcaa-3´ 

2° structural motifs:                                                                                                                                         hairpin loops:   

                                                                                                                                                                              L1 and L2                                                                                                                                                       

Family:                                                                                                                                                                 II 
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   Figure A24.  Mfold structural analysis of truncated aptamer #12. 

Mfold Structural Analysis                                                                                                                               Aptamer #12 

Length:                                                                                                                                                                40-nt                

                                                                                                                                                                              (truncated) 

Sequence:  

 5´- GCCCTGCCCGCATACCTCACTTCTTTCTAGACCCACACTC-3´  

2° structural motifs:                                                                                                                                         hairpin loop:   

                                                                                                                                                                              L1  
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Figure A25.  Mfold structural analysis of untruncated aptamer #13. 

Mfold Structural Analysis                                                                                                                               Aptamer #13 

Length:                                                                                                                                                                84-nt                

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaCAGGTCGCTTACGCCCGCTGCCCCACTCAACCAACCACCTagctcagaagaaacgctcaa-3´ 

2° structural motifs:                                                                                                                                        hairpin loops:   

                                                                                                                                                                             L1 and L2 

                                                                                                                                                                             internal loop: 

                                                                                                                                                                             IL1 

Family:                                                                                                                                                                III 
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   Figure A26.  Mfold structural analysis of untruncated aptamer #13. 

Mfold Structural Analysis                                                                                                                               Aptamer #13 

Length:                                                                                                                                                                40-nt                

                                                                                                                                                                              (untruncated) 

Sequence:  

5´-CAGGTCGCTTACGCCCGCTGCCCCACTCAACCAACCACCT-3´ 

2° structural motifs:                                                                                                                                        hairpin loop:   

                                                                                                                                                                             L1  

                                                                                                                                                                             bulge:  B1                                                                                                                                                     
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   Figure A27.  Mfold structural analysis of untruncated aptamer #14. 

Mfold Structural Analysis                                                                                                                               Aptamer #14 

Length:                                                                                                                                                                84-nt                

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaACGCGGACCTAACACACACCTCCCCCAACCACCCCACCCCagctcagaagaaacgctcaa-3´ 

2° structural motifs:                                                                                                                                        hairpin loops:   

                                                                                                                                                                             L1, L2 and L3                                                                                                                                                                             

Family:                                                                                                                                                                IV 
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 Figure A28.  Mfold structural analysis of truncated aptamer #14. 

Mfold Structural Analysis                                                                                                                               Aptamer #14 

Length:                                                                                                                                                                40-nt                

                                                                                                                                                                              (truncated) 

Sequence:  

5´-ACGCGGACCTAACACACACCTCCCCCAACCACCCCACCCC-3´ 

2° structural motifs:                                                                                                                                        hairpin loops:   

                                                                                                                                                                             L1                                                                                                                                                                          
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   Figure A29.  Mfold structural analysis of untruncated aptamer #15. 

Mfold Structural Analysis                                                                                                                               Aptamer #15 

Length:                                                                                                                                                                84-nt 

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaTACCTAGATCCCCCTCTCCAACCCTTCGCTAACCTACCCCagctcagaagaaacgctcaa-3´ 

2° structural motifs:                                                                                                                                        hairpin loops:   

                                                                                                                                                                             L1 and L2 

                                                                                                                                                                             internal loop:  

                                                                                                                                                                             IL1 

Family:                                                                                                                                                                - 
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   Figure A30.  Mfold structural analysis of untruncated aptamer #16. 

Mfold Structural Analysis                                                                                                                               Aptamer #16 

Length:                                                                                                                                                                84-nt 

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaTACCTAGATCCCCCTCTCCAACCCTTCGCTAACCTACCCCagctcagaagaaacgctcaa-3´ 

2° structural motifs:                                                                                                                                        hairpin loops:   

                                                                                                                                                                             L1, L2                                                                                                                                                                             

Family:                                                                                                                                                                IV 
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   Figure A31.  Mfold structural analysis of  truncated aptamer #16. 

