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Abstract

The Portulacaceae is one of the few terrestrial plant

families known to have both C4 and Crassulacean acid

metabolism (CAM) species. There may be multiple

origins of the evolution of CAM within the Portulaca-

ceae but the only clear evidence of C4 photosynthesis

is found in members of the genus Portulaca. In the

Portulaca, CAM succulent tissue is overlaid with the C4

tissue in a unique fashion where both pathways are

operating simultaneously. Earlier reports have shown

that the clade containing the genera Anacampseros

and Grahamia may also contain C4 photosynthetic

species similar to the Portulaca, which would indicate

multiple origins of C4 photosynthesis within the family.

The aim of the present study was to ascertain the true

photosynthetic nature of these genera. An initial

survey of the carbon isotope composition of the

Anacampseros ranged from –12.6& to –24.0&, in-

dicating very little CAM activity in some species, with

other values close to the C4 range. Anacampseros

(¼Grahamia) australiana which had been previously

identified as a C4 species had a carbon isotope

composition value of –24.0&, which is more indicative

of a C3 species with a slight contribution of CAM

activity. Other Anacampseros species with C4-like

values have been shown to be CAM plants. The initial

isotope analysis of the Grahamia species gave values

in the range of –27.1& to –23.6&, placing the Graha-

mia species well towards the C3 photosynthetic range.

Further physiological studies indicated increased

night-time CO2 uptake with imposition of water stress,

associated with a large diurnal acid fluctuation and

a marked increased phosphoenolpyruvate carboxylase

activity. This showed that the Grahamia species are

actually facultative CAM plants despite their C3-like

carbon isotope values. The results indicate that the

Grahamia and Anacampseros species do not utilize

the C4 photosynthetic pathway. This is the first to

identify that the Grahamia species are facultative CAM

plants where CAM can be induced by water stress.

This work supports earlier physiological work that

indicates that this clade containing Anacampseros

and Grahamia species comprises predominantly facul-

tative CAM plants. This report suggests there may be

only one clade which contains C4 photosynthetic

members with CAM-like characteristics.

Key words: Anacampseros, carbon isotope composition, C4

photosynthesis, Crassulacean acid metabolism (CAM),

evolution, Grahamia, PEP carboxylase, Portulacaceae.

Introduction

In terrestrial plants, two metabolic adaptations that
concentrate CO2 are known: the C4 and the Crassulacean
acid metabolism (CAM) pathway of photosynthesis. The
C4 pathway is found in 19 plant families and ;7000
species (Sage et al., 1999; Sage, 2001), while CAM has
evolved in >30 families and occurs in at least 20 000
species (Winter and Smith, 1996; Sage and Monson,
1999). Both metabolic pathways evolved independently
in well over two dozen distinct lineages (Winter and
Smith, 1996; Sage, 2004), and both pathways have
evolved in four higher plant families (Aizoaceae,
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Asteraceae, Euphorbiaceae, and Portulacaceae). In one
family, the Portulacaceae, CAM and C4 evolved in close
relatives, and can even co-occur in the same species in the
genus Portulaca. Evolution of CAM and C4 appears to
occur by different intermediate steps, which may be
incompatible (Sage, 2002), so the presence of CAM and
C4 in a common evolutionary lineage represents an
interesting question of significance to the understanding
of complex trait evolution.
The C4 pathway first evolved 24–35 million years ago

in grasses and later in dicots in response to decreasing
CO2 concentration in the atmosphere (Sage, 2004;
Christin et al., 2008). The steps involved in the evolution
of the C4 pathway include the formation of distinct
mesophyll and bundle sheath (Kranz anatomy) compart-
ments, followed by localization of the photorespiratory
enzyme glycine decarboxylase to the bundle sheath
(Hylton et al., 1988; Moore et al., 1988; Rawsthorne,
1988; Erhleringer and Monson, 1993; Sage, 2004). This
forms a modest CO2 concentration system where oxygen-
ation products are shuttled to the bundle sheath for
decarboxylation during photorespiration, with the result
that CO2 levels are elevated around bundle sheath
chloroplasts. Subsequent to this, a C4 cycle is engaged by
up-regulating phosphoenolpyruvate carboxylase (PEPCase)
and the expression of the other enzymes in the C4

