

Estudo dos Consumos Energéticos de Empresas Consumidoras Intensivas de Energia

Maria Emmanuelle Ribeiro Vaz

Dissertação submetida para a obtenção do grau de Mestre em Energias Sustentáveis

> Instituto Superior de Engenharia do Porto Departamento de Engenharia Mecânica

Relatório da Unidade Curricular de Dissertação/Projecto/Estágio do 2º ano do Mestrado em Energias Sustentáveis

Candidato: Maria Vaz, Nº 1101633, 1101633@isep.ipp.pt

Empresa: Smartwatt

Orientação Científica: Roque Brandão, rfb@isep.ipp.pt

Supervisão: Hélder Marques, helder.marques@smarwatt.pt

Mestrado em Energias Sustentáveis Departamento de Engenharia Mecânica

novembro de 2016

"Verm time in limited den't counts it living someone also's life. Den't he troops of he deams
"Your time is limited, don't waste it living someone else's life. Don't be trapped by dogma, which is living the result of other people's thinking. Don't let the noise of other's opinion
drowned your own inner voice. And most important, have the courage to follow your heart
and intuition, they somehow already know what you truly want to become. Everything else
is secondary." Steve Jobs
Sieve Jobs

Agradecimentos

Ao meu orientador, Professor Roque Brandão pelo constante apoio, disponibilidade, incentivo e transmissão de conhecimentos ao longo deste relatório. Por tudo o que fez em prol deste trabalho, tempo despendido e verdadeiro sentido crítico necessário no decorrer deste processo, agradeço profundamente.

À Smartwatt- Solutions for energy systems, enquanto empresa, o espaço de trabalho, documentação técnica e todo o apoio dado. Agradeço ainda ao meu co-orientador Engenheiro Hélder Marques, ao André, Jorge, Paulo, Rui, Luisana e Álvaro pela disponibilidade, apoio e simpatia que demonstraram.

Aos meus amigos, pela amizade, compreensão, apoio e todas as experiências vividas neste percurso.

Ao Carlitos, pelo apoio, motivação, compreensão e acima de tudo paciência demonstrada ao longo deste tempo. Deste-me apoio e incentivo quando mais precisei. Obrigado por tudo que fizeste por mim.

Às minhas irmãs, por serem quem são, agradeço todo o apoio e ensinamentos que me deram até hoje, muito do que sou hoje deve-se a elas, muito obrigado.

Aos meus pais, por me apoiarem nas minhas decisões, por toda a paciência, pelo amor, pelos conselhos dados ao longo da vida que fizeram a pessoa que sou hoje, e acima de tudo por me terem dado a oportunidade de realizar este percurso. Obrigado por tudo.

A todos que de uma forma ou outra me auxiliaram e tornaram o meu trabalho mais fácil.

A todos, o meu muito obrigado!

Resumo

De forma a promover a eficiência energética e implementar a utilização racional de energia, foram criadas estratégias e legislação que incentivam a diminuição dos consumos de energia numa instalação. Para esse efeito é necessário uma gestão de energia ou seja conhecer os fluxos de energia existentes dessa instalação.

As auditorias energéticas permitem realizar um levantamento e análise dos fluxos energéticos, com o objetivo de identificar oportunidades de racionalização de consumo de energia.

Neste trabalho foi realizado um estudo dos consumos energéticos em três indústrias consumidoras intensivas de energia. Através dos dados cedidos pelas empresas foi possível obter um resultado do exame energético, caracterizar os consumos de cada instalação ao longos dos anos do plano em vigor, verificar as medidas de eficiência energética propostas no plano e quais as implementadas, bem como a consequência da não implementação, apresentando no final os desvios dos indicadores energéticos em todos os anos do plano de cada instalação.

Palavras-Chave

Energia, eficiência energética, consumos energéticos, industria.

Abstract

In order to promote energy efficiency and implement the rational use of energy, they were created strategies and legislation that encourage the reduction of energy consumption in a installation. For this purpose it's necessary a power management, that means know the existing energy flows in installation.

Energy audits allow make a study and analysis of the energetic flows with the purpose of identifying opportunities for energy consumption.

In this work was realized a study of energy consumption in three intensive consumer energy industries. Through the data transferred by the companies it was possible to obtain a result of the energy examination, characterize the consumption of each installation over the years with the plan in vigor, check the proposed energy efficiency measures in the plan and which implemented, as well as the consequence of not implementation, showing at the end the difference of energy indicators in each year of each installation plan.

Keywords

Energy, Energy Efficiency, Energy Consumption, Industry.

Declaração

Maria Emmanuelle Ribeiro Vaz declara, sob compromisso de honra, que este trabalho é original e que todas as contribuições não originais foram devidamente referenciadas, com identificação da fonte.

22 de novembro de 2016

Poria Emmanuelle Ribeiro Vaz

Índice

AGRADECIMI	ENTOS	VII
RESUMO		IX
ABSTRACT		XI
)	
•		
ÍNDICE		XV
ÍNDICE DE FI	GURAS	XIX
ÍNDICE DE TA	BELAS	XXI
NOMENCLAT	URA	1
	JCÃO	
	,	
	EXTUALIZAÇÃO	
	BALANÇO ENERGÉTICO	
	TIVOS	
1.3. ORGA	NIZAÇÃO DO RELATÓRIO	12
2. AUDITOR	RIAS ENERGÉTICAS	15
2.1. Legis	ILAÇÃO	16
2.1.1.	SGCIE - Decreto – Lei n.º 71/2008, de 15 de abril de 2008	16
2.1.1.1.	Objetivos	16
	Aplicação	
	PLANO DE RACIONALIZAÇÃO DO CONSUMO DE ENERGIA (PREN)	
	Metas	
	PENALIDADES E ESTÍMULOS	
2.1.2.	DESPACHO N.º 17449/2008 – DGEG	20
2.1.3.	DECRETO-LEI N° 68-A/2015	20
2.2. Elab	ORAÇÃO DE UMA AUDITORIA	21
2.2.1.	CONCEITO	21
2.2.2.	Objetivos	22
2.3. Fases	S DE UMA AUDITORIA	22
2.4. Tipos	DE AUDITORIAS	25
2.4.1.	Auditoria de Visita/Walk-Through Audit	25
2.4.2.	Auditoria Simples	25
2.4.3.	Auditoria Completa	26
3. RELATÓ	RIO DE EXECUÇÃO E PROGRESSO (REP)	27
	ORAÇÃO DO RELATÓRIO DE EXECUÇÃO E PROGRESSO (REP)	
J.I. LLAD	OKAGAO DO KELATOKIO DE LAECUÇAO E I KOUKEĴĴO (KEF J	41

	3.2. IND	OICADORES E MEDIDAS	28
	3.2.1.	FATORES DE CONVERSÃO	28
	3.2.2.	Indicadores Energéticos	29
	3.2.3.	VALOR ACRESCENTADO BRUTO (VAB) E PRODUÇÃO	30
	3.3. ME	DIDAS	32
	3.3.1.	MEDIDAS TRANSVERSAIS	33
	3.3.2.	MEDIDAS SECTORIAIS	34
4.	ESTUDO	O DAS METAS DE ALGUNS REP'S	37
	4.1. ME	TODOLOGIA UTILIZADA	37
	4.2. CAS	so de estudo 1	39
	4.2.1.	EVOLUÇÃO DOS CONSUMOS E DOS INDICADORES	42
	4.2.1.1.	Consumos Energéticos	42
	4.2.1.2.	Produções e VAB	47
	4.2.1.3.	Indicadores Energéticos	48
	4.2.1.3.1.	. Primeiro Biénio - 2010	48
	4.2.1.3.2.	. Segundo Biénio - 2012	49
	4.2.1.3.3.	. Terceiro biénio -2014	51
	4.2.1.4.	Conclusões	52
	4.3. CAS	so de estudo 2	53
	4.3.1.	Dados do ano de referência	54
	4.3.2.	Medidas Propostas e Estado de Implementação	56
	4.3.3.	EVOLUÇÃO DOS CONSUMOS E DOS INDICADORES	57
	4.3.3.1.	Consumos Energéticos	57
	4.3.3.2.	Produções e VAB	59
	4.3.3.3.	Indicadores Energéticos	61
	4.3.4.	CONCLUSÕES	64
	4.4. CAS	SO DE ESTUDO 3	65
	4.4.1.	Ano de Referência	66
	4.4.2.	MEDIDAS PROPOSTAS	68
	4.4.3.	Evolução dos Consumos e dos Indicadores	69
	4.4.3.1.	Consumos Energéticos	69
	4.4.3.2.	Produções e VAB	73
	4.4.3.3.	Indicadores Energéticos	75
	4.4.4.	CONCLUSÕES	
5.	CONCL	USÕES	81
RI	EFERÊNCI	AS DOCUMENTAIS	87
Αľ	NEXO A. C	ASO DE ESTUDO 1-PRODUÇÕES ANO DE REFERÊNCIA 2008	91
Αľ	NEXO B. C.	ASO DE ESTUDO 1-CONSUMOS DE ENERGIA AO LONGO DOS ANOS	92
Αľ	NEXO C. C	ASO DE ESTUDO 1- EVOLUÇÃO DOS CUSTOS DE ENERGIA AO LONGO I	oos
A N	MOG		02

ANEXO D. CASO DE ESTUDO 1- EVOLUÇÃO DOS CONSUMOS DE ENERGIA ELÉTRICA 94
ANEXO E. CASO DE ESTUDO 1- EVOLUÇÃO DOS CONSUMOS DE FUELÓLEO PESADO 95
ANEXO F. CASO DE ESTUDO 1- EVOLUÇÃO DOS CONSUMOS DE PELETES/ BRIQUETES DE MADEIRA
ANEXO G. CASO DE ESTUDO 1- EVOLUÇÃO DAS PRODUÇÕES
ANEXO H. CASO DE ESTUDO 2- CONSUMOS DE ENERGIA ELÉTRICA NO ANO DE REFERÊNCIA
ANEXO I. CASO DE ESTUDO 2- EVOLUÇÃO DOS CONSUMOS DE ENERGIA
ANEXO J. CASO DE ESTUDO 2- EVOLUÇÃO DOS CUSTOS DE ENERGIA 100
ANEXO K. CASO DE ESTUDO 3- EVOLUÇÃO DOS CONSUMOS DE ENERGIA 101
ANEXO L. CASO DE ESTUDO 3- EVOLUÇÃO DOS CONSUMOS DE ENERGIA ELÉTRICA 103
ANEXO M. CASO DE ESTUDO 3- EVOLUÇÃO DOS CONSUMOS DE GPL 104
ANEXO N. CASO DE ESTUDO 3- EVOLUÇÃO DOS CONSUMOS DE GASÓLEO/DIESEL 105
ANEXO O. CASO DE ESTUDO 3- EVOLUÇÃO DOS CONSUMOS DE GASOLINA 106

Índice de Figuras

Figura 1- Dependência Energética Nacional (fonte: DGEG).	5
Figura 2-Dependêndia energética na UE-28 em 2014 (fonte: Eurostat)	5
Figura 3- Energia Primária por tipo de fonte em 2005 e 2014 (fonte: DGEG)	6
Figura 4- Energia final por tipo de fonte em 2005 e 2014 (fonte: DGEG)	6
Figura 5-Evolução dos Consumos de Energia Primária e Final (ktep) (fonte: DGEG)	7
Figura 6- Emissões per capita na UE-28 em 2013 (ton CO ₂ /habitante) (fonte: DGEG)	8
Figura 7-Emissões setoriais em CO2e (2014) (fonte: APA).	8
Figura 8- Três pilares da sustentabilidade.	9
Figura 9- Evolução da meta de Portugal em matéria de Eficiência Energética para 2	2020
(fonte: DGEG)	10
Figura 10- Metas a atingir[7]	12
Figura 11- Esquema das fases do SGCIE	17
Figura 12-Metas de redução para CIE>1000 tep	18
Figura 13- Metas de redução para CIE< 1000 tep	19
Figura 14- Penalidades do não cumprimento das metas[1]	19
Figura 15- Fases de uma auditoria	23
Figura 16-Poderes Caloríficos Inferiores e Fatores de Emissão para Combustíveis	28
Figura 17-Equivalências energéticas de referência (fonte: ADENE)	29
Figura 18-Indicadores Energéticos	30
Figura 19- Medidas transversais à indústria (adaptado: ADENE).	32
Figura 20-Medidas Específicas de cada sector (adaptado: ADENE).	33
Figura 21- Compilação das faturas eletricas	38
Figura 22- Compilação dos consumos ao longo dos anos do PREn	

Índice de Tabelas

Tabela 1- Área e Programas do PNAEE 2016[8]	11
Tabela 2- Tabela de Deflatores, de acordo com o ano de referência do PREn (and	o X da
expressão anterior).	31
Tabela 3-Medidas transversais para aumentar a eficiência energética (adaptado: AE	DENE).
	34
Tabela 4- Medidas sectoriais para aumentar a eficiência energética por setor (ada	-
ADENE)	
Tabela 5- Dados da indústria	
Tabela 6- Fatores de conversão utilizados	
Tabela 7- Consumos energéticos no ano de referência - 2008	
Tabela 8- Produção no ano de referência - 2008 (ton)	
Tabela 9- Resumo dos indicadores energéticos e metas associadas	41
Tabela 10-Medidas Implementadas durante a vigência do Plano de Racionaliza	ção de
Energia	42
Tabela 11- Evolução dos consumos de energia	42
Tabela 12- Evolução dos custos de energia	44
Tabela 13- Evolução dos consumos de energia elétrica	44
Tabela 14- Evolução dos consumos de Fuelóleo pesado.	45
Tabela 15- Evolução dos consumos de peletes / briquetes de madeira	46
Tabela 16- Outros fatores de conversão utilizados no decorrer do PREn	46
Tabela 17- Evolução da produção em toneladas.	47
Tabela 18- Evolução do VAB	48
Tabela 19- Evolução do indicador IE_2010	48
Tabela 20- Evolução do indicador CE-2010	49
Tabela 21- Evolução do indicador IC- 2010	49
Tabela 22- Evolução do indicador IE- 2012	49
Tabela 23- Evolução do indicador CE-2012	49
Tabela 24- Evolução do indicador IC- 2012	50
Tabela 25- Evolução do indicador IE- 2014	51
Tabela 26- Evolução do indicador CE- 2014	51
Tabela 27- Evolução do indicador IC- 2015	
Tabela 28- Resumo de conclusões	
Tabela 29- Dados da indústria	54
Tabela 30- Fatores de conversão utilizados	54
Tabela 31- Consumos energéticos no ano de referência	54

Tabela 32- Produção no ano de referência 2009 (kg)	55
Tabela 33- Resumo dos indicadores energéticos e metas associadas no ano de referência	a 55
Tabela 34- Medidas implementadas ao longo do PREn	56
Tabela 35-Evolução dos consumos de energia ao longo dos anos do plano	57
Tabela 36- Evolução dos custos de energia	58
Tabela 37- Evolução das produções	59
Tabela 38- Evolução do VAB	60
Tabela 39- Evolução do indicador IE no 1º biénio 2011	61
Tabela 40- Evolução do CE no 1º biénio 2011	61
Tabela 41-Evolução do IC no 1º biénio 2011	61
Tabela 42- Evolução do indicador IE no 2ºbiénio 2013	62
Tabela 43- Evolução do indicador CE no 2ºbiénio 2013	62
Tabela 44- Evolução do indicador IC no 2ºbiénio 2013	62
Tabela 45- Evolução do indicador IE no 3º biénio 2015	63
Tabela 46- Evolução do indicador CE no 3º biénio 2015	63
Tabela 47- Evolução do indicador IC no 3º biénio 2015	63
Tabela 48- Resumo de conclusões	64
Tabela 49- Dados da instalação	66
Tabela 50- Fatores de conversão utilizados	66
Tabela 51- Consumo de energia no ano de referência	67
Tabela 52- Resumo dos indicadores energéticos e metas associadas no ano referência	67
Tabela 53- Produção no ano de referência	68
Tabela 54- Medidas implementadas ao longo do PREn	68
Tabela 55- Evolução dos consumos de energia	69
Tabela 56- Evolução dos consumos de Energia Elétrica	70
Tabela 57- Evolução dos consumos de Gás de petróleo liquefeito	71
Tabela 58-Evolução dos consumos de Gasóleo/Diesel	72
Tabela 59- Evolução dos consumos de combustível para motor (gasolina)	73
Tabela 60- Evolução das produções	73
Tabela 61-Evolução do Valor Acrescentado Bruto (VAB)	74
Tabela 62-Evolução do indicador IE no 1º biénio 2011	75
Tabela 63-Evolução do indicador CE no 1º biénio 2011	75
Tabela 64-Evolução do indicador IC no 1º biénio 2011	76
Tabela 65-Evolução do indicador IE no 2º biénio 2013	76
Tabela 66- Evolução do indicador CE no 2º biénio 2013	76
Tabela 67- Evolução do indicador IC no 2º biénio 2013	77
Tabela 68-Evolução do indicador IE no 3º biénio 2015	78
Tabela 69- Evolução do indicador CE no 3º biénio 2015	78
Tabela 70- Evolução do indicador IC no 3º biénio 2015	78

Nomenclatura

Siglas

ADENE – Agência para a Energia

APA – Agência Portuguesa do Ambiente

ARCE – Acordo de Racionalização dos Consumos de Energia

BCSD - Conselho Empresarial para Desenvolvimento Sustentável

CEE – Consumo Específico de Energia

CIE – Consumidoras Intensivas de Energia

DGEG – Direção Geral de Energia e Geologia

FER – Fontes de Energia Renováveis

GEE – Gases com Efeito de Estufa

IC – Intensidade Carbónica

IE – Intensidade Energética

PNAEE – Plano Nacional de Ação para a Eficiência Energética

PREn – Plano de Racionalização dos Consumos de Energia

PRI – Período de Retorno do Investimento

REP – Relatório de Execução e Progresso

RGCE – Regulamento de Gestão dos Consumos de Energia

SGCIE - Sistema de Gestão de Consumos Intensivos de Energia

UE – União Europeia

VAB – Valor Acrescentado Bruto

1. Introdução

1.1. Contextualização

Francisco de la Fuente Sánchez, Presidente do Conselho Empresarial para o Desenvolvimento Sustentável (BCSD) referiu que "As condições de vida na terra estão a mudar, com o passar do tempo, havendo cada vez mais fatores que estão a alterar o meio ambiente. O desenvolvimento económico das últimas décadas contribui para um grande aumento do consumo de energia proveniente de combustíveis fósseis. A natureza finita desses recursos naturais, e o impacto ambiental da sua produção e consumo, alertaram o mundo para a necessidade de mudança."[2]

O setor energético, essencial para o equilíbrio das economias mundiais, tem um forte impacto ambiental pela ligação ao consumo de combustíveis fósseis com uma disponibilidade finita, como o petróleo. Através do consumo destes combustíveis, o setor energético gera um nível considerável de emissões de gases com efeito de estufa, em particular dióxido de carbono (CO2), que estão diretamente relacionadas com as alterações climáticas.

O panorama mundial energético está em constante mudança, quer por força da economia, diretamente ligada à procura de energia, quer por força das alterações climáticas que obrigam a uma ação imediata e concertada para travar o escalar das emissões de Gases com Efeito de Estufa (GEE).

Os objetivos da política energética focam-se, essencialmente na segurança no abastecimento, no crescimento económico e na competitividade e sustentabilidade ambiental. Estes são os principais pilares sobre os quais deve assentar qualquer estratégia neste domínio, sobretudo para um país como Portugal, que tem um elevado grau de dependência externa. A política nacional para as Fontes de Energia Renováveis (FER) está integrada numa nova visão para 2020 do setor energético, a qual procura aproveitar as sinergias resultantes da articulação das estratégias para a procura e oferta de energia, tendo como principal objetivo colocar a energia ao serviço da economia e das famílias, garantindo em simultâneo a sustentabilidade de preços.

Portugal está na dianteira no que toca às energias renováveis, tendo alcançado resultados bastante positivos nos últimos anos, sendo estabelecido para o horizonte 2020 reduzir a dependência energética do país.

1.1.1. Balanço energético

• Dependência energética

A aposta nas Renováveis e na Eficiência Energética, com maior incidência nos últimos anos, tem permitido a Portugal baixar a sua dependência para níveis inferiores a 80%[3].Um dos principais desafios e objetivos da atual política energética nacional prende-se com a redução da dependência energética do exterior. Portugal apresenta uma dependência energética elevada, cerca de 72% fruto da inexistência de produção nacional de fontes de energia fósseis, como o Petróleo ou Gás Natural, que têm um peso muito significativo no mix de consumo de energia.

