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Abstract

This study proposes a new forcing scheme suitable for massively-parallel
finite-difference simulations of stationary isotropic turbulence. The proposed
forcing scheme, named reduced-communication forcing (RCF), is based on
the same idea as the conventional large-scale forcing scheme, but requires
much less data communication, leading to a high parallel efficiency. It has
been confirmed that the RCF scheme works intrinsically in the same manner
as the conventional large-scale forcing scheme. Comparisons have revealed
that a fourth-order finite-difference model run in combination with the RCF
scheme (FDM-RCF) is as good as a spectral model, while requiring less
computational costs. For the range 80 < Reλ < 540, where Reλ is the Taylor
microscale-based Reynolds number, large computations using the FDM-RCF
scheme show that the Reynolds dependences of skewness and flatness factors
have similar power-laws as found in previous studies.

Keywords: homogeneous isotropic turbulence, finite-difference scheme,
parallel computing, large-scale forcing

1. Introduction

Numerical simulations of isotropic turbulence continue to play an impor-
tant role in studies of the fundamental phenomena associated with turbu-
lence. Rapid developments in computational facilities enable us to investi-
gate, for example, the intermittent nature of turbulence across a wide range
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of Reynolds numbers. However, there is still a need for numerical data at
even higher Reynolds numbers. For example, there is currently a debate con-
cerning the power-laws that govern the Reynolds dependence of the flatness
factor of the longitudinal velocity gradient F = ⟨(∂u/∂x)4⟩ / ⟨(∂u/∂x)2⟩2,
which is a measure of intermittency. Tabeling and Willaime [1] suggest there
may be a transition in the power-law at around Reλ ∼ 700, where Reλ is the
Taylor microscale-based Reynolds number defined as Reλ = u′lλ/ν, where
u′ is the RMS of the longitudinal velocity, lλ is the Taylor microscale and ν
is the kinematic viscosity. Specifically, they suggest that the flatness factor
increases up to Reλ = 700, but then decreases before eventually increasing
again. However, the wind-tunnel experiments of Gylfason et al. [2] show no
such transition. Direct numerical simulation (DNS) of turbulent flows has
the potential to settle this argument because it is free from experimental
ambiguities such as the effects of using Taylor’s hypothesis, one-dimensional
surrogates and so on. Using a cubic grid with 4096 points along each dimen-
sion, Ishihara et al. [3] achieved Reλ = 675 with kmaxlη ∼ 2, where kmax is
a maximum effective wavenumber and lη is the Kolmogorov length. Unfor-
tunately, the Reynolds number for this large-size computation was still not
sufficient to settle the argument. Ideally, we would like to increase Reλ by a
factor of 2, which demands approximately (23/2)4 = 26 times more compu-
tation. (The power of 4 comes from the sum of the three spatial dimensions
and the one time dimension.) Massively parallel computing is a must for
such a large computation.

Numerical simulations of isotropic turbulence are most often formulated
in spectral space, since the periodic boundary conditions are then easily
implemented. Spectral models are, however, facing a technical problem in
massively-parallel computing. Although parallel versions of the 3D FFT al-
gorithm are available in several scientific libraries, heavy data communication
makes it difficult for spectral models to achieve a high parallel efficiency in
highly parallel distributed-memory calculations. (Generally, these use the
Message Passing Interface (MPI) library.) Kaneda et al. [4] carried out their
spectral model simulations on the Earth Simulator - a vector-type supercom-
puter with a wide network bandwidth - and were able to use a 40963 grid; still
the largest in the world 7 years later. These days, however, supercomputer
systems are mostly based on scalar-type architectures with relatively narrow
memory bandwidths, making it more difficult to achieve high parallel effi-
ciency for spectral models. For this reason, finite-difference models (FDMs)
have become an attractive alternative to spectral models.
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Because of their inferior accuracy, FDMs have generally been less favored
than spectral models. For example, Herring et al. [5] reported that FDMs
require twice the resolution of spectral models to achieve the same accuracy.
This is partly because many FDM simulations use upstream schemes, which
contain numerical diffusion. For example, the FDM of Rai and Moin [6] uses
the 5th-order upstream scheme. Past FDMs also suffered from inappropriate
formulations of the finite-difference scheme, leading to non-conservation of
mass, momentum and kinetic energy. Morinishi et al. [7] corrected this defi-
ciency by formulating fully conservative high-order accurate finite-difference
schemes. Kajishima et al. [8] then showed that their fourth-order central
difference FDM was as good as a spectral model in simulations of decaying
turbulence. In the first part of this paper we will re-examine the reliability
of FDMs in comparison with spectral models.

