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The biological pump is a central process in the ocean carbon cycle, and is a key factor controlling 

atmospheric carbon dioxide (CO2). However, whether the Arctic biological pump is enhanced or 

reduced by the recent loss of sea ice is still unclear. We examined if the effect was dependent on 

ocean circulation. Melting of sea ice can both enhance and reduce the biological pump in the 

Arctic Ocean, depending on ocean circulation. The biological pump is reduced within the Beaufort 

Gyre in the Canada Basin because freshwater accumulation within the gyre limits nutrient supply 

from deep layers and shelves and inhibits the growth of large-bodied phytoplankton. Conversely, 

the biological pump is enhanced outside the Beaufort Gyre in the western Arctic Ocean because of 

nutrient supply from shelves and greater light penetration, enhancing photosynthesis, caused by 

the sea ice loss. The biological pump could also be enhanced by sea ice loss in the Eurasian Basin, 

where uplifted isohaline surfaces associated with the Transpolar Drift supply nutrients upwards 

from deep layers. New data on nitrate uptake rates are consistent with the pattern of enhancement 

and reduction of the Arctic biological pump. Our estimates indicate that the enhanced biological 

pump can be as large as that in other oceans when the sea ice disappears. Contrary to a recent 

conclusion based on data from the Canada Basin alone, our study suggests that the biological CO2 

drawdown is important for the Arctic Ocean carbon sink under ice-free conditions. 

Arctic Ocean circulation, Biological pump, Chlorophyll a, Nutrients, Sea ice 

melting 
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1. Introduction 

In recent years, the Arctic has rapidly lost its summer sea ice cover 

(Comiso et al., 2008). The loss of sea ice increases underwater irradiance and 

photosynthesis and can thus enhance the biological pump in the Arctic Ocean 

(Nishino et al., 2009; Lalande et al., 2009). The biological pump is the 

mechanism by which carbon dioxide (CO2), fixed by photosynthesis into organic 

matter, is transferred to deeper ocean layers as sinking particulate material, such 

as dead organisms and fecal pellets. As the biological pump is a key factor 

controlling atmospheric CO2, enhancement of the biological pump in the Arctic 

Ocean contributes to regional and global carbon sinks (Bates and Mathis, 2009) 

and may counteract ocean acidification caused by increased atmospheric CO2 and 

sea ice melt (Yamamoto-Kawai et al., 2009). However, freshwater inputs from 

melting sea ice to the surface layer strengthens water column stratification and 

may inhibit nutrient supply from deep layers to the surface layer, in turn affecting 

phytoplankton growth (Li et al., 2009; Cai et al., 2010). In fact, average 

phytoplankton size in the Canada Basin decreased between 2004 and 2008 (Li et 

al., 2009), implying a decrease in the efficiency of the biological pump. Thus, the 

overall impact of sea ice melt on the Arctic biological pump is still unclear. 

Recently, McLaughlin and Carmack (2010) indicated that the nutricline, 

the layer where nutrient concentrations increase rapidly with depth, became 

deeper in the Canada Basin from 2003 to 2009, and that this deepening was 

caused by an accumulation of surface freshwater within the Beaufort Gyre 

associated with sea ice melt. Therefore, ocean circulation seems to play an 

important role in the changes of nutrient distribution and biological activities. 

Here we extend their study to regions outside the Beaufort Gyre to examine 



5 

responses of the biological pump to the sea ice melt in different Arctic Ocean 

basins with different circulation patterns. 

2. Data and Methods 

We conducted hydrographic surveys over the Chukchi Sea shelf and 

Canadian Basin (Canada Basin and Makarov Basin) in the western Arctic Ocean 

during the summer of 2008/2009 (August–October) using the R/V Mirai of the 

Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The 

observed results were compared with those obtained during cruises of the R/V 

Mirai in 2002, the USCGC Polar Star in 2002 (Woodgate et al., 2002), the CCGS 

Louis S. St-Laurent in 2003 (McLaughlin et al., 2010), and the Arctic Ocean 

Section in 1994 (AOS94) (Wheeler, 1997). Locations of the hydrographic stations 

are shown in Fig. 1. 