Em 2014 a dependência energética situou-se em 72,4%, representando uma redução de 1,3% face a 2013 e uma redução de 16,4% face a 2005, ano em que se verificou a dependência energética mais elevada dos últimos anos, como se pode verificar na Figura 1. Esta redução deveu-se em grande parte ao aumento da produção Hídrica e Eólica e também

ao aumento das exportações de Produtos Petrolíferos, resultante da redução de consumo no setor energético.

Figura 1- Dependência Energética Nacional (fonte: DGEG).

Comparando a dependência energética entre os países da União Europeia, verificou-se que em 2014 Portugal foi o 9º país com a maior dependência energética, cerca de 18% acima da média da EU-28. Face a 2013 Portugal melhorou a sua posição uma vez que tinha a 8ª dependência energética mais elevada.

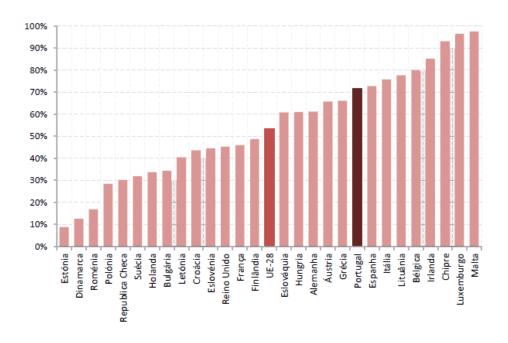


Figura 2-Dependêndia energética na UE-28 em 2014 (fonte: Eurostat)

• Consumo de energia

A energia primária engloba toda a energia utilizada diretamente ou a que é sujeita a transformação para outras formas energéticas, resultando na soma das importações com a produção doméstica, retirando as saídas e variações[3].

Pode-se verificar, na Figura 3, os tipos de fonte de energia primária que mais se destacam em 2005 e 2014, verifica-se que o petróleo continua ser a principal fonte de energia primária apesar de nos últimos anos ter diminuído o seu peso cerca de 16% (2005 para 2014), enquanto o peso das renováveis aumentou significativamente (de 13% para 26%) bem como o gás natural (de 14% para 17%).

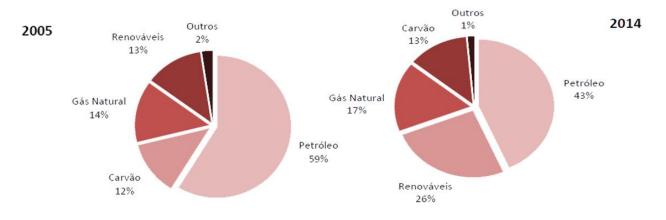


Figura 3- Energia Primária por tipo de fonte em 2005 e 2014 (fonte: DGEG).

O consumo de energia final em 2014 estabilizou relativamente ao ano 2013, interrompendo um ciclo de contínuo decréscimo desde o ano 2005. Relativamente ao consumo final por tipo de fonte verifica-se, pela Figura 4, que o petróleo continua a ser a principal fonte de energia, sendo que este tem vindo a decrescer nos últimos anos (58% para 48%, de 2005 para 2014), segue-se a eletricidade e o gás natural notando-se um aumento destes.

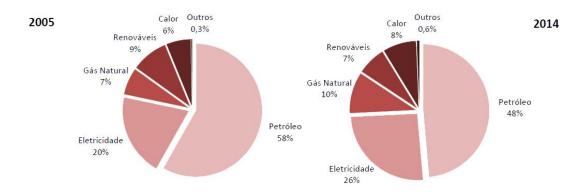


Figura 4- Energia final por tipo de fonte em 2005 e 2014 (fonte: DGEG).

O consumo da energia primária em 2014 diminuiu 2,5% relativamente ao ano de 2013, isto deve-se às reduções de gás natural e produtos derivados de petróleo no setor energético. O consumo da energia final tem vindo a diminuir ao longo dos anos sendo que no ano de 2014 manteve-se constante em relação ao ano de 2013 como se pode verificar na Figura 5.

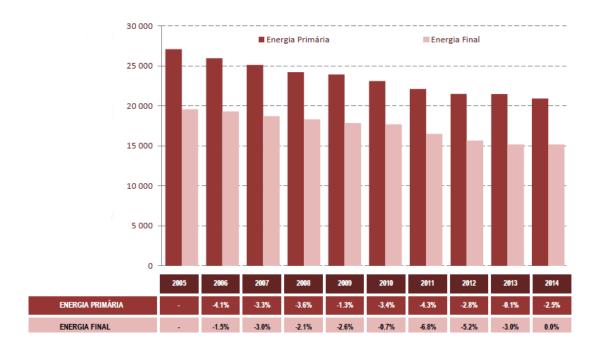


Figura 5-Evolução dos Consumos de Energia Primária e Final (ktep) (fonte: DGEG).

• Emissões de Gases com Efeito de Estufa (GEE)

As emissões de Gases com Efeito de Estufa (GEE) têm registado um decréscimo significativo nos últimos anos, fruto da adoção de medidas neste âmbito, em especial no setor energia que compõe cerca de 70% das emissões totais de GEE [3].

Comparando as emissões totais de GEE por habitante ao nível dos países da União Europeia em 2013, verifica-se que Portugal apresentou um dos valores mais baixos, cerca de 30% abaixo do valor médio da UE-28, como se pode verificar na Figura 6.

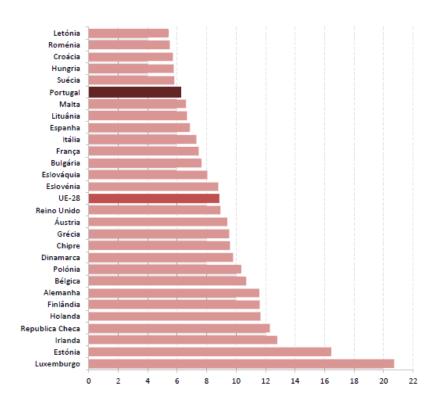


Figura 6- Emissões per capita na UE-28 em 2013 (ton CO2/habitante) (fonte: DGEG).

O setor da energia, incluindo transportes, mantém-se em 2014 como o principal setor responsável pelas emissões de gases com efeito de estufa, representando 68% das emissões nacionais, e apresentando um crescimento face a 1990 de cerca de 6%. Neste setor, os transportes e a produção de energia são as fontes mais importantes representando, respetivamente, cerca de 24% e 23% do total das emissões nacionais (Figura 7). [4]

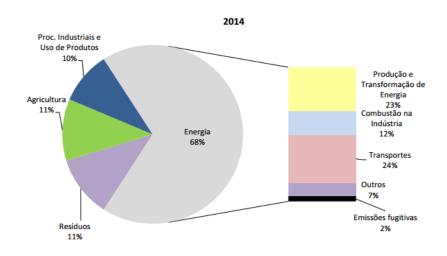


Figura 7-Emissões setoriais em CO2e (2014) (fonte: APA).

Metas Nacionais em matéria de Eficiência Energética

A atual política energética pretende reforçar a competitividade no setor, potenciando um maior equilíbrio entre os três pilares da sustentabilidade (Figura 8) [5].

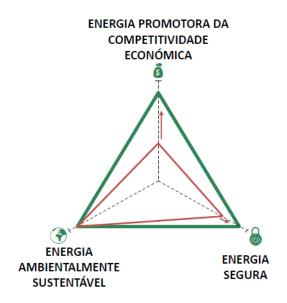


Figura 8- Três pilares da sustentabilidade.

Principais objetivos a atingir:

- Cumprir metas europeias para 2020 ao menor custo para a economia;
- Alcançar os objetivos de Eficiência Energética;
- Reduzir a dependência energética reforçando a segurança de abastecimento;
- Energia ao serviço da economia e das famílias, garantindo sustentabilidade de preços;
- Potenciar mercados energéticos liberalizados, competitivos e sustentáveis.

A promoção da eficiência energética e de fontes de energias renováveis estão integradas na nova visão para 2020 do setor energético, a qual procura articular as estratégias para a procura e oferta de energia, tendo como principal objetivo colocar a energia ao serviço da economia e das famílias e garantindo simultaneamente a sustentabilidade de preços.[5]

Apesar da evolução favorável, Portugal continua a exibir um elevado grau de dependência externa, pelo que o papel da eficiência energética e das FER é essencial para reforçar os níveis de segurança, promovendo, ao mesmo tempo, a diversificação do mix energético e o aumento da sustentabilidade associada à produção, transporte e consumo de energia.

Olhando para a evolução do consumo de energia primária (Figura 9) sem usos nãoenergéticos e incluindo o consumo na aviação internacional, que serve de referência para aferir o cumprimento da meta de Eficiência Energética em 2020, Portugal encontra-se no bom caminho para cumprir a meta de 25% em 2020[3].

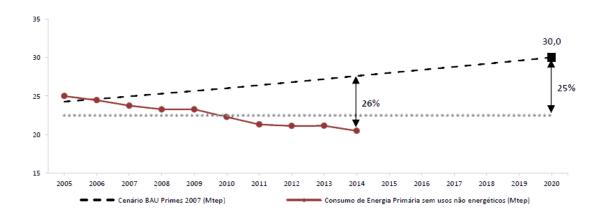


Figura 9- Evolução da meta de Portugal em matéria de Eficiência Energética para 2020 (fonte: DGEG)

• Plano nacional para a eficiência energética

Segundo a diretiva nº 2006/32/CE do Parlamento Europeu e do Conselho, de 5 de Abril de 2006, determinou-se que até 2016 os Estados Membros atingissem um objetivo global nacional indicativo da economia da energia de 9% através da promoção de serviços energéticos e de adoção de medidas de melhoria da eficiência energética[6].

A estimativa da poupança até 2016 é de 1501 ktep em energia final que corresponde a cerca de 8,2% de redução do consumo energético em anos anteriores (2001 e 2005), sendo este valor mais próximo da meta da União Europeia de 9%.O estabelecimento do horizonte temporal de 2020 para efeitos de acompanhamento e monitorização do impacto estimado no consumo de energia primária permite perspetivar antecipadamente o cumprimento das novas metas assumidas pela UE, de redução de 20% dos consumos de energia primária até 2020, bem como o objetivo geral assumido pelo Governo de redução no consumo de

energia primária de 25% e o objetivo específico para a Administração Pública de redução de 30%[7].

O PNAEE 2016 abrange seis áreas específicas: Transportes, Residencial e Serviços, Indústria, Estado, Comportamentos e Agricultura. Estas áreas agregam um total de 10 programas (Tabela 1), que integram um leque de medidas de melhoria da eficiência energética, orientadas para a procura energética e que, de uma forma quantificável e monitorizável, visam alcançar os objetivos propostos.[8]

Tabela 1- Área e Programas do PNAEE 2016[8]

	ÁREAS					
	Transporte	Residencial e Serviços	Indústria	Estado	Comportamentos	Agricultura
Programas	Eco Carro	Renove Casa&Escritório	Sistema de Gestão dos Consumos Intensivos de Energia (SGCIE)			
	Mobilidade Urbana	Sistema de Eficiência nos Edifícios		Eficiência Energética no Estado		
	Sistema de Eficiência Energética nos Transportes	Solar Térmico			Comunicar Eficiência Energética	Eficiência no setor Agrário

As áreas específicas são: transportes, residencial e serviços, indústria, estado, comportamentos e agricultura contemplando diversas medidas de promoção da eficiência energética para atingir as metas[7]. Na Figura 10 são apresentados as metas atingir em 2016 e 2020 em cada área específica.

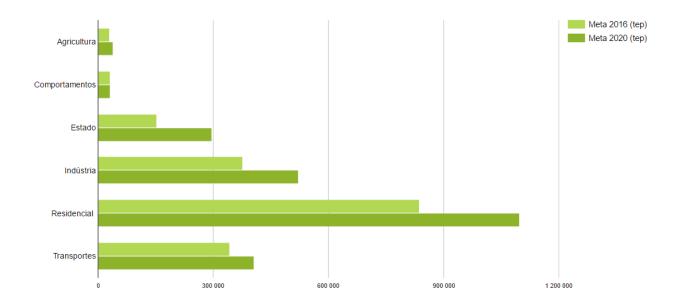


Figura 10- Metas a atingir[7]

1.2. Objetivos

O objetivo principal deste projeto consiste no estudo dos consumos energéticos de empresas consumidoras intensivas de energia. Dada a complexidade inerente a este objetivo, sentiu-se a necessidade de o subdividir em múltiplas tarefas de realização mais simples, tais como:

- Compreensão dos conceitos associados à auditoria energética;
- Objetivo e enquadramento de um relatório de execução e progresso (Rep);
- Estudo das metas de alguns relatórios de execução e progresso (Rep's);
- Estudo de desvios e propostas de compensação.

1.3. Organização do relatório

O presente trabalho está dividido em cinco capítulos:

Capitulo 1- Introdução

Capitulo 2- Auditorias energéticas:

Neste capítulo será abordado a legislação em vigor relativo às auditorias energéticas sobretudo com a indústria, bem como as principais fases de uma auditoria para a sua elaboração.

Capitulo 3- Relatórios de Execução e Progresso (Rep):

Neste capítulo será apresentado a elaboração de um relatório de execução e progresso (Rep), o que se faz num Rep, as medidas utilizadas, o que se analisa, etc. Será também abordado as metas utilizadas pela Adene.

Capitulo 4- Estudo das metas de alguns Rep's:

Neste capítulo serão apresentados os principais casos utilizados no estágio bem como fazer a comparação das metas utilizadas nestes, elaborando também os desvios encontrados e propostas de compensação.

Capitulo 5- Conclusões: Serão apresentadas as conclusões obtidas após análise dos casos de estudo apresentados.

2. Auditorias Energéticas

O peso da fatura energética nos custos de exploração duma empresa do sector industrial é habitualmente baixo, quando comparado com o peso de outros fatores de produção, nomeadamente mão-de-obra e matéria-prima. A gestão de energia é por isso frequentemente negligenciada, facto que gera significativos desperdícios de energia e contribui para a redução da competitividade das empresas.

Adicionalmente, continua presente na mente de alguns industriais a ideia de que o crescimento económico acarreta necessariamente um aumento dos consumos de energia. O conceito de Utilização Racional de Energia, surgido no seguimento dos chamados "choques petrolíferos", veio alterar decisivamente a forma de encarar a energia, demonstrando ser possível crescer sem aumentar os consumos ou afetar a qualidade da produção. A chave da questão designa-se gestão de energia. Como qualquer outro fator de produção, a energia deve ser gerida contínua e eficazmente[9].

Assim atribui-se uma particular importância ao levantamento e à auditoria energética, pois para qualquer processo de gestão de energia terá necessariamente que começar pelo conhecimento da situação energética da instalação. O princípio é: para gerir é indispensável conhecer o objeto de gestão.

2.1. Legislação

2.1.1. SGCIE - Decreto – Lei n.º 71/2008, de 15 de abril de 2008

2.1.1.1. Objetivos

O Sistema de Gestão dos Consumos Intensivos de Energia tem como objetivo promover a eficiência energética e monitorizar os consumos energéticos das instalações consumidoras intensivas de energia (CIE), bem como contribuir para a diminuição do nível de gases com efeito de estufa, regulado pelo Decreto-Lei nº 71/2008, de 15 de Abril de 2008, revogando o antigo Regulamento da Gestão do Consumo de Energia (RGCE, criado pelo Decreto-Lei n.º 58/82, de 26 de Fevereiro e regulamentado pela Portaria n.º 359/82, de 7 de Abril). [10].

O SGCIE prevê que as instalações CIE realizem, periodicamente, auditorias energéticas que incidam sobre as condições de utilização de energia e promovam o aumento da eficiência energética, incluindo a utilização de fontes de energia renováveis. Prevê, ainda, a elaboração e execução de Planos de Racionalização dos Consumos de Energia (PREn) que contemplem objetivos mínimos de eficiência energética. Os PREn, quando aprovados, constituem Acordos de Racionalização dos Consumos de Energia (ARCE) celebrados com a Direção Geral de Energia e Geologia (DGEG), associando ao seu cumprimento a obtenção de incentivos pelos operadores dessas instalações [11].

2.1.1.2. Aplicação

O SGCIE define quais as instalações consideradas consumidoras intensivas de energia (CIE), estendendo a sua aplicação a um conjunto de empresas e instalações[10].

Aplica-se às instalações CIE que, no ano civil anterior, tenham tido um consumo energético superior a 500 toneladas equivalentes de petróleo (500 tep/ano).

O SGCIE divide as instalações CIE em dois escalões:

- Instalações CIE com um consumo anual igual ou superior a 500 tep e inferior a 1000 tep-Estas instalações estão obrigadas à realização de auditorias energéticas de 8 em 8 anos
- Instalações CIE com um consumo anual igual ou superior a 1000 tep Estas instalações estão obrigadas à realização de auditorias energéticas de 6 em 6 anos.

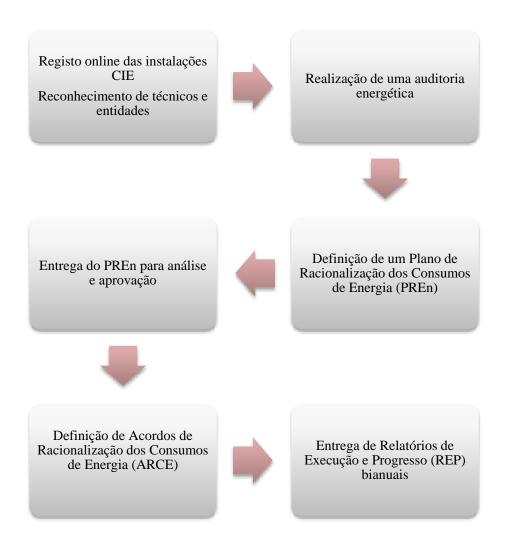


Figura 11- Esquema das fases do SGCIE

2.1.1.3. Plano de Racionalização do Consumo de Energia (PREn)

O Plano de Racionalização do Consumo de Energia (PREn), conforme definido no artigo 7.º do Decreto -Lei n.º 71/2008, deve estabelecer metas relativas às intensidades energéticas e carbónicas e ao consumo específico de energia [12].

O Plano de Racionalização do Consumo de Energia (PREn) é elaborado com base nos relatórios das auditorias energéticas obrigatórias, devendo prever a implementação, nos primeiros três anos, de todas as medidas identificadas com um período de retorno do investimento (PRI) inferior ou igual a cinco anos, no caso das instalações com consumo de energia igual ou superior a 1000 tep/ano, ou com um PRI inferior ou igual a três anos no caso das restantes instalações. Este deve ainda estabelecer metas relativas às Intensidade

Energética (IE), Intensidade Carbónica (IC) e ao Consumo Específico de Energia (CEE), tendo em conta os seguintes indicadores[13]:

Intensidade Energética tem como unidade kgep/€, medida pelo quociente entre o
consumo total de energia (considerando apenas 50% da energia resultante de
resíduos endógenos e de outros combustíveis renováveis) expresso em tonelada
equivalente de petróleo, e o Valor Acrescentado Bruto (VAB), expresso em € por
ano das atividades empresariais diretamente ligadas a essas instalações industriais;

$$IE = \frac{E}{VAB}$$

Intensidade Carbónica tem como unidades tCO₂/ano, medida pelo quociente entre o
valor das emissões de gases de efeito de estufa (GEE) resultantes da utilização das
várias formas de energia no processo produtivo e o respetivo consumo total de
energia expresso em tep;

$$IC = \frac{GEE}{E}$$

 Consumo Específico de Energia, medido pelo quociente entre o consumo total de energia (considerando apenas 50% da energia resultante de resíduos endógenos e de outros combustíveis renováveis) e o volume de produção.

$$CEE = \frac{Consumo\ total\ de\ energia}{Producão}$$

2.1.1.4. Metas

CIE ≥ 1000 tep/ano

Intensidade Energética

• Redução de 6% em 6 anos

Consumo Específico de Energia

• Redução de 6% em 6 anos

Intensidade Carbónica

 Manutenção dos valores históricos

Figura 12-Metas de redução para CIE>1000 tep

CIE < 1000 tep/ano

Intensidade Energética

• Redução de 4% em 8 anos

Consumo Específico de Energia

• Redução de 4% em 8 anos

Intensidade Carbónica

 Manutenção dos valores históricos

Figura 13- Metas de redução para CIE< 1000 tep

2.1.1.5. Penalidades e estímulos

O não cumprimento das metas ou a não implementação das medidas definidas no ARCE implica:

Pagamento de 50€ tep/ano não evitado;
 Agravamento de 100% em caso de reincidência;
 Reembolso de 75% se desvios recuperáveis no ano seguinte à aplicação das penalidades
 Desvios ≥ 50%
 Pagamento de 50€ tep/ano não evitado;
 Devolução dos incentivos recebidos;

Figura 14- Penalidades do não cumprimento das metas[1].