One particular computational problem arises when the finite-difference
approach is applied to stationary isotropic turbulence (which is preferable
to decaying turbulence in terms of statistical analysis). The most common
method for forcing the flow is to apply a forcing to the Navier-Stokes equa-
tions for all modes in the wavenumber sphere |k| < kf , where kf is a cut-off
wavenumber, often refered to as large-scale forcing. Michioka and Komori
[9] employed this approach in their 5123 gridpoint FDM. In order to apply
the forcing, they performed Fourier transformations on the complete veloc-
ity field in order to obtain the low-wavenumber components. However, this
direct application of the large-scale forcing technique reduces the parallel ef-
ficiency in larger-size computations since it requires communication of the
whole velocity field.

Recently, Lundgren [10] proposed a linear forcing, where a force propor-
tional to velocity is applied. This forcing is implemented in gridpoint rather
than Fourier space, thereby avoiding the data communication associated with
the Fourier transforms. Rosales and Meneveau [11] examined the properties
of this scheme and reported a similar extent of the Kolmogorov -5/3 range
to that achieved using the large-scale forcing method. However, they also
found a smaller integral length scale, reducing the effective scaling range for
a given resolution. Thus, the removal of the need for communication comes
at the cost of smaller Reynolds numbers for a given resolution.

This study proposes a new forcing scheme suitable for massively-parallel
FDMs. The proposed scheme is based on the same idea as the conven-
tional large-scale forcing scheme, but requires much less data communica-
tion. We call the scheme large-scale forcing with less communication, or,
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more simply, reduced-communication forcing (RCF). The RCF scheme per-
forms volume-averaging on the velocity fields before Fourier transforming to
extract the large-scale motions. Small-scale information is removed by the
volume-averaging, but this is not an issue when forcing the large-scales. The
size of the volume-averaged data is, of course, smaller than that of the full
data, and this reduces the data communication required and leads to a high
parallel efficiency. The main aims of this study are to compare the proper-
ties of the RCF scheme with those of the conventional large-scale forcing and
linear forcing schemes, and to achieve high-performance computations using
a fourth-order FDM with the RCF.

In the following section, we present our finite-difference model. In section
3, we describe the RCF scheme as well as the conventional large-scale forcing
and linear forcing schemes. Results and discussion are presented in section
4. The FDM and spectral model are compared in subsections 4.1 and 4.2,
and in subsection 4.3 the results of large-size parallel computations with our
fourth-order FDM run in conjunction with the RCF are discussed. After
describing the parallel efficiency of our code in subsection 4.4, the study is
concluded in section 5.

2. Finite-Difference Model for the Incompressible Navier-Stokes
Equations

We solve the three-dimensional continuity and Navier-Stokes equations
for incompressible flows;

∂ui

∂xi

= 0, (1)

∂ui

∂t
+

∂

∂xi

(uiuj) = − ∂p

∂xi

+
1

Re

∂2ui

∂xj∂xj

+ fi. (2)

Here, Re is a Reynolds number defined as Re = U0L0/ν, where U0 is a repre-
sentative velocity, L0 a representative length, and ν the kinematic viscosity.
We consider the case of zero mean flow, and can therefore consider the veloci-
ties in the above equations as velocity fluctuations. The last term in equation
(2) represents the external forcing, which is the focus of this paper.
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In our finite-difference model (FDM), spatial derivatives are calculated
using fourth-order central differences, but we also ran some simulations with
second-order central differences to assess the benefit of using the higher-order
differences. We employed the conservative scheme of Morinishi et al. [7] for
the advection term, and the second-order Runge-Kutta scheme for time inte-
gration. To solve the velocity-pressure coupling we used the HSMAC scheme
[12], iterating until the RMS of the velocity divergence became smaller than
δ/dx, where δ was chosen to be 10−3.

The governing equations were discretized on a cubic domain of length
2πL0, and periodic boundary conditions applied in all three directions. The
flow cube was discretized uniformly into N3 gridpoints, resulting in the grid
spacing ∆ = 2πL0 /N .

3. Forcing Schemes to Obtain a Statistically Stationary State

3.1. Conventional large-scale forcing

The most common way to maintain a statistically stationary state is to
force the low-wavenumber components. All Fourier modes with wavenumber
|k| between between 0.5 and 1.5 (e.g., [13, 14]) or 0.5 and 2.5 (e.g., [15, 16,
4]) are usually forced. This restriction of the forcing to large scales allows
the development of a natural inertial range at smaller scales; a white-noise
random forcing may influence the intrinsic chaotic behavior of the turbulent
flow.

