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ABSTRACT 

  Special purpose machines (SPMs) are customized machine tools that perform specific 

machining operations in a variety of production contexts, including drilling-related 

operations.  This research investigates the effect of optimal process parameters and SPM 

configuration on the machine tool selection problem versus product demand changes. A 

review of previous studies suggests that the application of optimization in the feasibility 

analysis stage of machine tool selection has received less attention by researchers. In this 

study, a simulated model using genetic algorithm is proposed to find the optimal process 

parameters and machine tool configuration.  During the decision-making phase of machine 

tool selection, unit profit is targeted as high as possible and is given by the value of the 

following variables: SPM configuration selection, machining unit assignment to each 

operation group, and feed and cutting speed of all operations.  The newly developed model 

generates any random chromosome characterized by feasible values for process parameters. 

Having shown how the problem is formulated, the research presents a case study which 

exemplifies the operation of the proposed model. The results show that the optimization 

results can provide critical information for making logical, accurate, and reliable decisions 

when selecting SPMs.  

   

Keywords Special purpose machines (SPMs). Drilling 

configurable machine tool. Optimization. Feasibility 

analysis. Machine tool selection. 

1. Introduction 

Today’s dynamic market demand has led industries to 

utilize quick and responsive manufacturing systems [1-3]. 

Special purpose machines (SPMs) are a new paradigm of 

reconfigurable machine tools (RMTs) which have the 

customized flexibility to enable them to perform drilling- 

related operations [4, 5]. These machines include sliding 

and machining units, assembly components, indexing or 

sliding tables, control systems, and accessories (Fig.1). 

Machining unit has different types which are selected based 

on the part properties, and required power [6]. Their 

efficiency is based on their reconfigurability, which enables 

them to be cost effective and adaptable in rapidly changing 

markets. Reconfigurability makes it possible for SPMs to 

apply minor changes to the configuration of the machine by 

repositioning units and accessories and changing 

configurations in order to make a new part [7, 8] Moreover, 

their capabilities change for each configuration, so process 

planning parameters can also be reconfigured. While there 

are several studies of RMTs [9-12]; few have addressed 

SPMs and a review of the literature indicates that the 

consideration of SPM configuration type, machining unit 

assignment, and machining parameters have largely been 

ignored 

In recent decades, many researchers have explored 

computer aided process planning (CAPP). Xu, Wang and 

Newman [13] comprehensively reviewed recent 

developments and future perspectives for CAPP.  Li, Liu, 

Li, Landers and Tang [14] asserted that process planning 

optimization includes optimal machining parameters and 

machining sequence generation. Accordingly, most process 

planning studies have focused on generating optimum 

machining parameters [14, 15]. Other studies have focused 

on process planning and operation sequencing [16]. But 

today CAPP faces new challenges which have drawn 

researchers’ attention to the dynamic and ever-changing 

competitive market. Since product demand may change in 

this competitive market, the appropriate utilization of SPM 

configuration and process parameters is becoming more 

important for manufacturers. Marri, Gunasekaran and 

Grieve [17] defined process planning as the changing 

configurations in order to make a new part decision-making 

activity for the selection of machines and the machining 

process needed to produce a part. Determination of optimal 

process parameters may affect productivity, operation time, 

and production cost. Therefore, appropriate selection of 

SPM configuration and process parameters may 

significantly influence the decision to use SPMs instead of 

other machine tools at the feasibility analysis stages. 
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Feasibility analysis for utilising a machine tool from 

among available alternatives became a difficult and 

important issue in Today’s market for manufacturers. 

Accordingly, selecting appropriate machine tool has been 

investigated from different perspectives. A majority of 

researchers utilized multi-attribute decision-making tools to 

find an appropriate choice [18-21]. These methods are based 

on the ranking and opinions of experts and decisions may be 

inconsistent.  Some machine tool selection studies focused 

on cost analysis methods such as advanced machine tools  

and material handling systems [22, 23], but few considered 

reconfigurable machine tools. [2], Vafadar, Tolouei-Rad 

and Hayward [8] proposed an economic analysis model for 

selecting SPM relative to other machine tools. A key 

challenge for making accurate decision is comparing 

optimal SPM versus other machine tools which is an 

important process as it may significantly influence the final 

decision.  

In a highly competitive market, manufacturers must 

respond quickly to requests. Heuristic optimization 

techniques such as genetic algorithm (GA), simulated 

annealing (SA), and Tabu search (TS) meet the requirement 

for fast optimization of multi-variable problems [24]. A 

review on the optimization techniques showed that 

evolutionary techniques are useful tools which are utilized 

broadly for different manufacturing problems  [24-26]. 

Youssef and ElMaraghy [27] developed a GA optimization 

model to find a feasible configuration of reconfigurable 

manufacturing systems. The model minimized the capital 

investment of RMS configurations to find the optimum 

number of parallel machines per stage and operation 

assignments. Guldogan [28] proposed a  model integrating a 

knowledge-based expert system and GA to consider 

qualitative and quantitative parameters for machine 

selection and operation selection. Cus and Balic [15] 

proposed an optimization method based on genetic 

algorithms (GA) for generating cutting parameters in 

flexible manufacturing systems (FMS). Chaube, Benyoucef 

and Tiwari [29] proposed a new algorithm to generate 

dynamic process planning, considering the time and cost of 

production for reconfigurable machine tools. The 

considered variables in the model presented by Chaube, 

Benyoucef and Tiwari [29] are part, operation, machine, 

configuration, tool, and tool approach direction. There has 

been some research about CAPP for reconfigurable machine 

tools and manufacturing systems, while the integrated 

optimization of machining parameters and process plan for 

SPMs have not been adequately addressed. 

