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INTRODUCTION

A plant’s life cycle is inextricably linked to changes
in light quality (the composition of the  wavelength-
specific radiation within the electromagnetic spec-
trum (from UV to far-red light, 300 to 760 nm)) and
light quantity (the total amount of light or photo -
synthetic photon flux density). In terrestrial plants,
critical plant processes influenced by light quality
include setting of circadian rhythms, flower induc-
tion, seed germination, photo synthesis and adult

and seedling growth (Fankhauser & Chory 1997,
Whitelam & Halliday 2008). Due to the shared
ancestry with terrestrial plants, seagrasses would be
expected to have the ability to detect and respond
to shifts in the quality of light in much the same
way. However, due to their long evolutionary his-
tory in the marine environment, up to 85 million
years (Les et al. 1997), and the spectral attenuation
through sea water, seagrasses may have developed
different sensitivities and responses to changes in
light quality.
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ABSTRACT: Seagrass meadows provide crucial ecosystem services to the coastal zone but are
threatened globally. Seagrass loss to date has mainly been attributed to anthropogenic activities that
reduce light quantity (amount of photosynthetic photon flux density), such as dredging, flooding and
eutrophication. However, light quality (wavelengths of light within the visible spectrum) is also
 altered by these anthropogenic stressors. This study addressed the effect of light quality changes on
seagrasses. Aquarium-based experiments were conducted to determine whether the seagrass
Halophila ovalis (R.Br.) Hook f. responds to different light quality treatments. Separate experiments
were performed in which adults, seeds or seedlings were subjected to monochromatic light treat-
ments in the blue (peak λ = 451 nm), green (peak λ = 522 nm), yellow (peak λ = 596 nm) and red (peak
λ = 673 nm) wavelengths with a control of full-spectrum light (λ = 400 − 700 nm, at 200 µmol photons
m−2 s−1). This study is unique in that it measured seagrass responses to light across several plant
scales (physiology, productivity, morphology and biomass) as well as across life-history stages (seeds,
seedlings, adults and flowering). Adult plants responded differently to seeds and seedlings but were
generally consistent with terrestrial angiosperms: blue light decreased below-ground productivity;
green light influenced morphology (through increased rhizome internode length); red light en -
hanced seed germination and survival. The findings indicate that both natural and human-induced
changes in light quality could significantly affect seagrass growth and reproduction. As a range of
anthropogenic activities are currently contributing to the global losses of seagrasses, this research
provides timely information on how light quality influences  different seagrass life history stages.

KEY WORDS:  Light quality · Photomorphogenesis · Plant growth · Seagrass · Seed germination ·
Seedling survival
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Terrestrial plants perceive, monitor and respond to
changes in light quality through photoreceptors that
initiate signal transduction cascades leading to a
range of physiological, growth and morphological re -
sponses. The phytochrome family (phyA-phyE) effi-
ciently absorbs red and far red light, whereas cryp-
tochromes (cry1 and cry2) and phototropins (phot1
and phot2) mainly absorb UV-A and blue light (Casal
2000). The effects of illuminating terrestrial plants
with different monochromatic light have been meas-
ured in many species (Fig. 1). Examples include the
decrease in yarrow Achillea millefolium and cucum-
ber seedling Cucumis sativus biomass in re sponse to
blue light, as well as reduced rooting in yarrow and
Phyllanthus tenellus (Su et al. 2014, Alvarenga et al.
2015). Often, there is variability among responses to
light quality across the plant scale: for example, max-
imal photochemical efficiency and quantum yield of

PSII of leaves growing under blue light was signifi-
cantly higher than under control light, whilst biomass
under blue light was significantly lower than under
control light (Su et al. 2014). Furthermore, responses
are often species-specific; monochromatic blue light
enhanced germination in orchids Cattleya walkeri -
ana but not in Amaranthus caudatus seeds (Nowak et
al. 1996, Islam et al. 1999) (Fig. 1).