At each timestep, the equations are first integrated without forcing, with
the resulting Fourier modes denoted by u∗

i (k)(t+∆t). Those Fourier modes
with wavenumber |k| between n − 0.5 and n + 0.5 are then multiplied by a
constant:

ui(k)(t+∆t) = u∗
i (k)(t+∆t)

√
En(0)/En(t+∆t), (3)

where En(t + ∆t) is the energy of the modes with wavenumbers between
n− 0.5 and n+ 0.5, calculated from u∗

i (k)(t+∆t), and ui(k)(t+∆t) is the
updated Fourier amplitude. When forcing the Fourier modes with |k| ≤ 2.5,
the modes n=1 and 2 are treated similarly.

The conventional large-scale forcing scheme is formulated in Fourier space
and is therefore easily implemented in spectral models. For FDMs however,
which are formulated in gridpoint space, large-scale forcing requires trans-
formations to and from Fourier space. If full Fourier transformations are
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used, covering the full spectrum, this requires data-gathering from the whole
computational domain. This is not an issue for single-processor calculations
([9]), but may lead to inefficiencies when a large number of processors is used.

The efficiency of the scheme can be improved substantially, however, by
restricting the transformation to those Fourier modes being forced. In this
case, it is no longer necessary to gather the full velocity field from each
process; all that is required is the projection of that field onto the modes
being forced. For example, if (20,20,20) processes are used for a 2, 0003

grid, and the forcing is for 0.5 < |k| ≤ 2.5, the number of values to be
communicated for each velocity component (u, v or w) is 203×19×2, where
the factor of 19 comes from the number of modes — i.e., (1,0,0), (1,1,0),
(1,1,1), (2,0,0), (2,1,0), (2,1,1) and their permutations — and the factor of
2 reflects the use of complex mode coefficients. This data size is much less
than the 2, 0003 values required for communicating the complete set of data.
However, the scheme introduced in section 3.3 reduces this data size still
further, to 203 values.

3.2. Linear forcing

In the linear forcing scheme ([10, 11]), the external forcing is proportional
to the local velocity fluctuations:

fi = Qui, (4)

where Q is a coefficient. The kinetic energy equation ke (= (1/2)uiui) is then
written as

d ⟨ke⟩
dt

= −ϵ+ 2Q ⟨ke⟩ , (5)

where ⟨ ⟩ represents the mean value over the domain, and ϵ = ⟨(ν∂ui /∂xj) (∂uj /∂xi)⟩
is the energy dissipation rate. When Q is set to ϵ(t)/2 ⟨ke(t)⟩, the RHS of
equation (5) becomes zero, leading to no change of kinetic energy with time.
Using a constant Q imposes an eddy turnover time Te =

⟨
u′2⟩ /ϵ, where u′ is

the RMS of the longitudinal velocity. Alternatively, if Q is set to ϵ0 /2 ⟨ke(t)⟩ ,
with ϵ0 constant, the average dissipation rate ϵ converges towards ϵ0 as the
flow statistics become stationary.

For parallel computations on distributed-memory computers, the former
requires no data communication between processes, while the latter requires
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Figure 1: Schematic illustration of our reduced-communication forcing (RCF) scheme for
forcing E1. Four processes are engaged in a one-dimensional velocity calculation, so that
xc has dimension 4.

a small amount of communication to obtain ⟨ke⟩. The locality and simplicity
of the linear scheme leads to a high parallel efficiency. However, Rosales and
Meneveau [11] report that the linear forcing scheme requires twice as many
gridpoints to resolve the smaller scales, reducing the attainable Reynolds
number.

3.3. Reduced-communication forcing (RCF)

We propose a new forcing scheme suitable for massively-parallel FDMs.
The proposed scheme is based on the same idea as the conventional large-
scale forcing scheme, but requires much less data communication. We call the
scheme large-scale forcing with less communication, or, more simply, reduced-
communication forcing (RCF). The basic idea is to volume-average the ve-

7



locity fields onto a coarse grid before Fourier transforming to extract the
large-scale motions. The averaging process removes small-scale information,
but this is not an issue when forcing the large scales. If the points that go
into each volume average are all on the same processor, the data size to be
communicated is then reduced to N3

c , where N3
c is the number of gridpoints

on the coarse grid.
The volume-averaging process can be written

f(xj
c,i) =

1

N/Nc

N/Nc∑
k=1

f
(
x
k+(j−1)N/Nc

i

)
(6)

(j = 1, ..., Nc)

where xj
c,i is the coordinate of the jth point on the coarse grid in the i-

direction, and xk
i that of the kth point on the original grid. Here we only

consider the case where Nc is a divisor of N . For the forcing of modes
0.5 < |k| ≤ 1.5, the calculation procedure for the RCF scheme is as follows.
(See figure 1 for a schematic illustration.)