Os estímulos e incentivos à promoção da eficiência energética para as instalações abrangidas por um Acordo de Racionalização dos Consumos de Energia (ARCE) são:

- Instalações com consumos inferiores a 1000 tep/ano Ressarcimento de 50% do custo das auditorias energéticas obrigatórias, até ao limite de € 750 e na medida das disponibilidades do fundo de eficiência energética existentes para o efeito, recuperáveis a partir do relatório de execução e progresso (REP) que verifique a execução de pelo menos 50% das medidas previstas no ARCE [14];
- Ressarcimento de 25% dos investimentos realizados em equipamentos e sistemas de gestão e monitorização dos consumos de energia até ao limite de € 10 000 e na medida das disponibilidades do fundo de eficiência energética existentes para o efeito. No caso das instalações que consumam apenas gás natural como combustível e/ou energias renováveis, os limites previstos nos números anteriores são majorados em 25% no caso das renováveis e 15% no caso do gás natural [14].

2.1.2. Despacho n.º 17449/2008 – DGEG

A Auditoria Energética, conforme definida no artigo 6.º do Decreto -Lei n.º 71/2008, consiste num levantamento detalhado de todos os aspetos relacionados com o uso da energia, ou que de alguma forma contribuam para a caracterização dos fluxos energéticos[12]. Tem por objetivos a caracterização energética dos diferentes equipamentos e sistemas existentes numa instalação consumidora intensiva de energia e a identificação das medidas com viabilidade técnico-económica possíveis de implementar, de modo a aumentar a eficiência energética e ou a reduzir a fatura energética associadas às atividades da instalação em questão. A auditoria energética incidirá sobre a conceção e o estado das instalações, devendo ser recolhidos os elementos necessários à elaboração do plano de racionalização do consumo de energia, bem como à subsequente verificação do cumprimento deste.

2.1.3. Decreto-Lei nº 68-A/2015

O Decreto-Lei n.º 68-A/2015, de 30 de abril, estabelece disposições em matéria de eficiência energética e cogeração, transpondo para a ordem jurídica interna a Diretiva 2012/27/UE, do Parlamento Europeu e do Concelho, de 25 de outubro de 2012, relativa à Eficiência Energética[15].

Segundo o artigo 23° alterações ao Decreto-Lei n.º 71/2008, de 15 de abril, as Alterações legislativas em matéria de eficiência energética passam a ter a seguinte redação:

- Nas instalações consumo de energia igual ou superior a 1000 tep/ano, uma melhoria de 6% com uma periodicidade de 8 anos;
- Nas instalações com consumos inferiores a 1000 tep/ano, uma redução de 4% com uma periodicidade de 8 anos.

De ressalvar que os dados utilizados nos casos de estudo são referentes ao Decreto-Lei n.º 71/2008, de 15 de abril.

2.2. Elaboração de uma auditoria

2.2.1. Conceito

Como a raiz latina de auditoria, *auditio*, é a mesma de auditório, audição e audiência, há uma imediata vinculação com o ato passivo de ouvir. Junto com a auditoria energética, outros termos têm sido empregados com o mesmo objetivo, como "análise energética" e "diagnóstico energético", algumas vezes causando equívocos, já que o estudo das perdas na cadeia de transformações energéticas pode ser desenvolvido com variado grau de desagregação. Além disso, a prática foi cunhando alguns termos de forma bem delimitada, e assim, "diagnóstico" usualmente se refere a um estudo expedito, enquanto "auditoria" seria um estudo minucioso. Segundo a terminologia definida internacionalmente a contabilidade energética num sistema destinado à produção de bens e serviços é definida como "energy audit" (inglês), "analyse énergétique" (francês), "energieanalyse" (alemão) e "análisis energético" (espanhol), correspondendo certamente à "análise energética", mas de pouco uso na nossa literatura técnica[16].

Uma Auditoria Energética é um exame detalhado das condições de utilização de energia numa instalação (unidade fabril ou edifício) e nesse sentido constitui um instrumento fundamental para qualquer gestor de energia.

Ao permitir contabilizar os consumos e os rendimentos energéticos dos equipamentos assim como possíveis perdas, permite de igual modo identificar as medidas mais adequadas para as reduzir. Assim se cumpre o objetivo de facilitar uma utilização mais económica e eficiente de energia, sem afetar a (o) produção/serviço [17].

2.2.2. Objetivos

Uma auditoria tem como principais objetivos [18]:

- Identificar as formas de energia utilizadas;
- Examinar o modo como a energia é utilizada e os respetivos custos;
- Estabelecer a estrutura do consumo de energia;
- Determinar os consumos por processo, operação ou equipamento;
- Relacionar o consumo de energia com a produção e/ou com o nível de funcionamento da instalação;
- Identificar as possibilidades de melhoria dos rendimentos energéticos;
- Analisar técnica e economicamente as soluções encontradas;
- Estabelecer metas de consumo de energia sem alterações de processo;
- Propor um programa para as ações e investimentos a empreender;
- Propor, se inexistente, um sistema organizado de gestão de energia na empresa.

2.3. Fases de uma auditoria

Para a execução de uma auditoria energética é importante a definição e o estabelecimento da sequência das ações que possibilitem obter um conhecimento profundo da instalação analisada, de modo a detetar, quantificar e tentar corrigir as perdas de energia existentes [17, 19]. Para tal de uma forma geral consideram-se as seguintes etapas:

Figura 15- Fases de uma auditoria.

-1ª Fase- Preparação da auditoria

É a uma fase de grande importância visto ser a fase decisiva para a qualidade do trabalho a desenvolver, para tal é necessário realizar algumas tarefas tais como:

- Reunir informação da empresa;
- Visita prévia às instalações a auditar;
- Recolha e análise de informação documental dos últimos três anos de atividade (consumos de energia final, faturas energéticas; produções anuais, valores brutos da produção, custos anuais de exploração);
- Estudo e análise do processo produtivo e energético implementado nas instalações a auditar;
- Preparação da intervenção em campo;
- Levantamento das tecnologias de processo e das tecnologias energéticas, caracterizadas por uma elevada eficiência com objetivo de estabelecer comparações entre estas e as que estão instaladas na empresa a auditar.

-2ª Fase- Intervenção no local da instalação a auditar

Esta fase compreende a recolha de toda a informação possível e útil para a elaboração do relatório começando por:

- Recolha de toda informação energética necessária;
- Analise das condições de utilização de energia na instalação;
- Estabelecimento dos fluxos de energia;
- Medições, registos e análises de grandezas energéticas e da produção/serviço;
- Instalação de equipamentos de registo em contínuo (monitorização);

-3ª Fase- Tratamento da informação recolhida

Após a intervenção no local, os auditores deverão organizar e tratar toda a informação recolhida ao longo das duas primeiras fases. Nesta fase toda a informação recolhida é analisada através de um conjunto de indicadores e de outros resultados, de forma obter uma caracterização detalhada do comportamento da instalação, permitindo uma avaliação rigorosa do desempenho energético da instalação.

-4ª Fase- Elaboração do relatório da auditoria energética

Após as etapas anteriores realizadas é necessário elaborar um relatório onde se apresente ao cliente toda a informação recolhida e tratada, de uma forma coerente e organizada, apresentando todos os resultados alcançados e recomendações sobre a melhoria da situação energética da instalação. Tendo em consideração que uma auditoria energética estabelece o início de um processo de gestão de energia na instalação.

Elementos fundamentais a apresentar num relatório:

- Caracterização da instalação;
- Contabilidade energética (caracterização da produção, consumos e custos energéticos);

- Exame da instalação (análise dos sectores da instalação e equipamentos);
- Economias da energia (indicadores energéticos, medidas de utilização racional de energia, gestão de energia);
- Conclusões.

2.4. Tipos de auditorias

Uma auditoria depende do fim a que se destina e do grau de complexidade. É por isso importante ter uma ideia do âmbito e do nível de esforço (dinheiro, tempo, entre outros) necessário para cumprir as expectativas iniciais, pois obviamente os resultados obtidos irão variar de acordo o nível de detalhe da auditoria realizada, para tal existem vários tipos de auditorias[16]:

2.4.1. Auditoria de Visita/Walk-Through Audit

A auditoria de visita ou Walk-Through Audit (WTA) baseia-se numa visita à instalação para inspecionar visualmente cada um dos sistemas consumidores de energia. Neste tipo de auditoria inclui-se uma avaliação dos dados de consumo de energia, é mais económica e pode ter como resultado uma estimativa preliminar do potencial de poupança, pode também servir como oportunidade para recolher informações para uma auditoria posterior mais detalhada[16].

2.4.2. Auditoria Simples

A auditoria Simples tem como finalidade fazer um diagnóstico da situação energética de uma instalação, consistindo numa observação para identificar falhas e numa recolha de dados suscetíveis de fornecer alguma informação sobre os consumos específicos de energia. Esta análise implica uma avaliação das faturas de energia, um levantamento dos consumidores de energia existentes e pode incluir também algumas medições no local e a realização de testes para quantificar o consumo de energia e a eficiência dos vários sistemas. Recorre-se a cálculos para analisar as eficiências e calcular a redução de custos e consumos de energia por via de potenciais melhorias efetuadas a cada sistema. Inclui também uma análise económica das medidas de redução propostas[9].

2.4.3. Auditoria Completa

Uma auditoria Completa consiste num levantamento aprofundado da situação energética, analisando-se as quantidades de energia utilizadas em cada uma das operações do processo de fabrico. A função deste tipo de auditorias é a de apoiar o Empresário ou Gestor de Energia na seleção tecnológica mais adequada para possíveis investimentos para uma utilização racional da energia. Os dados recolhidos numa auditoria energética permitem estabelecer um conjunto de medidas conducentes à redução dos consumos energéticos da empresa[9].

3. Relatório de Execução e Progresso (Rep)

3.1. Elaboração do Relatório de Execução e Progresso (Rep)

O Relatório de Execução e Progresso deverá ser apresentado à ADENE a cada dois anos de vigência do ARCE, até 30 de Abril do ano subsequente ao biénio a que se refere. Este deverá reportar o seu estado de implementação, onde deve constar as metas e objetivos alcançados, desvios verificados e respetiva justificação bem como as medidas tomadas ou a tomar para sua correção. O REP apresenta informação sobre a eficiência energética da instalação com recurso aos indicadores definidos no PREn, apresentados no capítulo 2. O último relatório deve incluir o balanço final da execução da totalidade do ARCE. A elaboração do relatório final de execução do ARCE é da responsabilidade da ADENE e elaborado por técnico ou entidade que não tenha intervido na auditoria, no PREn ou nos relatórios intercalares.

3.2. Indicadores e Medidas

3.2.1. Fatores de conversão

Para uma boa avaliação é necessário ter em atenção ao Despacho nº 17313/2008, de 26 de Junho onde apresenta os fatores de conversão para tonelada equivalente petróleo (tep) e dos fatores para cálculo da Intensidade Carbónica pela emissão de gases com efeito de estufa, referidos a quilograma de CO₂ equivalente (Figura 16), os quais serão utilizados nos cálculos dos indicadores a apresentar no Rep [20].

Combustivel	PCI (MJ/kg)	PCI (tep/t)	FE (kgCO ₂ e/GJ)	FE (kgCO ₂ e/tep)
Autocito	26.7	0.629	08.2	4111.4
Antracite. Betume / Alcatrão	26,7 40,2	0,638 0,96	98,2	3374,6
	27	0,645	80,6 0	
Biogasolina e Biodiesel	20		_	0,0
Briquetes de lignite		0,478	101,1	4232,9
Briquetes de turfa	16 — 16,8	0,382 — 0,401 0.616	105,9	4433,8
Carvão betuminoso	25,8		94,5	3956,5
Carvão sub-betuminoso	18,9	0,451	96,0	4019,3
Carvão vegetal	29,5	0,705	0	0,0
Combustível para motor (gasolina)	44 — 45	1,051 — 1,075	69,2	2897,3
Coque de Carvão	28,2	0,674	94,5 107	3956,5
Coque de forno / lignite ou gás	28,2 — 28,5	0,674 — 0,681		4479,9
Coque de Petróleo	31 — 32,5	0,740 — 0,776	97,5	4082,1
Etano	46,4	1,108	61,6	2579,1
Fueléleo pesado	40 — 40,4	0,955 — 0,965	77,3	3236,4
Fuelóleo	41,2	0,984	77,3	3236,4
Gás de Alto Forno	2,5	0,060	259,4	10860,6
Gás de coqueria e de fábricas de Gás	38,7	0,924	44,7	1871,5
Gás de forno de acearia a oxigénio	7,1	0,170 1,099 — 1,130	171,8	7192,9
Gás de petróleo liquefeito	46 — 47,3		63,0	2637,7
Gás de Refinaria	49,5	1,182	51,3	2147,8
Gás natural (superior a 93 % de metano)	47,2 — 48	1,127 — 1,146	56,1	2348,8
Gás natural liquefeito	44,2 — 45,2	1,056 — 1,080	64,1	2683,7
Gás natural (1)	45,1 50.4	1,077	64,1 0	2683,7
Gases de aterro/ lamas de depuração e outros biogases		1,204		0,0
Gasóleo / Diesel	42,3 — 43,3	1,010 — 1,034	74,0	3098,2
Hulha	17,2 — 30,7	0,411 — 0,733	97,5	4082,1
Lignite castanha	5,6 — 10,5	0,134 — 0,251	101,1	4232,9
Lignite negra	10,0 — 21	0,239 — 0,502	101,1	4232,9
Lubrificantes, ceras parafinicas e outros produtos Petroliferos	40,2	0,960	73,3	3068,9
Madeira / residuos de Madeira	13,8 — 15,6	0,330 — 0,373	0	0,0
Matérias-primas para refinaria	43	1,027	73,3	3068,9
Metano	50	1,194	54,9	2298,6
Monóxido de Carbono	10,1	0,241	155,2	6497,9
Nafta química / Condensados de gasolina	44,5	1,063	73,3	3068,9
Óleo de xisto	38,1	0,910	73,3	3068,9

Figura 16-Poderes Caloríficos Inferiores e Fatores de Emissão para Combustíveis.

Na Figura 17 são apresentadas as equivalências energéticas de referência.

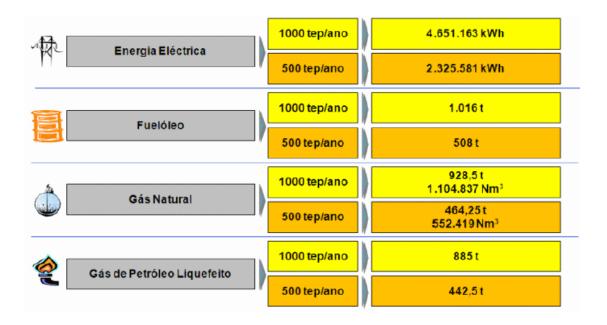


Figura 17-Equivalências energéticas de referência (fonte: ADENE).

3.2.2. Indicadores Energéticos

Para que ocorra uma boa análise do estado da instalação é necessário ter em atenção os indicadores definidos no Plano de Racionalização do Consumo de Energia, segundo o Despacho nº 17449/2008, de 27 de Junho. Os indicadores a avaliar no decorrer de um relatório de execução e progresso são (Figura 18):

- Intensidade Energética;
- Consumo Específico de Energia;
- Intensidade Carbónica.

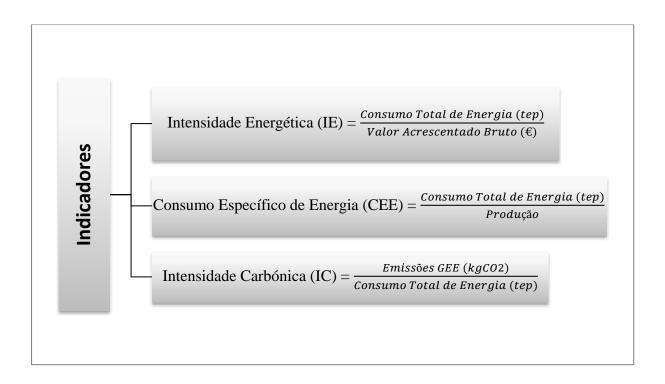


Figura 18-Indicadores Energéticos

A intensidade energética (IE) é calculado através do quociente entre o consumo total de energia (com apenas 50% da energia resultante de resíduos endógenos, da entidade, e de outros combustíveis renováveis) e o Valor Acrescentado Bruto (VAB) das atividades empresariais ligadas diretamente a essas instalações industriais. Por sua vez a Intensidade Carbónica (IC) define-se como o quociente entre o valor das emissões de gases de efeito de estufa resultantes da utilização das diversas formas de energia no processo de produção e respetivo consumo total de energia. Por último, o Consumo Especifico de Energia (CEE) é definido pelo quociente entre o consumo total de energia (com apenas 50% da energia resultante de resíduos endógenos e de outros combustíveis renováveis) e o volume de produção. Estes indicadores energéticos podem também ser aplicados na caracterização e comparação energética das diferentes áreas de produção da empresa.

3.2.3. Valor acrescentado bruto (VAB) e Produção

No que respeita ao indicador "Intensidade Energética" (IE), este deverá ser calculado utilizando o valor do valor acrescentado bruto (VAB) do 2º ano do biénio a preços

constantes do ano de referência (ano de referência = ano civil anterior à data da auditoria energética).

O cálculo do VAB do ano Y a preços constantes do ano X é dado pela expressão[21]:

$$VAB\ do\ ano\ Y\ a\ preços\ constantes\ do\ ano\ X = rac{VAB\ a\ preços\ correntes\ do\ ano\ Y}{Deflator\ YX}$$

Na Tabela 2 são apresentados os deflatores existentes de acordo com o ano de referência do PREn.

Tabela 2- Tabela de Deflatores, de acordo com o ano de referência do PREn (ano X da expressão anterior).

Ano de referência, X	Deflatores de VAB _{Y/X}							
2006	Defl. 2008/2006 = 1,04626	Defl. 2010/2006 = 1,06856	Defl. 2012/2006 = 1,05180	Defl. 2014/2006 = 1,07781				
2007	Defl. 2009/2007 = 1,04124	Defl. 2011/2007 = 1,03827	Defl. 2013/2007 = 1,03795	Defl. 2015/2007 = 1,06371				
2008	Defl. 2010/2008 = 1,02974	Defl. 2012/2008 = 1,00530	Defl. 2014/2008 = 1,02563					
2009	Defl. 2011/2009 = 1,00219	Defl. 2013/2009 = 1,00178	Defl. 2015/2009 = 1,02023					
2010	Defl. 2012/2 010 = 0,98714	Defl. 2014/2010 = 1,00318						
2011	Defl. 2013/2011 = 1,01005	Defl. 2015/2011 = 1,03547						
2012	Defl. 2014/2012 = 1,02953							
2013	Defl. 2015/2013 = 1,02410							

Por fim para uma avaliação completa é necessário obter informações sobre a produção da instalação a avaliar.

3.3. Medidas

O aumento da eficiência energética na Indústria nacional exige uma atitude pró-ativa da parte dos industriais, assim existe um conjunto de iniciativas especificamente criadas para ajudar os industriais a adequarem os seus equipamentos e processos a novas tecnologias e estratégias[22].

A generalidade das indústrias existentes em Portugal pode apoiar-se em Medidas Transversais, sendo estas as que proporcionam maiores efeitos em termos do aumento da eficiência energética para o conjunto da economia portuguesa.

Como tal, é importante que os principais responsáveis pelo sector industrial possuam dados tecnológicos sucintos sobre a importância e o potencial impacto técnico-económico destas várias medidas[23].

As medidas de maior impacto na indústria portuguesa são apresentadas na Figura 19:

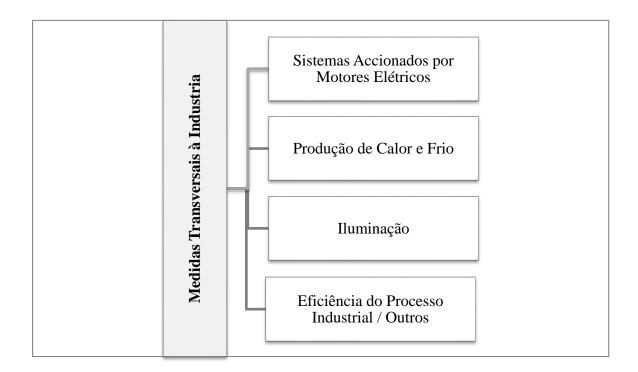


Figura 19- Medidas transversais à indústria (adaptado: ADENE).

As medidas apresentadas na Figura 19 foram agrupadas pelo facto de serem horizontais, isto é, da sua aplicabilidade ser generalizada em todos os doze sectores da Indústria

transformadora. Em complemento a estas medidas foram selecionadas dentro de cada um dos sectores as medidas específicas que traduzem possíveis atuações apenas aplicáveis com intensidade considerável em cada setor específico, como se pode verificar na Figura 20.