From the above it can be found that although there are 

some publications on reconfigurable machine tools, 

application of optimization methods in manufacturing 

discipline, machine tool selection problem, and CAPP; a 

research which combines these concurrently in order to 

investigate the effect of optimization process on the 

machine tool selection problem at the investment stage has 

not yet been adequately addressed in the literature.  

The aim of this research is considering the benefits of GA 

for CAPP when finding the most appropriate combination 

of process parameters and SPM configuration, in order to 

maximize the unit profit of SPMs. In optimizing process 

planning parameters, GA [15, 30]: 

(1) is able to run complex objective functions; 

(2) can perform optimization processes successfully for 

any discrete or continuous variables;  

(3) may be integrated with any simulated model; 

(4) handles any linear and non-linear relations between 

inputs and outputs;  

(5) is a simple and quick method. 

Accordingly, a simulated model using GA is introduced and 

applied to a case study. Results show that selecting 

appropriate SPM configuration and process parameters can 

significantly influence decisions made at the early stages of 

investment on a machine tool.  

 This paper is organized as follows: Section 2 explains the 

formulation of the optimization problem. Section 3 

describes the integrated simulation-based GA method. 

Section 4 illustrates a case study to validate the method and 

includes the results and discussion relating to the effect of 

optimization on the feasibility analysis outcomes. Key 

conclusions are provided in Section 5.  

2. Formulation of the problem 

 A practical method is proposed to determine the most cost 

effective process parameters and SPM configuration to meet 

competitive market demand at the feasibility analysis stage. 

The problem is considered in the context of finding optimal 

cutting parameters, including cutting speed and feed, the 

Fig.1. SPM configuration [32]. 

Machining unit 

Control system 

Assembly component 

Indexing table 
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assignment of machining units to each operation, and the 

configuration of the SPM (including the number of stations 

and the assignment of operational groups, and loading and 

loading operations for the stations). The methodology has 

three phases, which are outlined below  

(1) Formulating the optimization model. 

 Defining the objective function 

 Defining decision variables 

 Defining constraints 

 Structuring the genetic algorithm model  

(2) Simulating the part production by an SPM based on 

the cost mathematical model, as proposed by Vafadar, 

Tolouei-Rad and Hayward [8] and integrating it in to the 

GA method. 

(3) Evaluating optimization results. 

 Decoding, formatting, and analyzing the 

optimization results 

 Comparing the results of the feasibility analysis 

before and after performing optimization at the 

decision-making stage 

 Observing and discussing the effect of optimum 

results on the decision-making process. 

 Finding the best combination of optimum process 

parameters, machining units, and SPM 

configurations. 

2.1. Optimization model 

In the initial decision-making stage for utilizing an SPM, 

the aim is to find a combination of configuration and 

process parameters which maximize the unit profit in order 

to find a reliable way to compare any solution with other 

alternatives. For the optimization model developed below, 

the following assumptions are specified: 

 The maximum number of machining units which can be 

utilized in each station is two. 

 The maximum number of stations which can be 

considered in the SPM layout is twelve. 

 The SPM layout type can be single- or multiple- station. 

 The SPM multiple-station type can be rotary or sliding. 

 Loading and unloading can be assigned to a single or 

two separate stations.  

2.1.1 Decision variables 

The decision variables for this model are as below: 

(a) Cutting speed of each operation group 

(b) Feed of each operation group 

(c) Machining unit allocation to each operation group 

(d) Configuration type 

(e) Number of stations  

(f) Allocation of loading and unloading activities to the 

stations 

Each operation group may include one or more similar holes 

which can be drilled by a single spindle or a multiple 

spindle head.  

2.1.2 Objective function 

The objective function, maximum unit profit, is developed 

based on the following cost mathematical model. The unit 

profit can be calculated by  

𝑃𝑟𝑜𝑓𝑖𝑡 =  𝐷 ∑ 𝑆𝑝𝑗
(1 + 𝑖)−𝑗

𝑡

𝑗=1

−  𝐶𝑡𝑜𝑡𝑎𝑙     
(1) 

𝐶𝑡𝑜𝑡𝑎𝑙 =  𝐶𝑚𝑡 +  ∑ 𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑗
(1 + 𝑖)−𝑗

𝑡

𝑗=1

− 𝑆 (1 + 𝑖)−𝑡 + 
 

(2) ∑ 𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔𝑗
(1 + 𝑖)−𝑗

𝑡

𝑗=1

+ ∑ 𝐶𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑗
(1 + 𝑖)−𝑗

𝑡

𝑗=1

+ 

+ ∑ 𝐶𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑗
(1 + 𝑖)−𝑗

𝑡

𝑗=1

 

𝑈𝑛𝑖𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 =  
𝑃𝑟𝑜𝑓𝑖𝑡

𝐷 × 𝑡 
 

(3) 

Accordingly, the objective function is expressed as below: 

𝑀𝑎𝑥 𝑈𝑛𝑖𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 =  𝐾1 − [(𝑅𝑜𝑢𝑛𝑑𝑢𝑝(𝐾2 𝑇𝑚1 )(𝐶𝑚𝑢 + 𝐶𝑖𝑡 