The wide range of plant responses to light quality
reflects adaptations to habitats that undergo spectral
shifts both in space and over a range of timescales. For
example, in terrestrial ecosystems, light quality changes
through forest canopies as the upper foliage absorbs
blue and red light, with understory plants receiving
reduced quantity and a green-enriched quality of
light (Folta & Maruhnich 2007). Plants can respond to
this under-canopy light by altering their morphology
(i.e. shade-avoidance response; Neff et al. 2000).
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Fig. 1. Conceptual illustration of recent studies (within the last 2 decades) that found significant cellular, adult plant, seed and
seedling responses (arrows) under monochromatic (blue, green, yellow and red) light quality treatments compared to full-
spectrum or control white light. Asterisk: seagrass species. References: 1 (Kopsell & Sams 2013), 2 (Su et al. 2014), 3 (Dougher
& Bugbee 2001), 4 (Lee et al. 2011), 5 (Alvarenga et al. 2015), 6 (Drozdova et al. 2001), 7 (Soong et al. 2013), 8 (Islam et al.
1999), 9 (Nowak et al. 1996), 10 (Walck et al. 2000), 11 (Luna et al. 2004), 12 (Qi-He et al. 2005), 13 (Victorio & Lage 2009), 
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Green light has been shown to induce rapid elonga-
tion of etiolated seedlings (that have negli gible
chlorophyll) and is efficiently transmitted through the
leaves as much as other visible wavelengths (Folta
2004, Folta & Maruhnich 2007). In aquatic, estuarine
and marine ecosystems, a number of factors can drive
strong shifts in light quality. Red light is rapidly atten-
uated by water so that blue light dominates at depths
greater than ~10 m in low-CDOM and oceanic sys-
tems (Kirk 1994). Suspended particles in the water,
such as sediments and photosynthetic biota, and dis-
solved materials such as chromophoric dissolved or-
ganic matter (CDOM or gilvin) all affect the absorbance
or scattering of light (Kirk 1994). For example, coastal
waters with significant run-off or river input from
forested watersheds expel high concentrations of
CDOM, which exponentially absorbs short wave-
length radiation and leads to a red-shifted light field
(Kirk 1994). Consequently, the spectral quality of light
changes with depth but can also vary among locations
of the same depth depending on the particulate and
dissolved components of water (Fig. 2). As light
quality underwater changes according to depth and
the inherent optical properties of components within
the water (Kirk 1994), it is likely that submerged
aquatic vegetation respond to these shifts.

Seagrasses are a polyphyletic group of marine
angiosperms that evolved from monocotyledonous
flowering plants ~85 million years ago (Les et al.
1997). They form meadows in shallow waters of the
coastal zone, where they provide significant ecosys-
tem functions and services (Orth et al. 2006) such as
food and habitat for fauna (Heck et al. 2003), sedi-
ment stabilisation (Koch et al. 2006), carbon storage
and high primary productivity (Orth et al. 2006,
 Lavery et al. 2013). Seagrasses have a high light re -
quirement (Longstaff 1999) and their accelerating
global decline has been attributed primarily to human
activities that reduce light and water quality, such
as eutrophication, sediment loading and dredging
(Erftemeijer & Robin Lewis 2006, Orth et al. 2006,
Waycott et al. 2009), as well as climatic stochastic
events (extreme temperatures and rainfall) (Fraser et
al. 2014, Thomson et al. 2015). While the effects of
reduced light intensity are well documented (Ralph
et al. 2007, McMahon et al. 2013), very little is known
about how shifts in light quality affect seagrass
growth and reproduction (York et al. 2016).

The few studies carried out on seagrasses have
demonstrated responses to shifts in light quality. In
adult marine plants Ruppia maritima and Halodule
wrightii, there are reports of reduced branching in
both species and increased internode length in H.

wrightii in response to a reduction of the red to far
red ratio (R:FR) (Tomasko 1992, Rose & Durako 1994).
Seagrass seedlings Thalassia hemprichii exhibited
enhanced growth in blue compared to red light
(Soong et al. 2013), whereas the common response of
many terrestrial angiosperms is enhanced seed ger-
mination under increased red light (in proportion to
FR) (Vázquez-Yanes & Smith 1982, Smith & White-
lam 1997). This contrast hints at potential differences
in the response of aquatic and terrestrial angio sperms
to changes in light quality.

This study tested the responses of the widespread
seagrass Halophila ovalis to monochromatic light
treatments (blue, λ = 451 nm; green, λ = 522 nm;
 yellow, λ = 596 nm; red, λ = 673 nm). As light is consid-
ered the most important factor in controlling H. ovalis
growth (Hillman et al. 1995), it was expected that bio-
mass would be reduced in blue, green, yellow and red
monochromatic light compared to full-spectrum light
(at a constant light quantity) and that responses would
not necessarily be consistent across the plant scale,
i.e. some colours induce increases in photo-physiology
variables (e.g. photosynthetic efficiency) but reduced
biomass  (relative to controls), as measured in terres-
trial species (Fig. 1). To assess if the  different life-his-
tory stages responded in the same way to different
monochromatic light treatments, ex periments were
conducted on adult plants, seeds and seedlings.
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Fig. 2. Downwelling irradiance (W m−2) measured 1 m under -
water at locations where seagrass meadows are present: an
oceanic location (solid line), at the mouth of an estuary
(dashed line) and in the upper reaches of an estuary (dotted
line) (GPS coordinates in Table S3 in the Supplement at
www. int-res. com/ articles/ suppl/ m572 p103 _ supp .pdf). These
data were collected by S.S. and M. Slivkoff using a hyper-
spectral radiometer (USSIMO) from In-Situ Marine Optics in 

the Perth Coastal Waters and the Swan River Estuary
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MATERIALS AND METHODS

In 3 separate experiments, the effect of monochro-
matic light quality treatments on different life-history
phases of the seagrass Halophila ovalis —(1) adults,
(2) seeds, and (3) seedlings—were tested.