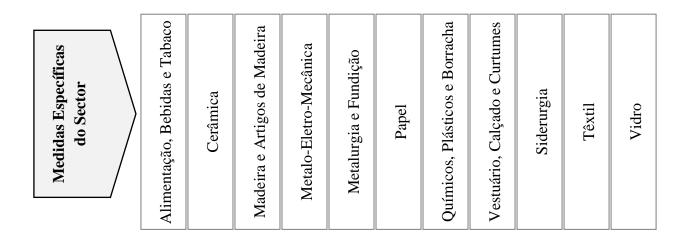


Figura 20-Medidas Específicas de cada sector (adaptado: ADENE).

3.3.1. Medidas transversais

As medidas transversais proporcionam maiores efeitos relativamente ao aumento da eficiência energética, assim é necessário que os responsáveis do setor industrial possuam dados sobre a importância deste tipo de medidas[24]. Na Tabela 3 estão apresentadas as medidas transversais detalhadas aplicáveis à generalidade das indústrias.

Tabela 3-Medidas transversais para aumentar a eficiência energética (adaptado: ADENE).

Âmbito	Medida/Tecnologia				
a	 Otimização de motores 				
Sistemas acionados por motores	 Sistemas de bombagem 				
elétricos	 Sistemas de ventilação 				
	 Sistemas de compressão 				
	 Cogeração 				
Produção de calor e frio	 Sistemas de combustão 				
	 Recuperação de calor 				
	Frio Industrial				
	 Produção de eletricidade por energia solar 				
Iluminação	 Iluminação solar 				
	 Lâmpadas 				
	 Sistemas de controlo da iluminação 				
	 Integração da iluminação nos sistemas de climatização 				
	 Monitorização e controlo 				
Eficiência do processo	 Tratamento de efluentes 				
industrial/Outros	 Integração de processos 				
	 Manutenção de equipamentos 				
	 Isolamentos térmicos 				
	 Transportes 				
	 Formação e sensibilização de recursos humanos 				
	 Redução da energia reativa 				

3.3.2. Medidas sectoriais

As medidas sectoriais aplicam-se de forma mais específica a subsectores industriais importantes, assim existem medidas com o objetivo de dar uma perspetiva estratégica das evoluções tecnológicas a todos os responsáveis industriais bem como fornecer informação para as questões de eficiência energética. Estas medidas são apresentadas na Tabela 4.

Tabela 4- Medidas sectoriais para aumentar a eficiência energética por setor (adaptado: ADENE).

Sector Alimentação e Bebidas	Medida/ Tecnologia Otimização da esterilização
Alimentação e Bebidas	Otimização da esterilização
•	
	Processos de separação com membranas
	• Mudança de moinhos horizontais para
	verticais
	Destilação sob vácuo
Cerâmica	Otimização de fornos
Cerannea	Melhoria de secadores
	• Extrusão com secadores
	• Extrusão dura
	• Otimização de produção de pó para
	prensagem
	• Utilização de combustíveis alternativos
	• Transportadores mecânicos em vez de
Madeira e artigos de madeira	pneumáticos
	• Aproveitamento de sub-produtos de
	biomassa
	Otimização de fornos de secagem contínua
	Combustão submersa para aquecimento de
Metalo-eletro-mecânica	banhos
	Reutilização de desperdícios
	Otimização de fornos
	• Melhoria na qualidade dos ânodos e
Metalurgia e fundição	cátodos
	Setor da fusão
	Número de fundidos por cavidade
	Rendimento do metal vazado
	Diminuição da taxa de refugo
	Despoeiramento
	Aumento da cadência do ciclo
	Redução de sobre espessuras

4. Estudo das metas de alguns REP's

4.1. Metodologia utilizada

Para elaboração dos casos de estudo apresentados posteriormente foi necessário proceder a um conjunto de fases com o objetivo de obter os dados finais apresentados.

Inicialmente as indústrias em questão forneceram todos os dados e consumos destas, seguindo-se a análise e avaliação dos mesmos.

Iniciou-se por averiguar as formas de energia existentes em cada caso de estudo seguindose a compilação de todas as faturas dos consumos de cada forma de energia ao longo dos anos de cada plano, como apresenta a Figura 21.

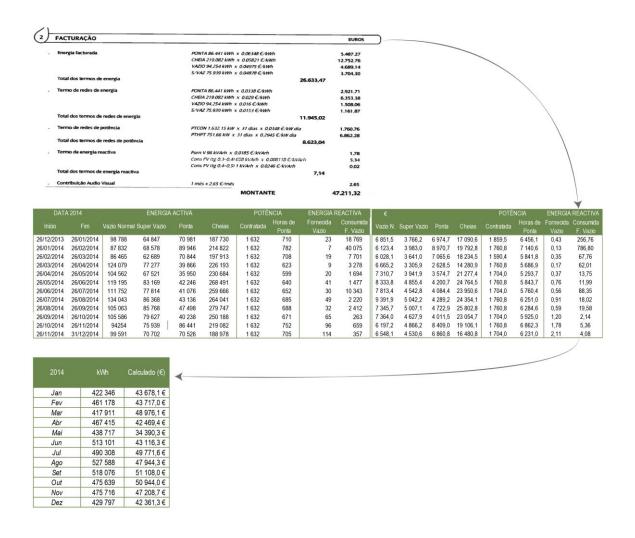


Figura 21- Compilação das faturas eletricas

De seguida foram reunidos todos os consumos de cada forma de energia por ano, assim como os valores de produções e os valores do VAB, apresentando os consumos de todos os anos ao longo do plano de racionalização do consumo de energia, como se verifica na Figura 22.

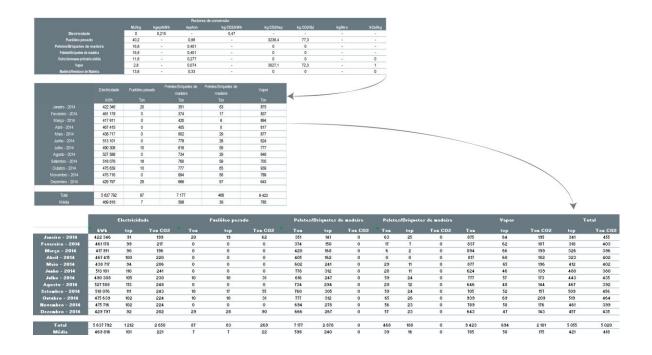


Figura 22- Compilação dos consumos ao longo dos anos do PREn.

Por fim a avaliação de cada caso consoante o plano de racionalização atendendo às medidas e aos indicadores energéticos.

4.2. Caso de estudo 1

A indústria em questão tem como período de vigência do Plano de Racionalização do Consumo de Energia (PREn) de seis anos, sendo 2009 o primeiro ano, 2014 o último e 2008 o ano de referência. Na Tabela 5 são apresentados alguns dados da instalação.

Tabela 5- Dados da indústria

	Dados
Número de Registo	PREn (2009-2014)
Ano de Auditoria Energética	2009
Ano de Referência do PREN	2008
Designação do CAE	Abate de Aves (produção de carne)
Unidade de Produção	ton
VAB_2008 (€)	1 738 426,0

Os seus consumos energéticos desde de 2008 resumem-se a energia elétrica, fuel pesado e peletes/briquetes de madeira. Os fatores de conversão utilizados foram os definidos no Despacho nº 17313/2008 que estão representados na Tabela 6.

Tabela 6- Fatores de conversão utilizados

	Fatores de Conversão										
	MJ/kg	MJ/kg Kgep /kWh tep/ton kg CO ₂ eq/kWh kg CO ₂ eq/tep kg CO ₂ eq/GJ									
Eletricidade	0	0,215	-	0,47	-	-					
Fuelóleo pesado	40,2	-	0,96	-	3236,4	77,3					
Peletes/Briquetes de madeira	16,8	-	0,401	-	0	0					

Os consumos energéticos da instalação no ano de referência foram os apresentados na Tabela 7.

Tabela 7- Consumos energéticos no ano de referência - 2008

Formas de Energia Global	Quantidade	tep	tCO2 eq
Eletricidade	5 982 152	1 286	2 812
Fuelóleo pesado	2 627	2 521	8 160
Peletes/Briquetes de madeira	3 014	1 209	
Renováveis a 50%		4 412	10 972
Renováveis a 100%		5 016	10 972

De referir, que os valores de energia elétrica apresentados na tabela anterior são obtidos através da consulta do PREn realizado em 2009. Devido às restrições inerentes à utilização deste documento apenas se torna possível apresentar dados anuais e não mensais relativamente aos consumos.

As produções do ano de referência são apresentadas na Tabela 8. No Anexo A são apresentados os valores da produção por mês. A produção é subdividida em frango abatido e farinação onde este representa cerca de 70% da produção total.

Tabela 8- Produção no ano de referência - 2008 (ton)

	Produção (ton)
	2008
Total	20961,9

De acordo com a legislação em vigor, é obrigatório reduzir os indicadores consumo específico de energia e intensidade energética, no mínimo, 6% relativamente ao ano de referência. O indicador intensidade carbónica deve ser mantido ou reduzido durante o período de vigência do respetivo PREn.

Na Tabela 9 são apresentados os valores dos três indicadores no ano zero, as reduções e as metas a cumprir na totalidade do processo produtivo.

Tabela 9- Resumo dos indicadores energéticos e metas associadas

Ano de referência: 2008			Redução M = 6% / 6 anos				
Energia	VAB	Intensidade Energética	Redução da Intensidade Energética	Valor da Intensidade Energética no fim da redução M			
tep/ano	€/ano	kgep/€	kgep/€	kgep/€			
4 412	1 738 426	2,538	0,152	2,386			

Ano de referência: 2008			Redução M = 6% / 6 anos				
Energia	Produção	Consumo Específico	Redução do Consumo Específico	Valor do Consumo Específico ao fim da redução M			
tep/ano	ton	kgep/ton	kgep/ton	kgep/ton			
4 412	20 962	210,471	12,628	197,843			

	Ano de	e referência: 2008	
Emissões CO ₂	Energia	Intensidade Carbónica	Intensidade Carbónica que deverá ser atingida ao fim de 6 anos (valor máximo) (tCO ₂ eq/tep)
tCO2eq/ano	tep/ano	tCO2eq/tep	tCO ₂ eq/tep
10 972	5 016	2,187	2,187

Na Tabela 10 são apresentadas as medidas de eficiência energética propostas no plano de racionalização dos consumos de energia.

Medida - Global		1	Economia Energetica A	Anual		Economia Anual	Investimento (\mathfrak{E})	PRI (anos)	Redução da IE (kgep/€)	Redução do CEE (kgep/ton)	Redução da IC (tCO2/tep)
		Electricidade	Fuelóleo pesado	Peletes/Briquetes de madeira	Total	Custos (€)					
Automatização do sistema de	Quantidade	0	42	48		_					
hidrólisee e controlo de	tCO2	0,00	131	0	131	19 595	75 000	3,8	0,034	2,85	0,030
pressão da esterilização	tep	0,00	41	19	60						
Alteração do sistema de	Quantidade	0	103	114							
desgasificação e reaproveitamento dos	tCO2	0,00	321	0	321	46 614	36 943	0,8	0,083	6,9	0,073
condensados	tep	0,00	99	46	145	_					
Desativação de 4 digestores e	Quantidade	54 223	9	4		- 7 875	826 410	104,9	0,012	1,0	
instalação de 3 digestores mais	tCO2	25,48	27	0	52						0,012
eficientes	tep	11,66	8	2	21						
Eliminação de fugas de	Quantidade	0	66	31							
colocação de isolamento térmico nas condutas	tCO2	0,00	206	0	206	27 635	12 900	0,5	0,044	3,6	0,047
	tep	0,00	64	13	76						
Correção do fator de potencia	Quantidade	0	0	0			2 000		0,000	0,0	0,000
através da instalação de uma	tCO2	0,00	0	0	0	16 192		0,1			
bateria de condensadores	tep	0,00	0	0	0	_					
Desativação do sistema de	Quantidade	155 154	0	0							
prensagem das gorduras e da centrífuga da categoria 2 da	tCO2	72,92	0	0	73	131 372	953 253	7,3	0,019	1,6	0,017
farinação de carne	tep	33,36	0	0	33	_					
Total	tCO2	98,41	685,20	0,00	784	249 283	1 906 506	7,6	0,193	16,0	0,178
	tep	45,02	211,72	79,25	336	-					

Tabela 10-Medidas Implementadas durante a vigência do Plano de Racionalização de Energia

Todas as medidas apresentadas têm com ano de implementação 2010.

4.2.1. Evolução dos Consumos e dos Indicadores

4.2.1.1. Consumos Energéticos

Na Tabela 11 e Gráfico 1 estão apresentados os valores dos consumos de energia ao longo dos anos do plano. No Anexo B apresentam-se os valores do consumo de energia por mês.

Tabela 11- Evolução dos consumos de energia

Consumo Energia								
	2008		2010		2012	2014		
tep ton CO2 eq		tep ton CO2 eq		tep ton CO2 eq		tep ton CO2 eq		

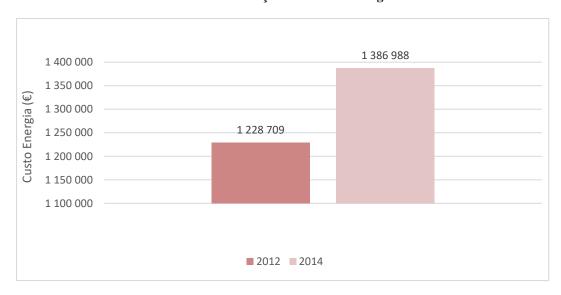
Total	5 016	10 972	4 320	3 951	3 390	2 967	5 055	5 020
Variação Anual			-14%	-64%	-22%	-25%	49%	69%

Gráfico 1- Evolução do consumo de energia ao longo o PREn

Ao utilizar-se o PREn de 2009 e o REP de 2010 como fonte de informação para os anos 2008 e 2010 respetivamente, apenas foi possível obter valores anuais de consumos de energia. Uma vez que estes documentos não contêm dados relativos aos custos, relativamente aos anos referidos não será possível fazer uma análise aos mesmos.

De uma análise preliminar aos consumos energéticos do ano 2008 até ao ano de 2014, depreende-se que existiu um ligeiro aumento dos consumos de 1% neste período. Ainda assim, a evolução anual revela que em 2012 o consumo foi o mais baixo registado com um decréscimo de 32% do consumo face ao ano de referência, existindo posteriormente um aumento de 49% no ano 2014.

De referir que este aumento de consumo registado no último biénio se deveu ao aumento da produção, associado ao processamento de farinha, originando um consumo superior ao registado nos outros biénios em que este processamento se manteve estável. Quando comparamos a produção do último biénio face ao ano de referência foi registado um aumento de 27%.


A análise da evolução dos custos desde 2008 a 2010 torna-se impossível de realizar por motivos já mencionados acima, assim na Tabela 12 estão representados os custos

referentes ao ano de 2012 e 2014. No Anexo C estão apresentados os valores dos custos de energia por mês.

Tabela 12- Evolução dos custos de energia

		Custo Ene	rgia	
	2012		2014	
	€	€/tep	€	€/tep
Total	1 228 709	4 354	1 386 988	3 336
Média	102 392	362	115 582	274
Variação Anual			13%	-23%

Gráfico 2- Evolução do custo de energia

Analisando 2014 face a 2012, os custos com a energia aumentaram 13%. Este facto deve-se concretamente ao aumento dos consumos de um ano para o outro.

Observando cada vetor energético, e iniciando-se pelo vetor energia elétrica, verificam-se os resultados apresentados na Tabela 13. No Anexo D estão representados os valores dos consumos de energia elétrica por mês.

Tabela 13- Evolução dos consumos de energia elétrica

	Eletricidade												
	2008			2010				2012			2014		
	kWh	tep	€	kWh	tep	€	kWh	tep	€	kWh	tep	€	
Total	5 982 152	1 286	-	5 880 191	1 264	-	5 506 864	1 184	570 362	5 637 792	1 212	545 685	
Variação Anual				-2%	-2%	-	-6%	-6%	-	2%	2%	-4%	

Analisando os consumos de energia elétrica, verifica-se que estes sofreram uma evolução semelhante à da energia global embora com menor proporção, com uma redução de 6% em 2014 face a 2008.

Relativamente ao ano com menos consumos de energia elétrica, este situou-se em 2012 em que se obteve uma variação de -6% relativamente ao ano anterior.

Após este período surgiu um ligeiro aumento de consumos nos anos seguintes, que se traduziu numa variação de +2% em 2014. Por outro lado, os custos com a energia neste ano baixaram 4%.

Na Tabela 14 são apresentados os valores dos consumos de fuelóleo ao longo dos anos do plano. No Anexo E são apresentados os valores mensais.

Tabela 14- Evolução dos consumos de Fuelóleo pesado.

	Fuelóleo pesado											
		2008			2010			2012			2014	
	ton	tep	€	ton	tep	€	ton	tep	€	Ton	tep	€
Total	2 627	2 521	-	382	367	-	122	117	68 085	87	83	35 673
Variação Anual				-85%	-85%	-	-68%	-68%	-	-29%	-29%	-48%

Analisando os resultados do consumo e encargos com o fuelóleo pesado, verifica-se que o consumo foi diminuindo em todos os anos, sendo que comparando o ano de referência com 2014, obteve-se uma variação de -97% ou seja, o uso de fuelóleo quase passou a não ser utilizado em detrimento do aumento do consumo de outro vetor energético, biomassa. A maior variação, analisando os biénios torna-se clara entre o período 2008/2010.

Na Tabela 15 são apresentados os valores dos consumos de peletes/ briquetes de madeira. No Anexo F são apresentados os valores mensais.

Tabela 15- Evolução dos consumos de peletes / briquetes de madeira

Peletes/Briquetes de madeira												
		2008			2010			2012			2014	
	ton	tep	€	ton	tep	€	ton	tep	ϵ	Ton	tep	€
Total	3 014	1 209	-	2 663	1 068	-	5 143	2 063	587 127	7 646	3 066	793 852
Variação Anual				-12%	-12%	-	93%	93%	-	49%	49%	35%

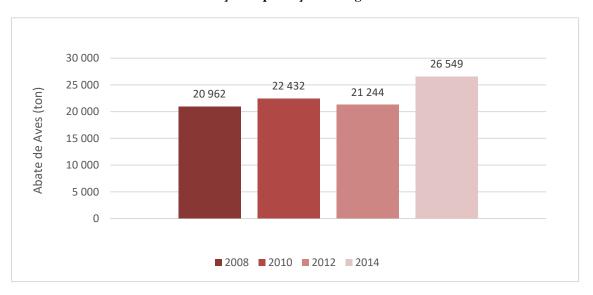
O consumo de Peletes/briquetes de madeira apresenta um aumento de 158% em relação ao ano referência 2008. O maior aumento observado situa-se entre 2010 e 2012, cerca de 93%. O aumento da utilização de Peletes/briquetes explica-se por uma alteração de comportamentos baseada na maior utilização da caldeira a biomassa, ao invés da utilização das caldeiras a fuelóleo.

Existem ainda no decorrer do PREn, outros consumos associados as caldeiras de biomassa, nomeadamente através do consumo de 82 ton de madeira e resíduos de madeira no ano de 2012 e de 5852 ton de outra biomassa primária sólida no ano de 2010. Em termos totais estes dois vetores representaram 1648 tep.

Durante o período de vigência do PREn, a instalação passou a consumir outro vetor energético, vapor, proveniente de uma cogeração, explorado por uma entidade externa. A fatura apresentada ao cliente, no terceiro biénio é uma fatura única, associada às 9423 toneladas de vapor disponibilizadas à instalação durante esse ano. De ressalvar no entanto que para o cálculo do consumo em tep, foi considerada as variações de pressão ao longo do ano (entre 7 e 10 bar, pressão absoluta) e o rendimento de 90%, apresentado no despacho nº 17313/2008. A Tabela 16 sumariza os fatores de conversão utilizados no decorrer do PREn.

Tabela 16- Outros fatores de conversão utilizados no decorrer do PREn

	Fatores de Conversão							
	MJ/k g	Kgep /kWh	tep/to n	kg CO ₂ eq/kWh	kg CO ₂ eq/tep	kg CO ₂ eq/GJ		
Outra biomassa primária sólida	11,6	-	0,277	-	0	0		
Vapor	2,8	-	0,074	-	3027,1	72,3		
Madeira/Resíduos de Madeira	13,8	-	0,33	-	0	0		


4.2.1.2. Produções e VAB

Na Tabela 17 são apresentados os valores das produções ao longo do plano de racionalização de consumos e no Anexo G são apresentados os valores mensais.