 

(4) 

+𝐾3 )] + 𝐾4 − [𝐾5 × 𝑅𝑜𝑢𝑛𝑑𝑢𝑝(𝐾2 𝑇𝑚1 )(𝐶𝑚𝑢 + 𝐶𝑖𝑡 

+𝐾3 ) + ∑(1 + 𝑖)−𝑗

𝑡

𝑗=1

(𝐾6𝑗 𝑇𝑚𝑗 + 𝐾7𝑗 ∑ 𝑣𝑘𝑗
𝑛−1 𝑓𝑘𝑗

−1 )

𝑁𝑑

𝑘=1

 

+(∑(1 + 𝑖)−𝑗

𝑡

𝑗=1

𝐾8𝑗 ∑ 𝑣𝑘𝑗
𝑛−1 𝑓𝑘𝑗

−1)

𝑁𝑑

𝑘=1

 

+ ∑ (1 + 𝑖)−𝑗𝑡
𝑗=1 (𝐾9𝑗 𝑇𝑚 𝑗

) ]          

Where total machining/cycle time for each production year 

in the above equation can be expressed by 

𝑇𝑚 = max  {max{𝐾10𝑘
  𝑣𝑘

−1 𝑓𝑘
−1|𝑘 = 1, … , 𝑁𝑑  } , 𝐾11, 𝐾12} 

 

(5) 

+  𝐾13 ∑ 𝑣𝑘
𝑛−1 𝑓𝑘

−1

𝑁𝑑

𝑘=1

+ 𝑇𝑖  
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2.1.3 Constraints 

Several constraints are applied to the optimization 

model, as follows. To guarantee the satisfaction of the 

predefined constraints, these are expressed in a range 

of dependent variables between 0 and 1. Accordingly, 

decoding is required to translate the optimum solution 

string i.e., chromosome, to the real values of process 

plans. 

 Budget: Machine tool cost should be equal to or 

less than the predefined budget.  

𝐶𝑚𝑡 ≤ 𝐵 
(6) 

No 

Yes 

Start 

Read the population, mutation, crossover, and generation properties 

Gen= 0 

 
 

 

 
Generate random cutting speeds  

Generate random feed   

Evaluate the fitness function of each chromosome of population 

Is stop criteria (finial condition) satisfied? 

 

New generation based on the good 

chromosomes of the previous population 

Gen=Gen+1 

Select the best chromosome 
Apply crossover operator 

Apply mutation operator 

End 

Generate random number of stations 

Select random configuration type 
Allocate loading and unloading to the stations 

randomly 

Allocate machining units to each operation 

randomly 
 

Generate the first random population 

 

Fig.2. The flow chart of GA process steps for solving this problem. 
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 Power: To drill an operation group, the required 

power can be estimated by considering number of 

holes/spindles, hole diameter, and part material 

[32]. Machining units which can provide equal or 

greater power are selected and utilized in the 

optimization process. Accordingly, different 

machining units may be feasible for drilling 

different operation groups.  

Cutting Speed 

Feed 

𝑥(3𝑙 − 2) 

𝑥(3𝑙 − 1) 

𝑥(3𝑙) 

× 

× 

Machining unit 

allocation based 

on the randomly 

generated 
 𝑥(3𝑙 − 2) 

 
 

Machining unit cost 

𝑥(3𝑙 + 1) 

Configuration cost 

𝑇𝑖 

𝑇𝑈 

𝑇𝐿 

Machining time 

calculation 

 

 𝑇𝑡𝑐 

Configuration selection 

based on the randomly 

generated 𝑥(3𝑙 + 1) to 

 𝑥(3𝑙 + 13) 
 

𝑇𝑚 

Simulated 

cost 

model 

 

Unit profit 

Cutting Speed 

Feed 

𝑥(1) 

𝑥(2) 

𝑥(3) 

× 

× 

Machining unit 

allocation based 

on the randomly 

generated 𝑥(1) 
 

Machining unit cost 

𝑥(3𝑙 + 2) 

𝑥(3𝑙 + 13) 

Fig.3. Schematic of simulation-based model: 𝒙(𝟏)  to 𝒙(𝟑𝒍 + 𝟏𝟑), 𝒍 = 𝟏, … , 𝑳 are decision variables – where  
𝒍 defines the number of machining units – as below  

 𝑥(1) and 𝑥(3𝑙 − 2) are used for machining unit allocation to each operation group. 

 𝑥(2) and 𝑥(3𝑙 − 1) are used for generating a percentage of cutting speed of the selected machining unit. 

 𝑥(3) and 𝑥(3𝑙) are used for generating a percentage of feed of the selected machining unit. 

 𝑥(3𝑙 + 1) is used for selecting configuration type. 

 𝑥(3𝑙 + 2) to 𝑥(3𝑙 + 13) are used for selecting number of stations and allocation of loading and unloading activities. 

   

The 

simulated 

model of 

cutting and 

tool 

changing 

times  

 

 𝑇𝑡𝑐 
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𝑃(𝑁𝑠 𝑘
 , 𝐷ℎ𝑘   , 𝑀𝑝 )   ≤  𝑃𝑚 𝑘

                        
(7) 

∀    𝑘 = 1, … , 𝑁𝑑        &        𝑚 = 1, … , 𝑀 

 
 

 Cutting speed: The allowable cutting speed range 

is recommended based on the tool type and part 

material [31].  Suhner general catalogue [32] 

provides an allowable spindle speed range of 

machining units, while cutting speed is a function 

of spindle speed and hole diameter [32]. 

