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ABSTRACT 

This study provides details for the design, preparation of an environmentally friendly, 

clinically safe and lightweight radiation protective shield made ofGd2O3/epoxy 

nanocomposite (Gd-nanocomposite) which is proposed as an alternative to traditional toxic 

lead (Pb)-based aprons for diagnostic X-ray protection. In theory, this particulate 

nanocomposite can possess significant features of both inorganic particles and organic 

polymeric matrices. However, in practice, its performance does not simply depend on the sum 

of the individual contributions of characteristics of the constituent phases but on the 

interaction of their inner interfaces and the homogeneous dispersion of inorganic particles in 

the polymer matrix. 

The miniaturization of inorganic particles to nanoscale before mixing with an organic 

matrix has been considered as an effective way to improve the interface of the dispersion 

phase. Unfortunately, homogeneous dispersion has still not yet been achieved in this type of 

material due to the coalescence of nanoparticles resulting from the large surface area of 

nanoparticles and their chemical incompatibility with the matrix. The effect of inter-particle 

forces arising from adsorbed typical cationic and anionic surfactants on the morphology of 

the ball milled gadolinium oxide (Gd2O3) is investigated to attain the optimal conditions for 

interface improvement between Gd2O3 particles and an epoxy matrix. 

The experimental outcomes are interpreted in terms of the stabilization and interaction 

mechanisms of the fine washed Gd2O3 particles (size diameter <1µm) in an aqueous medium 

under the variation of the surface forces arising from adsorbed surfactants. The point of zero 

charge or isoelectric point (IEP) of ball milled Gd2O3 particles suspension is at pH 11. In the 

presence of adsorbed anionic SDS (Sodium dodecyl sulphate), the particles are refined 

together with numerous 2D nanowire or nano-rod particles at pH ~ 8. In contrast, the coarser 

particles are found when cationic CTAB (Cetyl trimethylammonium bromide) is used to 

modify the Gd2O3 surface. This is invoked from organic shell formed by the high 

adsorbability of negatively charged heads of SDS into the bare positive charge density of the 

particle. This capping agent acts as (i) a steric barrier preventing the agglomeration or re-

welding of the powder during nanoparticle preparation and (ii) an intermediate adhesive that 

enhances the miscibility of the particle and liquid matrix, thereby improving the particle 

dispersion in the organic matrix. 
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Based on the above outcomes, an optimal geometric design of a non-lead based X-ray 

protective material with lightweight per volume unit is prepared. A plateau with 28-30% 

increments in the value of fracture toughness (KIC (Mpa.m1/2)) is observed with a specific 

addition of 0.08 to 0.1 volume fraction (ϕs) of SDS-encapsulated Gd2O3 particles in pure 

epoxy. The same quantity of particles also optimally raises the critical strain energy release 

rate (GIC (J.m-2)) and Young’s modulus (E (MPa)) of epoxy by approximately 22-24% and 

18-25% respectively. A 16 mm thick sheet of fabricated filled composite at ϕs of 0.08 and 0.1 

can shield greater than 95% (0.5 mm Pb-equivalence) and 99% (1 mm Pb-equivalence) 

respectively of a primary X-ray beam in the range of 60-120kVp. At the same X-ray 

attenuation (99% attenuation), the specimen is 7, 8.5, and 16 times lighter than wood, glass, 

and concrete respectively. At 0.5 mm Pb-equivalence, the composite also has 4.5-19.4% less 

weight per unit area than current commercial non-lead products. 
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CHAPTER 1: INTRODUCTION 

1.1.Research background 

Hybrid organic and inorganic materials have been manufactured and in use since the 

1950s. Their desirable properties result from combining some distinct characteristics of two 

or more components [1]. Individual types of inorganic and organic matters show typical 

properties that are a trade-off between their positive and negative characteristics. As can be 

seen from Table 1.1 for each characteristic, if one performs well, the other performs poorly 

and vice versa. The goal of combining both classes of these materials into hybrids is to 

develop new materials that have the advantages of both. One of the common ways to prepare 

a hybrid material is a dispersion of micron- or nanosized inorganic particles in an organic 

matrix. For example, instead of an expensive laminated structure of metallic compounds such 

as silver oxides or gold, only a small amount of the  particles of these substances can be 

dispersed in polymers to generate O-I materials with the same functional characteristics [2].  

Table 1.1. Comparison of selected general properties of frequently used organic polymers 

and inorganic metals or metallic substances [2] 

Property Polymers or organic 

materials 

Metals or inorganic 

substances 

Density 

Optical transparency 

Electric insulation ability 

Thermal insulation ability 

Melting temperature 

Corrosion resistance 

Thermal stability 

Fire resistance  

Radiation resistance 

Low 

High 

High 

High 

Low+ 

High 

Low 

Low 


Low  

High 

Low 

Low 

Low 

High 

Low 

High 

High 

High 

 

In the 1980s, the investigation of nanotechnologies led to the development of particulate 

hybrid organic-inorganic (O-I) nanocomposites in which the miniaturisation of the inorganic 

fillers in a polymer could improve the properties of hybrid products[3,4]. Particulate hybrid 

nanocomposites are divided into two main types, namely reinforced and functional polymer 
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nanocomposites. Reinforced nanocomposites involvingthe dispersion of inorganic nanosized 

particles of titanium compound, clay, calcium carbonate, carbon and glass fiber in different  

polymer matrices have been used in construction, cryogenic applications, defense, automobile 

and even in aircraft and aerospace areas [5,6]. Additionally, other metallic compounds with 

special properties are also combined with polymer matrices to create customized functional 

particulate nanocomposites. For example, a polyvinyl alcohol (PVA) polymer with 

fluorescent enhancement from the dispersion of gold nanoparticles provides a contrast in 

scanning probe microscopy and Raman spectroscopy or a molecular beacon for biomolecular 

recognition in sensing applications. Another example includes lead compounds/rubber 

composites that were synthesized to provide radiation shielding properties [7-9].  