General descriptions of the R/V Mirai cruises in 2002, 2008, and 2009 are 

presented in the cruise reports (Shimada, 2002, 2008; Kikuchi, 2009), and the data 

can be downloaded from the JAMSTEC Data Site for Research Cruises 

(http://www.godac.jamstec.go.jp/cruisedata/mirai/e/index.html). A conductivity-

temperature-depth system (CTD; Sea-Bird Electronics Inc., SBE9plus) and a 

Carousel water sampling system with 36 Niskin bottles (12 L) were used for the 

observations. Seawater samples were collected for measurements of salinity, 

dissolved oxygen, nutrients (nitrate, nitrite, phosphate, silicate, and ammonium), 

total and size-fractionated chlorophyll a, biological uptake rates of nitrogen (only 

in 2009), and other chemical and biological parameters. Bottle salinity samples 

were analyzed following the GO-SHIP (Global Ocean Ship-based Hydrographic 

Investigations Program) Repeat Hydrography Manual (Hydes et al., 2010) using a 

Guildline AUTOSAL salinometer and IAPSO (International Association for the 
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Physical Sciences of the Oceans) standard seawater as a reference material 

(Kawano, 2010). Dissolved oxygen samples were measured by Winkler titration 

following the WHP (World Ocean Circulation Experiment Hydrographic 

Program) operations and methods (Dickson, 1996). Nutrient samples were 

analyzed according to the GO-SHIP Repeat Hydrography Manual (Hydes et al., 

2010) using reference materials of nutrients in seawater (Aoyama and Hydes, 

2010; Sato et al., 2010) except for the 2002 R/V Mirai cruise. Chlorophyll a in 

seawater samples was measured using a fluorometric non-acidification method 

(Welschmeyer, 1994) and a Turner Design fluorometer (10-AU-005). For size-

fractionated chlorophyll a measurements, phytoplankton cells in the water 

samples were fractionated using three types of nucleopore filters (pore sizes: 10, 

5, and 2 μm) and a Whatman GF/F filter (pore size: ~0.7 μm). Nitrogen uptake 

rates were measured on the 2009 R/V Mirai cruise under simulated in situ 

incubation conditions, which were similar to those of Lee and Whitledge (2005). 

The data from the USCGC Polar Star cruise in 2002 were downloaded 

from the website of Chukchi Borderland, Polar Science Center, Applied Physics 

Laboratory, University of Washington (http://psc.apl.washington.edu/CBL.html). 

The data of the CCGS Louis S. St-Laurent cruise in 2003 were downloaded from 

the website of Beaufort Gyre Exploration Project, Woods Hole Oceanographic 

Institution (http://www.whoi.edu/beaufortgyre/data.html). We also downloaded 

the AOS94 data from the Oceanographic Data Facility, Scripps Institution of 

Oceanography (http://sts.ucsd.edu/sts/odf). 

Historical data were also used to extend our investigation to include the 

eastern Arctic Ocean. Hydrographic data (temperature and salinity) were obtained 

from the Atlas of the Arctic Ocean created by the Environmental Working Group 

(Arctic Climatology Project, 1998). Nutrient data were obtained from the 
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Hydrochemical Atlas of the Arctic Ocean (Colony and Timokhov, 2001). These 

data were provided on CD-ROMs. 

3. Results 

A dramatic change was detected in the distribution of large-bodied 

phytoplankton (>10 μm): Chlorophyll a (Chl-a) of large-bodied phytoplankton 

was found in both the Chukchi Sea shelf and Canada Basin in 2002/2003, but it 

had a very low concentration in the Canada Basin in 2008/2009 (Fig. 2a and 2b). 

Chlorophyll a of small-bodied phytoplankton (<10 μm) also decreased from 

2002/2003 to 2008/2009 at its vertical maximum concentration, at around a 50 m 

depth, in the Canada Basin, but its Chl-a maximum still appeared in 2008/2009 

(Fig. 2c and 2d). In contrast, in the Chukchi Sea shelf, Chl-a of small-bodied 

phytoplankton increased from 2002/2003 to 2008/2009 over the whole of the 

water column. Li et al. (2009) explained that the decrease in large-bodied 

phytoplankton in the Canada Basin was caused by a decrease in nutrients in the 

euphotic zone, which was a result of enhanced stratification due to sea ice melt. 