Accordingly, the allowable range of cutting 

speeds for each machining unit may differ 

between operation groups.  

𝑣𝑘𝑚 𝑚𝑖𝑛
≤ 𝑣𝑘𝑚   ≤ 𝑣𝑘𝑚 𝑚𝑎𝑥

             
(8) 

 ∀   𝑘 = 1, … , 𝑁𝑑        &        𝑚 = 1, … , 𝑀  

 Feed: Allowable feed can be defined based on the tool 

type, part material, and hole diameter [31]. 

Accordingly, the feed of each operation group is 

limited to the recommended feed range.   

𝑓𝑘 𝑚𝑖𝑛
≤ 𝑓𝑘𝑚   ≤ 𝑓𝑘 𝑚𝑎𝑥

             
(9) 

 ∀   𝑘 = 1, … , 𝑁𝑑        &        𝑚 = 1, … , 𝑀         

2.1.4 GA operation options 

 The following options are defined for the GA. 

 Fitness function: This is explained in Section 2.1.2. 

It should be noted that penalty function is not used 

for this optimization process as variables have 

defined bounds. 

 Mutation function: Adaptive feasible function is 

used to create new generations that have adapted 

from previous successful or unsuccessful 

generations while satisfying defined bounds and 

linear constraints. 

 Crossover function: A two-point function is used to 

generate new chromosomes randomly by swapping 

parent strings from two points. 

 Stopping criteria: stall generation was applied to 

stop the algorithm when the weighted average 

variation in the objective function value is less than 

defined function tolerance. 

2.2. GA optimization process 

GA is used to solve both constrained and unconstrained 

optimization problems by mimicking natural selection 

processes [30]. Fig. 2 illustrates how GA solves this 

optimization problem. The GA optimization process begins 

with a set of properties called a chromosome. A population 

of random chromosomes which are candidates for the 

optimization process are then evolved to become better 

chromosomes. Each candidate chromosome has a set of 

properties (its genotype) which can be altered by mutation 

or crossover operators. Chromosomes are usually indicated 

in binary format as strings of 0s and 1s; however, other 

encodings may be applied in the optimization model. The 

values of chromosomes in the current population are then 

evaluated using a fitness function and are ranked for the 

next generation. The process repeats until a predefined 

stopping criterion is met, as below: 

 Generations specifies the maximum number of iterations 

the genetic algorithm performs.  

 Time limit specifies the maximum time in seconds the 

genetic algorithm runs before stopping. 

 Fitness limit: If the best fitness value is less than or 

equal to the value of the fitness limit, the algorithm 

stops. 

 Stall generations: If the weighted average change in the 

fitness function value over stall generations is less than 

function tolerance, the algorithm stops. 

 Stall time limit: If there is no improvement in the best 

fitness value for an interval of time in seconds 

specified by the stall time limit, the algorithm stops. 

 Function tolerance: If the weighted average change in 

the fitness function value over stall generations is less 

than the Function tolerance, the algorithm stops. 

Production 

data 

Machining 

units’ data 
SPM configuration 

data 

Simulated cost model  

Genetic algorithm 

Optimum process 

parameters 

Fig.4. An integrated simulation-based GA model. 

 

Part data 
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3. Relationships between simulated cost model and 

GA process 

This section explains how the GA optimization process is 

applied to the developed model. Firstly, the cost model is 

simulated using MATLAB/Simulink and is then integrated 

within the MATLAB/GA toolbox. Fig. 3 presents the 

schematic of the simulation-based model used for the GA 

optimization process.  Fig. 4 indicates the connections 

between the simulation model, required data, and GA. First, 

part and production specifications, machining units, and 

SPM configuration data are entered into the simulation 

model for the optimization process. The optimization 

process then randomly selects the machining unit of each 

operation group, and the cutting speed and feed are then 

generated as a random percentage of the selected machining 

unit cutting speed and feed, respectively. Next, the number 

of stations and SPM layout type (rotary or sliding) are 

selected randomly, and machining units and loading and 

unloading activities are then allocated to each station. This 

process repeats until one chromosome with the maximum 

unit profit for the fitness function is obtained. This 

chromosome and the relevant fitness value are then taken to 

be the optimum solution.  

4. Case study 

This section illustrates a case study to validate the 

optimization model. The case study is throttle body and 

shows how the optimization results affect decision-making 

during the feasibility analysis stage (Fig.5). This part is 

made of Aluminium alloy 5083 and includes 14 holes with 

different properties. As shown in Table 1, similar holes on 

the same face are grouped into 8 main operation groups. A 

Simulink model is designed and created for the production 

of the throttle body before a connection is made between the 

Simulink model and the GA tool box. The optimization 

process is performed several times for different production 

volumes (demands), and the maximum result for each 

demand is utilized for further investigation. The 

optimization curve of Fig.6 shows the maximum unit profit 

which was obtained for different production volumes. The 

results are compared to the results of initial feasibility 

analysis which was achieved by Vafadar, Hayward and 

Tolouei-Rad [2]. These authors performed feasibility 

analysis based on the engineering knowledge and 

manufacturers’ instructions.  Fig.6 shows a comparison 

between the results of optimization and sensitivity analysis 

(SA) versus demand changes at feasibility analysis stage. 