Adult experiment

The single fixed factor ‘Light quality’ had 5 levels:
full-spectrum (λ 400 − 700 nm), blue (peak λ =
451 nm), green (peak λ = 522 nm), yellow (peak λ =
596 nm) and red (peak λ = 673 nm) light. For each
level, 4 replicate aquarium tanks (54 l) were estab-
lished (total n = 20 independent glass tanks). Con-
trols and treatments were randomly allocated, and
each tank was isolated using PVC boards and shade
cloth to ensure no leakage of light from surrounding
treatments. Tanks were lined to 10 cm depth with
un sorted washed quartz river sand containing
(1.3%) shredded seagrass wrack as a nutrient sup-
ply (Statton et al. 2013) and filled with 52 l of seawa-
ter (salinity 35). The water in each tank was re-cir-
culated through an individual sump with a pump
and filter (300 µm foam block) ensuring each repli-
cate tank was independent.

Light treatments were provided by aquarium light-
emitting diode (LED) modules (MarinTech™) cus-
tomised to a spectrum similar to sunlight on a 12 h
light:12 h dark cycle. Each treatment was standard-
ised to the same amount of photons (energy per
 photon per treatment is displayed in Table 1, and
transmission spectra per treatment are displayed in
Fig. S1 in the Supplement at www.int-res.com/articles/
suppl/m572p103_supp.pdf) and received 200 µmol
photons m−2 s−1 at the top of the canopy, measured
by an underwater Li-Cor (LI-192) quantum sensor.
Control tanks received light directly from the mod-
ules, and light quality treatments were imposed by
placing colour filters (Rosco heat-resistant gel filter
sheets) underneath the LED modules: Yellow using
‘Canary Yellow’, Red using ‘Fire’ and Blue using
‘Night Blue’. However, for the green treatment,
aquarium lights containing all green LEDs were used
because the quantity could not be achieved using a
filter. Light quality was measured using an under -
water hyperspectral radiometer (USSIMO) from In-
situ Marine Optics. Water temperature and salinity
were monitored every 2 d using a conductivity meter
(WTW™); the temperature was maintained at 20 to
21°C, and the salinity was maintained within 35
to 36.

Study site

H. ovalis ramets were collected in August 2014 from
close to the mouth of the Swan River estu ary, south-
west Western Australia (32° 01’ 49’’ S, 115° 45’ 46’’ E), a
temperate, estuarine habitat, where it is the dominant
seagrass species and is greatly influenced by seasonal
gradients (Hillman et al. 1995). Seasonal changes in
water quality have been associated with periods of
high rainfall (with 80% of the catchments rainfall oc-
curring in the  austral winter) which increase the con-
centrations of CDOM to the point where 66% of the
variation in light attenuation within this estuary was
explained by CDOM alone (Kostoglidis et al. 2005).
Light quality and quantity at the site is influenced by
seasonal periods of high CDOM concentrations (see
upper estuary line in Fig. 2) but can also represent
clear-oceanic downwelling irradiances (see oceanic line
in Fig. 2), which demonstrates some of the spectral
range to which H. ovalis is exposed at this site.

Plant collection

At the time of collection the salinity was 34, and wa-
ter temperature was 18°C. Ramets with at least 5 leaf
pairs behind the apical meristem were haphazardly
col lected by gently excavating the sediment at the
edge of the meadow along a 1.5 km stretch to avoid
spatial non-independence. They were stored in a con-
tainer with seawater for transportation and planted
within 2 h of collection. Ramets were standardised to 3
shoots behind the apical meristem (by cutting with a
razor blade), and 10 were randomly assigned to each
tank, planting at least 1 cm below the sediment sur-
face. They were acclimated for 2 wk under  control
conditions, as described above. To determine the
health of plants prior to experimentation, the maxi-
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Light quality Peak emission Energy per 
treatment λ (nm) photon (Joules)

Blue 451 4.4045 · 10−19

Green 522 3.8055 · 10−19

Yellow 596 3.3330 · 10−19

Red 673 2.9516 · 10−19

Table 1. The amount of energy per photon per light quality
treatment (based on peak wavelength emission) that Halo -
phila ovalis adults, seeds and seedlings were exposed to
during the experiments. Note that energy was calculated
as follows: e = c · h�(λ), where e is energy in joules, c is
light velocity (299 792 458 m s−1), h is Planck’s constant
(6.6260695729 · 10−34), and λ is Lambda, which represents 

wavelength (nm)

http://www.int-res.com/articles/suppl/m572p103_supp.pdf
http://www.int-res.com/articles/suppl/m572p103_supp.pdf
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mum quantum yield of PSII was measured
with a WALZ pulse amplitude modulated
(PAM) diving fluorometer at the time of col-
lection and after acclimation. Recorded val-
ues for both field and aquarium acclimated
plants were  similar and in the range identi-
fied as healthy, 0.73 to 0.75, suggesting that
aquarium plants had suc cessfully accli-
mated (Ralph & Burchett 1995). To deter-
mine growth rates over the experimental
period, growing tips of each ramet were
tagged by placing PVC-coated wire over
the rhizome behind the youngest leaf pair.

Experimental measurements

At the end of the experiment (30 d), a
range of measurements were taken re -
flecting different scales of plant response
(Table 2). All ramets were gently removed
from the tanks and stored at −20°C (apart
from pigment and carbohydrates samples
which were stored in the dark at −80°C)
prior to processing.