1. Each process volume-averages the time-integrated local velocities ob-
tained without forcing u∗

i (x, t+∆t)local, giving u∗
i (xc, t+∆t)local, where

xc represents the coordinates of the coarse-grid system, with size N3
c .

2. Local volume-averaged velocities u∗
i (xc, t + ∆t)local are collected and

distributed using the MPI ALLREDUCE procedure in the MPI library.
All processes then obtain the volume-averaged velocities for the whole
domain: u∗

i (xc, t+∆t).

3. Each process calculates the Fourier components of u∗
i (k, t +∆t) using

forward Fourier transformations, and then calculates the energy content
E1(t+∆t) of the modes with 0.5 < |k| ≤ 1.5.

4. Velocities for the modes 0.5 < |k| ≤ 1.5 are transformed back into grid-
point space on the original grid using inverse Fourier transformations,
giving u∗

i (x, t+∆t).

5. Each process updates the velocities in order to maintain the energy in
the forced modes:

ui(x, t+∆t) = u∗
i (x, t+∆t)

+u∗
i (x, t+∆t)

(√
E1(0)/E1(t+∆t)− 1

)
. (7)
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When forcing modes with 0.5 < |k| ≤ 2.5, the calculations in steps (4), (5)
and (6) are extended in the obvious way.

In order to understand the affects of the volume-averaging process on
the extraction of the forced modes, we can start by considering what would
happen if we ignored the volume averaging and simply took point samples
from the original grid at the appropriate locations. If we were to do this, the
Fourier coefficients for the represented modes would become contaminated
by aliasing. A common technique to reduce aliasing effects is to filter out the
small scales that would alias, prior to sampling onto the coarse grid. This
is effectively what the volume averaging achieves; it acts as an anti-aliasing
filter.

Mathematically, the volume-averaging process in equation (6) is equiva-
lent to the following two steps:

1. Apply a box-filter to all points on the original grid:

f(xj
i ) =

1

N/Nc

N/Nc−1∑
k=0

f(xj+k
i ) (8)

(j = 1, ..., N)

2. Downsample onto the coarse grid:

f(xj
c,i) = f(x

(j−1)N/Nc+1
i ) (9)

(j = 1, ..., Nc)

The box-filter in step 1 has the following response function in spectral space:

Ĝbox(k) =
sin(kL/2)

kL/2
.

(There is also a phase shift of (N/Nc − 1)/2 gridpoints, but this is irrelevant
to the procedure.) The effects of aliasing in the downsampling of step 2
modify this basic response, but the prior application of the box filter keeps
this modification relatively small.

In equation (7), if we ignore the effects of aliasing, E1 is smaller than E1

because of the non-unit response of the box filter. For example, assuming
E(k) = Ak−5/3, E1 ≈

∫ 1.5

0.5
EĜ2

boxdk = 0.90E1 if Nc = 5. However, note that
this reduction applies to both numerator and denominator in the square-
rooted term on the RHS of equation (7), so the effect cancels.
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When forcing 0.5 < |k| ≤ 1.5, the dimension N3
c of ui(x

c) must satisfy
Nc ≥ MAX(nx, ny, nz, 3), where nx, ny and nz are the numbers of processes
in the x-, y- and z-directions. When forcing 0.5 < |k| ≤ 2.5, N3

c must satisfy
Nc ≥ MAX(nx, ny, nz, 5).

4. Results and Discussion

4.1. Decaying isotropic turbulence

Time evolutions of a flow, which initially has only large-scale motions,
have been computed for five resolutions; N=32, 48, 64, 96, and 128. The
initial large-scale motions have only three Fourier-vector components; (1,0,0),
(0,1,0) and (0,0,1). In order to investigate the accuracy of our FDM, the flow
was calculated also with a pseudo-spectral model (PSM) with the two-thirds
dealiasing method ([17, 18]).