SA is a part of feasibility analysis which investigates the 

effect of input parameters such as demand changes on the 

model’s output.  

Fig. 6 indicates that selecting optimum drilling process 

parameters, machining units, SPM layout type and 

configuration can significantly enhance unit profit. This 

issue considerably influences the results of decision-making 

process.  This figure includes three areas requiring 

discussion: Area 1 shows that before performing the 

optimization process, the results of the initial solution for 

computer-numerical control machine (CNC) outperform 

that of SPM for lower demands. This is because the number 

of required SPMs is one and the costs are higher than the 

profit that is achieved by selling the products and salvage 

value of the machinery.  In this range of demand, the 

number of required CNCs is also one. Since the sale profit 

for products produced by CNC is greater than the sale profit 

for products produced by SPM, the unit profit for products 

produced by CNC is greater than the unit profit for products 

produced by SPM.  In this case, CNC is the appropriate 

choice for producing the throttle body.  In contrast, the 

optimization results show that by selecting optimized 

decision variables, the SPM provides greater unit profits 

than the CNC machine and may be an appropriate choice 

for lower demand volumes. Specifically, the appropriate 

process parameter values decrease machining time, which is 

a major variable in machining, maintenance, overhead, and 

overhead costs. Furthermore, the selection of optimum 

machining units, layout type, loading and unloading station 

type, and number of work stations decreases capital 

investment cost. Accordingly, by decreasing the above-

mentioned costs, the optimum variables boost unit profit 

(Eqs. 1 to 3). 

As indicated on Area 2 of Fig. 6, the results of this initial 

solution show that the unit profit of the SPM overtakes that 

of the CNC machine above 5,000 units. Since SPM and 

CNC drilling operations are parallel and sequential, 

respectively, the machining time of the CNC machine is 

higher than that of SPM. Accordingly, machining and 

maintenance costs (functions of machining time) increase at 

a considerable rate as demand increases. The interaction of 

machining costs, maintenance costs, and machining time 

makes decision-making difficult, because different factors 

have to be investigated.  

Area 3 of Fig. 6 indicates a decline in the CNC curve. At 

this point another CNC machine is required due to 

increasing demand. The number of required machine tools  

is a function  of demand [8]. Moreover, this area shows that 

the difference between the initial solution and the 

optimization results decreases as demand increases. The 

Fig.5. Throttle body downloaded from [34]. 
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machine tool is approaching its demand capacity. Sales, and 

material, machining, maintenance, and overhead costs 

increase as they are the functions of demand. Increased 

demand does not influence the machine tool cost and 

salvage value which are fixed (Eqs. (1) and (2)). In addition, 

machining, maintenance, and overhead costs are functions 

of machining time. Since machining time of SPM is low, 

these costs are less sensitive than demand. Accordingly, 

when demand is high, the optimization process may not 

provide significant unit profit increases. 

Fig.7. Results of sensitivity analysis for different optimum solutions which are shown in Fig.6. 
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To investigate the effect of selecting optimum decision 

variables, four solutions from the optimization curve are 

selected, as indicated in Fig. 6. These solutions are selected 

to investigate the effect of the optimization process for 

different demands. The demands of these solutions are 

selected from the corresponding demand range, as below: 

1) Solution 1 investigates low demands (≤ 1,000) in 

which CNC outperforms SPM in the initial analysis. 

2) Solution 2 investigates low demands (> 1,000 and ≤ 

5,000) before SPM overtakes CNC in the initial 

analysis.   

3) Solution 3 investigates low demands (5000 ≤ and 

20,000 <) where SPM overtakes CNC in the initial 

analysis. 

4) Solutions 4 investigates large demands (>20,000). 

 Table 2 shows the results of optimization for these 

solutions. To better understand the economic behaviour; a 

sensitivity analysis is conducted for all these solutions, as 

shown in Fig. 7. This figure provides more insights, 

enabling manufacturers to select the optimum process 

parameters and configuration, based on market demands.  

 When producing this part, the results of solutions No. 1, 

2, and 3 are very close to the optimum curve and each other, 

especially for lower demands (Fig. 7), whereas solution 

No.4 provides better results for higher demands. However, 

the manufacturers may choose other solutions based on 

production requirements. This optimization process applied 

in the feasibility analysis stage influences the profitability of 

the machine tool. This information aids companies in 

selecting an appropriate machine tool. For this purpose, the 

results of initial solution which is selected without the use 

of optimization was are compared with the optimized results 

for 100,000 units as presented in Fig. 8. For the given 

production requirements, solutions No.3 and 4 provide a 

greater unit profit. For the given production requirements, 

solutions No.1, 2, 3, and 4 provide a 1%, 1%, 1.7%, and 

1.9% (respectively) increase in the unit profit compared to 

the initial solution. Improved selection methods by the 

designers may yield similar results; however the 

optimization algorithm effectively automates the process.   

4.1. Identifying and investigating the effective decision 

variables 

 Table 3 shows feasible machining units which can be 

selected using the optimization model for each operation 

group. This table also represents the allowable range of feed 

and cutting speed for each machining unit. It is worth noting 

that, the range of cutting speed for each machining unit is 

defined by the operation group specifications [32]. The feed 

range is also defined based on the manufacturer’s catalogue 

[31].  