In this research, a new kind of functional particulate nanocomposite will be synthesized 

from dispersion of synthesized gadolinium oxide nanoparticles into an epoxy matrix. Because 

of a special electron configuration, this element can absorb X-ray radiation with high energy 

and a high degree of penetration. Although metallic lead material or lead/rubber hybrid 

composites conventionally were used as effective radiation shielding materials in medical 

practices, compared to gadolinium, it still has limitations on functional properties as well as 

being toxic [7-9]. Recently, there has been a recognition among manufacturers and users of a 

trade-off between the economic, health and environmental benefits of using Pb-free X-ray 

protection aprons that are composed of less toxic metallic powder than Pb imbedded into 

polymer. This recognition is reflected in an increasing demand for these “green” aprons 

despite the higher price of the products [10-12]. In this research, gadolinium is proposed as an 

element to replace Pb for “green” radiation protection. Combination Gd particles with a 

polymer can vary the mechanical performances of hybrid material from hard and stiffness to 

flexibility (ruber-like) for the multiple uses. Furthermore, this hopefully reduces the amount 

of gadolinium material required, and this reduces the weight of the product. Additionally, an 

effective and inexpensive method is proposed to decrease the cost of preparation.   

The organic matrix of gadolinium/polymer nanocomposites may come from many kinds of 

polymer matrices such as rubber, polyvinyl alcohol (PVA), polyamide, and epoxy resin. In 

this work, epoxy resin, a kind of thermosetting polymer, will be used as a matrix of 

nanocomposite. Different kinds of epoxy polymers are effectively employed to disperse 

inorganic particles to create particulate composites for many applications. For example, 

nanosized particles such as Al2O3, SiO2, ZnO and BeO, SiC, AlN, Si3N4  are dispersed in 

epoxy to prepare thermally conductive but electrically insulative adhesives or composites [13-
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15]. Silica, mica, and calcium carbonate were investigated and administrated as fillers to 

improve the dielectric constant of  epoxy thin film composites used in capacitor applications 

in the electronic packing industry [16]. A silver/epoxy composite has been proposed as a 

potential electrical conductive adhesive [15]. Graphene platelet reinforced epoxy has been 

developed as high thermal stability material [17-20].  

Epoxy resins have valuable characteristics that make them an outstanding matrixsuch as 

low cost, low density, effective moisture resistance, chemical, corrosion and heat resistance, 

high electrical insulation, and good optic properties. More importantly, cured epoxy resin can 

vary from malleable, ductile, and tough to hard, strong, and brittle matrices. These 

performances are obtained by controlling the chemical structure of the epoxy oligomer and 

the curing agent [5,21,22]. Finally, it possesses exceptional processing characteristics such as 

an absence of byproducts or volatiles during curing reactions, slow shrinkage on cure, curing 

over a wide temperature range and the control of the degree of cross-linking [5,22]. As a 

result, epoxy formulations have been utilized in technical applications including protective 

coatings, adhesives, and as a matrix resins for high strength composites [23]. It is also used to 

replace metal, wood, and other traditional materials in industrial tooling applications to 

produce molds, master models, laminates, and castings. Due to improved manufacturing 

efficiency, the overall cost is lowered and the lead-time is shortened for many industrial 

processes [16,21,24]. Due to these properties, epoxy resin is chosen in this study as the matrix 

for an exploration of the properties of nanosized gadolinium oxide particle/ epoxy composite.  

1.2. Statement of research questions 

1.2.1. Research problem 

Nanocomposites are not simply physical mixtures which refflect the sum of the individual 

contributions of the performances of the constituent phases, but their important features are 

formed by the interaction between them [1,4,25]. Inhomogeneous dispersion can cause poor 

performance of the final product. The local aggregation and precipitation of the high loading 

content of the particle phase in continuous phases are usually found in poor disperse 

composite. Homogeneous dispersion is defined through two parameters: optimal internal 

interaction and chemical surface compatibility between two phases. To understand the 

research problem, some definitions and principles of phenomenon will be presented below.  

Reducing the size of particles to nanoscale can theoretically increase homodispersion. 

However, it also increases the internal interaction surface area between the solid and liquid 



4 

 

phases and so increases the risk of particle agglomeration in fabrication process due to poor 

wettability and chemical compatibility between them [2]. 

The dispersability of the solid inorganic phase in a high viscous liquid organic phase is 

explained by wettability which may cause a thermodynamically stable or unstable solid-liquid 

suspension system. Wetting is the ability of a liquid to maintain contact with a solid surface 

resulting from intermolecular interactions when they are mixed together. It plays an important 

role in bonding or the adherence of two different phase materials in one heterogeneous 

mixture. The degree of wetting is determined by the chemical homogeneity between the 

particles in the solid phase and the matrix in the liquid phase[2].  

A novel methodology of rare earth Gd2O3/polymer nanocomposites preparation is 

developed to address the disadvantages of the previous methods. Three main questions are 

covered: 

1. How can nanoparticles of gadolinium oxide (Gd2O3) be synthesized using a convenient 

and inexpensive method?  

2. How can the dispersion of synthesized particles in the epoxy matrix be improved? 

3. How can the X-ray shielding and mechanical properties of the synthesized Gd/epoxy 

nano composite be characterized? 

1.2.2 Research hypotheses 

- Unlike current methods using available nanoparticle compounds, this research will start 

from the early stage of nanoparticle preparation before proceeding to the final stage of 

nanocomposite synthesis. Conducting these processes sequentially will allow better control 

of particle dispersion in the polymer matrix and reduce the cost of the process. 

- The miniaturization of the dispersed phase to nanoscale improves the total interface area 

between the two phases leading to markedly improved mechanical and functional 

performance.  

- The selection of suitable particle surfactant for particle surface-modification is expected to 

enhance chemical compatibility between two phases effectively.  