Tabela 17- Evolução da produção em toneladas.

	Produção (ton)						
	2008	2010	2012	2014			
Total	20 962	22 432	21 244	26 549			
Variação Anual		7%	-5%	25%			

Gráfico 3- Evolução da produção ao longo do PREn

A produção registada na instalação desde 2008 até 2014 sofreu oscilações, facilmente identificadas na Tabela 17 e no Gráfico 3, no entanto sempre crescentes face a 2008. Em 2014, ano de referência do REP-B3, a produção aumenta 25% face aos dados relativos a 2012, sendo que face a 2008, existiu um aumento de 26%.

Na Tabela 18 são apresentados os valores referentes ao valor acrescentado bruto (VAB).

Tabela 18- Evolução do VAB

	VAB (€)	VAB *
2008	1 738 426	1 738 426
2010	3 550 020	3 447 492
2012	3 710 679	3 691 116
2014	5 180 827	5 051 361

^{*}VAB afetado pelo deflator

O VAB da instalação desde 2008, e apresentando apenas os dados anuais de referência e dos biénios, foi sempre aumentando repercutindo-se no indicador do consumo específico (CE).

4.2.1.3. Indicadores Energéticos

A evolução dos indicadores Intensidade Energética (IE), Consumo Específico (CE) e Intensidade Carbónica (IC), possuem a evolução apresentada nas tabelas seguintes, para o ano de 2010 e biénios seguintes. Nesta análise foram apresentados os indicadores atuais (Indicador Real), o indicador previsto com base na calendarização das medidas a implementar anteriormente apresentada (Indicador Previsto).

4.2.1.3.1. Primeiro Biénio - 2010

Tabela 19- Evolução do indicador IE_2010

	Un	idade de Produção Abate de A	ves					
	Biénio 1 Ano de (2010) (Global)							
	IE B1 kgep/€	VAB B1 €/ano	E B1 tep/ano					
Valores Previstos	2,345	1 738 426	4 076					
Valores Obtidos	0,863	3 447 492	2 976					
Desvios	-63%	98%	-27%					

Relativamente à intensidade energética no primeiro biénio através da tabela anterior verifica-se o valor bastante abaixo do previsto, isto deve-se à implementação das medidas previstas no plano.

Tabela 20- Evolução do indicador CE-2010

	Unidade de Produção Abate de Aves					
	Biénio 1 Ano de (2010)					
	CE B1 kgep/ton Produção B1 ton E B1 tep/ano					
Valores Previstos	194,443	20 962	4 076			
Valores Obtidos	132,659	22 432	2 976			
Desvios	-32%	7%	-27%			

Em relação ao indicador consumo específico verifica-se que no ano 2010 este obteve um valor bastante abaixo do previsto, esta redução deve-se sobretudo ao aumento da produção que está diretamente relacionada com o consumo específico.

Tabela 21- Evolução do indicador IC- 2010

	Unidade de Produção Abate de Aves					
	Biénio 1 Ano de (2010)					
	IC B1 tCO ₂ eq/tep E B1 tep/ano EM B1 tCO ₂ eq/ano					
Valores Previstos	2,177	4 680	10 188			
Valores Obtidos	0,915	4 320	3 951			
Desvios	-58%	-8%	-61%			

O indicador intensidade energética no primeiro biénio está bastante abaixo do previsto no início do plano.

4.2.1.3.2. Segundo Biénio - 2012

Tabela 22- Evolução do indicador IE- 2012

	Unidade de Produção Abate de Aves					
	Biénio 2 Ano de (2012) (Global)					
	IE B2 kgep/€ VAB B2 €/ano E B2 tep/ano					
Valores Previstos	2,345	1 738 426	4 076			
Valores Obtidos	0,635	3 691 116	2 346			
Desvios	-73%	112%	-42%			

Relativamente ao indicador intensidade energética verifica-se que este está a evoluir de forma bastante satisfatória, superando em 73% a meta legal definida para este período. Esta evolução reflete essencialmente o aumento brusco de 113% do VAB, face ao ano de referência.

Tabela 23- Evolução do indicador CE-2012

Unidade de Produção Abate de Aves

		Biénio 2 Ano de (2012)	
	CE B2 kgep/ton	Produção B2 ton	E B2 tep/ano
Valores Previstos	194,443	20 962	4 076
Valores Obtidos	110,418	21 244	2 346
Desvios	-43%	1%	-42%

Quanto ao indicador consumo específico verifica-se que supera em 43 % a meta legal estabelecida para o ano 2012.

Tabela 24- Evolução do indicador IC- 2012

	Unid	ade de Produção Abate de	Aves				
		Biénio 2 Ano de (2012)					
	IC B2 tCO ₂ eq/tep	IC B2 tCO ₂ eq/tep E B2 tep/ano EM B2 tCO ₂ eq/ano					
Valores Previstos	2,177	4 680	10 188				
Valores Obtidos	0,875	3 390	2 967				
Desvios	-60%	-28%	-71%				

O indicador intensidade carbónica apresenta uma evolução favorável face ao valor estabelecido legalmente para este período pelo facto de se ter ultrapassado em 60% a meta legal estabelecida.

Para tal, contribuiu a alteração da principal fonte energética, nomeadamente a utilização de biomassa em vez de fuelóleo.

Todos os elementos e dados recolhidos levam a concluir que os esforços demostrados pela empresa na aplicação de boas práticas de eficiência energética estão a refletir-se nos consumos energéticos.

A conclusão evidente é que a redução dos consumos de energia, através da otimização, está a fazer com que a empresa produza mais e consuma menos.

4.2.1.3.3. Terceiro biénio -2014

Tabela 25- Evolução do indicador IE- 2014

	Unio	Unidade de Produção Abate de Aves				
	Ві	Biénio 3 Ano de (2014) (Global)				
	IE B3 kgep/€ VAB B3 €/ano E B3 tep/ano					
Valores Previstos	2,345	1 738 426	4 076			
Valores Obtidos	0,697	5 051 361	3 522			
Desvios	-70%	191%	-14%			

O valor obtido do indicador da Intensidade Energética em 2014 face ao valor previsto no PREn é de 70% abaixo do valor previsto. Isto indica que existiu um desvio positivo do indicador, que está diretamente relacionado com o aumento do VAB obtido, bastante superior ao do ano 2008, para praticamente o mesmo consumo.

Tabela 26- Evolução do indicador CE- 2014

	Unid	Unidade de Produção Abate de Aves						
		Biénio 3 Ano de (2014)						
	CE B3 kgep/ton	CE B3 kgep/ton Produção B3 ton E B3 tep/ano						
Valores Previstos	194,443	20 962	4 076					
Valores Obtidos	132,671	26 549	3 522					
Desvios	-32%	27%	-14%					

Relativamente aos consumos específicos, o valor obtido em 2014 foi inferior ao valor previsto. Os objetivos quanto ao Consumo Específico foram cumpridos, até melhorados, com base no aumento das produções com os mesmos consumos.

Tabela 27- Evolução do indicador IC- 2015

	Unidade de Produção Abate de Aves						
	Biénio 3 Ano de (2014)						
	IC B3 tCO ₂ eq/tep	IC B3 tCO ₂ eq/tep E B3 tep/ano EM B3 tCO ₂ eq/ano					
Valores Previstos	2,177	4 680	10 188				
Valores Obtidos	0,993	5 055	5 020				
Desvios	-54%	8%	-51%				

Relativamente à intensidade carbónica, apesar do consumo global ter aumentado, a intensidade carbónica diminuiu devido aos consumos terem agora uma maior proporção de origem renovável.

4.2.1.4. Conclusões

Tabela 28- Resumo de conclusões

	1ºBiénio-2009/2010	2ºBiénio-	3ºBiénio-	
		2011/2012	2013/2014	
Medidas implementadas propostas pelo plano	 Automatização do sistema de hidrólise e controlo de pressão da esterilização; Alteração do sistema de desgasificação e reaproveitamento dos condensados; Desativação de 4 digestores e instalação de 3 digestores mais eficientes; Eliminação de fugas de colocação de isolamento térmico nas condutas; Correção do fator de potencia através da instalação de uma bateria de condensadores; Desativação do sistema de prensagem das gorduras e da centrífuga da categoria 2 da farinação de carne 			Todas foram implementadas
Medidas		 Instalação de um sistema de 	 Instalação de um sistema de 	
implementadas		Gestão de	Gestão de	
não propostas no		Energia	Energia	
plano				
Desvios	<i>IE:</i> -63%	<i>IE:</i> -73%	<i>IE:</i> -70%	
	CE: -32%	CE: -43%	CE-32%	
	IC: -58%	IC: -60%	IC: -54%	

Tendo em conta os resultados encontrados e expostos anteriormente, é possível referir que todos os objetivos definidos no PREn foram cumpridos.

O valor obtido do indicador da Intensidade Energética em 2014 face ao valor previsto no PREn encontra-se 70% abaixo do valor previsto. Isto indica que existiu um desvio positivo do indicador, que está diretamente relacionado com o aumento do VAB obtido, bastante superior que o do ano 2008 para praticamente o mesmo consumo.

Relativamente ao consumo específico (CE), o valor obtido em 2014 foi igualmente inferior ao valor previsto. Os objetivos quanto ao CE foram cumpridos na totalidade, tendo em conta o aumento significativo das produções com os mesmos consumos.

Relativamente à intensidade carbónica (IC), o valor obtido em 2014 foi bastante inferior ao valor previsto, isto deve-se ao consumo ser de origem renovável, repercutindose consecutivamente numa diminuição do IC, face ao valor inicialmente previsto.

De ressalvar que para além das medidas definidas no PREn, que foram na sua totalidade implementadas, a instalação implementou mais medidas do que as previstas no PREn, desde logo com mudanças efetivas no processo nomeadamente através da implementação de um Sistema de Gestão de Energia. Esta medida possivelmente influenciou positivamente os resultados apurados.

4.3. Caso de estudo 2

O presente caso de estudo consiste na análise e caracterização dos consumos da instalação da área de produtos alimentares, assim é apresentado o levantamento e caracterização dos consumidores energéticos instalados, o tratamento dos dados históricos do consumo de energia, bem como os resultados do exame energético efetuado à instalação. São apresentados dados dos anos referentes ao período do plano de racionalização do consumo de energia (PREn), 2010 a 2015.

Foi elaborado o plano de racionalização do consumo de energia com indicação dos consumos energéticos do ano referente e das medidas de utilização racional de energia, onde se inclui as poupanças encontradas e o montante de investimento estimado para a realização das mesmas.

4.3.1. Dados do ano de referência

A indústria da área produtos alimentares tem como ano de referência do plano de racionalização do consumo de energia, o ano de 2009.

Tabela 29- Dados da indústria

	Dados
	PREn (2010-2015)
Ano de Auditoria Energética	2010
Ano de Referência do PREN	2009
Designação CAE	Produtos pescados congelados
Unidade de Produção	kg
VAB (€) 2009	3 228 241

Os seus consumos energéticos abordados desde de 2009 resumem-se apenas a energia elétrica. Os fatores de conversão utilizados foram os definidos no Despacho nº 17313/2008, apresentados na Tabela 30.

Tabela 30- Fatores de conversão utilizados

	Fatores de conversão							
	MJ/kg	kgep/kWh	tep/ton	kg CO2/kWh	kg CO2/tep	kg CO2/GJ	kg/litro	kCal/kg
Eletricidade	0	0,215	-	0,47	-	-	-	-

Os consumos energéticos da instalação no ano de referência foram os apresentados na Tabela 31. No Anexo H encontram-se as tabelas referentes ao ano de referência, com os consumos de energia discriminados por mês.

Tabela 31- Consumos energéticos no ano de referência

Formas de Energia Global	Quantidade	tep	tCO ₂ eq
Eletricidade	8 650 105	1 860	4 066
Total		1 860	4 066

Como verificado na Tabela 31 a instalação tem um consumo de energia superior a 1000 tep, assim esta será sujeita a respeitar uma redução de 6% no final de 6 anos.

As produções do ano de referência são apresentadas na Tabela 32.

Tabela 32- Produção no ano de referência 2009 (kg)

	2009
Produção (kg)	10395417

Os indicadores alvo de monitorização, intensidade energética (IE), consumo específico (CE) e intensidade carbónica (IC), com o intuito de respeitar a redução de 6% no final dos 6 anos de vigência do plano, são os apresentados na Tabela 33.

Tabela 33- Resumo dos indicadores energéticos e metas associadas no ano de referência

Intensidade Energética	Ano de	referência: 2009	Redução M=	6% / 6 anos
Energia	VAB	Intensidade Energética	Redução da Intensidade Energética	Valor da Intensidade Energética no fim da redução M
tep/ano	€/ano	kgep/€	kgep/€	kgep/€
1 860	3 228 241	0,576	0,035	0,542

ı	Consumo Específico	Ano de r	eferência: 2009	Redução M=	6% / 6 anos
	Energia	Produção	Produção Consumo Específico		Valor do Consumo Específico ao fim da redução M
	tep/ano	kg	kgep/kg	kgep/kg	kgep/kg
	1 860	10 395 417	0,179	0,011	0,168

Intensidade Carbónica	Ano de re	ferência: 2009	
Emissões CO2	Energia	Intensidade Carbónica	Intensidade Carbónica que deverá ser atingida ao fim de 6 anos (valor máximo) (tCO2/tep)
tCO2/ano	tep/ano	tCO2/tep	tCO2/tep
4 065,5	1 859,8	2,2	2,186

4.3.2. Medidas Propostas e Estado de Implementação

As medidas propostas para implementação ao longo do plano de racionalização de energia, com o objetivo de uma melhoria no consumo de energia são apresentadas na Tabela 34.

Tabela 34- Medidas implementadas ao longo do PREn

Medida - Global	Ano de imple menta	Economia	n Energética	Anual	Econo mia Anual	Investime nto (€)	PRI (ano	Reduç ão da IE	Reduçã o do CEE	Redução da IC (tCO2/te
Global	ção		Eletricida de	Total	Custos (€)		s)	(kgep/ €)	(kgep/k g)	p)
Iluminação-	2010	Quantida de	54 348							
Aplicação de Balastros	2010	tCO2	25,54	25,5 4	4 863	11 374	2,3	0,004	0,00112	0,014
Eletrónicos		tep	11,68	11,6 8						
Aplicação de		Quantida de	289 329							
Variadores Eletrónicos de	2012	tCO2	135,98	135, 98	31 172	93 379	3,0	0,019	0,006	0,073
Velocidade		tep	62,21	62,2 1						
Alteração das		Quantida de	292 395							
exclusas- Cortinas de ar	2011	tCO2	137,43	137, 43	24 527	60 000	2,4	0,019	0,006	0,074
das Câmaras		tep	62,86	62,8 6						
Total		tCO2	298,95	299	60 562	164 753	2,7	0,042	0,0	0,161
		tep	136,76	137						

Relativamente às medidas propostas, as mesmas foram implementadas em 2010, 2011 e 2012, sendo necessário referir o seguinte:

- Medida nº1 a) Alteração da Iluminação Fluorescente implementada;
- Medida nº2 b) Introdução de Variadores Eletrónicos de Velocidade em alguns equipamentos – parcialmente implementada;

A indústria não implementou a medida definida no PREn, pelo menos não na sua totalidade. Procedeu à instalação de um Variador Eletrónico de Velocidade no compressor N°3, como estava previsto no plano, não tendo instalado variadores nos restantes equipamentos.

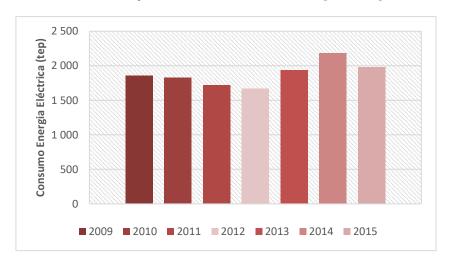
No entanto efetuou a substituição dos 3 motores dos compressores mais relevantes na instalação por motores de alta eficiência. Esta substituição de equipamentos não estava prevista no PREn.

A instalação de um variador eletrónico de velocidade nos restantes motores propostos na medida nº2 do plano não se justifica, uma vez que o regime de carga desses equipamentos é muito constante no seu período de funcionamento, não sendo previsto obter o valor de poupança energética calculado na auditoria energética.

 Medida nº3 - c) - Alteração das Exclusas - Cortinas de Ar das Portas das Câmaras - Implementada;

Foi realizada a alteração do trajeto do esgoto das águas quentes. Desta forma quase todas as águas vão para o tanque de esgoto de águas quentes para a sua posterior utilização no permutador de calor.

4.3.3. Evolução dos Consumos e dos Indicadores


4.3.3.1. Consumos Energéticos

Na Tabela 35 está apresentada a evolução dos consumos no decorrer do plano de racionalização de energia. No Anexo I são apresentados os consumos especificados por mês.

Tabela 35-Evolução dos consumos de energia ao longo dos anos do plano.

Consu								sumo Energia							
	2009		2010		2011		2012			2013		2014		2015	
	tep	ton CO2	tep	ton CO2	tep	ton CO2	tep	ton CO2							
Total	1860	4066	1831	4002	1717	3753	1666	3643	1935	4229	2180	4765	1982	4333	
Média	155	339	153	334	143	313	139	304	161	352	182	397	165	361	
Variação Anual			-2%	-2%	-6%	-6%	-3%	-3%	16%	16%	13%	13%	-9%	-9%	

Gráfico 4-Evolução dos consumos anuais de energia ao longo do PREn

Os consumos de energia elétrica na instalação sofreram variações distintas desde 2009. Até ao ano de 2012, observou-se uma diminuição dos consumos sendo que nos dois anos seguintes existiu um aumento dos mesmos na ordem dos 16%. Em 2015 houve uma diminuição de 9% face ao ano anterior, ainda assim um valor superior ao registado em 2009.

Na Tabela 36 estão apresentados a evolução dos custos de energia ao longo dos anos do plano, de referir que nos anos de 2012 e 2013 não foi possível obter dados do custo de energia. No Anexo J são apresentados os custos de energia por mês.

Tabela 36- Evolução dos custos de energia

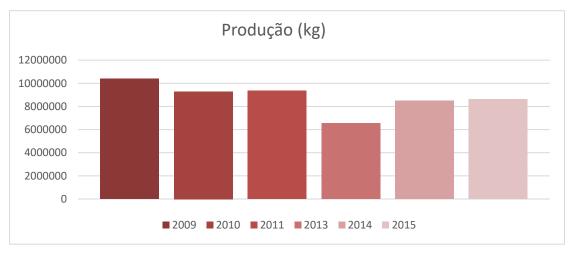
	Custo Energia											
	200	9	201	0	201	2011		2014		2015		
	€	€/tep	ϵ	€/tep	ϵ	€/tep	€	€/tep	ϵ	€/tep		
Total	725 594	4 655	676 289	4 441	723 426	5 055	1 028 061	5 663	939 597	5 690		
Média	60 466	390	56 357	370	60 286	421	85 672	472	78 300	474		

1 200 000 1 000 000 800 000 400 000 200 000 0 200 000 1 2000 2011 2014 2015

Gráfico 5- Evolução dos custos relativos aos consumos no PREn

Face à falta de dados relativos aos anos 2012 e 2013 em relação aos custos com a energia elétrica, não é possível realizar uma análise da evolução dos mesmos neste período.

Atendendo a este pressuposto, pode-se referir que houve uma evolução irregular dos custos, existindo quedas e subidas em anos consecutivos.


Apesar de terem diminuído face ao ano anterior, os custos em 2015 foram superiores aos observados em 2009.

4.3.3.2. Produções e VAB

Tabela 37- Evolução das produções

	2009	2010	2011	2013	2014	2015
Produção (kg)	10 395 417	9 294 551	9 344 627	6 542 000	8 498 067	8 625 720
Variação		-11%	1%	-30%	30%	2%

Gráfico 6- Evolução da produção (kg)

A produção registada desde 2009 até 2015 pode ser verificada na Tabela 37. De 2011 a 2013 registou-se a maior queda, sendo que a partir desse ano se manteve dentro da mesma gama de valores.

No geral, existiu uma diminuição de 17% de 2009 a 2015.

Na Tabela 38 são apresentados os dados do VAB (valor acrescentado bruto) ao longo dos anos, sendo este afetado pelo deflator.

Tabela 38- Evolução do VAB

	VAB *
2009	3 228 241
2011	3 235 311
2013	2 981 099
2015	2 717 514

^{*}VAB afetado pelo deflator

O VAB da instalação aumentou desde 2009 até 2011 existindo posteriormente uma queda nos valores deste até 2015.

A influência destes valores no indicador consumo específico (CE) será analisada de seguida.

