Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

iversity

The Open

Un

Open Research Online

The Open University's repository of research publications
and other research outputs

Agent-based Simulation of Open Source Software
Evolution

Conference or Workshop Item

How to cite:

Smith, N.; Capiluppi, A. and Fernandez-Ramil, J. (2006). Agent-based Simulation of Open Source Software
Evolution. In: International Software Process Workshop and International Workshop on Software Process Simulation
and Modelling, 20-21 May 2006, Shanghai, China.

For guidance on citations see FAQs.

© [not recorded]

Version: [not recorded]

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data |policy on reuse of materials please consult the policies

page.

oro.open.ac.uk

https://core.ac.uk/display/12868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/policies.html

Users and Developers: an Agent-Based
Simulation of Open Source Software Evolution

Neil Smith!, Andrea Capiluppi?, and Juan Ferndndez-Ramil®

1 Centre for Research in Computing, The Open University,
Milton Keynes, MK7 6AA, UK
{N.Smith,J.F.Ramil}@open.ac.uk
WWW home page: http://mcs.open.ac.uk/{ns938/,jfr46/}

2 University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
acapiluppi@lincoln.ac.uk
WWW home page: http://hemswell.lincoln.ac.uk/~acapiluppi/

Abstract. We present an agent-based simulation model of open source
software (OSS). To our knowledge, this is the first model of OSS evo-
lution that includes four significant factors: productivity limited by the
complexity of software modules, the software’s fitness for purpose, the
motivation of developers, and the role of users in defining requirements.
The model was evaluated by comparing the simulated results against
four measures of software evolution (system size, proportion of highly
complex modules, level of complexity control work, and distribution of
changes) for four large OSS systems. The simulated results resembled all
the observed data, including alternating periods of growth and stagna-
tion. The fidelity of the model suggests that the factors included here
have significant effects on the evolution of OSS systems.

Keywords: simulation models, software process, open source software,
software evolution.

1 Introduction

Computing is a rapidly evolving discipline and there is a need to understand
the evolutionary processes that prevail in new forms of software development,
such as open source software (OSS) systems. Evolution in proprietary systems
is becoming understood [1], but many OSS systems do not evolve in the same
way [2,3]. This suggests that existing theories of software evolution are partial
accounts of OSS evolution. Extending these theories can have a practical output
by informing good practice, leading to the more efficient prodution of better
software. This paper reports our attempts to use theories of software evolution
to replicate and explain empirical observations of a set of OSS systems.

OSS evolution involves a community of individuals providing their work
mainly on a voluntary basis and without a strong centralised leadership [4,5].
This invalidates one of the assumptions of many simulation models: the existence
of a centralised management which reacts to the state of the software system by
altering the pattern of work performed [6]. This emphasis on individuals suggests
that an agent-based model of the OSS evolution process is appropriate [7, 8].

We propose that each module within an OSS system is monolithic and will
behave as such [1,9]. However, the modular architecture will restrict the im-
pact of growth stagnation to small parts of the system, where it will not have
a significant global effect. To investigate this hypothesis, we have developed an
agent-based model of OSS development. To our knowledge, the model presented
here is the first model of open source evolution that includes four significant fac-
tors: the complexity of the software modules as a limiting factor in productivity;
the fitness of the software to the requirements; the motivation of developers; and
the role of users in defining requirements. We believe, based on our experiments,
that these are important factors that need to be included in OSS evolution the-
ories.

2 Agent-based Simulation Model

Our motivation for developing this model lies in our understanding of the actions
of individual OSS developers [10,4]. OSS development is decentralised and non-
coercive: generally, developers choose to become involved in an OSS project
and choose which aspects of the project to work on. This focus on individual
developers and specific software components suggests that such objects should
be the primitive elements of our model, with the evolution of the OSS system
being an emergent property of the interactions of those primitive elements.

We used the NetLogo [11] multi-agent simulation tool. In this tool, agents
move around a virtual world (a grid of “patches”), interacting with it and with
other agents. Each agent and patch has its own state and procedures. Simula-
tion proceeds by each agent and patch performing its behaviour independently,
often by following stochastic functions influenced by the agent’s state and lo-
cal environment. Agents perform their own actions asynchronously; there is no
centralised co-ordination of the agents’ actions.

In our model, patches represent modules of software source code and different
types of agents represent developers, unfulfilled requirements, and users.