1.3. The objectives of this research 

The primary purpose of this research is to develop a novel methodology for the synthesis 

of a new type of organic/inorganic nanocomposite with high radiation shielding properties 
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using Gadolinium compounds as nanosized fillers in an epoxy resin matrix. Other 

characteristics such as mechanical, chemical, and especially X-ray radiation attenuation 

properties are be investigated. The research has the following specific objectives: 

1) Identify the relationship between synthesis conditions and the Gd2O3 particle size and 

geometry. 

2) Determine the effect of interface compatibility and the dispersion of Gd compound 

particles in continues phase (water and epoxy) on material properties. 

3) Investigate the relationship between X-ray protective properties and mechanical 

performance. 

4) Evaluate the synthesized nanocomposite as a “green”, lightweight, Pb-free material for 

X-ray protection. 

1.4  Scope of the research  

To eliminate irrelevancies to the identified objectives and the problems, the scope of the 

research was limited as follows:  

- The study was limited to using only a commercial epoxy system (d= 1.09g/ml) as a matrix 

of nanocomposite from Struers supplier. Cured material is synthesized from bisphenol A 

(epichlorhydrin) epoxy resin (number average molecular weight ≤ 700, d= 1.1g/ml) cured by 

Triethylenetetramine hardener (d= 0.98g/ml). 

- The study used bulky gadolinium oxide (Gd2O3) available on the market as a precursor and 

for further processing. 

- The strategy for blending two phases together including ex-situ and in-situ; however, this 

research just used ex-situ method to avoid unexpected reactions or side products during 

nanocomposite processing. 

1.5. Research significance and innovation. 

This research will advance knowledge in the area of hybrid nanocomposite preparation. 

The current methods are problematic due to inefficient process control, low yield of particle 

content, and the use of large amounts of organic solvents for interface improvement. By 

addressing the disadvantages of the existing approaches, a novel methodology this research is 

able to develop fundamental knowledge regarding ways to combine ideal functional 

properties with outstanding mechanical performance for particulate nanocomposites. As a 
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result, many new types of functional polymer/metal nanocomposites that might be used by 

the manufacturing, medical, mining, transport, and information and communications 

industries will be developed.  

The study also provides essential information for developing an inexpensive and effective 

method to produce the nanosized gadolinium oxide particles which are employed in many 

practical applications, particularly in medical practice. More importantly, these consequent 

processes provide an effective and low cost approach for Gd-nanocomposite preparation that 

represents a new type of “green” radiation shielding material. These materials will be 

developed to protect people from dangerous radiation emanated from radioactive medical 

practices, mining, nuclear reactors, spatial and atomic research, and even the natural 

environment. 

Being is one of 5 countries (China, USA, Brazil, India, Australia) occupying main mining 

with reserves annually the accumulative amount of  400 tones pure Gadoliniumfor industry 

and medical application, Australia takes obviously advantages in comercializing, developing 

and manufacturing this new “green” material [26-28]. 



CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

 

 

 

At the author’s request, Chapter 2 has been omitted from this version of the thesis. 
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 CHAPTER 3: RESEARCH METHODOLOGY 

3.1. Materials and experimental testing methods 

3.1.1. Precusor gadolinium (III) oxide materials 

Two precursor gadolinium (III) oxide (Gd2O3) powders with a purity of 99.99% at 

different diameter were used in this research. The first product purchased from Alfa Aesar 

(United Kingdom) had a size distribution of d10=0.28µm, d50=4.34µm and d90=10.6µm. The 

second one supplied by Sun Chemical Technology (Shanghai) Co., China had a size 

distribution of d10=0.26µm, d50=5.50µm and d90=29.9µm. 

3.1.2. Size reduction and surface study 

A high-energy SPEX8000 mixer/mill with hardened steel balls (12.5 mm diameter) at 

room temperature was used for Gd2O3 particle size reduction. Size distribution depends on the 

weight ratio between additives and powder, and milling time. 

The zeta potential-pH behavior of mill Gd2O3 particles in water was characterized using a 

Colloidal Dynamic ZetaProbe operated in the potentiometric titration mode using 0.7 M KOH 

or 0.7 M HNO3 solutions as the titrants. 

The (static) yield stress-pH behavior was characterized using a Brookfield vane 

viscometer. At each step change of pH, the sample was agitated vigorously with a spatula for 

at least 15 minutes before pH and yield stress were measured. The maximum torque applied 

on a rotating (0.4 rpm) vane submerged in the colloid was transformed to the corresponding 

yield stress 

SVK

constant  Viscometer
100

 S%



(3.1)

 

Ksv (m
3): vane constant Vane 74 KSV=7.5 x 10-7m3 

Viscometer constant of LVDVII Pro= 6.73 10-05NM 

Viscometer constant of RVDV-II+ Pro= 0.7187 x 10-3 NM 

τ(Pa): Yield stress  

S (%): the value displaying on viscometer screen 

3.1.3. The morphology of synthesized nanoparticles, their dispersion in cured epoxy  and 

fractography of Gd-nanocomposite 
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The size distribution of synthesized Gd2O3 particles was determined using a Malvern 

Mastersizer Microplus Particle Size Analyzer. Their morphology was also characterized by a 

scanning electron microscope (SEM) (a Zeiss 1555 VPSEM).  

The diffuse map, geometry and size of dispersed particles and the fracture surface of 

synthesized nanocomposite were also observed through the above SEM. This provided 

information on the effect of homogeneous and mono dispersion on functional properties and 

mechanical performance.  

3.1.4. Chemical characterization of encapsulated nanofillers 

The chemical structure of synthesized Gd-nanoparticles was investigated using Fourier 

transform infrared spectroscopy (FTIR) (Perkin Elmer) and X-ray diffraction (XRD) using a 

PANalytical EMPYREAN diffractometer with Co Kα radiation (λ= 0.1789nm). 

3.1.5. Mechanical testing method 

An Instron 5982 universal testing machine and its extensometer were employed to evaluate 

the mechanical properties of the Gd2O3 particulate composite at different solid volume 

fractions (ϕs) of 0, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14.  