4.3.3.3. Indicadores Energéticos

Neste ponto, os três indicadores alvo de análise no presente plano de racionalização funcionam como ponto de partida no âmbito do Sistema de Gestão dos Consumos Intensivos de Energia, uma vez que são referentes ao ano de 2009 (ano de referência).

A evolução dos indicadores Intensidade Energética (IE), Consumo Específico (CE) e Intensidade Carbónica (IC), possuem a evolução apresentada nas tabelas seguintes.

• 1º Biénio: 2010/2011

Tabela 39- Evolução do indicador IE no 1º biénio 2011

		Biénio 1 Ano de 2011	
	IE B1 kgep/€	VAB B1 €/ano	E B1 tep/ano
Valores Previstos	0,553	3 228 241	1 785
Valores Obtidos	0,531	3 235 311	1 717
Desvios	-4%	0,2%	-4%

Denota-se que o valor da intensidade energética é 4% abaixo do previsto isto indica que no ano de 2011 existiu um desvio positivo do indicador.

Tabela 40- Evolução do CE no 1º biénio 2011

	Biénio 1 Ano de 2011							
	CE B1 kgep/kg	Produção B1 kg	E B1 tep/ano					
Valores Previstos	0,17	10 395 417	1 785					
Valores Obtidos	0,184	9 344 627	1 717					
Desvios	7%	-10%	-4%					

O Consumo específico no ano de 2011 situou-se cerca de 7% acima do previsto este valor deve-se à diminuição da produção no mesmo período.

Tabela 41-Evolução do IC no 1º biénio 2011

	Biénio 1 Ano de 2011				
	IC B1 tCO2 eq/tep	E B1 tep/ano	EM B1 tCO2 eq/ano		
Valores Previstos	2,186	1 785	3 903		
Valores Obtidos	2,186	1 717	3 753		
Desvios	0%	-4%	-4%		

O valor da intensidade carbónica no ano de 2011 manteve-se inalterável.

• 2º Biénio 2012/2013

Tabela 42- Evolução do indicador IE no 2ºbiénio 2013

	Biénio 2 Ano de 2013				
	IE B2 kgep/€	VAB B2 €/ano	E B2 tep/ano		
Valores Previstos	0,534	3 228 241	1 723		
Valores Obtidos	0,649	2 981 099	1 935		
Desvios	22%	-8%	12%		

O indicador intensidade energética apresentou no ano de 2013 um desvio negativo cerca de 22% abaixo do previsto, podendo estar relacionado com a aplicação parcial das medidas propostas.

Tabela 43- Evolução do indicador CE no 2ºbiénio 2013

	Biénio 2 Ano de 2013			
	CE B2 kgep/kg	Produção B2 kg	E B2 tep/ano	
Valores Previstos	0,17	10 395 417	1 723	
Valores Obtidos	0,296	6 542 000	1 935	
Desvios	78%	-37%	12%	

Verifica-se um desvio significativo no indicador. Apesar de não terem sido feitas melhorias significativas na instalação com o objetivo de a tornar menos consumidora de energia, verifica-se que o decréscimo de produção penalizou substancialmente o indicador.

Tabela 44- Evolução do indicador IC no 2ºbiénio 2013

	Biénio 2 Ano de 2013				
	IC B2 tCO2 eq/tep	E B2 tep/ano	EM B2 tCO2 eq/ano		
Valores Previstos	2,19	1 723	3 767		
Valores Obtidos	2,19	1 935	4 229		
Desvios	0%	12,29%	12%		

O indicador intensidade carbónica manteve-se inalterável no ano 2013.

• 3º Biénio:2014/2015

Tabela 45- Evolução do indicador IE no 3º biénio 2015

	Biénio 3 Ano de 2015				
	IE B2 kgep/€	VAB B2 €/ano	E B2 tep/ano		
Valores Previstos	0,553	3 228 241	1 785		
Valores Obtidos	0,73	2 717 514	1 982		
Desvios	32%	-16%	11%		

O valor obtido do indicador da Intensidade Energética em 2015 face ao valor previsto no PREn, é de 32% acima do valor previsto. Isto indica que existiu um desvio negativo do indicador, que está diretamente relacionado com o VAB obtido em 2015, inferior que o do ano 2009.

Tabela 46- Evolução do indicador CE no 3º biénio 2015

	Biénio 3 Ano de 2015			
	CE B2 kgep/kg	Produção B2 kg	E B2 tep/ano	
Valores Previstos	0,172	10 395 417	1 785	
Valores Obtidos	0,230	8 625 720	1 982	
Desvios	34%	-17%	11%	

Relativamente aos consumos específicos, o valor obtido em 2015 foi superior ao valor previsto, este desvio deve-se ao valor da produção ser menor que o esperado.

Tabela 47- Evolução do indicador IC no 3º biénio 2015

	Biénio 3 Ano de 2015				
	IC B2 tCO2 eq/tep	E B2 tep/ano	EM B2 tCO2 eq/ano		
Valores Previstos	2,19	1 785	3 903		
Valores Obtidos	2,19	1 982	4 333		
Desvios	0%	11%	11%		

Relativamente à intensidade carbónica, o valor obtido em 2015 manteve-se constante.

4.3.4. Conclusões

Tabela 48- Resumo de conclusões

	1ºBiénio-2010/2011	2°Biénio- 2012/2013	3°Biénio- 2014/2015	
Medidas implementadas propostas pelo plano	 Iluminação: Aplicação de Balastros Eletrónicos; Alteração das exclusas- Cortinas de ar das Câmaras. 	Aplicação de Variadores Eletrónicos de Velocidade		Todas as medidas propostas no plano foram implementadas
Medidas por implementar propostas pelo plano				
Medidas implementadas não propostas no plano			Substituição dos 3 motores dos compressores mais relevantes na instalação	
Desvios	<i>IE:</i> -4% CE: 7% IC: 0%	<i>IE:</i> 22% CE: 78% IC: 0%	<i>IE</i> : 32% CE: 34% IC: 0%	

Tendo em conta os resultados encontrados para o REP-B3 é possível referir que os objetivos não foram cumpridos.

Relativamente à intensidade energética, o resultado é superior ao esperado. Isto pode estar relacionado com o aumento dos consumos e pelo contrário à redução do VAB, ou seja no primeiro biénio o consumo de energia diminuiu enquanto que o VAB aumentou, dai o indicador apresentar um desvio positivo, nos restantes anos o consumo de energia aumentou contudo o valor do VAB diminuiu daí o desvio ser superior ao esperado.

O consumo específico excede 34% do valor esperado, pois a redução da produção ao longo do plano originou o aumento do consumo específico, ou seja no ano 2013 o

consumo de energia aumentou cerca de 13 % enquanto que a produção nesse ano diminuiu cerca de 30% daí existir um desvio no indicador cerca de 78%, no último biénio a produção aumentou bem como o consumo de energia daí o indicador do consumo específico apresentar um desvio mais baixo em comparação com o anterior o que afetou diretamente este indicador impossibilitando atingir o objetivo proposto.

A Intensidade carbónica manteve-se inalterada.

A instalação apresentou alterações relativamente às medidas previstas no PREn. A medida que referia a "Introdução de Variação Eletrónica de Velocidade em alguns equipamentos foi implementada nos equipamentos principais. A instalação efetuou ainda a substituição dos 3 motores dos compressores mais relevantes na instalação.

A partir da análise acima realizada denota-se o não cumprimento das metas. Contudo, visto que as medidas de eficiência que estão incluída no plano foram todas implementadas, não haverá lugar para a aplicação de multas pois, num PREn, a indústria compromete-se com as medidas que tem a implementar, sendo que neste caso não foi possível cumprir as metas.

A industria apresenta vários produtos finais visto esta atuar na área de produtos pescados congelados, onde existem uma grande variedade de peixes congelados que apresentam necessidades energéticas diferentes, assim é mais difícil garantir que as metas são atingidas.

4.4. Caso de estudo 3

O presente caso de estudo consiste na análise e caracterização dos consumos da instalação, assim é apresentado o levantamento e caracterização dos consumidores energéticos instalados, o tratamento dos dados históricos do consumo de energia, bem como os resultados do exame energético efetuado à instalação. São apresentados dados dos anos referentes ao período do plano de racionalização do consumo de energia (PREn), 2010 a 2017.

Foi elaborado o plano de racionalização do consumo de energia com indicação dos consumos energéticos do ano referente e das medidas de utilização racional de energia, onde se inclui as poupanças encontradas e o montante de investimento estimado para a realização das mesmas.

4.4.1. Ano de Referência

A instalação, fabricante de embalagens, apresentada tem como ano de referência do plano de racionalização do consumo de energia o ano de 2009.

Tabela 49- Dados da instalação

	Dados
	PREn (2010-2017)
Ano de Auditoria Energética	2010
Ano de Referência do PREN	2009
Designação CAE	Folha transformada
Unidade de Produção	m^2
VAB (€)	7.144.817

Os seus consumos energéticos resumem-se a energia elétrica, gás de petróleo liquefeito (GPL), gasóleo/diesel e combustível para motor (gasolina). Os fatores de conversão utilizados foram os definidos no Despacho nº 17313/2008, apresentados na Tabela 50.

Tabela 50- Fatores de conversão utilizados

Fatores de conversão								
	MJ/ kg	kgep/k Wh	tep/t on	kg CO2/kWh	kg CO2/tep	kg CO2/GJ	kg/lit ro	kCal/ kg
Eletricidade	0	0,215	-	0,470	-	-	-	-
GPL (Gás de petróleo liquefeito)	-	-	1,11	-	2 637,70	-	-	-
Gasóleo/Diesel	42	-	1,02	-	3 098,20	-	0,835	-
Combustível para motor (gasolina)	-	-	1,06	-	2 897,30	-	0,720	-

Através dos fatores de conversão apresentado na Tabela 50, calcula-se o consumo de energia da instalação sob a forma de eletricidade, gás de petróleo liquefeito, gasóleo/diesel e combustível para motor, apresentados na Tabela 51.

Tabela 51- Consumo de energia no ano de referência

Formas de Energia Global	Quantidade	tep	tCO2
Eletricidade	4 122 734	886	1 938
GPL (Gás de petróleo liquefeito)	1,4	1,6	4,1
Gasóleo/Diesel	60	61	190
Combustível para motor (gasolina)	10,0	10,6	30,6
Total		960	2 162

Ao analisar a tabela anterior conclui-se que o total de energia da instalação é inferior a 1000 tep, assim a meta a atingir é de 4% em 8 anos.

Os indicadores, intensidade energética (IE), consumo específico (CE) e intensidade carbónica (IC) que serão alvo de monitorização, com o intuito de respeitar a redução de 4% no final dos 8 anos de vigência do plano, serão os apresentados na Tabela 52.

Tabela 52- Resumo dos indicadores energéticos e metas associadas no ano referência

Intensidade Energética	Ano de referência: 2009		Redução M=	4% / 8 anos
Energia	VAB	Intensidade Energética	Redução da Intensidade Energética	Valor da Intensidade Energética no fim da redução M
tep/ano	€/ano	kgep/€	kgep/€	kgep/€
960	7 144 817	0,134	0,005	0,129

Consumo Específico	Ano de referê	ncia: 2009	Redução M=	4% / 8 anos
Energia	Produção	Consumo Específico	Redução do Consumo Específico	Valor do Consumo Específico ao fim da redução M
tep/ano	m2 x 1000	kgep/m2 x 1000	kgep/m2 x 1000	kgep/m2 x 1000
960	70 905	13,54	0,541	12,995

Intensid Carbón		Ano de referê	ncia: 2009	
Emissões	CO2	Energia	Intensidade Carbónica	Intensidade Carbónica que deverá ser atingida ao fim de 8 anos (valor máximo) (tCO2/tep)
tCO2/a	no	tep/ano	tCO2/tep	tCO2/tep
2 162	2	960	2,253	2,253

As produções do ano de referência são apresentadas na Tabela 53, não sendo possível apresentar a produção mensal.

Tabela 53- Produção no ano de referência

	Produções (m2 x 1000
	papel)
	2009
Total	70 905

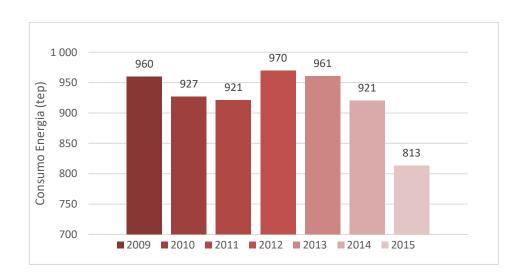
4.4.2. Medidas Propostas

As medidas propostas para melhoria da eficiência energética são apresentadas na Tabela 54.

Tabela 54- Medidas implementadas ao longo do PREn

Medida	Ano de implementação	Ene	nomia rgética nual	Economia Anual Custos (€)	Investimento (€)	PRI (anos)
Substituição das Lâmpadas T8 por T5	2014	kWh	54 092	4 589	15 370	3,4
com balastro eletrónico		tCO2	25	•		
		tep	12	•		
Desligar compressores	2011	kWh	14 989	1 272	-	0,0
e Bobst 142 nos períodos de paragem		tCO2	7	•		
da produção		tep	3	•		
Desligar os	2012	kWh	30 216	2 564	-	0,0
equipamentos de aspiração fora das		tCO2	14	•		
horas de produção.		tep	7	•		
Implementação de um	2013	kWh	131 516	11 158	-	0,0
plano para detecção e reparação de fugas de		tCO2	62	•		
ar comprimido		tep	28			

4.4.3. Evolução dos Consumos e dos Indicadores

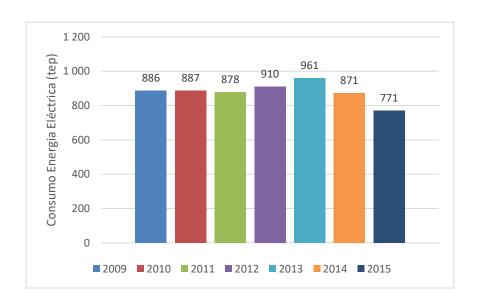

4.4.3.1. Consumos Energéticos

Na Tabela 55 é apresentada a evolução dos consumos no decorrer do plano de racionalização de energia. No Anexo K serão apresentados os consumos por mês.

Tabela 55- Evolução dos consumos de energia

	Consumo Energia									
	2009	2010	2011	2012	2013	2014	2015			
Total	960	927	921	970	961	921	813			
Variação Anual		-3,5%	-0,6%	5,3%	-0,9%	-4,2%	-11,7%			

Gráfico 7- Evolução dos consumos de energia ao longo dos anos do PREn

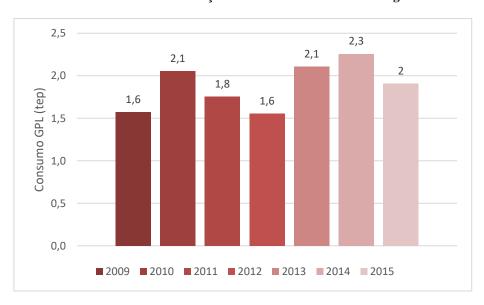

De referir que no ano 2015, a empresa atingiu o valor mais baixo de energia registado sendo que face ao ano de 2009 o consumo de energia é 15% inferior. Verifica-se também que o consumo ao longo dos anos tendeu sempre em diminuir sendo que no ano de 2012 existiu um aumento cerca de 5%.

Observando cada vetor energético, iniciando pelo vetor Energia Elétrica, verifica-se os seguintes resultados, no Anexo L serão apresentados os valores mensais disponíveis.

Tabela 56- Evolução dos consumos de Energia Elétrica

										Het	ricid	ade									
	2	2009			2010		1	2011		2	2012		2	2013		2	2014			2015	
	kWh	tep	€	kWh	Тер	€	kWh	tep	ϵ	kWh	tep	€	kWh	tep	€	kWh	tep	€	kWh	tep	ϵ
Total	4 122 734	886	349787	4 126 770	887	318 985	4 083 153	878	406 389	4 230 740	910	449 722	4 469 457	961	471 003	4 053 081	871	421 823	3 585 065	771	369 750
Variação Anual				0,1%	0,1%	-9%	-1%	-1%	27%	4%	4%	11%	6%	6%	5%	-9%	-9%	-10%	-12%	-12%	-12%

Gráfico 8-Evolução dos consumos de energia elétrica ao longo do PREn

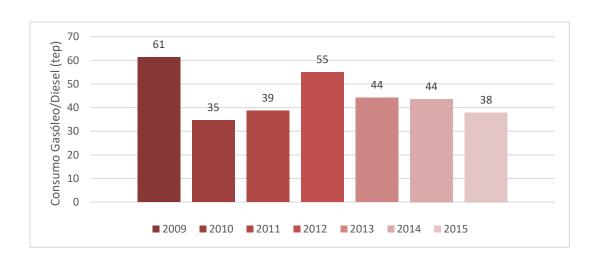

Analisando os consumos de energia elétrica, verifica-se que ao longo dos anos existiram algumas variações, conforme os dados apresentados constata-se que o valor mais elevado ao longo dos anos do plano foi em 2013 seguindo-se a partir desse um decréscimo do consumo. Assim do ano de referência ao ano de 2015 houve um decréscimo do consumo cerca de 13%. O consumo de energia elétrica tem uma relação direta com o número de folhas transformadas.

Relativamente ao vetor energético gás de petróleo liquefeito (GPL) serão apresentados os consumos ao longo dos anos na Tabela 57. No Anexo M são apresentados os consumos mensais deste.

Tabela 57- Evolução dos consumos de Gás de petróleo liquefeito

	GPL (Gás de petróleo liquefeito)																				
		2009	•		2010			2011		2	012		2	013			2014	ı		2015	
	Ton	tep	ϵ	Ton	tep	ϵ	Ton	tep	€	Ton	tep	€	Ton	tep	€	Ton	tep	€	Ton	tep	€
Total	1,4	1,6	1875	1,8	2,1	2459	1,6	1,8	2331	1,4	1,6	-	1,9	2,1	-	2	2,3	3102	2	2	2309
Variação Anual				31%	31%	31%	-15%	-15%	-5%	-11%	-11%	-	36%	36%	-	7%	7%	-	-16%	-16%	-26%

Gráfico 9- Evolução dos consumos de GPL ao longo do PREn

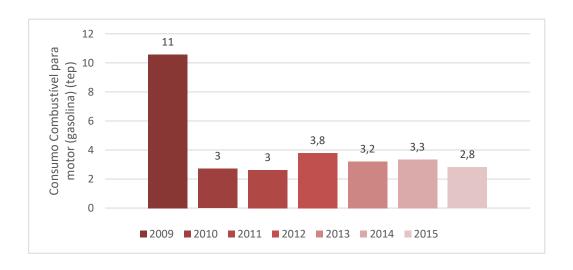

Analisando os consumos de gás do petróleo liquefeito (GPL) pode-se verificar que ao longo dos anos os valores encontraram-se dentro da mesma gama, apresentando variações ligeiras. No ano de 2015 em relação ao ano de referência 2009 existiu um aumento cerca de 21%.

Em relação ao vetor energético gasóleo/diesel os valores anuais são apresentados na Tabela 58, sendo que os valores mensais são apresentados no Anexo N, de notar que a partir de 2012 não foi possível obter os consumos mensais.

Tabela 58-Evolução dos consumos de Gasóleo/Diesel

										Gasó	leo/Di	esel									
		200	9		2010			2011			2012			2013		2	014		2	015	
	Ton	tep	ϵ	Ton	tep	ϵ	Ton	tep	ϵ	Ton	tep	ϵ	Ton	tep	ϵ	Ton	tep	€	Ton	tep	ϵ
Total	60	61	58 055	34	35	48 681	38	39	63466	49	55	86 046	43	44	71 941	43	44	-	37	38	-
Variação Anual				-44%	-44%	-16%	12%	12%	30%	30%	42%	36%	-12%	-20%	-16%	-1,3%	-1,3%	-	-13%	-13%	-

Gráfico 10- Evolução dos consumos de gasóleo ao longo do PREn


Através da análise da Tabela 58 e do Gráfico 10 uma oscilação de valores, existiu um decréscimo entre 2009 e 2011 cerca de 31%, seguindo-se um aumento de 19% em 2012 mantendo-se com pouca variação nos anos seguintes. Entre o ano de referência 2009 e o ano de 2015 houve um decréscimo no consumo de gasóleo de cerca de 30%, esta variação pode estar relacionada com o aumento do consumo de gás de petróleo liquefeito (GPL).