 Table 2 provides the optimized decision variables and 

non-optimum solution utilized for feasibility analysis. The 

non-optimum solution includes variables which are selected 

without optimization based on manufacturers’ 

recommendations [31, 32]. Generally, low cutting speed and 

high feed are selected to generate the maximum unit profit. 

Based on the required demand, different cutting speeds and 

feeds are selected. To investigate this, solution 2 where 

demand is 3,000 units is used. The following explanations 

justify the reasons for these different selections: 

a) Machining time 

 Eq. (10) shows that machining time is a function of 

indexing, tool changing, and cutting times. Indexing time 

can be determined by the selected optimum indexing table 

and number of stations. Two other time parameters 

significantly influence the machining time and consequently 

machine tool, cutting, maintenance, machining, and 

overhead costs. Cutting and tool changing times are the 

function of some decision variables which are developed by 

Vafadar, Tolouei-Rad and Hayward [3], as explained below: 

 

𝑇𝑚 = 𝑓(𝑡𝑐 ,   𝑡𝑡𝑐 ,   𝑡𝑖) 
(10) 

𝑡𝑐 = 𝑓( 𝑣−1,  𝑓−1)     
(11) 

𝑡𝑡𝑐 = 𝑓( 𝑣−1,  𝑓−1 , 𝑣
1
𝑛 )     (12) 

 

 

Table 1 The properties of operation groups of the throttle body. 

Operation group No. Hole diameter (mm) Length of hole (mm) Number of holes 

1 5.1 66 4 

2 3.5 8 2 

    

3 3.5 8 2 

4 8 76 1 

5 2 9 1 

6 3.5 10 2 

7 4.2 6 1 

8 8.2 25 1 
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Table 2 Optimization results for the solutions shown in Fig. 6. 

Solution No. Initial parameters 
𝟏 

1 2 3 4 

Demand (units) 1,000 to 950,000  1,000 3,000 5,000 80,000 

Operation group No.1  2,   3  & 4 

𝑀 BEM 28 BEM 20 BEM 20 BEM 20 BEM 20 

𝑉 90 73.90 75.82  69.2 87.1  

𝐹 0.16 0.17  0.19  0.16  0.2  

Operation group No.2  2,   3  & 4 

𝑀 BEM 12 BEM 12 BEM 12 BEM 12D BEM 12D 

𝑉 90 88.57  96.73  76.9 60.6  

𝐹 0.13 0.16  0.18  0.18 0.17  

Operation group No.3  2,   3  & 4 

𝑀 BEM 12 BEM 25H BEM 12D BEM 12D BEM 20 

𝑉 90 49.21  87.91 72.5  72.9  

𝐹 0.13 0.18 0.19  0.19  0.2 

Operation group No.4  2,   3  & 4 

𝑀 BEM 28 BEM 20 BEM 20 BEM 20 BEM 20 

𝑉 90 90.24  74.20  88.2  77.2  

𝐹 0.25 0.21  0.20  0.27  0.28  

Operation group No.5  2,   3  & 4 

𝑀 BEM 3 BEM 12D BEM 20 BEM 12D BEM 20 

𝑉 90 50.81  40.51  60.9  42.5  

𝐹 0.1 0.16  0.14  0.15  0.16  

Operation group No.6  2,   3  & 4 

𝑀 BEM 12 BEM 12D BEM 20 BEM 12D BEM 12D 

𝑉 90 107.72  80.22  80.2  86.5  

𝐹 0.13 0.15  0.12  0.12  0.18  

Operation group No.7  2,   3  & 4 

𝑀 BEM 6 BEM 6D BEM 6 BEM 6D BEM 6D 

𝑉 90 81.61  84.4  87.5  82 

𝐹 0.16 0.18  0. 2 0.17  0.19  

Operation group No.8  2,   3  & 4 

𝑀 BEM 28 BEM 20 BEM 20 BEM 20 BEM 20 

𝑉 90 82.37  70.41 96.6  67.2  

𝐹 0.25 0.3  0.26  0.28  0.29  

Layout type Rotary Rotary 
Rotary Rotary Rotary 

Number of stations 6 6 6 6 6 

L and U stations 𝟓 L-U L-U L-U L-U L-U 

1: This solution was utilized for feasibility analysis before performing the optimization process. 

 2: M represents the selected machining unit type. BEM 3, BEM 6, BEM 6D, BEM 12, BEM 12D, BEM 12VC, BEM 20, BEM 28, and BEM 25H are 

different types of Suhner’s machining units [32].  

3: V represents the cutting speed which is measured in (m/min). 

4: F represents the generated feed which is measured in (mm/rev).  

5: L and U stations represent loading and unloading stations.  If L-U is selected, loading and unloading activities are allocated to two stations. If L/U is 

selected, loading and unloading are allocated in one station. 
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 Table 3 Cutting speeds and feed ranges of the feasible machining units 𝟏 for each operation group in the optimization problem 

Operation group No. Machining unit type 
𝟐 

Min allowable  cutting 

speed 𝟑 

Max allowable cutting 

speed 𝟑 

Feed range 𝟒 

 

1 

BEM20 64.1 128.1 0- 0.2 

BEM28 45.0 90.0 0- 0.2 

BEM25H 64.1 128.1 0- 0.2 

 

 

 

2 

BEM12 54.9 109.9 0- 0.2 

BEM12D 54.9 109.9 0- 0.2 

BEM12VC 55 109.9 0- 0.2 

BEM20 43.9 87.9 0- 0.2 

BEM28 19.1 38.2 0- 0.2 

BEM25H 43.9 87.9 0- 0.2 

 