Mfold Structural Analysis                                                                                                                               Aptamer #16 

Length:                                                                                                                                                                84-nt 

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaTACCTAGATCCCCCTCTCCAACCCTTCGCTAACCTACCCCagctcagaagaaacgctcaa-3´ 

2° structural motifs:                                                                                                                                        hairpin loops:   

                                                                                                                                                                             L1                                                                                                                                                                          
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Figure A32.  Mfold structural analysis of untruncated aptamer #17. 

Mfold Structural Analysis                                                                                                                               Aptamer #17 

Length:                                                                                                                                                                84-nt 

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaTGCAAGGTTTCAACAAGCAATTCAGCACACATTTGCAGCAttgagcgtttattctgagct-3´ 

2° structural motifs:                                                                                                                                        hairpin loops:   

                                                                                                                                                                             L1, L2, L3 and                                  

                                                                                                                                                                             L4 

                                                                                                                                                                             internal loop: 

                                                                                                                                                                             IL1                                                                                                                                                                           

Family:                                                                                                                                                                -
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   Figure A33.  Mfold structural analysis of untruncated aptamer #19. 

Mfold Structural Analysis                                                                                                                               Aptamer #19 

Length:                                                                                                                                                                84-nt 

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- agctcagaagaaacgctcaaGGGACTATTTCCTGCACGTTTAGGATCTGAATTCGACCCttgagcgtttattctgagct-3´ 

2° structural motifs:                                                                                                                                        hairpin loops:   

                                                                                                                                                                             L1, L2 and L3 

                                                                                                                                                                             internal loop: 

                                                                                                                                                                             IL1 

Family:                                                                                                                                                                III 
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 Figure A35.  Mfold structural analysis of truncated aptamer #19. 

Mfold Structural Analysis                                                                                                                               Aptamer #19 

Length:                                                                                                                                                                40-nt 

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- GGGACTATTTCCTGCACGTTTAGGATCTGAATTCGACCC-3´ 

2° structural motifs:                                                                                                                                        hairpin loop:   

                                                                                                                                                                             L1 and L2 

                                                                                                                                                                             internal loop:  

                                                                                                                                                                             IL1 
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Mfold Structural Analysis                                                                                                                               Aptamer #20 

Length:                                                                                                                                                                40-nt 

                                                                                                                                                                              (untruncated) 

Sequence:  

5´- gccggatccgggcctcatgtcgaaCGACGGACCTAACACAACCTCACCCCAACCACCCCACCCCagctcagaagaaacgctcaa-3´ 

2° structural motifs:                                                                                                                                        hairpin loop:   

                                                                                                                                                                             L1, L2 and L3  

Family:                                                                                                                                                                V 

 

 

 
 
 

Figure A36.    Mfold structural analysis of  untruncated aptamer #20. 



137 
 

 

 

Figure A37.  Mfold structural analysis of truncated aptamer #20. 

Mfold Structural Analysis                                                                                                                               Aptamer #20 

Length:                                                                                                                                                                40-nt 

                                                                                                                                                                              (truncated) 

Sequence:  

5´-CGACGGACCTAACACAACCTCACCCCAACCACCCCACCCC-3´ 

2° structural motifs:                                                                                                                                        hairpin loop:   

                                                                                                                                                                             L1                                                                                                                                                            
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Figure A38.  Preliminary DNA/H69 binding EMSA results for aptamers #1, 2 and 3. Mfold structural 

predictions for aptamer #1 (a), with aptamer #2 (b) and with aptamer #3 (c) are shown above the 

EMSA native gels from select cloned and sequenced SELEX rounds.  All EMSA experiments were 

performed on a 20% non-denaturing polyacrylamide gel with 0.5 TBE running buffer and run for 3 h 

at 15 mA.  H69 was denatured at 94 °C for 15 min and cooled to room temperature to refold for 2 h 

at 37 °C.  [32P] 5'-end-labeled wild-type H69 (1 nM) was preincubated at 37 °C for 15 min in buffer 

containing 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 50 mM NaCl in the presence of increasing 