However, the nutrient decrease in the euphotic zone would not greatly influence 

the growth of small-bodied phytoplankton because they have a large surface-area-

to-volume ratio that provides effective acquisition of nutrients. This is shown by 

the appearance of the small-bodied phytoplankton Chl-a maximum, and the 

disappearance of the large-bodied phytoplankton Chl-a maximum in 2008/2009. 

The increase in small-bodied phytoplankton in the shelf area might be related to 

the recent warming of shelf seas, although there is a range of other potential 

explanatory factors. 

Because the detritus of large cells effectively transports organic carbon to 

deeper layers (Michaels and Silver, 1988), the disappearance of large-bodied 
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phytoplankton implies a reduction of the efficiency of the biological pump in the 

Canada Basin. We also found that the nitrate uptake rate by phytoplankton, which 

is assumed to be in balance with the flux of sinking particles associated with the 

biological pump, actually decreased from 0.25 mg-N/m2/h in 2002 (Lee and 

Whitledge, 2005) to 0.08 mg-N/m2/h in 2009 (averages of three stations indicated 

by yellow circles in Fig. 2f and yellow profiles in Fig. 3) in the Canada Basin. 

This decrease can be explained by decreased nutrient availability, as shown in 

distributions of nitrate, which is the limiting nutrient of Arctic phytoplankton 

production (Tremblay and Gagnon, 2009), at a depth of 50 m (Fig. 2e and 2f). The 

depth of 50 m roughly corresponds to the bottom of the euphotic zone and the 

Chl-a maximum layer (Nishino et al., 2008; McLaughlin and Carmack, 2010). At 

this depth, nitrate decreased from 2002/2003 to 2008/2009 in the Canada Basin, 

which in turn would have decreased the nitrate uptake by phytoplankton and the 

efficiency of the biological pump. 

In contrast to the Canada Basin, nitrate concentrations at 50 m depth in the 

Makarov Basin, where observations were conducted only in 2002 and 2008, were 

higher in 2008 than in 2002. This is because the nutricline shallowed, from 25–30 

m in 2002 to approximately 10 m in 2008, accompanied by a shoaling of isohaline 

surfaces around a salinity of approximately 31 (Fig. 4). To examine the effect of 

ocean circulation on nitrate distribution, we evaluated dynamic heights, which 

represent geostrophic flow fields, at 50 m compared to those at 250 m, where 

ocean currents were assumed to be slow. The dynamic heights at 50 m in the 

overall study area were calculated from the temperature and salinity data collected 

in 2002/2003 and 2008/2009, and the circulation patterns were overlaid on the 

nitrate distributions as shown in Fig. 2e and 2f, respectively. The dynamic heights 

clearly suggest that the change in nitrate was associated with a change in ocean 
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circulation. The shoaling of isohaline surfaces in the Makarov Basin was 

geostrophically associated with strong northward flows north of the Chukchi Sea 

shelf that were found in 2008/2009 (Fig. 2f) and carry nutrient-rich shelf water 

into the basin. Thus, in this region, where nutrients were sufficiently supplied, 

light conditions could be the limiting factor of phytoplankton production, and 

hence sea ice melt should increase production. 

Our observation area in the Makarov Basin was covered by sea ice in 

2002, whereas it was open water in 2008. Because we do not have Chl-a data for 

the Makarov Basin, we instead compared the near-bottom nitrate concentrations 

along almost identical sections examined in 2002 and 2008 (Fig. 5). In both 2002 

and 2008, nitrate concentrations increased near the bottom of the water column 

while oxygen levels decreased, which suggested that there was the decomposition 

of organic matter on the seabed. The increase in nitrate concentrations near the 

bottom of the water column was greater in 2008 than in 2002. This implies that 

the deposition of organic matter on the bottom increased from 2002 to 2008, 

which was most likely due to the enhanced biological pump. 