 

 

3 

BEM12 54.9 109.9 0- 0.2 

BEM12D 54.9 109.9 0- 0.2 

BEM12VC 55 109.9 0- 0.2 

BEM20 43.9 87.9 0- 0.2 

BEM28 19.1 38.2 0- 0.2 

BEM25H 43.9 87.92 0- 0.2 

 

4 

BEM20 70.0 140.0 0- 0.3 

BEM28 45.0 90.0 0- 0.3 

BEM25H 70.0 140.0 0- 0.3 

 

 

 

 

5 

BEM3 79.1 113.0 0- 0.2 

BEM6 43.9 62.8 0- 0.2 

BEM6D 61.5 87.9 0- 0.2 

BEM12 43.9 62.8 0- 0.2 

BEM12D 43.9 62.8 0- 0.2 

BEM12VC 43.9 62.8 0- 0.2 

BEM20 35.1 50.24 0- 0.2 

BEM28 10.9 21.8 0- 0.2 

BEM25H 35.1 50.24 0- 0.2 

 

 

 

6 

BEM12 76.9 109.9 0- 0.2 

BEM12D 76.9 109.9 0- 0.2 

BEM12VC 76.9 109.9 0- 0.2 

BEM20 61.5 87.9 0- 0.2 

BEM28 26.7 38.2 0- 0.2 

BEM25H 61.5 87.9 0- 0.2 

 

 

 

 

7 

BEM6 79.1 131.8 0- 0.2 

BEM6D 84.0 140 0- 0.2 

BEM12 79.1 131.8 0- 0.2 

BEM12D 79.1 131.8 0- 0.2 

BEM12VC 79.1 131.8 0- 0.2 

BEM20 63.3 105.5 0- 0.2 

BEM28 27.5 45.8 0- 0.2 

BEM25H 63.3 105.5 0- 0.2 

 

8 

 

BEM20 70.0 140.0 0- 0.3 

BEM28 44.8 89.6 0- 0.3 

BEM25H 70.0 140.0 0- 0.3 

1: Feasible machining units are selected based on the method which is proposed by Vafadar, Tolouei-Rad, Hayward and Abhary [4]. This 

method considers part properties, SPM component characteristics, and production requirement for the selection of feasible components.  

2: Machining units utilized in the optimization model are MONO masters taken from Suhner general catalogue [32]. 

3: Cutting speed range of each operation group for machining units extracted from [32]. 

4: Feed range recommended in the manufacturers’ catalogues [31]. 
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From these three equations it can be concluded that the 

effect of cutting speed changes on the tool changing time is 

more than that of cutting time. As Eq. (12) shows, tool 

changing time is a function of the Taylor exponent which is 

determined by the material for the part and cutting tool [33]. 

The throttle body material is aluminum alloy and the 

selected cutting tool material is high speed steel. The Taylor 

exponent is therefore 0.125 [33]. Accordingly, decreasing 

the cutting time results in a significant reduction in the tool 

changing time, the cutting time increases slightly, and 

consequently machining time decreases.  

Eqs. 11 and 12 also show that by increasing the feed, 

cutting time and tool changing times decrease and 

consequently costs decrease. Therefore, the optimization 

process generates the lowest possible cutting speed and the 

highest possible feed to maximize unit profit.  

b)  Tooling cost 

 Tooling cost is another important cost which significantly 

influences unit profit. The following equation shows how 

feed and cutting speed influence the tooling cost [3]: 

 From this equation it can be concluded that lower cutting 

speeds and higher feeds reduce the tooling cost and increase 

unit profit. The effects of cutting speed and feed changes for 

operation group No.4 on unit profit and tooling cost are 

shown in Figs. 9 and 10, respectively.  For this case study, 

operation group No. 4 is a bottleneck which has the highest 

cutting time of all operation groups. An operation group 

which produces the bottleneck time significantly affects 

costs and consequently unit profit. Accordingly, these 

figures focus on the bottleneck operation group among the 

studied solutions. It can be seen that increasing the cutting 

speed boosts costs, especially the tooling cost. Indeed, 

increasing the cutting speed boosts tool consumption and 

tool changing time considerably, and as a result the unit 

profit decreases. Fig. 10 shows that increasing the feed 

slightly decreases the tooling cost and also has a significant 

effect on some other costs. Figs. 9 and 10 provide the 

behaviour of some other costs such as overhead, 

maintenance, and machining versus cutting speed and feed 

changes, which are explained in the following section.  

c)  Machining cost 

 Figs. 9 and 10 indicate that machining cost is an important 

cost which significantly influences unit profit. This cost is a 

function of machining time. As explained in Section 4.1(a), 

decreasing cutting speed and increasing feed decrease 

machining time. Therefore, machining cost decreases, and 

consequently the unit profit increases. It can also be seen 

that decreasing cutting speed and increasing feed slightly 

reduces some costs, such as maintenance and overhead 

costs. 

d) Machine tool cost 

The equation below shows that the machine tool cost is a 

function of machining unit and indexing table costs and 

machining time [3].  

