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RESEARCH ARTICLE
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2 Department of Computer Science, Loyola University Chicago, Chicago, Illinois, United States of America,

3 Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, United

States of America, 4 Center for Research Informatics, University of Chicago, Chicago, Illinois, United States

of America, 5 Division of Genetic Medicine, Vanderbilt University, Nashville, Tennessee, United States of

America

¶ Membership of the GTEx Consortium is listed in S1 Text.

* hwheeler1@luc.edu (HEW); haky@uchicago.edu (HKI)

Abstract

Understanding the genetic architecture of gene expression traits is key to elucidating the

underlying mechanisms of complex traits. Here, for the first time, we perform a systematic

survey of the heritability and the distribution of effect sizes across all representative tissues

in the human body. We find that local h2 can be relatively well characterized with 59% of

expressed genes showing significant h2 (FDR < 0.1) in the DGN whole blood cohort. How-

ever, current sample sizes (n� 922) do not allow us to compute distal h2. Bayesian Sparse

Linear Mixed Model (BSLMM) analysis provides strong evidence that the genetic contribu-

tion to local expression traits is dominated by a handful of genetic variants rather than by

the collective contribution of a large number of variants each of modest size. In other

words, the local architecture of gene expression traits is sparse rather than polygenic

across all 40 tissues (from DGN and GTEx) examined. This result is confirmed by the spar-

sity of optimal performing gene expression predictors via elastic net modeling. To further

explore the tissue context specificity, we decompose the expression traits into cross-tissue

and tissue-specific components using a novel Orthogonal Tissue Decomposition (OTD)

approach. Through a series of simulations we show that the cross-tissue and tissue-spe-

cific components are identifiable via OTD. Heritability and sparsity estimates of these

derived expression phenotypes show similar characteristics to the original traits. Consistent

properties relative to prior GTEx multi-tissue analysis results suggest that these traits

reflect the expected biology. Finally, we apply this knowledge to develop prediction models

of gene expression traits for all tissues. The prediction models, heritability, and prediction

performance R2 for original and decomposed expression phenotypes are made publicly

available (https://github.com/hakyimlab/PrediXcan).
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Author Summary

Gene regulation is known to contribute to the underlying mechanisms of complex traits.
The GTEx project has generated RNA-Seq data on hundreds of individuals across more
than 40 tissues providing a comprehensive atlas of gene expression traits. Here, we system-
atically examined the local versus distant heritability as well as the sparsity versus polyge-
nicity of protein coding gene expression traits in tissues across the entire human body. To
determine tissue context specificity, we decomposed the expression levels into cross-tissue
and tissue-specific components. Regardless of tissue type, we found that local heritability,
but not distal heritability, can be well characterizedwith current sample sizes. We found
that the distribution of effect sizes is more consistent with a sparse local architecture in all
tissues. We also show that the cross-tissue and tissue-specific expression phenotypes con-
structedwith our orthogonal tissue decompositionmodel recapitulate complex Bayesian
multi-tissue analysis results. This knowledgewas applied to develop prediction models of
gene expression traits for all tissues, which we make publicly available.

Introduction

Regulatory variation plays a key role in the genetics of complex traits [1–3]. Methods that parti-
tion the contribution of environment and genetic components are useful tools to understand
the biology underlying complex traits. Partitioning heritability into different functional classes
(e.g. promoters, coding regions, DNase I hypersensitivity sites) has been successful in quantify-
ing the contribution of different mechanisms that drive the etiology of diseases [3–5].

Most human expression quantitative trait loci (eQTL) studies have focused on how local
genetic variation affects gene expression in order to reduce the multiple testing burden that
would be required for a global analysis [6, 7]. Furthermore, when both local and distal eQTLs
are reported [8–10], effect sizes and replicability are much higher for local eQTLs. While many
common diseases are likely polygenic [11–13], it is unclear whether gene expression levels are
also polygenic or instead have simpler genetic architectures. It is also unclear how much these
expression architectures vary across genes [6].

Bayesian Sparse Linear Mixed Modeling (BSLMM) models complex traits as a mixture of
sparse and polygenic contributions. The sparse component consists of a handful of variants of
large effect sizes whereas the polygenic component allows for most variants to contribute to the
trait albeit with small effect sizes. BSLMM assumes the genotypic effects come from a mixture
of two normal distributions and thus is flexible to both polygenic and sparse genetic architec-
tures as well as everything in-between [14]. The model is enforced by sparsity inducing priors
on the regression coefficients.BSLMM allows us to directly estimate the sparse and polygenic
components of a trait.