Figure 2(a) shows the time evolution of each term in the kinetic energy
budget equation

∂ ⟨ke⟩
∂t

= −ϵ (10)

for the N=96 simulations. The horizontal axis shows the time normalized by
L0 and U0, and the residual (∂ ⟨ke⟩ /∂t+ ϵ) is also shown. Results are shown
for three models: the PSM, the finite-difference model with second-order
differences (FDM2nd), and the finite-difference model with fourth-order dif-
ferences (FDM4th). However, all the models give virtually identical results,
so the lines in the plot overlap. The energy dissipation rate ϵ increases near
the beginning (t < 7) as smaller-scale motions which can efficiently dissi-
pate kinetic energy are generated from the larger scales through the energy
cascade. The energy dissipation rate then decreases as the kinetic energy
decreases.

Figure 2(b) shows the time evolution of each term in the energy dissipa-
tion rate budget equation, written as

dϵ

dt
= Pϵ −Dϵ, (11)

where Pϵ and Dϵ are the production and destruction terms defined as
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Figure 2: (a) Kinetic energy budget and (b) energy dissipation rate budget for three-
dimensional decaying isotropic turbulence with N=96. •: pseudo-spectral model (PSM), -
- - : finite-difference model with second-order central difference (FDM2nd), and —: FDM
with fourth-order central differences (FDM4th).
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Figure 3: RMS values of normalized residuals in the kinetic energy and dissipation budgets
for the five test resolutions; N=32, 48, 64, 96 and 128. -•-: PSM, -△-: FDM2nd, and -∇-:
FDM4th.

Pϵ = −2ν

⟨
∂ui

∂xj

∂ui

∂xk

∂uj

∂xk

⟩
, (12)

Dϵ = 2ν2

⟨(
∂2ui

∂xj∂xk

)2
⟩
. (13)

The PSM and FDM4th simulations give very similar results, but FDM2nd
gives differences in Pϵ, Dϵ, and consequently the residual, particularly for
6 < t < 13.

Figure 3 shows root-mean-square (RMS) values (i.e., L-2 norm) of the
normalized residuals in the kinetic energy and dissipation budgets; RK =
(d ⟨kϵ⟩ /dt+ ϵ) /ke and Rϵ = (dϵ/dt− Pϵ +Dϵ) /ϵ. The horizontal axis shows
the grid resolution kN/2lη, where kN/2 = N/2 is the effective wavenumber
of the FDM. Strictly speaking, the effective wavenumber of the PSM with
two-thirds dealiasing is N/3. For comparison purposes, we adopt kN/2lη to
describe the computational resolution in this study. The RMS values of RK

are one or almost two orders of magnitude smaller than those of Rϵ. This is
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because the terms in the kinetic energy budget are second-order, while those
in the energy dissipation rate budget are fourth-order. Higher-order terms
induce greater numerical errors. FDM2nd shows the largest errors at all
resolutions. For example, for FDM2nd, the RMS value of Rϵ at kN/2lη = 2.7
(N=96) is almost equivalent to that of FDM4th at kN/2lη = 1.4 (N=48). This
confirms that the second-order difference scheme requires twice the resolution
of the fourth-order scheme to obtain comparable accuracy ([5]).

The RMS values of RK for PSM and FDM4th are less than 10−2, and
negligibly small even at the coarse resolution kN/2lη ∼ 1. In contrast, RMS
values of Rϵ are not negligibly small for coarse resolution; they are about
10−1 at kN/2lη ∼ 1. A finer resolution kN/2lη = 2 is required for the energy
dissipation budget calculation, which includes third- and fourth-order mo-
ments; the RMS values of Rϵ drop to order 10−2 at kN/2lη ∼ 2. This suggests
that the coarse resolution kN/2lη ∼ 1 is acceptable for low-order statistics
such as the kinetic energy and energy dissipation rate, but finer resolution
kN/2lη ∼ 2 is required for third- or higher-order statistics ([3, 19]).

One should note that the reduction of errors is more rapid for PSM as
the resolution is increased. At the coarsest resolution, kN/2lη = 0.9, the
PSM has slightly larger errors than FDM4th. However, it has smaller errors
for the finest resolution kN/2lη = 3.5. This can be explained by the lack of
phase-errors in the spectral model; in the FDM, the phase-errors are non-
zero, and become larger at small scales. Except for the very fine resolutions
(kN/2lη > 2), FDM4th shows as good or better results than PSM. This result
is consistent with the results of Kajishima et al. [8], who conclude that a
finite-difference model with a conservative fourth-order scheme is as good as
a spectral model.