concentration of DNA aptamer (ranges 0-100 nM) against 1 nM of H69.  
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Figure A39. Preliminary DNA/H69 binding EMSA results for aptamers #4 and 5.  DNA aptamers #4 
(a) and 5 (b) were analyzed by EMSA on native gels and experimental conditions were the same as for 
aptamers in Fig. 5.8.  Secondary Mfold structure prediction of aptamer #4 is shown above the EMSA 

gel analysis for aptamer #4 with increasing concentration (200 nM - 3 M) and incubated with 1 nM 
of H69.  Secondary Mfold structural prediction for aptamer #5 is also shown above the EMSA gel 

showing increasing aptamer concentration (0 nM – 3 M) incubated with 1 nM of H69. 
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Figure A40. Preliminary DNA/H69 binding EMSA results for aptamers #6 and 7. DNA aptamers #6 (a) 
and 7 (b) were analyzed by EMSA on native gels using the same reaction conditions as stated in Fig. 
5.8.  Secondary Mfold structure prediction of aptamer #6 pictured above EMSA gel analysis for 
aptamer #7 of increasing concentration (0 - 460 nM) incubated with 1 nM of H69.  Secondary Mfold 
structural prediction for aptamer #7 of increasing concentration (0 nM – 100 mM) was incubated 
with 1 nM of H69.  Arrows are placed to indicate observed [32P]-H69 forming complexes with DNA 
aptamers #6 and 7 (≥ 320 nM for aptamer #6 and ≥ 10 nM for aptamer #7). 
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Figure A50. Preliminary DNA/H69 binding EMSA results for aptamer #8.  DNA aptamer #8 is 

represented on an EMSA native gel using the same reaction conditions as in Fig. 5.8.  The secondary 

Mfold structure prediction of aptamer #8 is pictured above EMSA with an increasing concentration (0 

– 300 nM) incubated with 1 nM of H69. The arrow points to [32P]-H69 forming complexes with DNA 

aptamers (≥ 60 nM). 
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Figure A51. Preliminary DNA/H69 binding EMSA results for aptamers #9 and 10.  DNA aptamers #9 
(a) and 10 (b) by EMSA on a native gel  were performed using the same reaction conditions as in Fig. 
5.8. and (a) secondary Mfold structure prediction of aptamer #9 has an increasing concentration (0 
nM - 90 nM) incubated with 1 nM of H69.  Secondary Mfold structural prediction for aptamer #10 (b) 
has an increasing concentration range (0 nM – 90 nM) incubated with 1 nM of H69.  A dark arrow 
indicates evidence of [32P]-H69 forming complexes with DNA aptamer #9 and 10 (≥ 20 nM for 
aptamer #9 and ≥ 50 nM for aptamer #10). 
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Figure A52. Preliminary DNA/H69 binding EMSA results for aptamer #11.  DNA aptamer #11 is 
represented by EMSA on a native gel and performed using the same reaction conditions as in Fig. 5.8. 
Secondary Mfold structure prediction for aptamer #11 of increasing concentration (0 – 400 nM) was 
incubated with 1 nM of H69.  A dark arrow is shown to indicate evidence of [32P]-H69 forming 
complexes with DNA aptamers (≥ 30 nM). 
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Figure A53. Preliminary DNA/H69 binding EMSA results for aptamers #12.  Secondary Mfold 
structure prediction of aptamer #12 is represented above the EMSA gel analysis for aptamer #12 of 
increasing concentration (0 – 100 nM) incubated with 1 nM of H69 and reactions conditions were 

performed on a 10% non-denaturing polyacrylamide gel with 0.5 TBE running buffer and run for 1 h 
at 15 mA.  H69 was denatured at 94 °C for 1 min and cooled to refold for 2 h at 37 °C.  [32P] 5'-end-
labeled wild-type H69 (1 nM) was preincubated at 37 °C for 15 min in buffer containing 50 mM Tris-
HCl pH 7.5, 10 mM MgCl2, 50 mM NaCl. No complexes with [32P] 5'-end-labeled wild-type H69 (1 
nM) were observed within the range of DNA aptamer tested.  
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Figure A54. Preliminary DNA/H69 binding EMSA results for aptamer #13.  DNA aptamer #13 
secondary Mfold structure prediction is pictured above with increasing concentration of aptamer #13 
(0 – 390 nM) incubated with 1 nM of H69.  EMSA experimental conditions were performed on a 10% 