pathway. The main evolutionary driver for C4 evolution
thus appears to be the scavenging of photorespiratory
CO2, and thus C4 photosynthesis evolves in habitats that
consistently experience conditions conducive to high
ribulose bisphosphate (RuBP) oxygenase activity by
Rubisco. Recent work has shown that the Kranz anatomy
is not essential for terrestrial C4 photosynthesis to occur,
but can occur in a single cell with a spatial separation of
the C4 and C3 pathway within a single chlorenchyma cell
(Voznesenskaya et al., 2001, 2002; Edwards et al., 2004).
CAM photosynthesis occurs in primitive vascular

plants, indicating a very ancient origin; however, most of
the modern lineages appear to have arisen in the same
time frame as the C4 lineages (during the last 35 million
years). CAM is more taxonomically diverse than C4

photosynthesis, with many CAM lineages scattered across
many monocot and dicot families (Winter and Smith,
1996; Sage, 2004). CAM photosynthesis appears to have
originated as a means to scavenge respiratory CO2 under
conditions where the carbon balance is restricted in
environments where water availability becomes restricted
temporarily or seasonally, such as in deserts or rock
outcrops, or as in epiphytes. As with C4, CAM involves
major changes to the leaf structure as well as metabolism.
Succulence is the obvious structural innovation as it
facilitates the capture of night-time CO2 released by
respiration (Gibson, 1982; Ting, 1985; Sage, 2002);
however, tight packing of the mesophyll cells is another
key structural feature that appears to enhance CAM

performance by restricting CO2 loss during phase III of
CAM (Guralnick et al., 1986, 2001; Maxwell et al., 1997;
Nelson and Sage, 2005). The structural adaptations
required to effect CAM, and the changes in enzyme
regulation required to create a CAM diurnal cycle, are two
features which are hypothesized to produce major barriers
to the origin of CAM and C4 photosynthesis in a common
evolutionary lineage. Consistent with this idea, only one
of the dozens of evolutionary lineages with CAM or C4

has both pathways present. This is the section of the
Portulacaceae that includes Portulaca, Grahamia, and
Anacampseros (Hershkovitz and Zimmer, 1997).
To distinguish C3, C4, and CAM plants within a given

phylogeny, carbon isotope composition values can be
used as an initial indicator to estimate the proportional
contribution of RuBP carboxylase and PEPCase to the
overall carbon gain of the plant (Winter and Holtum,
2002). C3 plants will show values of around –29& when
100% of the CO2 is captured by RuBP carboxylase, with
a less negative upper limit of –23& to –20& due to
chemical, diffusional, and environmental constraints
(Winter and Holtum, 2002). C4 plants which utilize
PEPCase as the initial enzyme to capture CO2 can
typically have a range from –10& to –16& (Sage et al.,
2007). CAM plants can range from both ends of the
spectrum depending on the contribution of the CAM
pathway to the overall carbon gain of the plant. Failure to
account for this could lead to a misidentification of
a CAM plant as being a C3 or C4, and hence it is usually
necessary to complement carbon isotope analyses with
additional physiological investigation to ensure proper
identification of CAM in a candidate species (Winter and
Holtum, 2002).
The Portulacaceae is a medium-sized family with ;30

genera and 450 species with a wide distribution, but is
predominant in the Southern hemisphere (Eggli and Ford-
Werntz, 2002). The Portulacaceae has species which are
strict C3 plants (typically those found in Western North
America; Guralnick et al., 2001); others which are C3

plants with some attributes of CAM; others which are C4

plants which also display some CAM characteristics; and
other species which are facultative CAM plants (switching
between C3 and CAM photosynthesis). Hence, with
respect to photosynthesis, the Portulacaceae is one of the
most diverse plant families in the plant kingdom. The only
genus known to have C4 photosynthetic members is the
genus Portulaca, which forms a distinct clade in the
Anacampseroid section (Hershkovitz and Zimmer, 1997).
Portulaca most probably evolved the C4 pathway from
CAM ancestors (Guralnick and Jackson, 2001). Prior
research has shown that Portulaca grandiflora has both
the C4 and CAM pathway operating simultaneously in the
mesophyll leaf tissue (Guralnick et al., 2002); however,
the two pathways are segregated into distinct tissue
regions. CAM resides in succulent cells positioned