As a somewhat independent approach to determine the sparsity and polygenicity of gene
expression traits, we can look at the relative prediction performance of sparse and polygenic
models. For example, if the true genetic architecture of a trait is polygenic, it is natural to expect
that polygenic models will predict better (higher predicted vs. observedR2) than sparse ones.
We assessed the ability of various models, with different underlying assumptions, to predict
gene expression in order to understand the underlying genetic architecture of gene expression.
For gene expression prediction, we have shown that sparse models such as LASSO (Least Abso-
lute Shrinkage and SelectionOperator) perform better than a polygenic score model and that a
model that uses the top eQTL variant outperformed the polygenic score but did not do as well
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as LASSO or elastic net (mixing parameter α = 0.5) [15]. These results suggest that for many
genes, the genetic architecture is sparse, but not regulated by a single SNP, which is consistent
with previous work describing the allelic heterogeneity of gene expression [16–18].

Thus, gene expression traits with sparse architecture should be better predicted with models
such as LASSO, which prefers solutions with fewer parameters, each of large effect [19]. Con-
versely, highly polygenic traits should be better predicted with ridge regression or similarly
polygenic models that prefer solutions with many parameters, each of small effect [20–22].
Elastic net [23] is a good multi-purposemodel that encompasses both LASSO and ridge regres-
sion at its extremes and has been shown to predict well across many complex traits with diverse
genetic architectures [24].

Most previous human eQTL studies were performed in whole blood or lymphoblastoid cell
lines due to ease of access or culturabilty [8, 25, 26]. Although studies with a few other tissues
have been published, comprehensive coverage of human tissues was not available until the
launching of the Genotype-Tissue Expression (GTEx) Project. GTEx aims to examine the
genetics of gene expression more comprehensively and has recently published a pilot analysis
of eQTL data from 1641 samples across 43 tissues from 175 individuals [27]. Here we use a
much larger set of 8555 samples across 53 tissues corresponding to 544 individuals. One of the
findings of the pilot analysis was that a large portion of the local regulation of expression traits
is shared across multiple tissues. Corroborating this finding, our prediction model built in
DGNwhole blood showed robust prediction [15] across the nine tissues with the largest sample
size from the GTEx Pilot Project [27].

This shared regulation across tissues implies that there is much to be learned from large
sample studies of easily accessible tissues. Yet, a portion of gene regulation seems to be tissue
dependent [27]. To further investigate the genetic architecture that is common across tissues or
specific to each tissue, we use a mixed effectsmodel-based approach termed orthogonal tissue
decomposition (OTD) and sought to decouple the cross-tissue and tissue-specificmechanisms
in the rich GTEx dataset. We show that the cross-tissue and tissue-specific expression pheno-
types constructedwith our OTD model reflect the expected biology.

Results

Significant local heritability of gene expression in all tissues

We estimated the local and distal heritability of gene expression levels in 40 tissues from the
GTEx consortium and whole blood from the Depression Genes and Networks (DGN) cohort.
The sample size in GTEx varied from 72 to 361 depending on the tissue, while 922 samples
were available in DGN [26]. We used linear mixed models (see Methods) and calculated vari-
ances using restrictedmaximum likelihood (REML) as implemented in GCTA [28]. For the
local heritability component, we used common (minor allele frequency> 0.05) variants within
1Mb of the transcription start and end of each protein coding gene, whereas for the distal com-
ponent, we used common variants outside of the chromosome where the gene was located.