4.2. Stationary isotropic turbulence

Stationary isotropic turbulence was attained using four combinations of
forcing scheme and flow calculation model: (I) conventional large-scale forc-
ing in the PSM with two-thirds dealiasing, hereafter referred to as PSM-LSF,
(II) conventional large-scale forcing in the FDM; FDM-LSF, (III) reduced-
communication forcing in the FDM; FDM-RCF, and (IV) linear forcing in
the FDM; FDM-LF. The first three combinations are based on the same idea
of forcing only the large-scale motions. In this study, the large-scale forcing
injects energy in those large-scale motions with wavenumbers |k| between
0.5 and 1.5. In FDM-LF, the forcing coefficient Q in equation (4) was set to
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ϵ0/2 ⟨ke⟩, where ϵ0 = 0.2. From this section onwards, all the FDMs employ
conservative fourth-order centered differences for the spatial derivatives.

Figures 4(a) and 4(b) show the time evolutions of mean energy dissipation
rate and Taylor-microscale based Reynolds number defined as Reλ = u′lλ/ν,
where lλ is the Taylor microscale, for the case N=128. The horizontal axes
show the nondimensional time. Both figures show that all four simulations
achieve statistically stationary states at around t=15, which is about three
times the eddy turnover time Te. The FDM-RCF, PSM-LSF and FDM-LSF
simulations in which only the large-scale motions are forced show similar
trends, while FDM-LF produces a somewhat different behaviour. One should
note that for a given resolution FDM-LF reaches significantly smaller values
of Reλ than the other simulations in figure 4(b). This is a deficiency of the
linear forcing scheme, consistent with the findings of Rosales and Meneveau
[11].

We note that the statistical oscillations are larger for PSM-LSF than
for the FDMs. One possible reason is that the move between spectral and
grid point representations causes a difference at the forcing scales, which then
influences the dissipation scales. In the low Reynolds number flow considered
here there is only a small separation between the forcing and dissipation
scales, so this is a plausible mechanism.

Figure 4(c) shows the time evolutions of mean total energy, E1 and E1

in FDM-RCF. As described in section 3.3, our RCF scheme ensures constant
energy content in the forced wavenumber band for the volume-averaged ve-
locities; i.e., E1 in this figure. For the raw velocities, the energy content in
the forced wavenumber band, E1, varies with time in the statistically sta-
tionary state (t ≥ 15), with a standard deviation approximately 0.5 % of its
mean value.

Figure 5 shows the stationary-state energy spectra. Each spectrum was
obtained by averaging 5 sample spectra from the statistically stationary state.
The spectra for PSM-LSF, FDM-LSF and FDM-RCF are almost identical,
showing the Kolmogorov -5/3 power-law. FDM-LF shows similar results at
high wavenumbers, but lower power at low wavenumbers. This confirms
that the linear forcing has only a minor influence on the small scales despite
forcing them directly to some extent. However it does not efficiently sustain
the large-scale motions.

Table 1 summarizes the turbulence statistics and computational require-
ments for the stationary state. The turbulence statistics are written in the
format [average]±[standard deviation]. As discussed above, the statistical
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deviations in PSM-LSF are larger than those in the FDMs. The average
dissipation rate in PSM-LSF is about 6% smaller than that in FDM-LSF
and FDM-RCF, but the difference is within the standard deviations. The
required numbers of floating-point operations are normalized by the val-
ues for PSM-LSF. Comparison with PSM-LSF reveals that the FDM-RCF
scheme requires 35% fewer calculations. It is also shown that the FDM-
RCF scheme requires slightly fewer calculations than FDM-LSF. The figures
shown are for single-processor calculations. In multi-processor calculations,
the difference becomes more significant due to the differing amounts of data
communication. For example, we can estimate the data communication re-
quired for a calculation on a 20003 grid using 203 processors, so that each
process is assigned 1003 gridpoints. The number of values to be communi-
cated for the spatial derivatives of each velocity component (u, v and w) is
1002 × 6 × 4 = 240, 000, where 6 is the number of sides and 4 the stencil
size for fourth-order central differences. The LSF scheme requires the com-
munication of 203 × 7 × 2 = 112, 000 values for each velocity component
when forcing 0.5 < |k| ≤ 1.5, and 203 × 19 × 2 = 304, 000 when forcing
0.5 < |k| ≤ 2.5. (See also the last paragraph in subsection 3.1). These values
are comparable to that for the spatial derivatives; i.e., 240,000. In contrast,
the RCF scheme requires only 203 = 8, 000 values in both cases, which is
negligibly small compared to 240,000. We see that the LSF scheme leads to
a large increase in the amount of data communication required by the FDM,
while the RCF scheme does not.