1736 Guralnick et al.
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towards the interior of the leaf, while C4 is localized to
a few layers of mesophyll cells towards the exterior of the
leaf and near the stomata (Guralnick and Jackson, 2001).
The Anacampseroid clade which contains both C4 and

CAM members is composed of two subclades; one
containing the genus Portulaca and the other subclade
containing the genera Anacampseros, Grahamia, Talinop-
sis, Xenia, and Tallinaria which contains many facultative
CAM plants (Hershkovitz and Zimmer, 1997; Guralnick
and Jackson, 2001). In addition, earlier reports in the
literature have indicated that Grahamia bracteata and two
Anacampseros species, A. kurtzii and A. australiana
(which have since been placed in Grahamia; Nyffeler,
2007), may also be C4 photosynthetic species (Kellogg,
1999). This raises the possibility of multiple origins of C4

photosynthesis overlaying CAM tissue within the Ana-
campseroid clade. The placement of the genus Grahamia
and Anacampseros as having C4 members is not clearly
resolved, as much of the early evidence of a C4 pathway
may be incorrect due to the possible operation of a CAM
pathway (Watson and Dallwitz, 1992). In this study, the
objective is to clarify and identify the photosynthetic
pathway utilized within Grahamia and Anacampseros
using carbon isotope assessment, gas exchange, titratable
acidity analysis, and biochemical assays of PEPCase
activity. The results will aid in clarifying the origins of
C4 and CAM photosynthesis within the Portulacaceae,
thereby allowing for better understanding of how two
seemingly incompatible traits might arise in a common
evolutionary lineage.

Materials and methods

Plant material

Cuttings of G. bracteata, G. coahuilensis, G. frutescens, and A.
vulcanensis were obtained from the Museum of Succulents (Zurich,
Switzerland). Plants were then transplanted into pots in a glasshouse.
Anacampseros australiana (also known in the literature as Graha-
mia australiana) plants were purchased from the Rare Plant
Research Institute (Portland, OR, USA). All plants grown were
irrigated with 1/2 strength Hoagland’s solution and irrigated prior to
sampling. The plants were grown under natural light conditions
supplemented with artificial light to maintain a light level of 400–
600 mmol m�2 s�1. The day/night temperature in the glasshouse
was 27/17 �C. Water was withheld for 5 d prior to sampling for the
water stress conditions. The carbon isotope composition was
assessed for all of the living material in the study, and a series of
specimens of Anacampseros collected from herbarium sheets at the
Royal Botanical Garden at Kew, UK (Table 1). The d13C of living
specimens was collected from leaves, ground to a fine powder, and
sent to Washington State University (College of Sciences Stable
Isotope Core; http://www.isotopes.wsu.edu). Herbarium specimens
were analysed at the Stable Isotope centre of the University of
California, Davis (http://stable-isotopes.geology.ucdavis.edu). In
addition, leaf material of plants of known photosynthetic pathways
also growing under the same conditions was collected and sent
along with the Grahamia species. Carbon isotope fractionation
values were determined on leaf samples taken from plants using

a standard procedure relative to PDB (Pee Dee Belemnite)
limestone as the carbon isotope standard (Bender et al., 1973).

Titratable acidity

Three to six leaves were collected in the morning and evening, and
were frozen (–20 �C) until assayed. Leaf samples were weighed,
ground in glass-distilled water, and titrated with 0.01 N KOH to
a pH 7 end-point.

PEPCase activity

Approximately 0.5 g of leaf tissue for PEPCase activity was
collected in triplicate in the afternoon under well-watered and water-
stress conditions. The samples were assayed spectrophotometrically
by following the oxidation of NADH at 340 nm as previously
described (Guralnick and Ting, 1987).

CO2 uptake

Rates of photosynthesis were measured with an LCpro+ portable
infrared CO2 gas analyser from ADC BioScientific Ltd, Great
Amwell, UK, using the conifer chamber. The plants were measured

Table 1. Carbon isotope ratios of Anacampseros and Grahamia
species from herbarium specimens

The samples were stored at either Kew Gardens, Richmond, UK, or the
Missouri Botanical Gardens, St Louis, Missouri, or live material from
Western Oregon Universitya). Isotope values are indicated with sample
size if >1.