A module is a single modular part of a software system. Modules that are
near each other are functionally related. Each module records both its fitness for
purpose and its complexity. The complexity of a module acts as an inhibitor to
future changes to that module. To model the changes in external requirements
that drive software evolution, patches have a stochastic process for decreasing
their fitness over time. Finally, modules have a chance to capture the attention
of a developer passing through cyberspace and so create a new developer agent
in the model; this only happens if the module is interesting (i.e. its fitness is
below the developer’s ‘boredom threshold’; see below).

Users are responsible for adding new requirements to the system. Users walk
randomly around the system space and, when they meet a code patch or an ex-
isting requirement, they create a new requirement that extends the functionality
in this area. Newly created requirements attract new users, which reflects the
tendency of users to suggest modifications to existing requirements.

Fig. 1. An example of simulated OSS development. The squares are code patches. The
black circles are unfulfilled requirements. Note how the vertical “stem” in the top left
is loosely connected to the rest of the system.

oad

th Ho

Developers walk randomly around the software system, changing code as they
go. Agents have four behaviours, depending on their location. If a developer is
on an unfulfilled requirement, it creates a new module that fulfils that require-
ment, with a certain (low) fitness and complexity. If a developer is on a module
with high complexity and high fitness, it may attempt to refactor that module.
Refactoring leaves the module’s fitness unchanged, but reduces its complexity by
a random amount. If the developer chooses not to refactor a module, it will at-
tempt to develop the module: this increases the module’s fitness and complexity
by a random amount. However, if the module is complex, the agent may not be
able to improve the module, in which case the module is left unchanged. Finally,
developers have a boredom threshold. If the fitness of the module they are on is
above this threshold, there is a chance that the developer will find the project
boring and leave. Developers may also leave if they wander onto a patch and
have no module or requirement to work on.

Simulation starts with a single module and a single user. These spawn new
requirements and attract the attention of developers. The developers create mod-
ules to fulfil the requirements. As the project grows, more developers and users
are attracted and more requirements are identified. The model’s source code is
available from http://mcs.open.ac.uk/ns938/simulation/.

3 Empirical Data

To validate the model, we compared the simulated output to empirically observed
behaviour. The empirical data was derived from data in OSS repositories. Pre-
vious research has shown that data such as change-log records, program headers
and configuration management offer a suitable source of data for the study of

Table 1. Data sources used

Software System Studied Change Log? CVS? Number of Releases
(URL of Code Repository) Considered
Arla (www.stacken.kth.se/projekt/arla) Yes Yes 70
Gaim (http://gaim.sourceforge.net) N/A Partial 100
MPlayer (www.mplayerhq.hu) N/A Partial 81
Wine (www.winehq.com) Yes Partial 90

Fig. 2. Empirical trends

(b) Trends of size and cumulative

Empirical size trend . .
(a) Empirical size trends complexity control work of Gaim

Cumulative Complexity Control

1 T T T oo 6000 prr 77— 1600
s Size =
o 5000 k Cuml Cplx Ctrl - q 1400
PR)/ < 1200
[} - -
2 4 4000 4 1000
o)
[N - -
73 I 3000 800
N 4 600
%] 2000 + 0l E
| 4 400
1000 | 1 200
PR ol I TP TP B I
1 01/001/0101/0201/03)1/0401/05
Time (relative) Time

software evolution [12-14]. For this study, we selected four OSS systems which
we have examined in previous studies [13, 14]. Table 1 indicates the data sources
we used to extract the empirical data used in this research. We extracted several
attributes for each software system, taking measurements over releases.

Size was evaluated using number of source functions (as a surrogate for the
systems’ growth). Figure 2(a) shows the size trends for all the systems, using
relative sizes and times. Only Wine has a smoothly increasing trend; the other
systems had at least one period of reduced growth (i.e. stagnation).

Complezity was measured at the level of functions. We used the McCabe
cyclomatic number [15] as a measure of complexity and the accepted threshold
value of 15 to distinguish highly complex functions [16]. In all the analysed
systems, the highly complex functions never make up more than 10% of the
overall system.

We measured complexity control work by comparing every function between
two consecutive releases and counting how many of them reduced in complex-
ity. There is a high correlation between the trend of the size growth and the
cumulative amount of complexity control work: figure 2(b) shows this for Gaim.

