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Abstract: Microresonator-based frequency combs are strong contenders as light sources for 

wavelength-division multiplexing (WDM). Recent experiments have shown the potential of 

microresonator combs for replacing a multitude of WDM lasers with a single laser-pumped 

device. Previous demonstrations have however focused on short-distance few-span links 

reaching an impressive throughput at the expense of transmission distance. Here we report the 

first long-haul coherent communication demonstration using a microresonator-based comb 

source. We modulated polarization multiplexed (PM) quadrature phase-shift keying-data onto 

the comb lines allowing transmission over more than 6300 km in a single-mode fiber. In a 

second experiment, we reached beyond 700 km with the PM 16 quadrature amplitude 

modulation format. To the best of our knowledge, these results represent the longest fiber 

transmission ever achieved using an integrated comb source. 
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1. Introduction 

The advent of self-referenced femtosecond mode-locked lasers [1,2] allowed for establishing 

a coherent link between radio frequency and optical signals obtained from lasers or atomic 

transitions. This technology is finding an increasing number of applications in precision 

frequency synthesis and metrology [3]. Microresonator-based frequency combs have been 

identified as a key technology to reach a similar level of precision in a monolithic platform. 

This technology provides an opportunity to attain line spacings significantly higher than what 

can be achieved with standard mode-locked lasers [4,5]. In addition, high-Q microresonators 

can be fabricated using standard semiconductor fabrication processes, see e.g. [6–11]. As a 

result, microresonator frequency combs are opening up a whole new range of technological 

possibilities. Recent demonstrations include self-referencing [12,13], optical clocks [14], 

radio-frequency photonics [15,16], spectroscopy [17,18], optical waveform synthesis [19] and 

high-capacity communications [20]. 

In fiber-optic communications, an integrated multi-wavelength light source would provide 

the fundamental carriers on which to encode data using e.g. wavelength-division multiplexing 



(WDM). A frequency comb would allow replacing a large number of WDM channel light 

sources with a single laser. To date this has been explored principally with combs generated 

via periodic electro-optic modulation of a continuous-wave input laser, often supplemented 

with nonlinear spectral broadening in an optical fiber [21–25]. These electro-optic combs 

have been used as communications light sources both for short-distance on-off keying 

systems [21] as well as in long-haul demonstrations with all-optical orthogonal frequency-

division multiplexing [26] and coherent [27] modulation formats. Absolute frequency 

accuracy is in principle not needed, but line spacing stability provides an opportunity to 

efficiently mitigate inter-channel nonlinear distortion via nonlinear pre-compensation [28]. 

Since a self-referenced light source is not necessary, there is a multitude of integrated comb 

sources that can be considered, such as integrated electro-optic combs [29], silicon-organic 

hybrid modulators [30], passively mode-locked lasers [31] or quantum-dash mode-locked 

lasers [32]. The rationale for using microresonator-based frequency combs lies in the fact that 

they can be generated using high-performance silicon nitride high-Q 

microresonators [6,8,11,33]. This technology is compatible with standard CMOS fabrication 

processes and recent demonstrations have shown that it is possible to realize multi-layer 

integration with active silicon components [34]. This significant achievement opens up the 

possibility to in the future realize a fully integrated comb-based transceiver with silicon 

photonics technology. Indeed, silicon nitride microresonator combs have shown a level of 

performance compatible with coherent communications [20]. Bright temporal solitons in 

silicon nitride microresonator combs have led to impressive demonstrations attaining 50 Tb/s 

aggregate data rates [35]. These results demonstrate the potential to achieve hundreds of lines 

in a single device by proper dispersion engineering. Demonstrations have however so far not 

been performed for long-haul distances beyond a few fiber spans. 

In this work we demonstrate the results from two long-haul communication experiments 

using microresonator combs designed in silicon nitride waveguides. Working in the stable 

modulation instability regime [36,37], they provide a handful of high-powered lines enabling 

long-distance transmission. We modulated data using polarization-multiplexed quadrature-

phase shift keying (PM-QPSK) and 16-quadrature amplitude modulation (PM-16QAM) on 

two different comb devices. We achieved propagation distances of 6300 km using 12.5 GBd 

PM-QPSK and 700 km with 20 GBd PM-16QAM. These represent the longest transmission 

distances ever achieved using an integrated comb source. This work extends results presented 

in [38] and [39] by increasing the data rate using PM-16QAM as well as characterizing the 

comb generation process. 