Photosynthetic characteristics

Before harvesting, photosynthetic characteristics
were measured using rapid light curves on 3 mature
leaves per tank. Leaf clips were placed adjacent to the
central vein, and leaves were exposed to increasing
photosynthetic photon flux density values (0, 3, 11, 45,
70, 102, 179, 271 and 373 µmol photons m−2 s−1 for
10 s) (Ralph & Gademann 2005). PAM settings were
as follows: measuring light: 8, saturating pulse: 8,
gain: 5, and light curve width: 10 s. The absorption
factor (AF) for each leaf was determined following
Beer & Björk (2000), and the electron transport rates
(ETR) were calculated following the standard rapid
light curve protocol (Beer et al. 2001). The ETR-irradi-
ance curves were fitted to the equation described by
Jassby & Platt (1976) to estimate ETRmax, photosyn-
thetic  efficiency (α) and saturating irradiance (Ek) us-
ing SigmaPlot (v7). In addition, the maximum quan-
tum yield of PSII was measured on 3 mature leaves.

Pigment analysis

Chlorophyll a and b (µg pigment g−1 FW leaf tissue)
and the xanthophyll ancillary pigments were meas-

ured following Collier (2006). Supernatants were ana-
lysed using high performance liquid chromato graphy
(HPLC) comprised of a 600 controller, 717 plus refrig-
erated autosampler and a 996 photodiode array detec-
tor with a β,β carotene standard. Chlorophyll concen-
trations were determined using equations based on
Wellburn (1994), and the  total xanthophyll concentra-
tions were pooled.

Biomass and leaf density

For each tank, all plant material was harvested,
rinsed in seawater, scraped free of epiphytes and
leaves counted, then sorted into leaves plus petioles
(above-ground) and rhizomes plus roots (below-
ground). Plant material was dried at 60°C for 48 h, and
the dry weight (DW) of each component was measured.

Carbohydrates

Carbohydrate analysis was performed on leaf and
rhizome material from 3 pooled ramets per tank using
a minimum weight of 75 mg DW. Dried material was
homogenized and ground into a fine powder, then
leaf and rhizome samples were analysed separately
for soluble sugars and starch content using enzymatic
procedures adapted from McCleary & Codd (1991).
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Variable type                                                     Measured unit

Physiology
Photosynthetic characteristics: ETRmax,          Three mature leaves
AF, Ek, α

Pigments: xanthophylls, chlorophyll               Six mature leaves 
                                                                           (pooled into 2 replicates)
Carbohydrates: rhizome carbohydrates,        Three ramets (pooled 
leaf carbohydrates                                           into 1 replicate)

Biomass & density
Total biomass, above-:below ground              Entire tank
biomass ratio, leaf density

Growth
Leaf, root and rhizome productivity                Tagged ramets
Shoot mortality, shoot production                    Tagged ramets
Rhizome extension rate                                    Tagged ramets
Branching                                                          Tagged ramets
Flowering                                                           Entire tank

Morphology
Leaf area                                                            Tagged ramets
Petiole, internode and root length                   Tagged ramets

Table 2. Dependent variables measured at the end of the adult experiment
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Growth, morphology and reproduction

A number of growth measures were estimated:
leaf, root and rhizome productivity (mg DW apex−1

d−1), shoot production (shoot apex−1 d−1), shoot mor-
tality (shoot apex−1 d−1), rhizome extension (cm apex−1

d−1) and branching rate (no. secondary branches) from
tagged ramets.

Plants from each tank were photographed, and the
images from 3 mature shoots behind the apex were
used to measure leaf area (cm2), petiole length (cm),
internode length (cm) and root length (cm) in the pro-
gram Image J. A mean per tank was calculated.

Flowering occurred during the experiment, and the
number of male and female flowers that emerged
was counted over the period of the experiment.

Seed germination experiment

Whole fruits were collected in February 2015 from
the same site as adults. They were incubated in the
dark at 15°C, as pilot work indicated germination did
not occur under these conditions, until the fruits
dehisced after 9 wk, then seeds were collected. In
each tank, 10 circular plastic tubes were inserted into
the sediment and 10 seeds planted just below the sur-
face. The tubes marked the location of planted seeds
allowing easy retrieval; they were not considered
replicates. Care was taken to ensure that each seed
was only exposed to the experimental light colour as
small quantities of light can influence germination
(Baskin et al. 2006); hence, there was no full-spectrum
light acclimatisation period.

A protocol developed from preliminary H. ovalis
seed germination experiments, which indicated
that germination was maximised (~30%) with tem-
perature ‘ramping’ (3 wk at 15°C, followed by 3 wk
at 20°C, then 3 wk at 25°C; J. Statton pers. comm.),
was followed. The number of germinated seeds per
tank was monitored daily by counting emergent
leaves from the start of the 20°C ramping until the
end of the experiment (14 July 2015). Then, 4 ran-
domly selected tubes were removed and the num-
ber of germinated and viable seeds per tank
counted. Germinated seeds were identified if the
hypocotyl breached the seed coat, and viable seeds
were identified with a squeeze test (Marion & Orth
2010). Viable seeds are capable of germinating
under suitable conditions, and non-viable seeds fail
to germinate even under optimal conditions (Brad-
beer 1988). The number of remaining viable seeds,
number of germinated seeds and the percentage of

viable seeds germinated was calculated for each
tank.