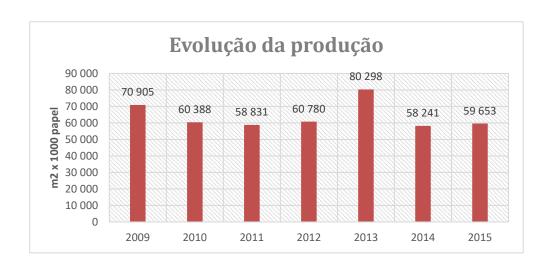
O vetor energético combustível para motor (gasolina) apresenta na Tabela 59 os consumos anuais ao longo dos anos do plano, os valores mensais (sendo que nos anos 2012 a 2015 não foi possível obter os consumos mensais) são apresentados no Anexo O.

Tabela 59- Evolução dos consumos de combustível para motor (gasolina)

							(Comb	ustíve	l para	moto	r (gas	olina)								
		200	9		2010			2011			2012			2013		2	014		2	015	
	Ton	tep	€	Ton	tep	€	Ton	tep	€	Ton	tep	€	Ton	tep	€	Ton	tep	€	Ton	tep	€
Total	10	11	14593	3	3	5 318	2	3	5925	4	4	8682	3	3	7008	3	3	-	3	3	-
Variação Anual				-74%	-74%	-64%	-3%	-3%	11%	45%	45%	47%	-15%	-15%	-19%	4%	4%	-	-16%	-16%	-

Gráfico 11- Evolução dos consumos anuais de gassolina ao longo do PREn

Analisando a Tabela 59 e o Gráfico 11 verifica-se que os consumos de gasolina diminuíram bastante desde o ano de referência 2009 a 2015, cerca de 73,5%.


4.4.3.2. Produções e VAB

Na Tabela 60 são apresentados os valores referentes á produção da instalação ao longo dos anos de implementação do plano.

Tabela 60- Evolução das produções

	Produções (m2 x 1000 papel)										
	2009	2010	2011	2012	2013	2014	2015				
Total	70 905	60 388	58 831	60 780	80 298	58 241	59 653				
Variação Anual		-14,8%	-2,6%	3,3%	32,1%	-27,5%	2,4%				

Gráfico 12- Evolução da produção ao longo do PREn

Analisando os dados de produção, e focando nos anos de referência de cada biénio, verifica-se que nos anos de 2010, 2011 a produção sofreu uma diminuição acentuada, sendo que a partir de 2012 começou a subir atingindo o máximo em 2013.

No ano 2014 registou-se um forte decréscimo e em 2015 existiu um ligeiro aumento de 2,4%. Neste ano a produção situa-se 15,9% abaixo do valor registado em 2009.

Tabela 61-Evolução do Valor Acrescentado Bruto (VAB)

	VAB* (€)
2009	7.144.817
2010	6.905.987
2011	6.506.858
2012	6.689.271
2013	6.687.765
2015	6.493.802

O VAB da instalação desde 2009 seguiu a mesma tendência verificada para o de consumo de energia, ou seja reduziu no primeiro biénio, enquanto no segundo biénio verificou-se uma ligeira recuperação, embora longe do valor para o ano de referência e

^{*}VAB afetado pelo deflator

no presente biénio registou-se também uma diminuição, sendo que relativamente a 2009 o VAB do presente ano referência situa-se 9% abaixo.

Com a diminuição do VAB face a 2009, e com a diminuição do consumo de energia, espera-se que o indicador Intensidade energética (IE) tenha sofrido uma redução face a previsto.

4.4.3.3. Indicadores Energéticos

A comparação dos indicadores obtidos de Intensidade Energética (IE), Consumo Específico (CE) e Intensidade Carbónica (IC) para o ano de 2015, com os valores previstos, tendo como base a calendarização das medidas no PREn, são apresentados nas tabelas seguintes.

Primeiro biénio-2010/2011

Tabela 62-Evolução do indicador IE no 1º biénio 2011

	В	Global iénio 1 Ano de (2011) (Glob	al)
	IE B1 kgep/€	VAB B1 €/ano	E B1 tep/ano
Valores Previstos	0,127	7 144 817	910
Valores Obtidos	0,142	6 506 858	921
Desvios	11%	-9%	1%

O valor da intensidade energética demonstra um aumento do valor de referência e um desvio de 11% superior ao objetivo.

Tabela 63-Evolução do indicador CE no 1º biénio 2011

	Global					
	Biénio 1 Ano de (2011)					
	CE B1 kgep/ Produção B1 0 E B1 tep/ano					
Valores Previstos	12,837	70 905	910			
Valores Obtidos	15,654	58 831	921			
Desvios	22%	-17%	1%			

Observa-se que em 2011 o consumo específico possui uma evolução contrária do que será desejável com um aumento do consumo, o objetivo do indicador CE é de 12,837kgep/m2 estando assim o valor de 2011 22% superior ao objetivo. Uma das principais razões do desvio deste indicador poderá ser a diferença das necessidades energética por tipo de produto.

Tabela 64-Evolução do indicador IC no 1º biénio 2011

		Global	
	Biénio 1 Ano de (2011)		
	IC B1 tCO2/tep	E B1 tep/ano	EM B1 tCO2/ano
Valores Previstos	2,257	910	2 054
Valores Obtidos	2,227	921	2 051
Desvios	-1%	1%	0%

O valor da intensidade carbónica é o único indicador que cumpre no momento os objetivos encontrando-se 1% abaixo do valor previsto.

Segundo biénio-2012/2013

Tabela 65-Evolução do indicador IE no 2º biénio 2013

		Global			
	Biénio 2 Ano de (2013) (Global)				
	IE B2 kgep/€ VAB B2 €/ano E B2 tep/ano				
Valores Previstos	0,127	7 144 817	910		
Valores Obtidos	0,151	6 687 765	1 010		
Desvios	19%	-6%	11%		

O valor obtido do indicador da Intensidade Energética em 2013 face ao valor previsto no PREn é 19% superior. Isto indica que existiu um desvio negativo do indicador, que está diretamente relacionado com a diminuição do VAB e aumento do consumo global de energia.

Tabela 66- Evolução do indicador CE no 2º biénio 2013

	Global					
	Biénio 2 Ano de (2013)					
	CE B2 kgep/m2 x 1000 Produção B2 m2 x 1000 E B2 tep/ano					
Valores Previstos	12,837	70 905	910			
Valores Obtidos	12,584	80 298	1 010			
Desvios	-2%	13%	11%			

Relativamente ao consumo específico, pode-se verificar que o mesmo apresenta-se inferior ao valor esperado para o ano 2013 em cerca de 2%. Deve-se sobretudo ao maior aumento da produção comparativamente ao consumo.

Tabela 67- Evolução do indicador IC no 2º biénio 2013

		Global	
		Biénio 2 Ano de (2013)	•
	IC B2 tCO2/tep	E B2 tep/ano	EM B2 tCO2/ano
Valores Previstos	2,257	910	2 054
Valores Obtidos	2,229	1 010	2 253
Desvios	-1%	11%	10%

Relativamente à intensidade carbónica, o valor obtido no presente REP é inferior ao valor esperado.

Tendo em conta os resultados encontrados para o REP-B2 é possível referir que, ao contrário dos restantes indicadores, o indicador Intensidade Energética em 2013 não foi o esperado.

A tendência de redução do VAB influência negativamente o indicador "Intensidade Energética", que continua a aumentar, após a redução no primeiro ano do plano (2010). O indicador "Consumo Específico", apesar de se encontrar abaixo do expectável, apresenta uma variação significativa ao longo do PREn.

Dependendo das características do produto final, para a mesma quantidade de folha transformada, poderá ser necessário o recurso a diferentes processos produtivos e, consequentemente, diferentes valores de consumo de energia necessária até que o produto final fique concluído.

A medida proposta no plano de implementação de um plano para deteção e reparação de fugas de ar comprimido não foi instalada para o ano de 2013 sendo proposto ser implementada no ano de 2015. Ao longo do ano de 2013 foi instalado um sistema de gestão de energia, que para além da desagregação de consumos de energia elétrica, visa justificar as variações dos indicadores energéticos, nomeadamente as verificadas para o consumo específico.

Terceiro biénio-2014/2015

Tabela 68-Evolução do indicador IE no 3º biénio 2015

	Bi	énio 3 (ano de referência: 20	015)
	IE B3 kgep/€	VAB B3 €/ano	E B3 tep/ano
Valores Previstos	0,127	7 144 817	910
Valores Obtidos	0,125	6 493 802	813
Desvios	-2%	-9%	-11%

O valor obtido do indicador da Intensidade Energética em 2015 face ao valor previsto no PREn é 2% inferior. Isto indica que existiu um desvio negativo do indicador, que está diretamente relacionado com a diminuição do VAB e do consumo global de energia.

Tabela 69- Evolução do indicador CE no 3º biénio 2015

	Biénio 3 (ano de referência: 2015)			
	CE B3 kgep/m ² x 1000	Produção B3 m² x 1000	E B3 tep/ano	
Valores Previstos	12,837	70 905	910	
Valores Obtidos	13,636	59 653	813	
Desvios	6%	-16%	-11%	

Relativamente ao consumo específico, pode-se verificar que o mesmo apresenta-se superior ao valor esperado para o ano 2015, em cerca de 6%. Deve-se sobretudo à grande diminuição da produção comparativamente ao consumo.

Tabela 70- Evolução do indicador IC no 3º biénio 2015

	Biénio 3 (ano de referência: 2015)			
	IC B3 tCO ₂ /tep	E B3 tep/ano	EM B3 tCO ₂ /ano	
Valores Previstos	2,257	910	2.054	
Valores Obtidos	2,232	813	1.816	
Desvios	-1%	-11%	-12%	

Relativamente à intensidade carbónica, o valor obtido no presente REP é inferior ao valor esperado.

4.4.4. Conclusões

Tabela 71- Resumo de conclusões

	1ºBiénio-2010/2011	2ºBiénio- 2012/2013	3ºBiénio- 2014/2015
Medidas implementadas propostas pelo plano	Desligar compressores e Bobst 142 nos períodos de paragem da produção	Desligar os equipamentos de aspiração fora das horas de produção	Implementação de um plano para deteção e reparação de fugas de ar comprimido
Medidas por implementar propostas pelo plano		Implementação de um plano para deteção e reparação de fugas de ar comprimido	Substituição das Lâmpadas T8 por T5 com balastro eletrónico
Medidas implementadas não propostas no plano		Sistema de gestão de energia	Substituição do equipamento de aspiração de aparas por um sistema de tapetes rolantes
Desvios	<i>IE</i> : 11% CE: 22% IC: -1%	<i>IE</i> : 19% CE: -2% IC: -1%	<i>IE:</i> -2% CE: 6% IC: -1%

Através do sistema de monitorização dos dados conclui-se que os processos de Impressão, Corte e Vinco são os que consomem maior quantidade de energia elétrica, sendo a Colagem, Contra-Colagem, Estampagem e Embalamento, processos produtivos com consumo residual (cerca de 5,5%). Em contrapartida ficou também evidente que o sistema de aspiração de aparas representava cerca de ¼ do total da energia consumida.

Conclui-se que no final do plano todas as medidas propostas foram implementadas, sendo que a instalação procedeu à implementação de um sistema de gestão de energia e à substituição do equipamento de aspiração de aparas por um equipamento com sistema de tapetes rolantes muito mais eficiente.

Tendo em conta os resultados apresentados é possível referir que, ao contrário dos restantes indicadores, o indicador Consumo Específico, em 2015, apresenta um desvio

acima do previsto, contudo existiu um ganho em termos de desempenho energético consubstanciado por uma redução do consumo de energia elétrica por folha transformada, isto deve-se essencialmente à implementação do novo sistema de transporte de aparas.

Para os anos seguintes é esperado uma redução do consumo de energia elétrica por folha transformada devido ao facto de o novo sistema de transporte de aparas ter funcionado durante parte do ano de 2015.

Plano de ação de melhoria:

Durante o ano de 2016 está prevista uma estratégia de atuação que visará dar continuidade ao processo iniciado nos anos anteriores. Esta estratégia compreenderá, entre outras ações que possam mais tarde vir a ser implementadas, o seguinte conjunto de atividades:

- Avaliação detalhada da rede de ar comprimido com identificação de todas as fugas relevantes;
- Retificação de fugas mais relevantes na rede de ar comprimido, recorrendo aos serviços de manutenção da industria;
- Avaliação de alternativas para substituir os atuais compressores da indústria elaboração de estudo com pay-back associado ao investimento para aquisição de equipamentos mais eficientes em termos energéticos;
- Monitorização permanente dos consumos de energia elétrica equipamento a equipamento, com reporte de desempenho para os responsáveis diretos;
- Acompanhamento da aplicação de boas práticas em termo de consumo energético no terreno junto dos colaboradores;
- Projeto para reformular comunicação na indústria;
- Reavaliação do processo de substituição do sistema de iluminação com lâmpadas mais eficientes.

5. Conclusões

O presente trabalho tinha como objetivo o estudo dos consumos energéticos de empresas consumidoras intensivas de energia com o objetivo de melhorar o desempenho energético das instalações em estudo. O presente relatório reforça a importância da metodologia utilizada com o intuito de encontrar oportunidades de racionalização de energia e implementação de medidas de eficiência energética. Estas oportunidades e medidas dão a conhecer o impacto significativo que a eficiência energética apresenta no consumo de energia em Portugal.

Todos os dados foram fornecidos pela empresa Smartwatt, onde foi realizado o estágio curricular, no qual cada caso de estudo é apresentado sob anonimato.

No caso de estudo 1 conclui-se que todas as medidas propostas no Plano de Racionalização dos Consumos de Energia foram implementadas, de ressalvar que para além das medidas definidas no PREn a instalação implementou mais medidas desde logo com mudanças efetivas no processo, nomeadamente através da implementação de um Sistema de Gestão de Energia. Esta medida possivelmente influenciou

positivamente os resultados apurados, sendo os resultados dos indicadores energéticos apresentados com valores bastante abaixo do previsto.

Relativamente ao caso de estudo 2 todas as medidas propostas no plano foram implementadas, no entanto denota-se que os valores dos indicadores intensidade energética e consumo específico ficaram acima dos valores previstos o que não deveria ocorrer. Contudo, não haverá pagamento de multas pois a instalação cumpriu com o plano previsto. Os valores apresentados devem — se sobretudo à redução da produção existente ao longo do plano originando um aumento do consumo específico, pois esta relação não é proporcional.

No caso de estudo 3 todas as medidas propostas foram implementadas sendo que algumas destas não foram implementadas nos anos propostos no plano inicial, daí alguma variação de forma negativa dos indicadores no primeiro e segundo biénio. Contudo no final do plano todas as medidas foram implementadas daí os indicadores no último biénio apresentarem valores positivos, sendo que no final o indicador consumo específico apresentou um valor abaixo do previsto isto devido ao aumento da produção no último ano.

Conclui-se que as auditorias energéticas são ferramentas que permitem caracterizar a forma como é utilizada a energia na empresa, identificando oportunidades para a redução de consumos, estabelecendo posteriormente um Plano de Racionalização do Consumo de Energia (PREn). Com a realização de auditorias energéticas as empresas obtém um conhecimento sobre a utilização da energia tendo como vantagens a redução da fatura energética, redução das perdas de energia, redução no consumo de energia e uma contribuição para o desenvolvimento sustentável.

A realização dos relatórios de execução e progresso a cada dois anos de vigência do ARCE tem grandes vantagens visto que cada um deles deve apresentar as metas e objetivos alcançados, os desvios verificados assim como as medidas a adotar para a sua melhoria.

Referências Documentais

- 1. ADENE. SGCIE-Penalidades. 2016.
- 2. Luis Rochartre, S.A., João Lavares, *Manual de boas praticas de eficiência energética*. 2005.
- 3. DGEG, Energia em Portugal. 2016.
- 4. (DCLIMA), D.d.A.C., *Inventário Nacional de Emissões Atmosféricas*. 2016: http://www.apambiente.pt/_zdata/Inventario/MemoEmisses_20160315Final.pdf.
- 5. Cabral, P., O PNAEE 2016 e PNAER 2013-2020: Estratégias para a Eficiência Energética e Energias Renováveis. 2013.
- 6. PNAEE. Enquadramento do plano nacional de acção para a eficiência energética. 2016.
- 7. PNAEE. *Metas PNAEE 2016*. 2016.
- 8. Republica, D.d., *Resolução do Conselho de Ministros n.º* 20/2013 de 10 de abril de 2013 2013.
- 9. Gaspar-ADENE, C., Curso de Utilização Racional de Energia. 2004.
- 10. DGEG. SGCIE. 2016 [cited 2016.
- 11. ADENE. SGCIE: ENQUADRAMENTO E OBJETIVOS. 2016 [cited 2016.
- 12. DGEG, Auditorias e Prens, in despacho nº17449/2008. 2008.
- 13. BRANDÃO, R., *SGCIE*. 2016.
- 14. ADENE. SGCIE-INCENTIVOS E ISENÇÕES. 2016.
- 15. MINISTÉRIO DO AMBIENTE, O. and D.T.E. ENERGIA, *Decreto-Lei n.º* 68-A/2015

de 30 de abril. 2015.

- 16. Albert Thumann, P.E., C.E.M., William J. Younger, C.E.M., *Handbook of Energy Audits*. 2007.
- 17. ADENE. Gestão de Energia-Auditoria Energética. 2016 [cited 2016.
- 18. ENERGIA, P., *A importância e as fases de uma auditoria energética*. 2012: http://www.portal-energia.com/a-importancia-e-fases-de-uma-auditoria-energetica/.
- 19. ENERGIA, P. A importância e as fases de uma auditoria energética. 2012.
- 20. DGEG, Despacho nº 17313/2008, de 26 de Junho DE 2008. 2008.
- 21. ADENE. RELATÓRIOS DE EXECUÇÃO E PROGRESSO (REP) METODOLOGIA DE CÁLCULO DO VAB A PREÇOS CONSTANTES. 2016.
- 22. ADENE. *MEDIDAS DE EFICIÊNCIA NA INDUSTRIA*. 2016.
- 23. ADENE-SGCIE, Medidas de Eficiência Energética na Indústria SGCIE. 2011.
- 24. Vitor Mangueijo, M.C.F., Herique A. Matos, Clemente Pedro Nunes, *MEDIDAS DE EFICIÊNCIA ENERGÉTICA APLICÁVEIS À INDÚSTRIA PORTUGUESA: UM EQUADRAMENTO TECNOLÓGICO SUCINTO*. 2010.