Comparison of nitrate profiles at a station located between the Canada and 

Makarov basins (red circle in Fig. 2f) obtained in 1994 under the sea ice cover 

(Wheeler, 1997) with those obtained in 2009 in open water also showed a recent 

increase in near-bottom nitrate concentrations (Fig. 6). This suggested an increase 

in the organic matter deposition with the sea ice melt. We measured nitrate uptake 

rates in 2009 at this station, where the subsurface (50-m depth) nitrate 

concentrations were relatively high compared with those in the interior of Canada 

Basin (Fig. 2f). The nitrate uptake rate had its vertical maximum around the depth 

of the Chl-a maximum concentration of large-bodied phytoplankton of > 10 μm 

(red profiles in Fig. 3). The rates at this station were much higher than those 
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measured in the nitrate-poor Canada Basin (yellow circles in Fig. 2f and yellow 

profiles in Fig. 3). The higher rates seemed to result from higher Chl-a 

concentrations of large-bodied phytoplankton over the whole of the water column. 

4. Discussion 

The anticyclonic circulation in the Canada Basin, called the Beaufort 

Gyre, increased in strength and latitudinal width from 2002/2003 to 2008/2009 

(Fig. 2e and 2f). Arctic Ocean circulation, and especially the Beaufort Gyre, has 

recently become enhanced because the melting of thick, solid multi-year ice has 

produced fragmented and mobile sea ice, which allows the wind to more 

efficiently drive the ocean circulation (Shimada et al., 2006; Yang, 2009). As 

surface freshwater (including that from melting sea ice) has accumulated in the 

Beaufort Gyre, by the convergence of Ekman transport, the freshwater content of 

the Canada Basin has gradually increased with the enhanced ocean circulation 

observed from 2003 to 2007 (Proshutinsky et al., 2009). The accumulation of 

fresh and nutrient-poor surface waters can inhibit nutrient supply from deep layers 

and thus decrease phytoplankton production (McLaughlin and Carmack, 2010). 

Consideration of the effects of ocean circulation should be expanded from 

the above vertical one-dimensional interpretation. The accumulation of freshwater 

within the Beaufort Gyre produces a density gradient between the shelf and basin, 

resulting in the formation of a strong westward flow over the shelf slope, as 

shown by the dynamic height in 2008/2009 (Fig. 2f). This strong westward flow 

prevented the spread of nutrient-rich shelf waters towards the central Canada 

Basin in 2008/2009, which inhibited phytoplankton growth and reduced the 

efficiency of the biological pump in the Canada Basin (Fig. 2b). In contrast, in 

2002/2003 a weak density gradient and a weak westward flow between the shelf 
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and basin should have allowed nutrient-rich shelf water to spread into the basin 

(Fig. 2e). In addition, a pathway for nutrient-rich water to move from the Siberian 

shelf into the Canada Basin, north of the narrow Beaufort Gyre (north of 76°N 

and east of 160°W), appeared in 2002/2003. These nutrient supplies in 2002/2003 

resulted in a flourishing phytoplankton population, even in the Canada Basin (Fig. 

2a). Thus, the biological pump decreases within the Beaufort Gyre where 

freshwater accumulates because of the stronger ocean circulation in the 

fragmented and mobile sea ice conditions that follow sea ice melt. 

Outside the Beaufort Gyre, nitrate concentrations at 50 m depth were 

higher than those inside the gyre (Fig. 2e and 2f) because of the weaker influence 

of nutrient-poor freshwater. The sufficient nutrient conditions outside the gyre 

should increase the efficiency of the biological pump with the sea ice melt as 

shown by the increases in near-bottom nitrate concentrations (Figs. 5 and 6). The 

nitrate uptake rate integrated over the water column at the station between the 

Canada and Makarov basins (red circle in Fig. 2f and the red profile in Fig. 3) was 

0.42 mg-N/m2/h. This rate is close to the global mean of particulate organic 

nitrogen export from the surface ocean (0.58 mg-N/m2/h), calculated from the 

global mean of particulate organic carbon export (Dunne et al., 2005) and a 

stoichiometric ratio of carbon and nitrogen (Redfield et al., 1963). Therefore, if 

there is a sufficient nutrient, the biological pump can be as large as that in other 

oceans when the sea ice disappears. 