Seedling survival experiment

The remaining 6 tubes per tank not harvested at
the end of the seed germination experiment were left
in place to assess seedling survival. However, due to
the very low germination rates under blue (0.005%)
and green (0.01%) light, these treatments could not
be included in the experiment. For the red, yellow
and control light treatments, seedling survival was
assessed from the surviving 59 seedlings on a daily
basis by recording the number of seedlings alive per
tank over 4 wk (17 July to 8 August 2015).

Statistical analyses

A multivariate approach was taken to analyse the
effect of light quality (fixed factor) on the response of
adult plants using PRIMER v7 and PERMANOVA+
2015 (PRIMER-E). Of the variables measured at the
end of the adult experiment (see full list of 29 vari-
ables in Table S1 in the Supplement), a subset of 23
variables (Table 2) were selected based on an assess-
ment of co-correlates. Once the related variables
were removed, all 23 response variables identified in
Table 2 were included and normalised. A test for
homogeneity of variance was performed (PERM-
DISP) and a permutational analysis of variance
(PERMANOVA) run on the resemblance matrix (cre-
ated using Euclidean distance). Subsequently, a per-
mutational pair-wise test was performed to deter-
mine which levels of treatment were significantly
(p < 0.05) different from each other. For the significant
pair-wise results, similarity percentage (SIMPER)
analysis was then used to determine which response
variables were contributing most to the differences.
Individual PERMANOVAs were carried out on vari-
ables identified as important by the SIMPER analysis,
to further confirm which levels of treatment were
 significantly (p < 0.05) different from each other at an
individual response level (see Fig. 5). Originally,
SIMPER was used to identify species driving patterns
in multidimensional space, but it is also appropriate
for other forms of data (Clarke et al. 2014). To
 illustrate the differences among treatments, a metric
multidimensional scaling (mMDS) plot (Kruskal 1964)
was created, and the average for each treatment
with an 80% confidence interval was plotted using
the Bootstrap Averages routine (Clarke & Gorley
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2015). For the seed germination and seedling sur-
vival data, a univariate approach was used because
there was only 1 response variable per experiment,
yet it was still carried out in PRIMER and PERM-
ANOVA as described above. However, as these
analyses were univariate, a SIMPER and mMDS
were not required.

RESULTS

Adult experiment

PERMANOVA indicated a significant (p < 0.05)
effect of light quality on adult Halophila ovalis plants
(Table 3). The subsequent pair-wise PERMANOVA
test indicated that all monochromatic light treat-
ments, with the exception of red, were significantly
(p < 0.05) different to the full-spectrum controls. Fur-
thermore, the blue treatments were significantly dif-
ferent from the yellow treatments (Fig. 3, Table 3).

The SIMPER analysis indicated that the differences
among light quality treatments were driven by a
combination of physiological, growth, biomass and/or
morphology variables (Table 4), with the relative
importance of these variables differing according to
the treatment. Overall, the short wavelength treat-
ments (blue, green and yellow) differed to the con-
trols, whereas long-wavelength radiation (red light)
did not contribute to any of the differences among
treatments. This pattern was evident from the MDS
where red treatments grouped closer to the controls,
whereas blue, green and yellow treatments grouped
on the opposite end of the MDS1 axis (Fig. 3). In par-
ticular, below-ground productivity (root productivity,
rhizome productivity and rhizome extension rate)
declined in blue, green and yellow treatments com-
pared to the controls. However, it was only in the
blue light treatment where the reduction in root pro-
ductivity was significantly lower than the controls
and translated into a meadow scale response, with
lower total biomass and leaf density (Figs. 4 & 5,
Table 4). Furthermore, changes in photosynthetic
parameters were only observed under blue light,
where the efficiency of photosynthesis (α) was sig -
nificantly higher compared to full-spectrum light
(Fig. 5). This result is further illustrated by the pat-
tern of separation across the MDS1 axis (Fig. 3),
which was greatest between control and blue treat-
ments. Additionally, for green light, an increase in
rhizome internode length was measured compared
to the controls. The difference between blue and yel-
low treatments was mainly driven by photosynthetic

variables (α and absorption factor), which were both
higher in blue treatments. Additionally, ramet pro-
ductivity and above-:belowground biomass ratio were
inversely related among light quality treatments
(see Fig. S2 in the Supplement). Several of the afore-
mentioned patterns are simplified in univariate plots
(Fig. 5).