Fig. 3. Simulated trends

(b) Simulated size and cumulative

il .
(a) Simulated size trends complexity control work

1
Cumulative Complexity Control

1 T T T T T T T 1 T T
09 //,//" - 09 i
0.8 | g - 0.8 - i
Tg‘ 0.7 / 1 © 07F]
= J a =
g 06r . Z 06 i
2 o5} 4 © o05¢F
g 04f) 1 g o4t .
» 03 / 4 »® 03} .
02| / - L) i
01 b System 1 | 8i L Size i
L, | System2 - : -~ Cuml Cplx Ctrl —-—---
= 0 - 1 1 1 1 1
0 10 20 30 40 50 60 70 80 0 5 10 15 20 25 30 35 40
Time (relative) Time

A function is touched when it is added, deleted, or modified. A small subset
of elements is touched a large number of times by developers, whilst most of the

elements receive few touches. The skewness of these distributions ranges from
2.73 in Wine to 4.55 in Arla.

4 Results and Validation

We used the empirical data described above to calibrate and evaluate our model.
We did this by exploring the parameter space of the models, looking at the
generated output, and comparing it to the empirical evidence from the four OSS
systems. Throughout most of the parameter space, the model generated results
that were very similar to the empirical results.

The model was most sensitive to the value of the boredom threshold pa-
rameter, which controls when new developers join and leave the project. If the
boredom threshold of developers was high, high-fitness modules attracted devel-
opers rather than forcing them to leave. The number of developers grew rapidly
and soon swamped the development environment. In contrast, if the boredom
threshold was low, the evolution of the first few modules resulted in a system that
attracted no new developers; the original developers soon left and the project
became moribund.

The behaviour of the users was important to produce both discontinuous
and smooth growth patterns (figure 3(a)). Without the users clustering around
new requirements, the requirements were spread evenly around the system and
only smooth growth patterns were produced [17]. Even with the clustering, some
simulations produced smooth growth.

In the simulations, the proportion of complex functions remained at a con-
stant and low level as long as new modules have an initial complexity below
the reporting threshold, similar to the empirical results. This behaviour was not
seen if refactoring was ineffectual or not attempted. Moving to complexity con-
trol work, figure 3(b) shows that the simulation reproduces the empirical pattern
of increasing complexity control work that eventually follows the growth trend.

Finally the simulation is able to partially reproduce the long-tailed distribu-
tion of touches, though the skew value is typically only 0.8-0.9.

The closeness of the simulated results to the empirical data indicate that our
model reflects many of the processes that occur in OSS evolution.

5 Related Work

The OSS domain was originally studied using quantitative metric data extracted
from OSS systems [10, 13, 14]. Godfrey & Tu [2] highlighted differences between
the evolution of Linux and previously studied systems, particularly its appar-
ently super-linear growth. Our model provides a possible explanation for such
a super-linear growth: access to an effectively unlimited pool of developers and
complexity which constrains productivity to the module level only.

Antoniades et al.’s [18] simulation of OSS processes has reproduced empir-
ically observed patterns of growth and developer numbers. Robles et al. [19]
propose a biologically-inspired simulation, where developers learn from other
developers only through observing changes in the source code. Their research
shares our focus on product characteristics (e.g. size and complexity) and on evo-
lution. However, to our knowledge, the model presented here is the first model
of open source evolution that includes the complexity of the software modules as
a limiting factor in productivity, the fitness of the software to the requirements,
and the motivation of developers.

6 Further Work

Our further work will initially focus on two areas. First is the surprising need
to include the behaviour of the users in creating new requirements. As far as
we know, the role of users in the evolution of OSS systems has not been deeply
explored. We will examine the empirical data to try to identify how and when
users generate new requirements and how they are dealt with by developers.
Second is inability of the model to produce touch distributions that were as
skewed as the empirical data. This may be due to the undiscriminating behaviour
of the developer agents in modifying existing code patches and the initial values
of a module’s fitness and complexity: it appears that many modules in real
systems are rarely touched because their initial implementation is adequate and
not subject to change.

The other aspect of developer behaviour that we will soon add to the model
is to take account of developers’ experience in controlling and approving changes
made to the system. In many OSS systems, there is a core of highly experienced

super-developers that have a great influence on the evolution of the system [20].
We anticipate that including such super-developers in the model will have a
significant effect on the simulation.

7 Conclusions

This paper presented an agent-based simulation model of OSS evolution. Our
model, while simple, incorporates many of the features that may explain some
of the differences between OSS and proprietary development [2,3]. We found
that the model was able to replicate the observed patterns in all four of the
areas examined (size, complexity, complexity control, distribution of changes)
in the four systems studied. The model presented here appears to provide an
explanation for the unbounded growth trends observed in some OSS software
[2,3]. This is an important contribution. We included four novel factors in our
model: the complexity of software modules as a limiting factor in productivity,
the fitness of the software to its requirements, the motivation of developers, and
the role of users in incrementally defining requirements. As discussed in section
4, all four of these factors are required for the model to produce plausible results.