non-denaturing polyacrylamide gel with 0.5 TBE running buffer and run for 1 h at 15 mA.  H69 was 
denatured at 94 °C for 1 min and cooled to refold for 2 h at 37 °C.  [32P] 5'-end-labeled wild-type H69 
(1 nM) was preincubated at 37 °C for 15 min in buffer containing 50 mM Tris-HCl pH 7.5, 10 mM 
MgCl2, 50 mM NaCl. No complexes with [32P] 5'-end-labeled wild-type H69 (1 nM) were observed 
within the range of DNA aptamer tested. 



146 
 

 

 

 

Figure A55. Preliminary DNA/H69 binding EMSA results for aptamer #14.  Secondary Mfold 

structure prediction of aptamer #14 is pictured above EMSA gel analysis of increasing concentration 

of aptamer #14 (0 – 500 nM) incubated with 1 nM of H69 using 10% non-denaturing polyacrylamide 

gel with 0.5 TBE running buffer and run for 1 h at 15 mA.  H69 was denatured at 94 °C for 1 min and 

cooled to refold for 2 h at 37 °C.  [32P] 5'-end-labeled wild-type H69 (1 nM) was preincubated at 37 °C 

for 15 min in buffer containing 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 50 mM NaCl. No complexes 

with [32P] 5'-end-labeled wild-type H69 (1 nM) were observed within the range of DNA aptamer 

tested. 
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Figure A56. Preliminary DNA/H69 binding EMSA results for aptamer #15. Secondary Mfold structure 
prediction of aptamer #15 is pictured above EMSA gel analysis for aptamer #15 of increasing 
concentration (0 – 80 nM) incubated with 1 nM of H69 performed using 10% non-denaturing 

polyacrylamide gel with 0.5 TBE running buffer and run for 1 h at 15 mA.  H69 was denatured at 94 
°C for 1 min and cooled to refold for 2 h at 37 °C.  [32P] 5'-end-labeled wild-type H69 (1 nM) was 
preincubated at 37 °C for 15 min in buffer containing 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 50 mM 
NaCl. No complexes with [32P] 5'-end-labeled wild-type H69 (1 nM) were observed within the range 
of DNA aptamer tested.   
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Figure A57. Preliminary DNA/H69 binding EMSA results for aptamer #19. Secondary Mfold 
structure prediction of aptamer #19 is pictured above EMSA gel analysis for aptamer #19 of 
increasing concentration (0 – 100 nM) incubated with 1 nM of H69 performed on a 10% non-

denaturing polyacrylamide gel with 0.5 TBE running buffer and run for 1 h at 15 mA.  H69 was 
denatured at 94 °C for 1 min and cooled to refold for 2 h at 37 °C.  [32P] 5'-end-labeled wild-
type H69 (1 nM) was preincubated at 37 °C for 15 min in buffer containing 50 mM Tris-HCl pH 
7.5, 10 mM MgCl2, 50 mM NaCl. No complexes with [32P] 5'-end-labeled wild-type H69 (1 nM) 
were observed within the range of DNA aptamer tested. 
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Figure A58. Preliminary DNA/H69 binding EMSA results for aptamer #20.  Secondary Mfold 
structure prediction of aptamer #20 is pictured above EMSA gel analysis for aptamer #20 of 
increasing concentration (0 – 900 nM) incubated with 1 nM of H69 performed on a 10% non-

denaturing polyacrylamide gel with 0.5 TBE running buffer and run for 1 h at 15 mA.  H69 was 
denatured at 94 °C for 1 min and cooled to refold for 2 h at 37 °C.  [32P] 5'-end-labeled wild-type 
H69 (1 nM) was preincubated at 37 °C for 15 min in buffer containing 50 mM Tris-HCl pH 7.5, 10 
mM MgCl2, 50 mM NaCl. No complexes with [32P] 5'-end-labeled wild-type H69 (1 nM) were 
observed within the range of DNA aptamer tested. 
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       Outbreaks of advanced antibiotic-resistant strains of microbes have increased the need to 