The average number of iterations for each time step (including both first
and second Runge-Kutta steps) was almost the same across the FDMs; 8.6 in
all three variants. However, despite the similar number of floating-point op-
erations, the percentage of computation time devoted to the HSMAC scheme
was different: about 60% of elapsed time in FDM-RCF and FDM-LF, and
about 40% in FDM-LSF. The difference comes from the large time used for
the FFT. If we had tuned the FFT code more intensely, the HSMAC per-
centage for FDM-LSF would also have become around 60%. This indicates
that the elapsed time depends strongly on the optimisation level of the code,
and is therefore not a fair measure of the computational costs in these ex-
periments. Thus, in Table 1 we have chosen to concentrate on floating-point
operation requirements.

The results from this subsection confirm that using the RCF scheme in
conjunction with the FDM works intrinsically in the same manner as the
conventional large-scale forcing scheme, succeeding in producing typical sta-
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Re ϵ Reλ floating-point
operations

PSM-LSF 133 0.187±0.058 69.3±6.9 1.00
FDM-LSF 133 0.199±0.025 68.3±2.6 0.668
FDM-LF 133 0.199±0.011 38.7±2.2 0.575
FDM-RCF 133 0.204±0.021 69.5±2.4 0.652

Table 1: Turbulence statistics for the stationary state (N=128), together with the com-
puter requirements. The required numbers of floating-point operations are normalized by
the values for PSM-LSF.

N Re u′ Reλ kN/2lη −S F
128 143 1.04 82.7 1.95 0.497 4.76
256 360 1.05 132 1.97 0.516 5.66
512 908 1.02 209 2.02 0.539 6.31
1000 2220 1.02 340 2.07 0.566 7.59
2000 5590 1.06 537 1.92 0.589 8.96

Table 2: Turbulence statistics in the stationary state from our fourth-order finite-difference
model with reduced-communication forcing (FDM-RCF).

tionary isotropic turbulence. This is achieved at a smaller computational
cost than the conventional combination of LSF with the spectral model.

4.3. Parallel computing for higher Reynolds numbers

For further validation in high Reynolds number flows, the FDM-RCF
calculations were extended up to N = 2000. Table 2 shows mean turbulence
statistics obtained from the FDM-RCF model at high resolution; kN/2lη ∼ 2.
The statistics were averaged over more than twice the large-eddy turnover
time Te. The data fit quite well with the scalings N ≈ C0Re3/4 and Reλ ≈
C1Re1/2, derived from a simple dimensional analysis based on Kolmogorov
theory. The scaling constants are C0 = 3.1 and C1 = 7.2 in the present DNS.
As shown in Figure 5, the energy spectrum for the case N=2000 has a clear
Kolmogorov k−5/3 power-law, indicating that an ideal isotropic turbulence
has been formed. Table 2 also shows the skewness and flatness factors S and
F of the longitudinal velocity derivatives defined by
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Figure 4: Temporal evolutions of (a) mean energy dissipation rate ϵ, (b) Taylor-microscale
based Reynolds number Reλ, and (c) energy contents in FDM-RCF for the case N=128.
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−S =
⟨(∂u1/∂x1)

3⟩
⟨(∂u1/∂x1)

2⟩3/2
, (14)

F =
⟨(∂u1/∂x1)

4⟩
⟨(∂u1/∂x1)

2⟩2 . (15)

On the basis of the data for 20 < Reλ < 400 from Sreenivasan and Antonia
[20], and Reλ > 400 from Antonia et al. [21], Hill [22] proposed the following
power laws

−S ∼

{
0.50 (20 < Reλ < 400)

0.26Re0.11λ (400 < Reλ),
(16)

F ∼ 1.30Re0.32λ (400 < Reλ). (17)

Gylfason et al. [2] then showed that

−S ∼ 0.33Re0.09λ , (18)

F ∼ 0.91Re0.39λ . (19)

gave a good fit to their wind-tunnel data for 100 < Reλ < 900. Recent DNSs
have achieved Reλ values of several hundred. The DNS of Ishihara et al. [3]
for 100 < Reλ < 700 suggests

−S ∼ (0.32± 0.02)Re0.11±0.01
λ , (20)

F ∼ (1.14± 0.19)Re0.34±0.03
λ . (21)