Nutrient availability for phytoplankton production in the Makarov Basin 

would increase because of a shoaling of nutricline with a shoaling of isohaline 

surfaces around a salinity of approximately 31 (Fig. 4). Here we propose a 

mechanism for the shoaling of nutricline and isohaline surfaces. In 2008, a larger 

volume of nutrient-rich water with a salinity of 32–33 occupied the Makarov 
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Basin (Fig. 4b) compared with that in 2002 (Fig. 4a), resulting in the shoaling of 

isohaline surfaces above it. This large-volume of water with a salinity of 32–33 

found in 2008 was also characterized by a temperature minimum of near-freezing 

temperatures (Fig. 7b). In the Makarov Basin, the nutrient-rich water seems to be 

supplied from the East Siberian Sea (Fig. 2f). These features suggest that the 

temperature minimum was caused by cooling and convection in the East Siberian 

Sea and the water mass was then carried northward, along with the high nutrient 

concentrations from remineralization at the shelf bottom of the East Siberian Sea, 

into the Makarov Basin. The formation of such a water mass in the East Siberian 

Sea has become more likely in recent years because of the significant delays in 

autumn freeze-up (Markus et al., 2009). The delay in freezing results in an 

increased duration of water mass formation by cooling and convection because 

sea ice cover prevents atmospheric cooling and mixing by wind. The extensive 

temperature minimum found in 2008 compared with that in 2002 (Fig. 7) strongly 

suggests a recent increase in the volume of water that has been formed by the 

previously described process. Conversely, the temperature maximum water with a 

salinity of 32.5–33 found in 2002 suggests that the water was not subjected to the 

sufficient cooling and convection over the shelf during winter. Consequently, the 

shoaling of nutricline was likely caused by the input of the large-volume water 

mass with low temperature and high nutrients formed in the East Siberian Sea 

during winter. 

In the Eurasian Basin of the eastern Arctic Ocean (Amundsen Basin and 

Nansen Basin), sea ice still covers the ocean even in summer, and therefore we do 

not have data to examine biogeochemical changes associated with sea ice 

disappearance in this basin. Here we propose a conceivable scenario, from the 

viewpoint of ocean circulation, using historical data sets (Arctic Climatology 
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Project, 1998; Colony and Timokhov, 2001). Ocean circulation in the Eurasian 

Basin is characterized by the Transpolar Drift flowing from the Siberian shelves 

to the Fram Strait. The Transpolar Drift accompanies a shoaling of isohaline 

surfaces from the Canadian Basin towards the Eurasian Basin (Fig. 8a and 8b). 

Because of the shoaling of isohaline surfaces, surface nitrate concentrations in the 

Eurasian Basin are relatively high compared with those in the Canadian Basin 

(Fig. 8c). Therefore, if sea ice were to disappear from the Eurasian Basin, a 

marked increase in phytoplankton production could occur. However, surface 

silicate concentrations in the Eurasian Basin are extremely low (Fig. 8d), and only 

weakly affected by high-silicate waters of Pacific origin (Jones and Anderson, 

1986). Assuming that diatoms exhaust the surface silicate content (5 μmol/l) over 

the 120-day growth season (Subba Rao and Platt, 1984) in the ice-free Eurasian 

Basin, that silicate uptake linearly decreases with depth to be zero at 50 m, and 

that nitrate uptake by diatoms occurs with a Si:N ratio of 1:1 (Brzezinski, 1985), 

the nitrate uptake rate is estimated as 0.61 mg-N/m2/h. This value is similar to that 

observed outside the Beaufort Gyre in the Canadian Basin of the western Arctic 

Ocean (0.42 mg-N/m2/h) and much higher than that within the Beaufort Gyre 

(0.08 mg-N/m2/h) observed in 2009. When the nitrate uptake rate is converted to 

the carbon uptake rate using a stoichiometric C:N ratio of 106:16 (Redfield et al., 

1963), the annual rate over the Eurasian Basin (1.5×106 km2) is estimated as 15 

TgC/yr. Although this estimation of the rate is based on assumptions with large 

uncertainties, it corresponds to 7.5–23% of the present Arctic Ocean carbon sink 

of approximately 66–199 TgC/yr (Bates and Mathis, 2009). A recent study using 

data from the Canada Basin concluded that the Arctic Ocean basin will not 

become a large sink of CO2 because of strong surface stratification and low 

biological productivity (Cai et al., 2010). However, our study suggests that this is 
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not the case for the region outside the Beaufort Gyre, and that biological CO2 

drawdown is indeed important for the Arctic Ocean carbon sink under ice-free 

conditions. 