2. Comb generation 

The devices consisted of rings with 100 µm radius leading to a comb line spacing of multiples 

of 230 GHz. SiN microresonator combs with smaller spacings are possible [35,40]. Practical 

challenges that need to be addressed when going for longer cavity lengths include 

maintaining low waveguide losses as well as limiting the effects of modal crossings in the 

ring waveguide. The latter effects could be addressed e.g. by using an arrangement of linearly 

coupled single-mode cavities [41]. The devices used in this work consisted of a single 

microring equipped with a drop port as shown in Fig. 1(a). The drop port assisted in filtering 

out amplified spontaneous emission (ASE) noise that was left around the pump laser while at 

the same time limiting the amount of pump light that was present at the output port [42]. 

Contrary to the cavity soliton-based microresonator combs that require anomalous dispersion 

waveguides, our microresonators were designed to operate in the normal dispersion regime. 

To initialize the combs from a single continuous wave (CW) laser source using degenerate 

four-wave mixing, it is however still required to have locally anomalous dispersion. This can 

be achieved through local perturbations. In our case, the perturbation was caused by coupling 

between transverse modes [43]. Figures 1(b)-1(d) illustrate the effect of modal coupling 

where in certain frequency regions the resonance locations, and thus the effective index, are 



strongly perturbed by the presence of a second (higher order) mode. This leads to anomalous 

dispersion locally, enabling the degenerate four-wave mixing process [43]. 

 

Fig. 1 (a) Microscope image of one of the microresonators used in this work. (b) Transmission 
scan of a multimode device highlighting a region where two modes couple linearly. By 

dividing the spectrum into regions spaced with 1 FSR, we can illustrate the coupling effect in 

subfigures (c) and (d). As the resonance locations move closer, they will repel each other if 
there is coupling between them, leading to the resonances being slightly offset in the shaded 

region. Since this is locally changing the effective index of the waveguide, the dispersion of 

the device will also be greatly affected. A more detailed description of the effects of modal 

coupling is given in [43]. 

The comb devices were excited in the soft-excitation regime using thermal wavelength tuning 

of an external cavity pump laser with a sub-100 kHz specified linewidth. The pump laser was 

amplified with a high-power erbium-doped fiber amplifier (EDFA) after which a 1 nm wide 

optical band pass filter was placed to remove excess ASE noise. The EDFA output power was 

set to 27 dBm in the first experiment (corresponding to ~24 dBm on-chip power) and 30 dBm 

in experiment two (corresponding to ~27 dBm on-chip power). After the pump EDFA, the 

chip was placed on a temperature controlled stage constraining any temperature variations to 

less than 0.01 °C. The chip was coupled to and from using lensed fibers placed into U-

grooves etched into the device [42] permitting stable operation over several hours. A 

resonance several nanometers away from the mode crossing was pumped. The comb state is 

coherent and it operates in the stable modulation instability region [37]. Figures 2(a) and 2(c) 

show the optical spectra of the combs used in our experiments. The comb in Fig. 2(c) was 

generated from the ring with the transmission scan shown in Fig. 1(b). Two different 

resonators were used for the two experiments due to damage sustained to the first device. The 

waveguides of both microresonators had the same thickness at 600 nm, while their widths 

were 3 µm and 2 µm respectively. The excited mode was the first-order X-polarized mode 

and had a dispersion of roughly 250 ps2/km [42]. The RF spectra in Figs. 2(b) and 2(d) 

indicate that the combs were operating in a low-noise state [44]. The total conversion 

efficiencies (adding the through and the drop port) of both used combs were measured to be 

above 10% (see Appendix). 