Species d13C/12C isotope
value (&)

Photosynthetic
mode

Anacampseros
arachnoids –12.6
albidiflora –13.8, n¼2
albissima –14.5 Facultative CAM
albissima –19.0, n¼2
australiana –23.8
baesckii –17.3
comptonii –18.20
filamentosa –13.00 Facultative CAM
filamentosa –14.6
lanigera (¼filamentosa) –13.10
namaquensis –13.5
papyracea –12.8
quinaria –16.3
rhodesicae –14.5, n¼2
ruschii –17.5
somaliensis –23.3
subnuda –15.2
telephiastrum –14.8 Facultative CAM
telephiastrum –19.6
thodesica –23.2
urstulata –19.8
wischkonin –21.1
vulcanensisa –23.7, n¼2
rufescensa –17.8, n¼2 Facultative CAM
australianaa –24.0, n¼2

Grahamia
bracteataa –23.7, n¼2
frutescensa –26.8, n¼2
coahuilensisa –24.1, n¼2

Other Portulacaceae
Montia sibiricaa –32.6, n¼2 C3

Lewisia cotyledona –25.2, n¼2 Weak CAM
Portulaca oleraceaa –13.6, n¼2 C4

C4 and CAM in Anacampseros 1737
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over 24 h with a 16 h photoperiod. Light was increased/decreased
stepwise at the beginning and end of the photoperiod, respectively,
with a maximum light intensity of 500 PPFD (photosynthetic
photon flux density). The source of light was an LCpro+ conifer
chamber red and blue LED lamp attachment. Other conditions were
set on ambient mode with diurnal temperatures approximating
25/21 �C, 370 ppm CO2, and 50% relative humidity. The area of
the leaf was determined using ImageJ 1.36b software from the
National Institutes of Health, Bethesda, MD, USA.

Results

Carbon isotope composition

The carbon isotope analysis showed G. bracteata with
a value of –23.7&, G. coahuilensis –24.1&, A. austral-
iana –24.0&, and G. frutescens –26.8& (Table 1). The
Anacampseros species showed a wide range of isotope
values from –12.6& to –24&. The carbon isotope
composition values were shifted towards the C4 range,
with 18 of the 24 species having values of less than –
20&. For comparison, the CAM cycling species, Lewisa
cotyledon, had a value of –25.2& while the C3 Montia
sibirica had a value of –32.6&. Two known facultative
CAM species, A. rufescens and A. vulcanensis, had rather
different carbon isotope values of –17.8& and –23.7&,
respectively. The C4 species, Portulaca oleracea, had
a carbon isotope composition of –13.5&. Due to a lack of
plant material of A. australiana (except where noted) and
G. frutescens, the following results are for G. bracteata
and G. coahuilensis.

Titratable acidity

Well-watered plants of G. bracteata, A. australiana, and
G. coahuilensis showed very high titratable acidity levels
of >200 leq g�1 FW and little or no diurnal acid
fluctuations (Table 2). During the imposition of water
stress, both G. bracteata and G. coahuilensis showed
a large diurnal acid fluctuation. Grahamia bracteata had
a fluctuation of >200 leq g�1 FW, while G. coahuilensis

showed a diurnal acid fluctuation of 148 leq g�1 FW.
Anacampseros australiana showed a smaller diurnal acid
fluctuation increase of 58 leq g�1 FW. All three Graha-
mia species under water-stress conditions showed a signif-
icant difference from the am to pm acid levels.

PEPCase activity

The well-watered plants of G. bracteata and G. coahuil-
ensis had PEPCase activity of 28–36 lmol mg�1 chl h�1

(Table 2) while A. australiana had a slightly higher
activity of 125 lmol mg�1 chl h�1. After imposing 5 d of
water stress, G. bracteata and G. coahuilensis both
showed a significant induction of enzyme activity, with
a 16–26-fold increase in the PEPCase activity (P <0.05,
Table 2). Anacampseros australiana did not show a large
induction of PEPCase activity when compared with the
other plants under water-stress conditions.