The historical data sets described above (Arctic Climatology Project, 

1998; Colony and Timokhov, 2001) are compilations of previously reported data 

before 2000. It would be informative to compare them with recent data after 2000. 

During summer 2005, the Swedish icebreaker Oden crossed the Arctic Ocean 

from north of Barrow, Alaska, to Svalbard. The water mass and nutrient 

distributions obtained from the Oden cruise (Jones et al., 2008) were basically 

similar to those from the historical data. However, upper ocean salinity in 2005 

was lower than that of the historical data. The decrease in salinity in the Eurasian 

Basin could be explained by an increase in river water inventories (Jones et al., 

2008), which would be associated with a change of wind patterns over the 

Siberian shelve seas (Johnson and Polyakov, 2001; Boyd et al., 2002). Nitrate and 

silicate concentrations in the upper ocean of the Eurasian Basin in 2005 were also 

lower than those of the historical data. During summer 2005, heavy sea ice 

covered the Eurasian Basin, and therefore the nutrient decreases could not be 

explained by the biological uptake of nutrients but instead may have resulted from 

upper ocean freshening by river water influences. If the sea ice were to disappear 

from the Eurasian Basin, the river water influences might negatively affect the 

biological productivity, but the shallower nutricline and higher nitrate 

concentrations in the upper ocean compared to those in the Canadian Basin could 

increase the biological productivity in the Eurasian Basin. 
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5. Conclusions and Implications 

The biological pump is reduced within the Beaufort Gyre and enhanced 

outside the gyre with the loss of sea ice (Fig. 9). The Makarov and Eurasian 

basins, where few previous observations have been made, lie outside the Beaufort 

Gyre and are key areas for future study if we are to understand changes in the 

behavior of biogeochemical cycles in response to melting sea ice. Furthermore, 

because Arctic waters flow through the channels of the Canadian Archipelago and 

Fram Strait, transporting nutrients to the North Atlantic (Jones et al., 2003), 

changes in nutrient use and the biological pump in the Arctic Ocean might affect 

biological productivity in the North Atlantic. 
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Figure Legends 

Fig. 1. Map showing bathymetric features of the study area and locations of the hydrographic 

stations of the R/V Mirai Arctic Ocean Cruises in 2002 (blue), 2008 (yellow), and 2009 (red), and 

the Chukchi Borderland Cruise by the USCGC Polar Star in 2002 (dark green) (Woodgate et al., 

2002), and the cruise of the CCGS Louis S. St-Laurent in 2003 (lime green) (McLaughlin et al., 

2010). Open circles indicate CTD and hydrographic water sampling stations; closed circles 

indicate CTD observation stations. Geographical locations are abbreviated as follows: Canada 

Basin (CB), Northwind Ridge (NWR), Chukchi Plateau (CP), Chukchi Abyssal Plain (ChuAP), 

Mendeleyev Ridge (MR), and Makarov Basin (MB). 

 

Fig. 2. Vertical sections of phytoplankton chlorophyll a [μg/L] in large-sized cells of > 10 μm 

(colors) and salinity (contours) in (a) 2002/2003 and (b) 2008/2009, vertical sections of 
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phytoplankton chlorophyll a [μg/L] in small size cells of < 10 μm (colors) and salinity (contours) 

in (c) 2002/2003 and (d) 2008/2009, and dynamic height [dyn m] at 50 m relative to 250 db 

(dashed contours) and nitrate [μmol/kg] at 50 m (colors) in (e) 2002/2003 and (f) 2008/2009. The 

sections in (a) – (d) are illustrated along red lines in (e) and (f). The blue lines in (e) and (f) show 

the sections of nitrate distributions in Figs. 4 and 5. Red and yellow circles in (f) indicate stations 

where nitrate uptake rates were measured in 2009 (Fig. 3). Data were obtained from cruises by the 

R/V Mirai in 2002, 2008, and 2009, USCGC Polar Star in 2002 (Woodgate et al., 2002), and 

CCGS Louis S. St-Laurent in 2003 (McLaughlin et al., 2010). 