 

Fig. 2. (a) and (c) The optical power spectra (taken with 0.1 nm resolution) of the two used 
combs with 230 GHz and 690 GHz line spacing respectively as seen from their drop ports with 

the dashed boxes showing the lines used in the communications experiments. The line powers 

coupled into fiber were between -8.2 dBm and 7.6 dBm for the first ring and between -8.4 
dBm and 9.6 dBm for the second ring. (b) and (d) The corresponding RF spectra in red with 

the noise floor in blue showing that the combs were operating in a low-noise state. 

 

3. Data transmission and results 

Before modulating data onto the comb lines, we also placed a flattening stage consisting of a 

programmable pulse shaper and an EDFA ensuring that all lines had equal power. This 

resulted in a flat spectrum with an optical signal-to-noise ratio (OSNR) of >35 dB per line at 

0.1 nm resolution before data modulation. To emulate a WDM system in the laboratory 

without the large number of components required, all the lines of the frequency comb were 

instead modulated simultaneously using the same transmitter. See Fig. 3(a) for a description 

of all the necessary components. 

The transmitter 

The transmitter consisted of an electro-optic IQ-modulator modulating all the comb lines 

simultaneously. The modulator was followed by a dual-polarization emulation stage using a 

polarization maintaining fiber (PMF) corresponding to a delay of more than 20 symbols. The 

intrinsic dispersion of a 27 km single-mode fiber (SMF) was used to delay and decorrelate the 

different channels with respect to each other, corresponding to a delay of more than 10 

symbols. Since our carriers were spaced several hundred GHz apart, linear crosstalk between 

the channels is intrinsically not expected to be a problem, thereby we can avoid the widely 

used even-odd modulation scheme that would require an extra transmitter. Using fiber 

dispersion as means to decorrelate the channels allows us to emulate a scenario where 

different data were encoded on each channel to ensure that any correlated nonlinear crosstalk 

is also avoided. The launch power into this section was only −10 dBm to avoid nonlinearities 

in this span. Different data sources were connected to the modulator in the two experiments. 

For the longest reach one, a 12.5 GBd QPSK signal was generated using a pseudorandom 

binary sequence pattern generator with a pattern length of 215-1 bits (PRBS-15). For the 

second measurement, the data source was replaced with a newly acquired arbitrary waveform 



generator (AWG) allowing for the generation of a more spectrally dense QAM signal. The 

20GBd 16QAM signal consisted of a triply oversampled PRBS-15 bit pattern with an added 

trailing zero to comply with the AWG’s pattern length requirements. As previously 

mentioned, two different microresonators were used in the two experiments. In the QPSK 

case, a single free spectral range (FSR) spaced comb (corresponding to 230 GHz line spacing) 

with 7 lines covering a part of the C-band (see the dashed box in Fig. 2(a)) was used. In the 

16QAM system a second microresonator giving a 3 FSR spaced comb (corresponding to 690 

GHz line spacing), covering the full C-band with 6 lines (see Fig. 2(c)) was used instead. 

Both comb and transmitter combinations were tested in a back-to-back noise loading 

setup, where progressively more ASE noise was added to the signal after modulation. The 

OSNR at which a bit error rate (BER) of 10-3 was received was then recorded for each comb 

line. Reference measurements were done where free-running lasers were instead tuned to the 

wavelength locations matching the comb lines. The reference lasers were external cavity 

lasers with <100 kHz specified linewidth, nominally identical to the one used as pump for the 

microresonator. This was done to study any implementation penalty caused by the combs 

themselves. Figure 3(b) shows the results for the two systems. The conclusion is that the 

comb lines do not cause any significant penalty. The permitted transmission distance will 

therefore be limited by the comb lines’ initial OSNR before modulation and the imperfections 

in the various other pieces of equipment that are part of the setup. While we have observed a 

variation in instantaneous linewidth across the bandwidth in our microresonator combs [39], 

such a degradation is not expected to cause significant penalties in transmission given the 

requirements for QPSK and 16QAM [45]. We are currently investigating this aspect. 