identify new viable molecular targets for the development of novel anti-infectives. For this 

purpose, helix 69 (H69, or m3
), a 19 nucleotide (19-nt) hairpin motif that is highly 

conserved throughout phylogeny and rich in modified nucleotides, including pseudouridine () 

and 3-methylpseudouridine (m3
) was chosen as a potential target. Helix 69, which is located 

in domain IV of Escherichia coli 23S ribosomal RNA (rRNA), undergoes conformational changes 

when in close proximity to the decoding region of 16S rRNA and transfer RNAs (tRNAs) in the 

peptidyl-transferase center (PTC). The exact biologicl role(s) of H69 remain(s) unclear; however, 

its proposed importance within protein synthesis may support it as an ideal target to develop 

ligands with high binding specificity. 



168 
 

 

 

 

       In this thesis work, DNA aptamer candidates with binding specificity for wild-type bacterial 

H69 were selected. The 84-nt long DNA aptamer (H69DNAapt18) that was identified from a 

DNA library with a 40-nt randomized region has the sequence 5′-

CTCCCCGGGCACTATTTCCTGGGACTAGTTCTGCAGGTT-3′. The initial library contained 5 × 1014 

DNA sequences and was used in systematic evolution of ligands by exponential enrichment 

(SELEX) and exhibitied a molecular diversity of reduction of ~1 × 102 after 11 rounds of in vitro 

selection. A synthetic construct of H69 was biotinylated and used with optimized SELEX.  After 

immobilization of the biotinylated target H69 to streptavidin-coated surfaces, DNA library 

candidates were challenged against H69 in multiple rounds of selection, recovered, and 

enriched by direct-bead polymerase chain reactions.  Levels of bound DNA and diversity of the 

amplified library pools were monitored by UV-Visible spectroscopy and sequencing between 

rounds of SELEX (11 total).  Select rounds were cloned and sequenced.  Consensus sequences 

from select rounds of SELEX were identified by using Clustal W alignments, and optimal 

secondary structures were predicted by Mfold analysis. Analysis of 120 clones led to the 

identification of 20 sequences with consensus motifs. Notably, one of the selected DNA ligands 

(H69DNAapt18) contained a conserved 20-nt hairpin-loop motif with complementarity to the 

loop region of the targeted E. coli wild-type H69.  Interestingly, this 20-nt hairpin motif of 

H69DNAapt18 retained its conserved 20-nt motif within the truncated 40-nt Mfold structural 

prediction representing only the randomized region of the 84-nt DNA library. 

       Attempts to determine binding affinities of select isolated DNA aptamer candidates to 32P-

radiolabeled H69 by electrophoretic mobility shift assasys (EMSAs) were moderately successful, 
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with observation of RNA-DNA complexes with apparent dissociation constants (Kds) in the high 

nM range. To better evaluate the affinity and selectivity of DNA aptamer #18, a fluorescently 

tagged H69-DNA aptamer #18 (FAM-H69DNAapt18) was used for a comparison binding study 

with wild-type H69 and unmodified rRNA constructs.  Relative dissociation constants of FAM-

H69DNAapt18 for H69 and RNAs other than H69, as determined by fluorescence titrations with 

small RNA constructs, are as follows: wild-type H69 < partially modified H69 < unmodified H69 

< A-site RNA of 16S rRNA. 

       Overall, this study provides a reference point for the development of DNA aptamers that 

identify modified nucleosides and/or methylation sites in RNA, or could potentially function as 

novel therapeutics to help combat antibiotic resistance. 

Keywords:  23S ribosomal RNA (rRNA); helix 69 (H69); modified nucleosides; pseudouridine 

(); 3-methylpseudouridine (m3
); peptidyl-transferase center (PTC); systematic evolution of 

ligands by exponential enrichment (SELEX); DNA aptamers; fluorescence spectroscopy; 

DNA/RNA complexes; dissociation constants (Kds); anti-infectives; antibiotic resistance; novel 

antibacterial therapeutics; and bioprobes.  
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