CO2 gas exchange

Gas exchange activity of control plants of G. bracteata
showed daytime CO2 uptake between 10 lmol m�2 s�1

and 15 lmol m�2 s�1 over the course of the light period
(Fig. 1A). At night there was a net loss of CO2 due to
respiration. Imposing water stress triggered a change in
the CO2 uptake pattern, with primarily night-time CO2

uptake and daytime uptake at the beginning and end of the
light period (Fig. 1B). During most of the light period
there was little if any net CO2 gas exchange observed.
Gas exchange activity of control plants of G. coahui-

lensis also showed daytime CO2 uptake between 10 lmol
m�2 s�1 and 15 mol m�2 s�1 over the course of the light
period (Fig. 2A). After 3 d of water stress, in G.
coahuilensis there was no observable shift to night-time
CO2 uptake (Fig. 2B). Water stress imposed for 9 d
caused a dramatic decrease in daytime CO2 uptake with
very little increase in nocturnal CO2 uptake (Fig. 2B).
Early morning and late afternoon uptake remained quite
positive after 9 d of water stress.

Table 2. Diurnal acid fluctuation and PEPCase activity of Grahamia bracteata, Grahamia coahuilensis, and Anacampseros
australiana under well-watered and 5 d water-stress conditions

Species Titratable acidity (leq g�1 FW) PEPCase activity (lmol
NADH mg�1 chl h�1)

am pm D (am–pm)

A. australiana
Well-watered 208 (77) 243(84) –35 125 (14)
Stress 311 (12) 253 (6) 58* 304 (50)
G. bracteata
Well-watered 226 (47) 214 (8) 12 28.7 (9)
Stress 338 (11) 137 (9) 201* 448 (164)*
G. coahuilensis
Well-watered 176 (15) 164 (24) 12 36 (20)
Stress 423 (34) 283 (35) 140* 962 (175)*

* A significant difference between am and pm acid levels or well-watered and stressed PEPCase activity (P < 0.05, n¼3–5, t-test).
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Downloaded from https://academic.oup.com/jxb/article-abstract/59/7/1735/646297/Evolutionary-physiology-the-extent-of-C4-and-CAM
by Roger Williams University user
on 11 October 2017



Discussion

A number of interesting questions arise from studies of
the Portulacaceae; how did the C4 and CAM pathway
evolve within the Portulacaceae, are there multiple
origins, and how may have C4 and CAM evolved in the
same species, particularly within a common leaf tissue.
Many of the C4 species within the Portulacaceae are also
succulent, with increased titratable acidity levels com-
pared with typical C4 species (Kraybill and Martin, 1996;
Guralnick et al., 2002). Since both pathways require the
same suite of enzymes to function, understanding how
these pathways evolved in this family and in the same leaf
tissue could reveal important insights into how complex
metabolic pathways modify common enzyme systems to
serve distinct metabolic roles.
Prior work studying the Portulacaceae demonstrates that

CAM evolved from their C3 ancestors to weak CAM first,
followed by the formation of facultative CAM in more
derived lineages (Guralnick and Jackson, 2001). Faculta-
tive CAM metabolism may have multiple origins within
the family. The C4 pathway appears to have evolved after
CAM, possibly by the modification of a distinct layer of

Kranz tissue that is separate from the CAM tissue in
leaves of Portulaca species (Guralnick and Jackson,
2001). Additional reports in the literature for the Portulac-
aceae noted that the genus Trianthema has C4 species, but
this genus is now properly placed in the Aizoacaceae
(Watson and Dallwitz, 1992). Early reports also indicated
that certain Anacampseros species have the C4 pathway,
but there is little supporting evidence for this conclusion
(Watson and Dallwitz, 1992). A recent phylogenetic
analysis demonstrates that Anacampseros is closely
aligned to Grahamia and indicates that certain Grahamia
species, including the putative C4 species, should be
reclassified as Grahamia (Fig. 3; Nyffeler, 2007). Based
on this phylogenetic analysis and the close alignment of
the C4 photosynthetic Anacampseros with the other
members of the genus Grahamia, a physiological in-
vestigation was initiated to explore the possibility of
multiple origins of C4 photosynthesis and to determine
the true photosynthetic characteristics of the genus
Anacampseros and Grahamia in the Portulacaceae.
The initial analysis of the carbon isotope composition

of Anacampseros ranged from –12.6& to –24.0&,

Fig. 1. Diurnal course of CO2 gas exchange of G. bracteata (A) of
control and (B) 5 d water-stressed plants. The results summarize the
results of a 2 d sampling period. The dark bar indicates the night period.