 

Fig. 3. (a) Schematic of the experimental setup used for the comb generation and the data 
modulation. The PMF delay and polarization beam combiner (PBC) were used to emulate a 

dual polarization transmitter. (b) Results for back-to-back noise loading measurements of both 

systems, the QPSK transmitter had an implementation penalty of 1.0 ± 0.2 dB while the 
16QAM transmitter had an implementation penalty of 1.9 ± 0.4 dB. The implementation 

penalties for the comb lines do not significantly differ from those for a free-running laser 

source. 



The recirculating loop 

A recirculating loop with two 80 km fiber spans inside was used to emulate the transmission 

link. Figure 4(a) shows a schematic of its components. The SMF spans were preceded by a 

flattening stage and a tunable attenuator ensuring that the launch power of each line in the 

comb was kept at optimum. For the QPSK case the optimum total launch power was found to 

be 4 dBm while for the shorter distance 16QAM experiment it was 6.5 dBm. The OSNR at 

the input of the first fiber span was above 29 dB (normalized to 0.1 nm resolution) for all 

channels in both systems. The pulse shapers used for flattening also attenuated out-of-band 

noise. This helped to ensure that the launched signal power was maintained after multiple 

roundtrips. It is however worth noting that the rightmost channel received both less gain as 

well as greater frequency dependence of the gain compared with the other channels, see Fig. 

4(c). Each SMF span was followed by an EDFA (with noise figures around 5.2 dB) to 

compensate for the losses. Additionally, the loop also contained a polarization scrambler 

synchronized to the switches and the loop roundtrip time. This way, by iterative optimization 

of the flattening stages it was possible to transmit the signal over multiple roundtrips. 

 

Fig. 4. (a) Schematic of the components used for the recirculating loop. (b) Optical spectra for 

the 16QAM experiment before the first span (taken at the noted point in the setup) both with 
and without spectral flattening and noise filtering. By removing the out-of-band noise between 

the channels, the signal powers inside the loop can be kept constant across several roundtrips. 

(c) Schematic of the components in the receiver. 

The receiver 

In the final part of the setup, there was a standard coherent receiver stage. One comb line was 

filtered out at a time and combined with a tunable local oscillator. A coherent receiver 

containing a polarization-diverse optical hybrid was connected to four ports of a 50 

GSamples/s, 23 GHz bandwidth real-time oscilloscope, see Fig. 4(c). Batches of 2 million 

samples were recorded and processed offline. First the receiver imbalance was compensated 

for, after which the data was resampled to twice the baud rate. The dispersion from the fiber 

link was then compensated for after which an adaptive equalizer and a frequency and phase 

estimator performed the final processing. For the QPSK signal, the constant modulus 

algorithm was used together with an FFT-based frequency offset estimator and a Viterbi-

Viterbi phase estimator. In the 16QAM case, a decision-directed least mean square equalizer 

was used with an FFT-based frequency offset estimator and a blind phase search 

algorithm [45]. Finally, the BER was calculated by comparing the decoded bits with the 

known transmitted sequences. By using a recirculating loop, we had the ability to vary the 

transmission distance, allowing us to find the maximum permitted distance given the chosen 



pre-forward error correction (FEC) BER of 10-3 (allowing for FEC overheads below 

6.25% [46]). 

Results 

The two chosen modulation formats and symbol rates permitted transmission over different 

distances (see Fig. 5). With the QPSK system, at a cumulative pre-FEC bit rate of 350 Gb/s, 

we reached more than 6300 km with all the lines, three of which reached beyond 8000 km, 

resulting in a capacity-distance product above 2 Pb/s∙km, assuming 6.25% FEC overhead. 

8000 km agrees well with expectations from Gaussian noise model-based calculations [47] 

taking into account the OSNR requirements from Fig. 3(b). Since the higher bit rate 16QAM 

system (at a cumulative pre-FEC bit rate of 960 Gb/s) requires a higher OSNR at the 

receiver [48], the permitted distance for the second experiment was instead 700 km, with 

three lines going beyond 950 km, yielding a capacity-distance product above 630 Tb/s∙km. 