Recently, Tabeling and Willaime [1] suggested that there may be a transition
of the power-law for F at around Reλ ∼ 700, suggesting that the flatness
factor first increases up to Reλ = 700, but then decreases before eventu-
ally starting to increase again. They postulate that this transition is due
to worm vortex breakdown, and suggest that it may be a universal char-
acteristic of turbulence. If this is indeed the case, their suggestion poses a
profound challenge to turbulence theory. Although the wind-tunnel experi-
ments of Gylfason et al. [2] showed no evidence of the transition, it is worth
investigating this issue further to better understand the fundamental nature
of turbulence.
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Figures 6(a) and 6(b) show the skewness and flatness factors −S and F ,
together with results from earlier studies. The power-law increases of our
skewness and flatness factors are

−S ∼ 0.33Re0.09λ , (22)

F ∼ 1.10Re0.33λ , (23)

which are consistent with past studies in the range 80 < Reλ < 540. Unfor-
tunately, the calculated range of Reλ is not large enough to settle the debate
on the power-law transition of the flatness factor at around Reλ = 700. Even
larger size computations are required to resolve this fundamental question.

4.4. Parallel efficiency

The FDM-RCF scheme has been coded for MPI (Message Passing In-
terface) parallel computing. The calculation for N=2000 was run at 3.66
TFLOPS on 16 nodes (128 processors) of the Earth Simulator 2 (ES2) at the
Japan Agency of Marine-Earth Science and Technology, which is about 27.9%
of the peak performance of the nodes. For this value of N , each timestep took
2.3 seconds. The parallel efficiency α is defined as α = (1 − TN2/TN1)/(1 −
N1/N2), where TN1 and TN2 are the elapsed times for simulations using N1

and N2 (> N1) processors. Comparison between the runs with 16 and 32
nodes gave α = 99.92%. If this parallel efficiency were maintained up to 160
nodes, we would attain a speed-up rate (TN16/TN160)×(16/160) of more than
0.99. This would correspond to usage of all 160 nodes of ES2, which provides
a peak-performance of 131 TFLOPS. If we were to run the FDM-RCF scheme
using the whole machine, a calculation for N = 5000 would be feasible. This
would take about 3.6 seconds for each timestep, and consequently about one
day to obtain the statistics. The calculation for N=5,000 with the fine reso-
lution kN/2lη ∼ 2 would provide the statistics for Reλ ∼ 1, 000, which could
give a hint as to whether there is indeed a transition of the flatness factor
power law around Reλ = 700.

In order to investigate the parallel efficiency in a cluster system (scalar-
type supercomputer), we also ran FDM-RCF simulations on up to 256 pro-
cessors of an SGI Altix4700. The mean performance attained was 7.50 % of
the peak, with a mean parallel efficiency over 99.99%.
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Figure 6: (a) Skewness S and (b) flatness F of the longitudinal velocity gradient ∂u /∂x
for different Reynolds numbers Reλ.
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5. Conclusions

This study proposes a new simple forcing scheme suitable for massively-
parallel finite-difference simulations of stationary isotropic turbulence. The
proposed forcing scheme, named reduced-communication forcing (RCF), is
based on the same idea as the conventional large-scale forcing (LSF) scheme,
but requires much less data communication. The RCF performs volume-
averaging on the velocity fields before applying Fourier transforms to ex-
tract the large-scale motions. Small-scale information is removed by volume-
averaging the data, but this is not an issue when forcing the large scales.
The size of the volume-averaged data is of course smaller than that of the
the full set of data values, which reduces the data communications required
for parallel computing and leads to a high parallel efficiency.

It is confirmed that a finite-difference model (FDM) adopting a conser-
vative fourth-order scheme is as good as a conventional spectral model for
kN/2lη ≤ 2 , and that the RCF scheme works intrinsically in the same manner
as the LSF scheme. It is also confirmed that the combination of this FDM
with the RCF scheme (FDM-RCF) can produce typical stationary isotropic
turbulence at a smaller computational cost than the conventional combina-
tion of a spectral model with the LSF scheme. We therefore conclude that
the FDM-RCF scheme is a promising tool for massively-parallel simulations
of stationary isotropic turbulence, which will contribute to a better under-
standing of small-scale structures such as intermittency.

For example, a calculation for N=5,000 with fine resolution (kN/2lη ∼ 2)
is feasible if run using the FDM-RCF scheme on the whole of Earth Simula-
tor 2 in the Japan Agency for Marine-Earth Science and Technology. This
simulation would provide the statistics for Reλ ∼ 1, 000, which would help
settle the question of whether there is a transition in the power-law for the
flatness factor at around Reλ = 700.
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