Seed germination experiment

There was a significant effect of monochromatic
light treatment on the germination of viable H. ovalis
seeds (df = 19, F = 11.08, 999 unique permutations,
p < 0.01), with controls significantly higher than the
green and blue treatments (Fig. 6A). Significantly
higher germination occurred in red compared to blue
(unique perm 5, p < 0.05) and green (unique perm 7,
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df MS F Unique p
permutations

Main test
Adult experiment 19 40.45 2.2 999 <0.001
variables

Significant pair-wise tests 35 <0.05
Control, Yellow 35 <0.05
Control, Blue 35 <0.05
Control, Green 35 <0.05
Blue, Yellow 35 <0.05

Table 3. Significant (p < 0.05) results from PERMANOVA
analysis examining the effect of light quality (1 fixed factor) 

on response variables in the adult experiment

Fig. 3. 2-D mMDS displays the group means surrounded by
a corresponding bootstrap region (with 80% confidence in -
terval at 100 bootstraps per group) of the replicate H. ovalis
adult plant samples grown under different light quality 

treatments
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p < 0.05) treatments. Similarly, significantly higher
germination in yellow occurred compared to the blue
(unique perm 6, p < 0.05) treatments (see Table S2 in
the  Supplement).

Seedling survival experiment

A significant effect of monochromatic light treat-
ments was also detected for seedling survival over
23 d (df = 11, F = 5.9, unique perm 144, p < 0.05).
Seedling survival was significantly higher in the red
treatments compared to the controls (unique perm 8,

p < 0.05), with yellow intermediate and not signifi-
cantly different to either the controls or red light
treatment (Fig. 6B, Table S2).

DISCUSSION

This study demonstrated that Halophila ovalis is
sensitive to yellow, green and blue wavelengths that
negatively impacted below-ground productivity and
led to decreased biomass under blue light (Fig. 4).
Furthermore, seed germination and seedling sur-
vival were enhanced by red and yellow light. The
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Treatment groups Response variable Mean Mean Square Contribution Cumulative 
value value distance (SD) % %

Control Yellow
Control vs. Yellow Rhizome productivity 1.66 −0.798 1.42 13.19 13.19

Root productivity 1.46 −0.733 1.25 10.78 23.97
Rhizome extension rate 1.41 −0.774 1.77 10.04 34.00

Control Blue
Control vs. Blue Root productivity 1.46 −0.735 1.24 11.35 11.35

Total biomass 1.07 −0.823 1.31 8.56 19.91
Alpha (α) −0.258 1.76 2.48 8.47 28.38
Leaf density 0.876 −0.631 1.30 7.93 36.31

Control Green
Control vs. Green Rhizome productivity 1.66 −0.294 1.40 9.06 9.06

Rhizome extension rate 1.41 −0.352 1.14 8.67 17.73
Root productivity 1.46 −0.127 0.92 7.95 25.68
Internode length 0.133 0.4 0.89 7.22 32.91

Blue Yellow
Blue vs. Yellow Alpha (α) 1.76 −0.769 3.30 15.15 15.15

Absorption factor 1.32 −0.558 1.12 10.69 25.84
Above-:below ground biomass ratio −0.516 0.75 1.04 8.06 33.89

Table 4. SIMPER summary table indicating which variables contributed to the observed average distances between the light 
quality treatment groups (cumulative % cut-off at 30%)

α Total biomass
Leaf densityRoot productivity

Rhizome extension rate 
Rhizome & root productivity

Internode length

Rhizome extension rate 
Rhizome & root productivity
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responses of different life-history stages of H. ovalis
to monochromatic light quality varied, yet in general
were congruent with terrestrial plant responses. This
suggests the underlying mechanisms driving light
quality responses in terrestrial plants (i.e. photore-
ceptors) are present in seagrasses, despite 85 million
years of evolution in environments with different
light characteristics.

Adult experiment

A significant negative effect on H. ovalis plants was
observed in blue light where reduced root productivity,
which has been measured in other studies of ter -
restrial plants (Victorio & Lage 2009, Baque et al.
2011), led to a reduction in biomass and leaf density
compared to controls. However, the higher photosyn-
thetic efficiency (α) in the blue treatments did not
 result in an increased ETRmax, which suggests that
the increase in α was an adjustment to attempt to
maintain a positive carbon balance as reported for
riverine H. johnsonni (Kahn & Durako 2009). Simi-
larly, H. johnsonii populations from riverine locations
(strongly influenced by CDOM) exhibited higher
gross photosynthetic rates and quantum efficiencies
than marine inlet plants (low-CDOM environment) at
the short wavelengths (350, 400 and 450 nm) (Kahn &
Durako 2009). Furthermore, we also suggest that the
increased photosynthetic efficiency in the blue treat-
ment could have been due to the nature of blue light,
specifically, due to its higher frequency as it has
more energy per photon than red light. However, this
may not have led to increased ETRmax, due to the pos-
sibility of non-photo chemical quenching and photo -
inhibition (Sun et al. 1998).

Our results also show reduced below-ground pro-
ductivity (rhizomes and roots) under yellow and
green light, but this did not lead to significantly lower
biomass compared to plants growing under control
light. This may indicate a switch between below-
ground production to above-ground production in
an attempt to acclimate to green and yellow light
conditions.