Five dumb-bell specimens (Figure 3.1), based on the ASTM standard D638-02a 

specification of a gauge length of 50 mm and constant thickness of 5±1 mm, were prepared 

for each composite composition. The crosshead rate of 0.5 mm/min was used for tensile 

mechanical testing. The elastic deformation of the composite under load (Young’s modulus) 

was estimated from the gradient of the stress-strain curve. All the mechanical properties 

reported in this work were averaged from at least four individual tests. 

W – Width of narrow section 13 mm 

 

 

L – Length of narrow section 57 mm 

WO – Width overall, min 19 mm 

LO – Length overall, min 165 mm 

G – Gage length 50 mm 

D – Distance between grips 115 mm 

R – Radius of fillet 76 mm 

T–thickness 4 mm 

Figure  3.1. Specimen geometry based on ASTM D638-99 for tensile testing of plastics. 
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Five compact tension specimens (Figure 3.2) were also prepared for each composite 

composition to determine their fracture toughness. Again, a crosshead rate of 0.5 mm/min 

was employed. The fracture toughness characterizes the material’s resistance to brittle 

fracture in the presence of a crack. Two important parameters were calculated from the tests, 

i.e. the plane strain critical stress concentration factor (KIC) and the critical strain energy 

release rate (GIC), according to ASTM D 5045-99. The compact tension specimen 

configuration is shown in Figure.3.2. A pre-notch crack made by a band saw should be 

followed by tapping to create a pop up crack for fracture toughness measurement. The results 

should be validated by using stress-strain graphs as detailed by the standard. The razor crack 

length was in the range of 0.45 < a/W < 0.55. The KIC is given by: 

 

Figure 3.2. The geometry of Compact tension specimens 

WT

xFP
KIC






)(
 (3.2) 

where P is the load applied, T, W are the thickness and the width of specimens. F(x) is a 

function of  
W

a
x   and is defined as follows. 
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The plane strain energy release rate (GIC) can be calculated as follows, 
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E

K IC
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)1(
G





                                 (3.4) 

E: Young’s modulus 

 : Poisson ratio 

3.1.6. Radiation shielding property 

The attenuation capacity of specimens was tested at Royal Perth Hospital with beams of 

six different energies from 60 to 120kVp, the common diagnostic radiographic region. The 

photon beams from an X-ray tube source of a Mobile DR X-ray unit (GE Optima 

XR220AMX) were emitted for 25 seconds at a current of 100 mA to suspensions as a 

radiation shielding screen. The radiation transmitted through samples was collected, recorded 

and analyzed using a free air chamber of a Non-invasive X-ray Beam Analyser (Unfors Xi 

R/F & MAM). In this study, the broad beam geometry of a DIN 6857 Standard test method 

was used: the distance from focal spot to chamber was one metre, and the sample sheets were 

located directly in front of this indicator. This geometry generates a more accurate attenuation 

measure because it is based on the total radiation reaching the chamber (contributed by 

penetrating primary and scattered radiation through materials), and the fluorescence generated 

by the sample itself [10,70]. The attenuation, A, achieved by the constant thickness Gd-

composite at different particle volume fractions at different X-ray energies was defined as 

follows:  

 
)0(

)()0(

K

KK
A S

S







                                                   (3.5)
 

Where K is a quantity parameter designed for X-ray shielding calculations called air kerma 

(kineticenergy released per unit mass of air (grays (Gy)). The values of K(0) and K(s) are the 

air kerma without shielding, and shielded by specimens with different particle volume 

fractions, at X-ray energy levels 

3.2. Experimental structure: 

Outlining the overall experimental structure of the research project was introduced in 

Figure 3.3. This part then briefly summarizes the works undertaken for each objective. All the 
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projects were recorded and discussed in journal articles, which are included in Chapters 4 to 

7.  

Task 1 was achieved in peer-reviewed journal articles included here as Chapters 4 and 5. 

Chapter 4 provided the relationship between particle size and milling time and the weight 

ratios of additive NaCl and Gd2O3 precursors. The research also studied the surface 

characteristics of milled submicronsized Gd2O3 in aqueous solution. The dispersed-

flocculated behavior of milled submicronsized Gd2O3 aqueous slurries was investigated via 

yield stress and zeta potential versus pH value techniques to stabilize the dispersion. Then 

well dispersed synthesized Gd aqueous suspensions at different volume fractions at a constant 

thickness were prepared for initial investigations of radiation attenuation performance. Based 

on the previous knowledge from Chapter 4, the effect of inter-particle forces arising from 

adsorbed typical cationic and anionic surfactants on the morphology of ball milled Gd2O3 was 

researched in Chapter 5. The experimental outcomes were interpreted in terms of the 

stabilization and interaction mechanisms of fine washed Gd2O3 particles (size diameter 

<1µm) in an aqueous medium under the variation of surface forces arising from adsorbed 

surfactant. Two different kinds of surfactants including anionic (sodium dodecyl sulfate 

(SDS)) and cationic (cetyl trimethyl ammonium bromide (CTAB)) capping agents were used 

for this study. The results recorded in Chapter 5 proved that the adsorbed organic SDS shell 

prevented the fine particles from re-welding during the dispersing, annealing route for both 

nanoparticle preparation and surface modification for particulate composite preparation. 

Task 2 was achieved in peer-reviewed journal articles included here as Chapters 6 and 7. 