Fig. 2. Diurnal course of CO2 gas exchange of G. coahuilensis (A)
control and (B) 3 d (open squares) and 9 d water-stressed (open
triangles) plants. The results summarize the results of a 2 d sampling
period. The dark bar indicates the night period.

C4 and CAM in Anacampseros 1739
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indicating that very little CAM activity is present in some
species, while others have values close to the C4 range,
indicating either the presence of a C4 pathway or strong
CAM activity. While the presence of C4 photosynthesis in
species with C4-like isotope values, such as A. arachnoids
and A. papyracea, cannot definitively be ruled out, there
was little additional evidence that these species are C4. A
superficial examination of Anacampseros herbarium mat-
erial showed no sign of Kranz anatomy (R Sage, personal
observation). Kranz anatomy in C4 plants is often readily
observed in leaves by examining them when backlit by
a strong light, or by viewing the veins on end in cut
sections using a strong hand lens or dissecting scope.
Also, the presence of d13C values that are intermediate
between C3 and C4 values in many of the Anacampseros
species is commonly observed in CAM lineages, but not
in C3 and C4. Notably, Anacampseros species which had
carbon isotope composition values close to the C4 range
have been previously shown to be facultative CAM
species. Anacampseros filamentosa showed –13.0& here,
but previously showed a value of –15.4& in the field

(Mooney et al., 1977), and exhibits a large diurnal acid
fluctuation when grown under glasshouse conditions
(Guralnick and Jackson, 2001). Anacampseros albissima
had a variable carbon isotope value from –14.5& to
–19.0& and also has been shown to have a diurnal acid
fluctuation typical of many CAM species (Kluge and
Ting, 1978). Many other Anacampseros species (A.
tomentosa, A. dielsiana, A. marlothi, A. telephiastrum,
A. retusa, A. minutum, A. lanceolata, A. crinitia, and
A. rufescens) have also shown diurnal acid fluctuations
typical of facultative CAM species (Guralnick and
Jackson, 2001). Together, these results are consistent with
the conclusion that these Anacampseros species are
mostly likely CAM species with varying contributions of
the CAM pathway to the carbon isotope composition of
the species.
Within the other Anacampseros clade (Hershkovitz and

Zimmer, 1997) are found A. kurtzii and A. australiana,
putative C4 species (Watson and Dallwitx, 1992; Kellogg,
1999), Grahamia bracteata, and Xenia (¼Anacampseros¼
Grahamia) vulcanensis which have not been identified

Fig. 3. Tree topology derived from phylogenetic analyses of the combined data (matK, ndhF, and nadI sequences) giving the strict consensus of two
most parsimonious trees. Bootstrap values are given below the branches (redrawn from Nyffeler, 2007 with kind permission of The Botanical Society
of America). Photosynthetic determinations of C3, C4, and CAM are based on this study, (a) Guralnick and Jackson (2001) and (b) Kluge and Ting
(1978).

1740 Guralnick et al.
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regarding which photosynthetic pathway they utilize.
Anacampseros (¼Grahamia) australiana has a carbon
isotope composition value of –24.0&, which is more
indicative of a C3 species with a slight contribution of
CAM activity. The carbon isotope composition values of
both G. bracteata and X vulcanensis were of –23.7&,
which is not indicative of C4 photosynthesis. The other
Grahamia species tested ranged from a value of –26.8&
to –24.1&. These data indicated that these Grahamia
species are not C4 plants, with the carbon isotope
composition being too negative and not in the C4 range.
The results also indicated a minimal contribution of the
CAM pathway during its growth, with the carbon isotope
composition values being closer to those of C3 plants
(Winter and Holtum, 2002). The ranges of carbon isotope
composition values obtained were similar to the CAM
cycling species, L. cotyledon (Table 1; Guralnick et al.,
2001). The isotope data are consistent with the possibility
that the Grahamia species are facultative CAM plants
because the values are similar to those of the facultative
CAM species Portulacaria afra when grown under
well-watered conditions (Guralnick and Ting, 1987);
however, to be certain, direct physiological assessments
are required. Therefore, a physiological investigation was
undertaken to ascertain the true nature of the photosyn-
thetic pathway utilized by the Grahamia species.
The well-watered Grahamia plants had very high