𝐶𝑚𝑡 = 𝑓( 𝐶𝑚𝑢 ,   𝐶𝑖𝑡 , 𝑅𝑜𝑢𝑛𝑑𝑢𝑝(𝑘14 𝑇𝑚))  (14) 

 

 

𝐶𝑡 = 𝑓( 𝑣−1,  𝑓−1 , 𝑣
1
 𝑛 )     (13) 

Fig.8.  Comparison between the results of initial solution and the optimum solutions indicated in Fig.6 and the solution provided used by Vafadar, 

Hayward, and Tolouei-Rad [2, 3]. 
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Fig.10. The effect of feed changes for operation group No.4 of solution 2. 
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Indexing table cost is determined by the number of 

stations, which is determined by the allocation of machining 

units and loading and unloading activities to the stations. If 

the optimization model assigns loading and unloading to the 

same station, the number of stations will be reduced and 

consequently the cost will be reduced. But in this case, the 

loading and unloading will be allocated to one station. 

Accordingly, this station will be considered as a bottleneck. 

Moreover, in this model, manual loading and unloading is 

considered, so the bottleneck time has a high value and 

therefore, machining time and costs will increase. 

Accordingly, the optimization model determines the 

machining units and indexing table which have the lowest 

possible cost while keeping the machining time low. 

5. Conclusion  

This paper discussed optimization for determining feasible 

SPM layouts and choosing process parameters that lead to a 

maximum unit profit. To do so, a heuristic method was 

selected to consider all these variables for varying 

production volumes. The appropriate selection of an SPM 

configuration and process parameters may influence the 

results of the decision-making process. In reviewing the 

application of GA technique for the optimization of process 

planning and machine tool configuration problems, this 

study focuses on the feasibility analysis of utilizing SPM 

versus other available alternatives, an approach that has not 

been adequately addressed by other researchers. This 

research makes a key contribution to the machine tool 

selection problem at an early stage in the decision-making 

process. 

A cost model which dealt with time and cost factors for 

evaluating the performance of SPM and other machine tools 

was presented in order to design the optimization model. An 

objective function was developed for the optimization 

process and the decision variables were identified along 

with boundaries and constraints.  The production part was 

simulated by Simulink/MATLAB and was integrated into 

the GA technique to perform the optimization.  

The proposed optimization model has been successfully 

applied to the case study described in this paper. The results 

have been evaluated and discussed with respect to two main 

areas. The first relates to the comparison between the results 

of optimization and the initial feasibility analysis, before 

performing optimization process. The results show that 

selecting appropriate SPM configuration and process 

parameters can significantly influence machine tool 

performance, and this has an effect on the decisions taken 

during the early stages of investment in a machine tool. The 

second area relates to investigating the results of the 

optimization output and identifying the critical factors 

which influence SPM performance. The research found that 

the bottleneck operation group, tooling costs and machining 

time are critical factors which are influenced by decision 

variable values.  

This study generates ideas for future work. The first 

objective could be to assess other factors such as labour and 

overhead rates. The second could be applying a GA-based 

method and considering uncertainty in the context of the 

dynamic optimization problem. Another consideration could 

be comparing a GA approach with other emerging 

optimization methods. Applying the proposed objectives 

will help companies to make a relatively quick and accurate 

decisions by selecting the near optimal SPM and process 

parameters that will facilitate choosing the right machine 

tool in the preliminary stages of the investment phase.  
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Nomenclature 

𝑎 Availability (%) 

𝐵 Budget ($) 

𝐶𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒  Cost of annual production losses ($/year) 

𝐶𝑖𝑡 All costs related to indexing table and 

accessories ($) 

𝐶𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔 Annual machining cost ($/year) 

𝐶𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒  Annual maintenance cost ($/year) 

𝐶𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙  Annual material cost ($/year) 

𝐶𝑚𝑡 Machine tool cost ($) 

𝐶𝑚𝑢 Cost of machining units ($) 

𝐶𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑  Annual overhead cost ($/year) 

𝐶𝑡𝑜𝑡𝑎𝑙  Total life cycle production cost ($) 

𝐷 Annual demand 

𝐷ℎ Hole diameter (mm) 

𝑓 Feed (mm/rev) 

𝐻 Average working hours (h/year) 

𝑖 Annual interest rate 

𝑗 Year of operation or production 

𝐾1 to 𝐾14 Constants 

𝑘 Index of drilling heads/ operation groups 

𝐿 Number of machining units 

𝑙 Index of machining units 

𝑀 Number of available machine tools 

𝑀𝑝 Part material 

𝑚 Index of machining unit 

𝑁𝑑 Number of drilling heads/operation 

groups 

𝑁𝑠 Number of spindles per drilling head 

𝑛 Number of variables 

𝑃𝑚 Required power to drill the operation 

group (kW) 

𝑞 Scrap rate (%) 

𝑆 Salvage value ($) 

𝑆𝑝 Sale price of the product ($) 

𝑇𝑐 Total cutting time (min) 

𝑇𝑖  Indexing/Sliding time (min) 

𝑇𝐿  Loading time (min) 

𝑇𝐿/𝑈 Loading and unloading time (min) 

𝑇𝑈 Unloading time (min) 
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𝑇𝑚 Machining/Cycle time per year (min) 

𝑇𝑚𝑜 Maintenance time (min) 

𝑇𝑠 Setup time (min) 

𝑇𝑡𝑐 Total tool changing time  (min) 

𝑡 Number of production years 

𝑡𝑐 Cutting time for each drilling head (min) 

𝑡𝑖 Indexing time (min) 

𝑡𝑡𝑐 Tool changing time for each spindle head 

tool (min) 

𝑣  Cutting speed (mm/min) 
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