 

Fig. 3. Vertical profiles of (a) nitrate uptake rate [mg-N/m3/h] and (b) phytoplankton chlorophyll a 

[μg/L] in large-sized cells of > 10 μm at stations indicated by red and yellow circles in Fig 2f. The 

profiles at red and yellow circle stations are represented by red and yellow lines, respectively. In 

(a), the nitrate uptake rates integrated over the water columns at red and yellow circle stations are 

0.42 and 0.08 [mg-N/m2/h], respectively. The integrated rate at yellow circle stations is an average 

of three stations. Data are from the R/V Mirai in 2009. 

 

Fig. 4. Vertical sections of nitrate (colors) [μmol/kg] and salinity (contours) from the sea surface 

to 200 m in the Makarov Basin observed in (a) 2002 and (b) 2008 along the blue lines in Fig. 2e 

and 2f, respectively. Data are from the USCGC Polar Star in 2002 (Woodgate et al., 2002) and 

R/V Mirai in 2008. 

 

Fig. 5. Vertical sections of nitrate [μmol/kg] from the sea surface to seafloor in the Makarov Basin 

observed in (a) 2002 and (b) 2008 along the blue lines in Fig. 2e and 2f, respectively. Data are 

from the USCGC Polar Star in 2002 (Woodgate et al., 2002) and R/V Mirai in 2008. 

 

Fig 6. Monthly sea ice concentrations (white = 100 %, blue = 0 %) in September of (a) 1994 and 

(b) 2009 (National Ice Center, 2006), and (c) vertical profiles of nitrate obtained from the Arctic 

Ocean Section cruise in 1994 (Wheeler, 1997) depicted by open circles (○) and the R/V Mirai 

cruise in 2009 shown by open squares (□). The positions where the profiles were obtained are 

almost the same and indicated by dots in (a) and (b), respectively. The position in 2009 is 

equivalent to the red circle in Fig. 2f. 

 

Fig. 7. Vertical sections of temperature (colors) [deg. C] and salinity (contours) from the sea 

surface to 200 m in the Makarov Basin observed in (a) 2002 and (b) 2008 along the blue lines in 

Fig. 2e and 2f, respectively. Data are from the USCGC Polar Star in 2002 (Woodgate et al., 2002) 

and R/V Mirai in 2008. 

 

Fig. 8. (a) Map of the Arctic Ocean and pan-Arctic sections showing (b) salinity, (c) nitrate 

[μmol/l], and (d) silicate [μmol/l]. Geographical locations are abbreviated as follows: Canada 

Basin (CB), Mendeleyev Ridge (MR), Makarov Basin (MB), Lomonosov Ridge (LR), Amundsen 

Basin (AB), Arctic Mid-Ocean Ridge (AMOR), and Nansen Basin (NB). Data were obtained from 
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the Environmental Working Group Atlas of the Arctic Ocean (Arctic Climatology Project, 1998) 

and Hydrochemical Atlas of the Arctic Ocean (Colony and Timokhov, 2001). 

 

Fig. 9. Summary of the responses of ocean circulation, nutrient supply, and phytoplankton 

distribution to the recent Arctic sea ice loss. The Beaufort High (blue arrows), which is a high 

pressure over the Canada Basin of the Arctic Ocean, drives the sea ice and ocean anticyclonically 

as the Beaufort Gyre (BG). Sea ice loss, for example from 2002/2003 (left panel) to 2008/2009 

(right panel), enhances the ocean circulation by increasing the Ekman pumping (we). This results 

in a deepening nutricline (depicted by the boundary between layers colored by light blue and red). 

Moreover, an enhanced westward flow between the shelf and basin areas (shown by the red 

cylinder in the right panel) prevents the spreading of nutrient-rich shelf water into the BG. The 

increase in the latitudinal width of the BG also inhibits the nutrient supply from the East Siberian 

Sea (ESS). The shutdown of nutrient supply from the shelves and deep layers suppresses 

phytoplankton growth within the BG. However, the enhanced westward flow carrying nutrient-

rich shelf water turns to the north outside the BG and supplies nutrients there. In addition, 

significant delays in autumn freeze-up in ESS increase the supply of water with low temperature 

and high nutrients from ESS to the Makarov Basin outside the BG. Due to these nutrient supplies, 

phytoplankton growth increases outside the BG if the sea ice disappears and the underwater 

irradiance increases. 
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