It was previously assumed that green light was
inefficient at driving photosynthesis because of its
low absorption by chlorophyll; however, there is now
evidence suggesting that green light supports photo-
synthesis within deep-tissue chloroplasts (Sun et al.
1998) and the rate of photosynthesis is capable of
supporting plant growth at saturating intensities of
green light (i.e. 100 to 200 µmol photons m−2 s−1)
(Golovatskaya & Karnachuk 2015). Whilst seagrasses

have chloroplasts in the epidermal cell layers (Tom-
linson 1980), the reflected green light within these
chloroplasts could be absorbed as it is in terrestrial
leaves (Sun et al. 1998). For example, a study of an -
other seagrass, Zostera marina, used layers of green
algae Ulva intestinalis to alter the quality of light
received by the seagrass towards green and showed
that saturating irradiance and ETRmax were not sig-
nificantly impacted (Mvungi et al. 2012). Some pig-
ments, such as carotenoids, absorb green light and
transfer excited photons to reaction centres to be
used in photosynthesis (Salisbury & Ross 1992), and
such pigments have been shown to increase electron
transport in Amaranthus cruentus (Ptushenko et al.
2002). Our research also did not find a strong effect
of green, yellow and red light on photosynthetic
 performance or pigment content compared to control
light; therefore, these monochromatic light condi-
tions may be effective at driving seagrass photo -
synthesis using the same underlying mechanisms
that are present in terrestrial angiosperms.

The discrepancy between the lack of photosynthetic
response in yellow and green light and a reduced
productivity response in this experiment was evident
in other studies. For example, lettuce Lactuca sativa
grown under broad spectrum light  (blue-green-
yellow-red) had a higher biomass compared to plants
grown under green fluorescent light (500 to 600 nm),
although there was no significant difference in chlo -
rophyll content between the treatments (Kim et al.
2004). Similarly, green and yellow treatments signifi-
cantly impacted cucumber Cucumis sativus growth
but not chlorophyll content when compared to a broad
spectrum white light (Al-Wakeel & Hamed 1996, Su
et al. 2014). Another experiment suggests that yellow
light suppresses chlorophyll and chloroplast forma-
tion in lettuce (Dougher & Bugbee 2001), which may
have explained the inhibition of plant growth under
yellow light. There may be an underlying mechanism
that was not measured in this study that could ac -
count for the discrepancy between physiology and
growth responses, such as chloroplast formation/
structure, Rubisco content, cell expansion or phyto-
hormone concentrations (auxins, gibberellins, etc.)
(Dougher & Bugbee 2001, 2004, Drozdova et al. 2001,
Canamero et al. 2006). Alternatively, the discrepancy
could relate to the use of the PAM fluorometer to
measure photosynthetic characteristics. PAM fluoro -
meters emit bursts of white light to measure photo-
synthetic characteristics, and, therefore, the responses
measured may not reflect those under the treatment
to which the plant has been subjected (i.e. mono -
chromatic green or yellow light). Consequently, the
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actinic light may have confounded the photosyn-
thetic response measured (in this study and in those
mentioned above), and future studies should use
actinic light sources that are the same light quality as
the one under which the plants are being treated
(Kim et al. 2004).

An interesting finding was observed in the green
light treatments where rhizome internodes were
longer than in the controls, despite the lowered over-
all below-ground biomass that was produced. This
type of morphological response is similar to the
‘shade avoidance response’ (Casal 2012) where ter-
restrial plant form (and gene expression) is altered
to best suit shade light, predominantly green and
far-red light (Klein 1992, Stamm & Kumar 2010). The
green-absorbing form of cryptochrome (cry1 and
cry2) and an unknown green light photoreceptor
may be the underlying mechanism behind these plant
responses (Folta 2004, Banerjee et al. 2007, Zhang et
al. 2011). Green light could provide an additional
function similar to R:FR light in that it is crucial for
informing the plant of unfavourable light conditions
(Folta & Maruhnich 2007). In the marine environ-
ment, increased suspended sediment loads within
the water column (Kirk 1994, Longstaff 1999) reduce
light quantity (Erftemeijer & Robin Lewis 2006) and
shift the spectra towards green initially, then yellow
with increased suspended sediment loads (Char-
trand et al. 2012, Jones et al. 2016). The poor growth
response of adult H. ovalis to monochromatic yellow
and green light may therefore reflect the likely re -
sponse to a yellow-green shift under turbidity plumes.