In these experiments, nanoscale SDS surface-modified Gd2O3 particles were dispersed in 

epoxy matrix to produce particulate Gd2O3 epoxy nanocomposite (Gd nanocomposite). The 

adsorption of sodium dodecyl sulphate (SDS) surfactant on the surface of ultrafine ball milled 

Gd2O3 based on the effect of inter-particle forces reduces their agglomeration and aggregation 

in nanoparticle preparation and dispersion in the polymer matrix, thereby improving the 

radiation attenuation property of this material per unit area. The article included as Chapter 6 

explored the relationship between solid volume fractions at a constant thickness of 8 mm and 

the X-ray protective performance of Gd2O3/epoxy nanocomposite. The X-ray protective 

performance versus weight per unit area of these specimens was also evaluated through 

different levels of X-ray protection in other materials such as concrete, glass, wood and 

especially other commercial lightweight “lead-free” products.  
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Work reported in Chapter 7 focused more on the dependence of the mechanical properties 

(fracture toughness, Young’s modulus and tensile stress) of particulate Gd-nanocomposite on 

different particle volume fractions. The amount of synthesized Gd2O3 particles (the optimal 

value of particle volume fraction (ϕs(opt))) in pure epoxy that was required to increase the 

fracture toughness (KIC) value maximally was recorded. An examination of the 

microstructure of the fracture surface at this ϕs(opt) was employed to observe the dispersion of 

the filler in the matrix. This is a plausible mechanism for explaining the improved toughness. 

At a constant value of the volume fraction, the X-ray attenuation proficiency depends on the 

thickness of material. Based on the mechanical testing result, filled composite at ϕs(opt) at 8 

mm thickness and 16 mm thickness was fabricated to investigate X-ray attenuation 

proficiency. Then, the X-ray protective performance versus weight per unit area of specimens 

with ϕs(opt) at different thicknesses was compared to that of wood, glass, concrete, and current 

commercial non-lead products. 
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Figure 3.3. Scheme of experimental structure with tasks and sub objectives 

Identify relationship of additive, time and 

other conditions on sizes of milled Gd2O3 

particles 
Task 1: Synthesis of 

nanoparticles and 

surface modification 

 

Research surface chemistry and rheology 

of ball milled Gd particle  

Studythe influence of surfactants on the 

particle properties  

 

Investigate mechanical properties of 

nanocomposites 
Task 2: Synthesis of 

nanocomposites 

Analysis microstructure of 

nanocomposites 

Evaluate X-ray protection properties of 

nanocomposites  
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CHAPTER 4: X-RAY PROTECTION, SURFACECHEMISTRY AND RHEOLOGY 
OF BALL-MILLED SUBMICRON Gd2O3 AQUEOUS SUSPENSION 

 

 

Due to copyright reasons, Chapter 4 has been omitted from this version of the thesis. 

 

 

Chapter 4 has been published as: 

La, L. B. T., Leong, Y.-K., Leatherday, C., Au, P. I., Hayward, K. J., & Zhang, L.-C. (2016). X-ray 

protection, surface chemistry and rheology of ball-milled submicron Gd2O3 aqueous suspension. 

Colloids and Surfaces A: Physicochemical and Engineering Aspects, 501(Supplement C), 75-82.  

doi: 10.1016/j.colsurfa.2016.04.058 

The green open access version of the journal article is available here.  

https://doi.org/10.1016/j.colsurfa.2016.04.058
http://ro.ecu.edu.au/ecuworkspost2013/1894/
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CHAPTER 5: A NOVEL APPROACH FOR THE PREPARATION OF 
NANOSIZED Gd2O3 STRUCTURE: THE INFLUENCE OF SURFACE FORCE ON 

THE MORPHOLOGY OF BALL MILLED PARTICLES 

 

Due to copyright reasons, Chapter 5 has been omitted from this version of the thesis. 

 

 

Chapter 5 has been published as: 

 

La, L. B. T., Leong, Y.-K., Watts, H. P., Au, P.-I., Hayward, K. J., & Zhang, L.-C. (2016). A novel approach 
for the preparation of nanosized Gd2O3 structure: The influence of surface force on the morphology 
of ball milled particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 
506(Supplement C), 13-19. doi: 10.1016/j.colsurfa.2016.06.005 

 

The green open access version of the journal article is available here.  

https://doi.org/10.1016/j.colsurfa.2016.06.005
http://ro.ecu.edu.au/ecuworkspost2013/1971/
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CHAPTER 6: GREEN LIGHTWEIGHT LEAD-FREE GD2O3/EPOXY 
NANOCOMPOSITES WITH PROMINENT X-RAY  

ATTENUATION 
PERFORMANCE 

 

 

At the author’s request, Chapter 6 has been omitted from this version of the thesis. 

 

 



 

92 

 



CHAPTER 7: THE INTERACTION BETWEEN ENCAPSULATED 
Gd2O3 PARTICLES AND POLYMERIC MATRIX: THE MECHANISM 

OF FRACTURE AND X-RAY ATTENUATION PROPERTIES 
 

Due to copyright reasons, Chapter 7 has been omitted from this version of the thesis. 

 

 

Chapter 7 has been published as: 

La, L. B. T., Leatherday, C., Qin, P., Leong, Y.-K., Hayward, K. J., Jiang, B., & Zhang, L.-C. (2017). The 

interaction between encapsulated Gd2O3 particles and polymeric matrix: The mechanism of fracture 

and X-ray attenuation properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 

535(Supplement C), 175-183. doi: https://doi.org/10.1016/j.colsurfa.2017.09.038   

doi: 10.1016/j.colsurfa.2017.09.038 

 

The green open access version of the journal article is available here.  

https://doi.org/10.1016/j.colsurfa.2017.09.038
https://doi.org/10.1016/j.colsurfa.2017.09.038
http://ro.ecu.edu.au/ecuworkspost2013/3593
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CHAPTER 8: SUMMARY AND FUTURE WORK 

8.1. Thesis Summary 

X-ray protective garments are typically comprised of lead-based materials, which are toxic 

to both people and the environment. Developing alternative lightweight radiation shielding 

materials is a priority for protecting people working with radiation. Gadolinium, with an 

electron configuration typical of radiation shielding elements, is proposed as a non-toxic 

replacement for lead. This study has provided new insights into the potential for a gadolinium 

suspension for replacing lead and proposes an effective preparation method. Inexpensive 

coarse Gd2O3powder being 10- 15 times less expensive than nano one is employed as a 

starting material. Additionally, cheap and simple ball milling method are employed then, so 

the total cost of processing reduce considerably. 