Anexo A. Caso de estudo 1-Produções ano de referência 2008

Ano 2008	Produção ton
Janeiro	2 056
Fevereiro	1 891
Março	1 895
Abril	1 770
Maio	1 629
Junho	1 676
Julho	1 813
Agosto	1 985
Setembro	1 423
Outubro	1 621
Novembro	1 332
Dezembro	1 872
Total	20 962
Média	1 747

Anexo B. Caso de estudo 1-Consumos de energia ao longo dos anos

				Consumo	o Energi	a		
		2008		2010		2012		2014
	tep	ton CO2 eq	tep	ton CO2 eq	tep	ton CO2 eq	tep	ton CO2 eq
Janeiro	-	-	-	-	297	202	341	455
Fevereiro	-	-	-	-	275	205	318	403
Março	-	-	-	-	259	188	326	396
Abril	-	-	-	-	239	230	323	402
Maio	-	-	-	-	270	304	412	402
Junho	-	-	-	-	247	237	480	380
Julho	-	-	-	-	323	258	443	435
Agosto	-	-	-	-	326	277	467	392
Setembro	-	-	-	-	276	288	509	456
Outubro	-	-	-	-	273	244	519	464
Novembro	-	-	-	-	299	209	461	399
Dezembro	-	-	-	-	307	324	457	435
Total	5 016	10 972	4 320	3 951	3 390	2 967	5 055	5 020
Variação Anual			-14%	-64%	-22%	-25%	49%	69%

Anexo C. Caso de estudo 1- Evolução dos custos de energia ao longo dos anos

		Custo Ene	rgia	
	2012	,	2014	
	€	€/tep	€	€/tep
Janeiro	100 365	338	101 020	297
Fevereiro	95 288	347	99 951	315
Março	88 590	343	109 368	335
Abril	83 834	351	97 628	302
Maio	107 574	399	103 995	253
Junho	93 648	380	120 750	252
Julho	110 235	341	114 431	258
Agosto	118 090	362	122 122	261
Setembro	109 026	395	138 953	273
Outubro	100 728	369	139 146	268
Novembro	105 905	355	118 857	258
Dezembro	115 425	376	120 768	264
Total	1 228 709	4 354	1 386 988	3 336
Média	102 392	362	115 582	274
Variação 1º Semestre	-	-	11%	-19%
Variação Anual	-	-	13%	-23%

Anexo D. Caso de estudo 1- Evolução dos consumos de energia elétrica

							Eletricida	de				
	200	08		201	10			2012		2014		
	kWh	tep	€	kWh	tep	€	kWh	tep	€	kWh	tep	€
Janeiro	-	-	-	-	-	-	428 747	92	44 830	422 346	91	43 678
Fevereiro	-	-	-	_	-	-	437 047	94	46 372	461 178	99	43 717
M arço	-	-	-	-	-	-	400 165	86	42 411	417 911	90	48 976
Abril	-	-	-	-	-	-	424 265	91	40 332	467 415	100	42 469
M aio	-	-	-	-	-	-	428 896	92	46 288	438 717	94	34 390
Junho	-	-	-	-	-	-	438 692	94	47 220	513 101	110	43 116
Julho	-	-	-	-	-	-	481 458	104	45 286	490 308	105	49 772
Agosto	-	-	-	-	-	-	529 538	114	55 994	527 588	113	47 944
Setembro	-	-	-	-	-	-	481 017	103	51 489	518 076	111	51 108
Outubro	-	-	-	-	-	-	453 029	97	46 519	475 639	102	50 944
Novembro	-	-	-	-	-	-	445 519	96	46 162	475 716	102	47 209
Dezembro	-	-	-	-	-	-	558 491	120	57 460	429 797	92	42 361
Total	5 982 152	1 286	-	5 880 191	1 264	-	5 506 864	1 184	570 362	5 637 792	1 212	545 685
M édia	-	-	-	-	-	-	458 905	99	47 530	469 816	101	45 474
Variação 1º Semestre				-	-	-	-	-	-	6%	6%	-4%
Variação Anual				-2%	-2%	-	-6%	-6%	-	2%	2%	-4%

Anexo E. Caso de estudo 1- Evolução dos consumos de Fuelóleo pesado

						Fu	elóleo p	esado				
	:	2008			2010			2012			2014	
	ton	tep	€	ton	tep	€	ton	tep	ϵ	ton	tep	€
Janeiro	-	-	-	-	-	-	0	0	0	20	19	9 525
Fevereiro	-	-	-	-	-	-	0	0	0	0	0	0
Março	-	-	-	-	-	-	0	0	0	0	0	0
Abril	-	-	-	-	-	-	10	10	6 044	0	0	0
Maio	-	-	-	-	-	-	33	32	18 294	0	0	0
Junho	-	-	-	-	-	-	10	10	5 352	0	0	0
Julho	-	-	-	-	-	-	10	10	5 572	10	10	4 841
Agosto	-	-	-	-	-	-	9	9	5 089	0	0	0
Setembro	-	-	-	-	-	-	20	19	12 233	18	17	8 439
Outubro	-	-	-	-	-	-	10	10	5 363	10	10	4 498
Novembro	-	-	-	-	-	-	0	0	0	0	0	0
Dezembro	-	-	-	-	-	-	20	19	10 138	29	28	8 369
Total	2 627	2 521	-	382	367	-	122	117	68 085	87	83	35 673
Média	-	-	-	-	-	-	10	10	5 674	7	7	2 973
Variação Anual				-85%	-85%	-	-68%	-68%	-	-29%	-29%	-48%

Anexo F. Caso de estudo 1- Evolução dos consumos de Peletes/ Briquetes de madeira

		Peletes/Briquetes de madeira										
	2	800		2	010			2012	2		2014	l
	ton	tep	€	ton	tep	€	ton	tep	€	ton	tep	€
Janeiro	-	-	-	-	-	-	511	205	55 535	415	166	46 723
Fevereiro	-	-	-	-	-	-	451	181	48 916	391	157	55 187
Março	-	-	-	-	-	-	430	173	46 179	426	171	59 275
Abril	-	-	-	-	-	-	344	138	37 458	405	162	54 137
Maio	-	-	-	-	-	-	364	146	42 992	630	253	68 508
Junho	-	-	-	-	-	-	356	143	41 076	806	323	76 853
Julho	-	-	-	-	-	-	491	197	57 810	675	271	58 847
Agosto	-	-	-	-	-	-	475	191	55 441	763	306	73 370
Setembro	-	-	-	-	-	-	382	153	45 304	819	328	78 525
Outubro	-	-	-	-	-	-	414	166	48 847	842	338	82 530
Novembro	-	-	-	-	-	-	506	203	59 743	750	301	70 663
Dezembro	-	-	-	-	-	-	419	168	47 827	723	290	69 234
Total	3 014	1 209	-	2 663	1 068	-	5 143	2 063	587 127	7 646	3 066	793 852
M édia	-	-	-	-	-	-	429	172	48 927	637	255	66 154
Variação 1º Semestre				-	-	-	-	-	-	25%	25%	33%
Variação Anual				-12%	-12%	-	93%	93%	-	49%	49%	35%

Anexo G. Caso de estudo 1- Evolução das produções

		Abate	de Aves	
		t	on	
	2008	2010	2012	2014
Janeiro	2 056	1 656	1 580	1 903
Fevereiro	1 891	1 694	1 518	1 925
Março	1 895	2 012	1 643	2 138
Abril	1 770	1 777	1 497	2 139
Maio	1 629	1 648	1 781	2 370
Junho	1 676	1 752	1 784	2 214
Julho	1 813	2 265	1 930	2 271
Agosto	1 985	2 219	2 117	2 531
Setembro	1 423	1 877	1 753	2 401
Outubro	1 621	1 815	1 901	2 719
Novembro	1 332	1 796	1 849	2 030
Dezembro	1 872	1 922	1 892	1 910
Total	20 962	22 432	21 244	26 549
Média	1 747	1 869	1 770	2 212
Variação 1º Semestre		-3%	-7%	29%
Variação Anual		7%	-5%	25%

Anexo H. Caso de estudo 2- Consumos de energia elétrica no ano de referência

		Eletricidade	
	kWh	tep	ton CO2 eq
Janeiro - 2009	1 059 556	228	498
Fevereiro - 2009	628 441	135	295
Março - 2009	510 315	110	240
Abril - 2009	540 243	116	254
Maio - 2009	709 319	153	333
Junho - 2009	751 279	162	353
Julho - 2009	810 822	174	381
Agosto - 2009	781 189	168	367
Setembro - 2009	1 023 458	220	481
Outubro - 2009	765 451	165	360
Novembro - 2009	656 454	141	309
Dezembro - 2009	413 578	89	194
Total	8 650 105	1 860	4 066
Média	720 842	155	339

Anexo I. Caso de estudo 2- Evolução dos consumos de energia

		Consumo Energia												
	2	009	2	010	2	011	2	012	2	013	2	014	2	015
	tep	Ton	tep	Ton	tep	Ton	tep	Ton	tep	Ton	tep	Ton	tep	Ton
		CO2eq		CO2eq		CO2eq		CO2eq		CO2eq		CO2eq		CO2eq
Janeiro	228	498	152	333	140	306	140	306	147	322	176	386	166	362
Fevereiro	135	295	131	287	137	299	120	262	136	298	156	341	152	332
M arço	110	240	158	345	143	312	124	272	151	330	183	400	161	353
Abril	116	254	149	326	137	298	106	231	142	310	178	390	155	339
M aio	153	333	160	350	149	326	132	288	155	339	198	433	160	351
Junho	162	353	156	341	149	326	138	303	151	331	187	409	170	372
Julho	174	381	173	377	153	334	151	329	190	416	210	460	182	398
Agosto	168	367	165	361	152	332	160	351	190	416	192	419	170	371
Setembro	220	481	164	357	151	331	144	314	173	379	181	395	174	380
Outubro	165	360	149	326	144	314	146	319	164	359	188	410	170	371
Novembro	141	309	140	306	135	296	157	343	165	361	166	363	165	362
Dezembro	89	194	134	292	128	279	149	325	169	368	164	359	156	342
Total	1860	4066	1831	4002	1717	3753	1666	3643	1935	4229	2180	4765	1982	4333
M édia	155	339	153	334	143	313	139	304	161	352	182	397	165	361
Variação Anual			-2%	-2%	-6%	-6%	-3%	-3%	16%	16%	13%	13%	-9%	-9%

Anexo J. Caso de estudo 2- Evolução dos Custos de Energia

					Custo	Energia				
	200	9	201	0	201	1	2014	4	201	5
	€	€/tep	€	€/tep	€	€/tep	€	€/tep	€	€/tep
Janeiro	92 824	407	65 401	430	54 934	393	87 134	494	80 170	483
Fevereiro	53 907	399	56 573	431	53 685	392	77 190	494	73 487	484
Março	35 947	328	62 828	398	55 820	391	89 208	488	77 842	482
Abril	45 139	389	59 332	397	53 171	390	86 926	487	74 396	479
Maio	58 962	387	63 023	394	58 592	393	96 987	489	76 664	478
Junho	62 997	390	61 411	394	58 195	391	85 790	459	82 193	483
Julho	68 382	392	57 739	335	68 663	450	96 293	458	85 890	471
Agosto	66 279	395	55 118	334	68 596	452	87 210	455	79 097	466
Setembro	86 545	393	54 593	334	68 552	453	84 002	464	81 383	468
Outubro	64 443	392	49 715	333	64 826	451	86 389	461	79 048	466
Novembro	55 376	392	46 345	332	60 982	451	75 492	454	77 261	467
Dezembro	34 791	391	44 211	331	57 408	450	75 438	460	72 166	461
Total	725 594	4 655	676 289	4 441	723 426	5 055	1 028 061	5 663	939 597	5 690
Média	60 466	390	56 357	370	60 286	421	85 672	472	78 300	474

Anexo K. Caso de estudo 3- Evolução dos Consumos de Energia

	Consumo Energia													
	2009 2010			10	20	11	20	12	20	13	20	14	20	15
	tep	TonCO2	tep	Ton CO2	tep	Ton CO2	tep	Ton CO2	tep	Ton CO2	tep	Ton CO2	tep	Ton CO2
Janeiro	68	160	86	190	77	169	-	-	119	260	-	-	-	-
Fevereiro	85	188	74	165	65	145	-	-	79	173	-	-	-	-
Março	77	176	72	161	76	169	-	-	85	186	-	-	-	-
Abril	77	172	83	184	76	169	-	-	75	165	-	-	-	-
Maio	82	183	75	167	80	178	-	-	86	188	-	-	-	-
Junho	84	191	80	179	78	174	-	-	81	177	-	-	-	-
Julho	77	172	80	177	73	161	-	-	83	180	-	-	-	-
Agosto	76	169	78	173	72	161	-	-	80	175	-	-	-	-
Setembro	83	188	74	166	83	184	-	-	81	176	-	-	-	-
Outubro	86	196	83	185	84	188	-	-	88	191	-	-	-	-
Novembro	88	195	76	170	83	185	-	-	80	176	-	-	-	-
Dezembro	77	172	64	144	75	167	-	-	24	53	-	-	-	-
Total	960	2162	927	2060	921	2051	970	2174	961	2101	921	2056	813	1816
Variação Anual			-3,5%	-4,7%	-0,6%	-0,4%	5,3%	6,0%	-0,9%	-3,4%	-4,2%	-2,1%	-11,7%	-11,7%

Anexo L. Caso de estudo 3- Evolução dos consumos de Energia Elétrica

										F	letricio	lade									
	:	2009			2010			2011			2012			2013			2014			2015	
	kWh	tep	ϵ	kWh	tep	€	kWh	tep	ϵ	kWh	tep	ϵ	kWh	tep	ϵ	kWh	tep	€	kWh	tep	€
Janeiro	262 022	56	19 443	388 951	84	29 189	358 158	77	34 072	540 423	116	57 173	553 756	119	58 205	243 715	52	39 715	346 447	74	38 226
Fevereiro	376 522	81	31 534	334 703	72	25 328	282 469	61	26 934	356 476	77	37 285	368 146	79	38 665	355 896	77	36 337	296 523	64	30 148
Março	314 474	68	26 525	320 625	69	25 106	331 283	71	31 540	365 957	79	38 310	394 912	85	41 685	357 707	77	36 006	355 648	76	35 502
Abril	336 557	72	28 808	374 416	80	28 377	331 382	71	31 903	351 123	75	36 985	350 098	75	36 895	371 479	80	37 004	319 585	69	32 884
Maio	362 136	78	31 445	332 909	72	25 502	352 187	76	33 459	382 621	82	40 390	398 961	86	41 924	387 964	83	38 389	334 150	72	34 051
Junho	354 329	76	30 575	358 609	77	27 144	339 748	73	32 247	369 020	79	38 966	377 657	81	39 629	353 444	76	34 916	323 966	70	32 728
Julho	335 463	72	28 881	355 235	76	27 245	341 109	73	32 624	325 587	70	35 103	383 933	83	40 417	378 720	81	38 271	329 563	71	34 041
Agosto	337 499	73	29 620	348 498	75	27 121	320 026	69	30 925	308 073	66	32 953	371 699	80	39 714	330 964	71	33 477	240 795	52	25 299
Setembro	346 500	74	30 191	330 415	71	25 419	363 566	78	36 792	381 607	82	39 698	375 486	81	39 607	362 317	78	36 540	261 080	56	26 992
Outubro	361 776	78	31 228	368 048	79	28 390	366 425	79	39 943	374 861	81	39 403	407 144	88	42 502	325 395	70	33 287	293 991	63	30 034
Novembro	392 602	84	32 950	332 853	72	26 104	368 417	79	40 157	357 974	77	37 896	373 886	80	39 337	327 515	70	33 448	272 735	59	27 994
Dezembro	342 854	74	28 586	281 508	61	24 060	328 383	71	35 794	117 018	25	15 560	113 779	24	12 423	257 965	55	24 432	210 582	45	21 852
Total	4 122 734	886	349 787	4 126 770	887	318 985	4 083 153	878	406 389	4 230 740	910	449 722	4 469 457	961	471 003	4 053 081	871	421 823	3 585 065	771	369 750
Média	343 561	74	29 149	343 898	74	26 582	340 263	73	33 866	352 562	76	37 477	372 455	80	39 250	337 757	73	35 152	298 755	64	30 812
Variação 1º semestre				5,2%	5,2%	-4,6%	-5,4%	-5,4%	18,4%	18,6%	18,6%	31,0%	3,3%	3,3%	3,2%	-15,3%	-15,3%	-13,5%	-4,5%	-4,5%	-8,5%
Variação Anual				0,1%	0,1%	-8,8%	-1,1%	-1,1%	27,4%	3,6%	3,6%	10,7%	5,6%	5,6%	4,7%	-9,3%	-9,3%	-10,4%	-11,5%	-11,5%	-12,3%

Anexo M. Caso de estudo 3- Evolução dos consumos de GPL

	GPL (Gás de petróleo liquefeito)																				
		2009			2010			2011		2	012		2	013			2014	ı		2015	
	Ton	tep	€	Ton	tep	€	Ton	tep	€	Ton	Тер	€	Ton	tep	€	Ton	tep	€	Ton	tep	€
Janeiro	0,27	0,3	369	0,1	0,2	161	0,2	0,3	331	-	-	-	-	-	-	0,2	0,3	353	0,1	0,2	187
Fevereiro	0,23	0,3	308	0,2	0,3	290	0,1	0,1	134	-	-	-	-	-	-	0,3	0,3	424	0,2	0,3	304
Março	0,18	0,2	246	0,2	0,2	235	0,2	0,2	268	-	-	-	-	-	-	0,2	0,2	283	0,2	0,2	240
Abril	0,18	0,2	238	0,1	0,1	118	0,1	0,2	201	-	-	-	-	-	-	0,1	0,1	136	0,2	0,2	250
Maio	0,14	0,2	179	0,1	0,2	183	0,3	0,3	393	-	-	-	-	-	-	0,2	0,3	339	0,2	0,2	250
Junho	0,09	0,1	119	0,1	0,2	183	0,1	0,1	134	-	-	-	-	-	-	0,1	0,2	250	0,1	0,1	125
Julho	0,23	0,3	298	0,1	0,2	181	0,1	0,1	134	-	-	-	-	-	-	0,2	0,3	329	0,2	0,2	242
Agosto	0	0	-	0,2	0,2	241	0,1	0,1	134	-	-	-	-	-	-	0	0	0	0	0	0
Setembro	0	0	-	0,1	0,1	117	0,1	0,1	134	-	-	-	-	-	-	0,2	0,2	264	0,3	0,3	356
Outubro	0,09	0,1	119	0,2	0,2	238	0,1	0,1	134	-	-	-	-	-	-	0,2	0,2	264	0,1	0,1	119
Novembro	0	0	-	0,3	0,3	362	0,1	0,1	134	-	-	-	-	-	-	0,1	0,1	132	0,1	0,1	119
Dezembro	0	0	-	0,1	0,1	151	0,1	0,2	201	-	-	-	-	-	-	0,2	0,3	329	0,1	0,1	119
Total	1,4	1,6	1875	1,8	2,1	2459	1,6	1,8	2331	1,4	1,6		1,9	2,1	-	2	2,3	3102	2	2	2309
Média	-	-	156	-	-	205	-	-	194	-	-	-	-	-	-	-	-	259	-	-	192
Variação Anual				31%	31%	31%	-15%	-15%	-5%	-11%	-11%	-	36%	36%	-	7%	7%	-	-16%	-16%	-26%

Anexo N. Caso de estudo 3- Evolução dos consumos de Gasóleo/Diesel

	Gasóleo/Diesel																				
		200	9		2010			201	1		201	2		2013		2	014		2	015	
	Ton	tep	ϵ	Ton	tep	ϵ	Ton	tep	ϵ	Ton	tep	ϵ	Ton	tep	ϵ	Ton	tep	€	Ton	tep	ϵ
Janeiro	11	11	9629	2	2	2951	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-
Fevereiro	3	3	2463	2	2	2826	4	4	5990	-	-	-	-	-	-	-	-	-	-	-	-
Março	8	8	6755	3	3	4379	4	4	6403	-	-	-	-	-	-	-	-	-	-	-	-
Abril	3	3	3242	2	2	3275	4	4	6364	-	-	-	-	-	-	-	-	-	-	-	-
Maio	3	3	2779	3	3	4310	3	4	5746	-	-	-	-	-	-	-	-	-	-	-	-
Junho	7	7	6622	3	3	4177	4	4	7099	-	-	-	-	-	-	-	-	-	-	-	-
Julho	3	3	3404	3	3	4141	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-
Agosto	3	3	2949	2	2	3337	3	3	5280	-	-	-	-	-	-	-	-	-	-	-	-
Setembro	7	7	7274	3	3	4069	4	4	6763	-	-	-	-	-	-	-	-	-	-	-	-
Outubro	7	7	7418	3	3	4872	5	5	7894	-	-	-	-	-	-	-	-	-	-	-	-
Novembro	3	3	2626	4	4	5323	4	4	5978	-	-	-	-	-	-	-	-	-	-	-	-
Dezembro	3	3	2894	3	4	5020	4	4	5950	-	-	-	-	-	-	-	-	-	-	-	-
Total	60	61	58 055	34	35	48681	38	39	63466	49	55	86 046	43	44	71 941	43	44	-	37	38	-
Variação Anual				-44%	-44%	-16%	12%	12%	30%	30%	42%	36%	-12%	-20%	-16%	-1%	-1%	-	-13%	-13%	-

Anexo O. Caso de estudo 3- Evolução dos consumos de gasolina

	Combustível para motor (gasolina)																				
		200	9		2010			201	l		2012	:		2013		2	014		2	015	
	Ton	tep	€	Ton	tep	€	Ton	tep	€	Ton	tep	€	Ton	tep	€	Ton	tep	€	Ton	tep	€
Janeiro	0,8	0,9	1 058	0,1	0,1	207	0	0	0												
Fevereiro	0,8	0,8	1 053	0,2	0,2	406	0,2	0,2	564												
Março	1	1,1	1 386	0,1	0,2	304	0,3	0,3	652												
Abril	0,9	1	1 340	0,2	0,3	501	0,2	0,3	591												
Maio	0,9	1	1 338	0,2	0,2	416	0,2	0,2	361												
Junho	0,8	0,9	1 276	0,2	0,2	319	0,3	0,3	620												
Julho	0,8	0,9	1 271	0,2	0,3	495	0	0	0												
Agosto	0,6	0,6	920	0,3	0,3	572	0,2	0,2	494												
Setembro	0,9	0,9	1 322	0,4	0,4	829	0,2	0,2	399												
Outubro	0,9	0,9	1 268	0,2	0,2	401	0,3	0,3	681												
Novembro	0,8	0,9	1 300	0,2	0,2	404	0,2	0,2	561												
Dezembro	0,7	0,7	1 061	0,2	0,2	466	0,4	0,4	1 001												
Total	10	11	14 593	3	3	5 318	2	3	5 925	3,6	3,8	8 682	3	3	7 008	3,1	3	-	3	3	-
Variação				-74%	-74%	-64%	-3%	-3%	11%	45%	45%	47%	-15%	-15%	-19%	4%	4%	-	-16%	-16%	-