In conclusion, we have shown that an agent-based model of OSS evolution
can faithfully produce the empirical behaviour of OSS systems, but only by
including a number of factors that are not immediately obvious. This suggests
that studies into the factors driving software evolution need to look beyond just
the behaviour of developers.

Acknowledgements

Andrea Capiluppi acknowledges the Faculty of Maths and Computing, The Open
University, and in particular to Drs Bashar Nuseibeh and Uwe Grimm, for fi-
nancial support that made this work possible. Juan Ferndndez-Ramil gratefully
acknowledges the UK EPSRC for funding under grant GR/590782/01 (2004-5).

References

1. Lehman, M.M., Ferndndez-Ramil, J.: Software Evolution. In: Software Evaluation
and Feedback — Theory and Practice. Wiley (2006)

2. Godfrey, M., Tu, Q.: Growth, evolution and structural change in open source
software. In: Proceedings of the 4th International Workshop on the Principles of
Software Evolution, Vienna, Austria (2001)

3. Herraiz, I., Robles, G., Gonzalez-Barahona, J.M., Capiluppi, A., Ferndndez-Ramil,
J.: Comparison between SLOCs and number of files as size metrics for software
evolution analysis. In: Proceedings, 10th European Conference on Software Main-
tenance and Reengineering. (2006)

4. Raymond, E.S.: The Cathedral and the Bazaar. O’Reilly Media, Inc. (2001)

5. Scacchi, W.: Understanding Open Source Software Evolution. In: Software Evo-
lution and Feedback, Theory and Practice. Wiley, NY (2006)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Smith, N., Capiluppi, A., Ferndndez-Ramil, J.: A study of open source software
evolution data using qualitative simulation. Software Process Improvement and
Practice 10 (2005) 287-300

Madey, G., Freeh, V.W., Tynan, R.O.: Agent-based modeling of open source using
SWARM. In: Proceedings of the Americas Conference on Information Systems
(AMCIS 2002), Dallas, USA (2002)

Dalle, J.M., David, P.A.: imCode: Agent-based simulation modelling of open-source
software development. Technical report, MIT (2004)

Brooks, F.: The Mythical Man-Month: Essays on Software Engineering. 20th an-
niversary edn. Addison-Wesley (1995)

Mockus, A., Fielding, R.T., Herbsleb, J.: Two case studies of open source software
development: Apache and mozilla. ACM Transactions Software Engineering and
Methodology 11(3) (2002) 309-346

NetLogo: http://ccl.northwestern.edu/netlogo/ (2005)

Capiluppi, A.: Models for the evolution of OS projects. In: Proceedings, ICSM
2003, Amsterdam (2003) 65-74

Capiluppi, A., Morisio, M., Ferndndez-Ramil, J.: The evolution of source folder
structure in actively evolved open source systems. In: Proceedings of the 10th
International Symposium on Software Metrics, Chicago, USA (2004) 2-13
Capiluppi, A., Morisio, M., Ferndndez-Ramil, J.: Structural evolution of an open
source system: A case study. In: Proceedings of the 12th International Workshop
on Program Comprehension (IWPC), Bari, Italy (2004) 172-182

McCabe, T.: A complexity measure. IEEE Transactions on Software Engineering
2 (1976) 308-320

McCabe, T.J., Butler, C.W.: Design complexity measurement and testing. Com-
munications of the ACM 32(12) (1989) 1415-1425

Smith, N., Capiluppi, A., Ferndndez-Ramil, J.: Agent-based simulation of open
source evolution. Software Process Improvement and Practice (to appear)
Antoniades, P., Samoladas, 1., Stamelos, I., Bleris, G.L.: Dynamical simulation
models of the Open Source Development process. In: Free/Open Source Software
Development. Idea Group, Inc. (2005)

Robles, G., Merelo, J.J., Gonzalez-Barahona, J.M.: Self-organized development in
libre software: a model based on the stigmergy concept. In: ProSim 2005, St. Louis,
USA (2005)

Mockus, A., Fielding, R.T., Herbsleb, J.: A case study of open source software
development: the apache server. In: Proc. ICSE 22, Limerick, Ireland (2000) pp.
263 — 272