Firstly, submicron Gd2O3 particles with a size distribution of d10~0.23, d50~0.38 and d90 

~0.8µm are generated through a conventional and cost-effective ball milling method over 70 

minutes with the mechanical support of a NaCl additive (1:1.5 Gd2O3:NaCl). The dispersed-

flocculated behaviour of Gd2O3 and thus the uniformity of suspension is determined by pH 

and the solid volume fraction. Flocculation or domination of the attractive particle force of 

Gd2O3 in an aqueous medium is investigated in the pH range from 9 to 12.5, in which 

maximum flocculation occurred at pH of 11. The point of dispersed-flocculated transition or 

the balanced state of attractive and repulsive forces in the slurry, which determines the stable 

dispersion of Gd2O3 aqueous suspensions,is about pH 9. Flocculated performance of the 

given particles is also affected by the solid volume fraction (ϕs) which strongly depends on its 

physical properties, such as the size, shape, and nature of the particles. Compared with other 

metal oxides at similar particle size, van der Waals attractive force of Gd2O3 particles in 

suspensions are unusually sensitive to the change of the volume fraction. This is due to the 

large variation in the shape and nature of the particles as characterized by the Hamaker 

constant. Based on the above information, the uniformly dispersed Gd2O3 aqueous 

suspensions prepared in the next stage provides the highly effective X-ray radiation shielding 

performance is required for a potential non-Pb based radiation attenuator.  

This study also investigatesthe effect of inter-particle forces arising from adsorbed typical 

cationic and anionic surfactants on the morphology of ball milled gadolinium oxide (Gd2O3) 

for nano particle preparation and surface modification. The experimental outcomes are 
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interpreted in terms of the stabilization and interaction mechanisms of fine washed Gd2O3 

particles (size diameter <1µm) in an aqueous medium under the variation of surface forces 

arising from adsorbed surfactant. After ball milling and washing, the point of zero charge or 

isoelectric point (IEP) of Gd2O3 particles suspension is at pH 11 where its maximum yield 

stress is observed. Because of hydrophobic interaction, the maximum yield stress of the Gd 

aqueous suspension increases by 30 times as the sodium dodecyl sulfate (SDS) is adsorbed on 

the particle surface and its IEP shifts slightly to a lower pH. Using cetyl trimethyl ammonium 

bromide (CTAB), the yield stress also increases by a much smaller extent (three times) and 

shifts to a higher pH of ~ 12.5. Without surfactants, the microstructure of dried Gd2O3 

displays the coarse particles of various shapes, i.e. rod, spherical, and cubic shapes. This 

indicates that the milled particles remain agglomerated in dispersion. In the presence of 

adsorbed anionic SDS, the particles are refined together with numerous 2D nanowire or nano-

rod particles at pH ~ 8. In contrast, coarser particles with absence of nano-rods are found 

when cationic CTAB is used to modify the Gd2O3 surface at a pH of about 12.5. The SDS-

modified suspension exhibits a much higher yield stress, which results from finer particles in 

suspension. This is invoked from an organic shell formed by the high adsorbability of 

negatively charged heads of SDS into the bare positive charge density of the particle.  

The adsorption of sodium dodecyl sulphate (SDS) surfactant on the surface of ultrafine 

ball milled Gd2O3 based on the effect of inter-particle forces reduces the agglomeration and 

aggregation in nanoparticle preparation and dispersion in the polymer matrix, thereby 

improving the attenuation property of this material per unit area. The relationship between X-

ray attenuation of the synthesized particulate / epoxy composite and the particle volume 

fraction is investigated as follows: While a 8 mm thickness of Gd-nanocomposite with 

volume fractions (ϕs) of 0.10, 0.12, and 0.14 can reduce transmitted X-ray intensity by about 

93-99%, a 16 mm composite thickness (ϕs=0.12) can achieve more than 99% protection in 

the energy range of 60-120kVp. These specimens show comparable attenuation efficiency 

with 0.25, 0.35, 0.5, and 1 mm thickness of pure lead sheets that are normally used for 

radiology protection. The weight per unit area of Gd-nanocomposite (ϕs=0.14, 8 mm 

thickness) is 6-20 times lighter than concrete, glass, and wood at the same attenuation 

performance (97-99% attenuation). The X-ray protective performance vs weight per unit area 

of this specimen is also evaluated throughother commercial lightweight “lead-free” products. 

This specimen, with 36-48% less weight, shows better attenuation proficiency than 3 other 

commercial non-Pb composite products in the energy range above 73kVp. 
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The relationship between the quantities of synthesized core shell Gd2O3 added to epoxy 

matrix and the mechanical and X-ray attenuation properties of particulate epoxy composite is 

studied in this research. As a result, an optimal geometric design of non-lead-based X-ray 

protective material with reasonable weight per volume unit was prepared. A plateau with a 

28-30% increment of fracture toughness (K1C) value was observed with the addition of 0.08 

to 0.1 volume fraction (ϕs) of Gd2O3 particles in pure epoxy. The same quantity of particles 

also optimally raises the critical strain energy release and the modulus of the epoxy about 22-

24% and 18-25% respectively. An examination of the microstructure of the fracture surface 

shows relatively uniform nanoparticle dispersion, which is a plausible mechanism for 

explaining the improved toughness. The improved nanoparticle dispersion in the matrix 

enhanced both the mechanical and functional properties of the epoxy composite. A 1.6 cm 

thick sheet of fabricated filled composite at volume factions of 0.08 and 0.1 can shield more 

than 95% (0.5 mm Pb equivalence) and 99% (1 mm Pb equivalence) of irradiated X-ray 

beam. At the same X-ray attenuation (99% attenuation), the specimen is 7, 8.5, and 16 times 

lighter than wood, glass, and concrete respectively. The composite at 0.5 mm Pb-equivalence 

also has 4.5-19.4% less weight per unit area than current commercial non-lead products. 

This research successfully provides an optimal design and preparation process for a new 

“green” material for radiation shielding. 