Seed experiment

The enhanced germination rate of H. ovalis seeds
under red light and low germination under blue light
was analogous to the response of Myrio phyllum
 spicatum (a submerged freshwater angio sperm) to
monochromatic light quality (Coble & Vance 1987).
Conversely, our results differ from a light quality
experiment conducted on Thalassia hemprichii (sea-
grass species) which observed no significant effect of
red light on early seedling leaf growth (Soong et al.
2013). As it is widely accepted that phytochromes are
important for mediating red light responses in terres-
trial plants, and that increases in R:FR often enhance
seed germination rates (Whitelam & Smith 1991,
Smith & Whitelam 1997), perhaps phytochrome is
active in H. ovalis, as it seems to be in both H.
wrightii (Tomasko 1992) and R. maritima (Rose &
Durako 1994). Whilst photoreceptor analysis was

beyond the scope of this study, it is likely that this
mechanism could be similar for H. ovalis in that a
higher proportion of red light indicates shallow or
clear water or a gap in the meadow canopy and,
therefore, conditions conducive for germination and
subsequent seedling survival. Further studies of the
H. ovalis and T. hemprichii phytochrome or genome
sequencing would be required to confirm whether
phytochrome is absent in these species, as has been
determined in the seagrass Zostera marina (Olsen et
al. 2016), and whether the same mechanisms that
influence seed germination in terrestrial plants are
active in the germination of seagrass seeds.

Seedling experiment

High seedling survival in red (100%) and yellow
(73%) light indicates that different life-history stages
in H. ovalis are adapted to respond to different light
quality cues in the environment. These could be
influenced by seasonal changes in freshwater inputs
and runoff into estuaries and coastal seas that result
in large changes in salinity, nutrients, turbidity,
CDOM and phytoplankton blooms (Kirk 1994). This
response contrasts with that of adult plants, which
responded negatively to yellow light, suggesting
maximum growth is linked to reduced freshwater
inputs, reflecting summer conditions in temperate
estuarine systems.

Seed germination, seedling survival and adult
responses may be influenced by seasonal shifts in
water quality within the Swan River Estuary. For
example, seed germination was reduced under blue
and green light and both seed germination and
seedling survival were enhanced by red and yellow
light, which may reflect this species’ adaptation to a
yellow- and red-enriched light climate when seeds
are released. H. ovalis fruits mature and release
seeds between February and April (Kuo & Kirkman
1992), and the high rainfall season occurs from May
to August; therefore, this timing coincides with the
increase in CDOM and the subsequent shift to yel-
low/red light—perhaps the enhanced germination of
seeds reflects a response to their environment. The
adult response may also reflect seasonal changes in
water quality as high CDOM levels in the Swan River
Estuary during winter shift light quality towards
 yellow, which coincides with the decline in growth
pattern of H. ovalis, further suggesting maximum
growth is highly linked to reduced freshwater inputs
(and increased temperatures) later in the summer.
Blue light negatively impacted both adults and
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seeds. Perhaps the seasonal high attenuation of blue
light has led the population of H. ovalis growing
within the Swan River Estuary (<2 m) to acclimate
to relatively red/yellow-shifted light, which may
explain their poor response to monochromatic blue
light. Furthermore, the poor response to blue light
may also be linked to photo damage from the high-
energy wavelengths. H. ovalis also grows in oceanic
deep-water environments, where blue and green
light dominate, but the light quantity at depth is nat-
urally reduced. Therefore, these findings need to be
considered in light of the study site and the fact that
it is possible that local acclimation may produce
slightly different responses in other locations. A clear
example of a seagrass’ ability to acclimate to local
conditions was a reciprocal transplantation experi-
ment of riverine and marine inlet H. johnsonni popu-
lations, where rapid changes in photobiology and
UV-absorbing pigment levels occurred within just
4 d (Durako et al. 2003).

It is important to acknowledge that in this experi-
ment, the plants were treated with monochromatic
light in order to determine if H. ovalis is sensitive to
changes in light quality. In reality, marine plants are
not subjected to such narrow wavelength bands; they
would be exposed to light dominated by a certain
colour with a mixture of other wavelengths depending
on water quality conditions (Fig. 2). For example, high
concentrations of CDOM cause the water to take on a
yellow appearance, due to the stronger attenuation of
the shorter wavelength of blue light (Stedmon et al.
2000), and in chlorophyll-enriched waters, red light
and, to a lesser extent, blue is highly attenuated (Kirk
1994). Therefore, while the results in this paper show
that H. ovalis does respond to monochromatic light,
the magnitude of the response under natural condi-
tions, when plants receive a combination of wave-
lengths under a range of water quality conditions, may
be more subtle. The responses may vary according
to acclimation to local habitat, and such acclimation is
therefore an area that warrants investigation.

CONCLUSIONS

This research demonstrates that blue, yellow and
green light negatively impact growth of H. ovalis
adults (predominantly below-ground productivity)
but not seed germination or seedling survival, sug-
gesting a life-history that is influenced by spectral
shifts in light. Furthermore, green or yellow light did
not significantly affect photosynthesis at saturating
irradiances; however, it must be considered that light

intensity is reduced under turbidity plumes, and
therefore, the interaction of these variables should
be investigated. Processes that affect light quality
towards the blue (i.e. deep-water) or yellow-green
region, such as dredging or river discharges high in
CDOM concentrations, could negatively impact sea-
grass meadows through both reduced light quantity
and an altered spectrum. Therefore, information on
light quality conditions that enhance or impact sur-
vival of different life history stages is relevant for the
conservation and management of marine plants, par-
ticularly restoration efforts. Whilst none of the spec-
tra caused mass death, the photosynthetic response
to light spectral limitations is subtle and signifies the
plasticity of H. ovalis.
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