Figures 5(a) and 5(b) show how the BER varied as a function of transmitted distance for both 

systems. Owing to the large channel spacing, both systems showed net spectral efficiencies 

around 0.2 b/s/Hz. In both cases, the outermost line at 1566 nm suffered a penalty in terms of 

distance. This is in agreement with the degraded gain performance observed in Fig. 4(b) 

owing to the fact that the channel is outside the specifications of the loop EDFAs. We 

therefore conclude that the distance penalty is not due to the comb source itself. 

 

Fig. 5. (a) and (b) Result of the PM-QPSK and the PM-16QAM transmission experiments 

showing BER as a function of distance in the recirculating loop. The insets display received 

and decoded signal constellations with bit error rates below 10-3. 

4. Summary 

In summary, we have demonstrated experimentally that long-haul transmission is possible 

using silicon nitride microresonator-based frequency comb technology. Using QPSK and 7 

comb lines and 16QAM with 6 lines, we achieve what we believe are the longest 

demonstrated coherent transmission links with an integrated comb source. The low-



complexity QPSK format permitted transmission over transatlantic distances. The higher 

symbol rate 16QAM also permitted long-haul communications albeit at shorter distances. In 

the future, more WDM channels will be needed to fill the whole C band with a line spacing 

compatible with the ITU grid. We envision that the use of mode-locked dark pulses in normal 

dispersion combs [49], with recently predicted [50] and demonstrated conversion efficiencies 

>30% [51] will provide a viable solution to achieve a favorable scaling with the number of 

channels and attain high spectral efficiency. The results of this work widen the scope of the 

usability of silicon photonics-based combs from short-reach high-capacity links to long-haul 

links, thus further opening up the path to chip-based transceivers where the coherent nature of 

frequency combs can be taken advantage of. 
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Appendix – Comb conversion efficiency 

The most straight-forward way of defining conversion efficiency is the relation between the 

optical power in all the newly generated comb lines (excluding the remaining pump line 

power) compared to the power in the initial pump [51]. Both measurements should be done in 

the bus waveguide, adjacent to the ring: 
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Fig. 6. (a) Sketch of a microresonator displaying the measurable power locations (Pin and Pout), 

the internal locations where the power levels need to be calculated as well as the loss elements. 
(b) Recorded spectra from the through and the drop ports of the two used microresonators. The 



displayed conversion efficiencies were calculated by measuring the powers in all the lines 
except for the pump line and comparing it to the throughput power in the off-resonant pumping 

case. The powers were measured using a grating-based optical spectrum analyzer with 0.1 nm 

resolution. In both devices, the total conversion efficiency (adding the through and the drop 

port) exceeded 10 %. 

Since the optical powers inside the microresonator device cannot be measured directly, we 

have to extract the relevant information from measurements done at the output ports of our 

device. Figure 6(a) shows a schematic of the device, the locations where the optical spectrum 

should be measured and the different loss elements that are not part of the comb generation 

process itself. Since the device is coupled into using tapered fibers at both ends, we will incur 

coupling losses at both facets, αc1 and αc2. In addition there will also be some (possibly 

insignificant) losses due to absorption in the bus waveguide, αwg. In practice, the spectrum can 

only be measured at the input and the output. The total loss can be measured by pumping the 

ring resonator off resonance and measuring the output power at the through port: 

 
out,off pump wg c2 in c1 wg c2P PP       . (2) 

After shifting the laser into resonance and initiating the comb, the spectrum can again be 

measured at the through port giving us the on-resonance output powers: 

 out,on out,pump out,comblines out,pump wg c2 comblinesP P P P P      , (3) 

where Pout,pump is the power left in the pump line at the output. From Eqs. (1), (2), and (3), we 

can now extract the conversion efficiency: 
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Using Eq. (4) we can thus measure the conversion efficiency of our comb by only looking at 

the through-port and taking optical spectra in on- and off-resonant pumping situations. A 

similar calculation can be done for the drop port, assuming the chip-to-fiber coupling losses 

are identical for the two ports giving effective conversion efficiencies for both output ports. 

Figure 6(b) shows the values for the combs that were used in our experiments. The two 

devices had slightly different gap distances between the ring and the through ports (500 nm vs 

300 nm) while having the same 500 nm gap to the drop port leading to the difference in the 

ratio between the through and drop port conversion efficiencies. 