8.2. Future work 

A Gd atom is both a good X-ray shielding material and a thermal neutron absorption 

material. This research has now shownthat Gd also possesses excellent X-ray shielding 

properties.The high-energy neutron shieldingproperties of this material will be evaluated in 

the future. 

Additionally, depending upon the nature of the applications, it is possible to change the 

Gd-epoxy from being stiff to being elastomeric by tailoring the structure of the epoxy and the 

crosslinking agent [78-80]. The material in this research is rigid but it is just pre-commercial 

radiation shielding material, so the elasticity of the materials will be an area of future research 

to commercialize products. 

For potential applications, the Gd- epoxy formulation can be used as a coating or an 

adhesive to improve the X-ray attenuation proficiency of permanent structures such as the 

walls, floors, and rooves of a radiographic x-ray room and other itemsin this room. It also can 

be used as a portable X-ray shielding screen or the shell structure of an X-ray radiator to 
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restrict undesirable radiation or radiation leakage. In addition, it can be used for wearable 

aprons or garments which require a flexible, tough, commercial epoxy formulation such as 

epiclon exa-4816 as the epoxy matrix. By the way,special epoxy formulations with Gd 

particles can be used as coated fabrics for, good wear resistance, good hydrolytic resistance, 

and good ultraviolet light resistanceand  X-ray attenuation in the textiles industry [230]. 
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APPENDIX A: STANDARD OPERATION PROCEDURE OF ZETA POTENTIAL 

ANALAYSIS 

1. Preparing a slurry with particles concentration normally from 3% to 5% 

particleOH

particle

mm

m


2

=CP%  

ml
D

m

D

m
Vvessel

OH

OH

particle

particle
260

2

2   

Density of Gadolinium oxide (Dparticle) = 7.401g/ml 

Density of water (D OH
2

) =1g/ml 

Weight mparticle (g) and then add  
particle

particle

OH
D

m
m - 260= 

2
 (g). This slurry will be sonicated 

by Branson Digital B30 sonifier, 65-70% amplitude and then transferred into zeta probe clean 

container 

The zeta potential of around 2-5wt% suspensions was measured using Colloidal Dynamic 

Zeta Probe equipment at different pH condition. The pH of the suspension was changed by an 

addition of 0.7M KOH or 0.7M HNO3, via auto-control system. 

 

2. Turn on ZetaProbe (Colloidal Dyamic) and calibrate if necessary. Put the slurry into the 

machine and turn on the stirrer with the speed from 200-250 rpm. Cleaning the pH probe and 

put it in the slurry and check the value of pH, conductivity (µs/cm). 

3. Click on the icon  (Zp polar) on computer desktop and then the zeta probe main panel 

will appear as follow  press on “Data logging” 
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4. On main panel of “Data logging series” , the name of file will be put on “file name 

prefix” for example “LYLA-Gd-ball milling”  click on “Particle and Solvent 

Properties” 

 

5. On main panel of “Particle and Solvent Properties”, click on “Look up” button of particle 

properties section. Then the Particle look up panel will be displayed  On “particle ID” 

choose one of suitable system from the list here we choose Fe2O3 press Ok 
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6. After step 5 the panel of “Particle and Solvent Properties”  will reappeared change the 

value of Particle density, Particles Dielectric Constant , Particle Concentration wt% as follow 

Particle density=7.401g/ml 

Particles Dielectric Constant= 11.4 [231] 

Particle Concentration wt% (from step 1)  
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 Press “Ok” 

 

7. Go to “Data logging series” and press measure  

 

8. After finish the measure stage, the value of pH, Volume and zetapotential will be recorded. 

If  

 Zeta potential value is >0   using NaOH or KOH 0.7M to titrate 

 Zeta potential value is <0  using HNO3 0.7M to titrate 

9. Go back to main panel  click on “Titration” 
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10. The panel “ Titration Input Panel” appears  click to choose “Potentiometric”  

named the samples in “Filename Prefix”  press on “Particle and Solvent Properties” 

button to check information  click “Next”  

 

 

11. Put the pipette probe in slurry to prepare for titration process. 

12. On “Potentiometric Series Titration” panel, put the name of titrated solvent in “Acid 

Id” and “Base Id” and value of Acid and Base concentration. From step 8 put the 

value of sample volume in the blank. 

13. Check the pH value from machine put the “start pH” value in the blank  put the 

value of “End pH” as you plan put “pH increment” value on the box (normally 

0.5) press “Titrate”    
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APPENDIX B: X-RAY ATTENUATION EFFICIENCY OF SPECIMENS 

 Beam energy 

(kVp) 

 

X-ray attenuation efficiency of 8 mm thickness at different volume 

fractions 

X-ray attenuation efficiency of 16 mm thickness at different volume 

fractions  

0 0.004 0.006 0.008 0.01 0.12 0.14 0.004 0.006 0.008 0.01 0.12 0.14 

60 0.18417 0.859 0.9281 0.9455 0.9679 0.9807 0.985 0.9633 0.9867 0.9922 0.9966 0.9984 0.9994 

70 0.18208 0.8467 0.9215 0.9408 0.9634 0.9782 0.983 0.9586 0.9846 0.9913 0.9961 0.9981 0.9993 

80 0.17587 0.8314 0.9125 0.9344 0.9602 0.9759 0.981 0.9544 0.9832 0.9903 0.9959 0.9979 0.9992 

90 0.16569 0.8154 0.9012 0.9267 0.9546 0.9738 0.979 0.9486 0.9807 0.9889 0.9951 0.9977 0.999 

100 0.15932 0.7985 0.8885 0.9148 0.9464 0.9689 0.975 0.9405 0.9765 0.9862 0.9938 0.9968 0.9986 

110 0.15935 0.7793 0.874 0.9023 0.9367 0.9609 0.969 0.9302 0.971 0.9821 0.9915 0.9953 0.9978 

120 0.14892 0.7594 0.857 0.8874 0.9251 0.952 0.961 0.9179 0.9632 0.9767 0.9878 0.9929 0.9964 