titratable acidity levels and low levels of PEPCase activ-
ity (Guralnick et al., 1984; Guralnick and Ting, 1987).
After 5 d of water stress, a large diurnal acid fluctuation
was noted, as was a sizable increase of PEPCase activity
in A. australiana, G. bracteata, and G. coahuilensis. The
gas exchange pattern observed for water-stressed G.
bracteata showed a typical CAM pattern with little or no
midday CO2 uptake. These results were similar to pre-
drought and post-drought patterns of photosynthesis
found in P. afra (Guralnick et al., 1984; Guralnick and
Ting, 1987).
Grahamia coahuilensis was different from G. bracteata

in its response to water stress. Grahamia coahuilensis did
not have an increase in nocturnal CO2 uptake as observed
in G. bracteata. After 9 d of water stress, the gas
exchange data showed only a slight positive increase of
night-time CO2 uptake; overall, however, night-time gas
exchange remained close to zero while early morning and
late afternoon CO2 uptake remained high. The large
diurnal acid fluctuation may be explained by substantial
night-time refixation of respiratory CO2 by PEPCase, with
a relatively small contribution from fixation of atmo-
spheric CO2. This pattern has been observed in other
Portulacaceae species such as P. grandiflora (Guralnick
et al., 2002), and is commonly referred to as the CAM
idling mode. CAM idling is often proposed as an initial
phase in the evolution of the CAM pathway. The results
support the conclusion that the Grahamia species are

weak to strong facultative CAM plants where CAM can
be induced by water stress. Based on the carbon isotope
composition values, it can be concluded that the genus
Grahamia does not utilize the C4 photosynthetic pathway.
The data in this study support the hypothesis that C4

photosynthesis within the Portulacaceae only originated in
Portulaca. The clade containing the genera Anacampseros,
Talinopsis, and Tallinaria which branches off from
a common ancestor shared with Portulaca provides no
evidence for C4 species, and should be considered as being
C3, weak CAM, or facultative CAM species. These
physiological results are similar to what has been observed
in the closely aligned Talinopsis genera which had a carbon
isotope value of –25.3& (LJ Guralnick, unpublished data)
and a large diurnal acid fluctuation (Guralnick and Jackson,
2001).
There still may be multiple origins of C4 photosynthesis

within the Portulacaceae. Two apparent clades are present
in Portulaca based on morphological and biochemical
features. The P. grandiflora type has succulent, tubular
leaves and an NADP-ME (malic enzyme) type of C4

photosynthesis, while the P. oleracea type has succulent,
flattened leaves with NAD-ME photosynthesis. NADP-
ME and NAD-ME are often thought to represent distinct
origins because the different biochemical and structural
requirements of each subtype appear to preclude one type
giving rise to another; however, this hypothesis does
require validation (Muhaidat et al., 2007). Phylogenetic
resolution is needed to confirm separate origins of the C4

pathway in Portulaca, and possibly to indicate the
immediate ancestors of the C4 lineage(s). At present, there
is no evidence for C3–C4 intermediacy in Portulaca or its
relatives, nor for CAM–C4 intermediacy, and it is not
clear what the immediate ancestral genus is, since
numerous genera such as Portulacaria and Cistanthe
resolve as sister to Portulaca in recent phylogenies (Fig.
3). Because Portulaca represents the possible independent
evolution of distinct biochemical and structural subtypes
from a common CAM ancestor, the elucidation of
phylogenetic relationships in this clade should be an
important contribution to understanding photosynthetic
pathway evolution in higher plants.
In conclusion, this report shows that A. australiana is

not a C4 species but does demonstrate attributes of CAM
photosynthesis. It is also shown that G. bracteata is
a facultative CAM species that does not utilize the C4

photosynthetic pathway, and most Anacampseros species
exhibit carbon isotope ratios that are consistent with this
group also being facultative CAM and not C4. It can
therefore be recommended that follow-up work on C4

evolution in the Portulacaceae should focus on Portulaca
and its immediate ancestors. By identifying patterns of
ancestry, a well-resolved phylogeny could allow research-
ers to focus their efforts on the branch-point species where
important evolutionary developments occurred.
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