 

 

 Beam energy 
(kVp) 

 

X-ray attenuation efficiency of 8 mm thickness at different volume 
fractions 

X-ray attenuation efficiency of 16 mm thickness at different volume 
fractions  

0 0.004 0.006 0.008 0.01 0.12 0.14 0.004 0.006 0.008 0.01 0.12 0.14 

60 0.18417 0.859 0.9281 0.9455 0.9679 0.9807 0.985 0.9633 0.9867 0.9922 0.9966 0.9984 0.9994 

70 0.18208 0.8467 0.9215 0.9408 0.9634 0.9782 0.983 0.9586 0.9846 0.9913 0.9961 0.9981 0.9993 

80 0.17587 0.8314 0.9125 0.9344 0.9602 0.9759 0.981 0.9544 0.9832 0.9903 0.9959 0.9979 0.9992 

90 0.16569 0.8154 0.9012 0.9267 0.9546 0.9738 0.979 0.9486 0.9807 0.9889 0.9951 0.9977 0.999 

100 0.15932 0.7985 0.8885 0.9148 0.9464 0.9689 0.975 0.9405 0.9765 0.9862 0.9938 0.9968 0.9986 

110 0.15935 0.7793 0.874 0.9023 0.9367 0.9609 0.969 0.9302 0.971 0.9821 0.9915 0.9953 0.9978 

120 0.14892 0.7594 0.857 0.8874 0.9251 0.952 0.961 0.9179 0.9632 0.9767 0.9878 0.9929 0.9964 
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APPENDIX C: X-RAY ATTENUATION EFFICIENCY OF Pb SHEETS 

 

 

 

 Beam energy 

(kVp) 

 

 X-ray attenuation efficiency of pure Pb at different thickness (mm) 

0.2 0.25 0.3 0.35 0.5 1 

60 0.97403 0.986 0.991534 0.995 0.999 1.000 

65 0.962434 0.977 0.985859 0.991 0.997 1.000 

70 0.948651 0.967 0.978191 0.985 0.995 1.000 

75 0.93345 0.955 0.968903 0.978 0.991 0.999 

80 0.917615 0.943 0.958525 0.969 0.986 0.999 

85 0.901452 0.929 0.947509 0.960 0.981 0.997 

90 0.885307 0.916 0.936317 0.951 0.975 0.996 

95 0.869092 0.903 0.9252 0.941 0.969 0.994 

100 0.853315 0.890 0.91467 0.932 0.963 0.993 

105 0.837324 0.877 0.904549 0.924 0.959 0.991 

110 0.821643 0.865 0.895048 0.917 0.955 0.991 

115 0.806107 0.853 0.885874 0.910 0.951 0.990 

120 0.790595 0.841 0.876768 0.903 0.948 0.990 

Density of the materials (g/cm3) 

Gd2O3 diionized water   lead wood concrete glass 

7.4 1 11.34 0.64 2.4 2.5 
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APPENDIX D: THE THICKNESS OF LEAD, WOOD, CONCRETE AND GLASS 

AT CORRESPONDING RADIATION ATTENUATION EFFICIENCY OF 

SPECIMENS 

 

Beam 

energy 

(kVp) 

 

The thickness of other materials at corresponding radiation attenuation efficiency of 10 

mm thick Gd2O3 aqueous suspension (ϕs =0.082) (mm) 

lead wood concrete glass 

50 0.152 331.210 18.366 21.615 

60 0.173 339.942 19.527 23.752 

70 0.229 372.258 20.950 29.377 

80 0.295 385.972 27.256 34.247 

90 0.354 386.083 31.026 39.478 

100 0.400 384.157 33.568 42.168 

 

 

Beam 

energy 

(kVp) 

The thickness of other materials at corresponding radiation attenuation efficiency 

Lead wood concrete glass 

60 0.244768161 431.5781028 26.597 32.85962792 

70 0.334323351 472.2364689 32.297 41.05153286 

80 0.436952022 488.4690572 38.435 48.7826458 

90 0.543922594 496.8403772 43.889 79.63331757 

100 0.606920232 497.8232862 47.204 59.80422804 

110 0.60884292 501.1022332 49.714 61.38584847 

120 0.582032153 502.4609727 51.868 61.46955982 

 

 

 

 

 

Beam energy (kVp) The thickness of other materials at corresponding radiation attenuation efficiency of 16 mm thick Gd-composite (
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lead wood concrete glass

60 0.395031923 591.1697 40.85817 50.52113

70 0.548337063 641.8697 50.99267 63.1088

80 0.756265055 681.76 63.47384 77.1394

90 0.946322777 691.0285 70.14968 111.5668

100 1.060136867 690.2476 73.72233 91.31932

110 1.038701865 687.984 76.81694 92.69342

120 0.944095537 674.9967 78.97434 91.17081
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APPENDIX E: WEIGHT- THICKNESS Gd2O3/EPOXY NANOCOMPOSITE 

(g/cm2) AT DIFFERENT PARTICLE VOLUME FRACTIONS 

 Volume fraction ϕs 0.04 0.06 0.08 0.1 0.12 0.14 

8 mm 

Weight- thickness 

Gd2O3  (g/cm2) 
0.231 0.346 0.462 0.578 0.693 0.826 

Weight- 

thicknessEpoxy  

(g/cm2) 

0.838 0.821 0.804 0.787 0.770 0.750 

Weight- thickness 

Gd2O3 /epoxy 

composite (g/cm2) 

1.069 1.167 1.265 1.365 1.463 1.577 

16 mm 

Weight- thickness 

Gd2O3  (g/cm2) 
0.461 0.693 0.923 1.155 1.386 1.652 

Weight- 

thicknessEpoxy  

(g/cm2) 

1.676 1.642 1.607 1.574 1.540 1.501 

Weight- thickness 

Gd2O3 /epoxy 

composite (g/cm2) 

2.137 2.334 2.530 2.729 2.926 3.153 
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