Table 1 summarizes the local heritability estimate results across all tissues. In order to obtain
an unbiased estimate of mean h2 across genes, we do not constrain the model to only output h2

estimates between 0 and 1. Instead, as done previously [10, 29], we allow the h2 estimates to be
negative when fitting the model and thus refer to it as the unconstrained REML. This approach
reduces the standard error of the estimated mean of heritability (law of large numbers). For dis-
tal heritability, the errors in the individual heritability estimates were still too large to render a
significantmean distal heritability, even in DGNwhole blood, the tissue with the largest sample
size (S1 Fig). The local component of h2 is relatively well estimated in DGN whole bloodwith
59% of genes (7474 out of 12719) showing FDR< 0.1 (Table 1).
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Table 1. Estimates of unconstrained local h2 across genes within tissues.

tissue n mean h2 (SE) % FDR<0.1 num FDR<0.1 num expressed

DGN Whole Blood 922 0.149 (0.0039) 58.8 7474 12719

Cross-tissue 450 0.062 (0.017) 20.2 2995 14861

Adipose—Subcutaneous 298 0.038 (0.028) 18.8 2666 14205

Adrenal Gland 126 0.043 (0.018) 17.5 2479 14150

Artery—Aorta 198 0.042 (0.024) 17.2 2385 13844

Artery—Coronary 119 0.037 (0.048) 16.5 2326 14127

Artery—Tibial 285 0.042 (0.02) 18.4 2489 13504

Brain—Anterior cingulate cortex (BA24) 72 0.028 (0.036) 15.4 2235 14515

Brain—Caudate (basal ganglia) 100 0.037 (0.047) 17.2 2521 14632

Brain—Cerebellar Hemisphere 89 0.049 (0.068) 16.0 2294 14295

Brain—Cerebellum 103 0.050 (0.06) 18.3 2646 14491

Brain—Cortex 96 0.045 (0.057) 17.7 2593 14689

Brain—Frontal Cortex (BA9) 92 0.038 (0.077) 16.6 2416 14554

Brain—Hippocampus 81 0.037 (0.05) 16.4 2376 14513

Brain—Hypothalamus 81 0.017 (0.043) 15.2 2238 14759

Brain—Nucleus accumbens (basal ganglia) 93 0.029 (0.04) 17.1 2498 14601

Brain—Putamen (basal ganglia) 82 0.032 (0.064) 17.3 2495 14404

Breast—Mammary Tissue 183 0.029 (0.037) 17.0 2496 14700

Cells—EBV-transformed lymphocytes 115 0.058 (0.1) 16.6 2066 12454

Cells—Transformed fibroblasts 272 0.051 (0.031) 20.0 2552 12756

Colon—Sigmoid 124 0.033 (0.019) 16.0 2298 14321

Colon—Transverse 170 0.036 (0.058) 16.3 2398 14676

Esophagus—Gastroesophageal Junction 127 0.032 (0.039) 16.1 2270 14125

Esophagus—Mucosa 242 0.042 (0.03) 17.1 2432 14239

Esophagus—Muscularis 219 0.039 (0.015) 17.7 2493 14047

Heart—Atrial Appendage 159 0.042 (0.03) 16.8 2327 13892

Heart—Left Ventricle 190 0.034 (0.034) 16.5 2203 13321

Liver 98 0.033 (0.062) 16.5 2230 13553

Lung 279 0.032 (0.034) 17.0 2509 14775

Muscle—Skeletal 361 0.033 (0.03) 17.9 2301 12833

Nerve—Tibial 256 0.052 (0.087) 20.6 2992 14510

Ovary 85 0.037 (0.094) 17.2 2418 14094

Pancreas 150 0.047 (0.024) 17.2 2398 13941

Pituitary 87 0.038 (0.055) 16.6 2527 15183

Skin—Not Sun Exposed (Suprapubic) 196 0.041 (0.034) 17.0 2490 14642

Skin—Sun Exposed (Lower leg) 303 0.039 (0.016) 18.4 2687 14625

Small Intestine—Terminal Ileum 77 0.036 (0.053) 17.4 2591 14860

Spleen 89 0.059 (0.061) 17.0 2451 14449

Stomach 171 0.032 (0.025) 16.1 2338 14531

Testis 157 0.054 (0.044) 17.8 3009 16936

Thyroid 279 0.044 (0.066) 19.4 2838 14642

Whole Blood 339 0.033 (0.023) 18.6 2260 12160

Except for DGN Whole Blood, all tissues are from the GTEx Project. Cross-tissue uses derived expression levels from our orthogonal tissue decomposition

(OTD) of GTEx data. Mean heritability (h2) is calculated across genes for each tissue. The standard error (SE) is estimated from the h2 estimates obtained

when the expression sample labels are shuffled 100 times. The percentage (%) and number (num) of genes with significant h2 estimates (FDR < 0.1) in

each tissue are reported. The number of genes in each tissue with mean RPKM > 0.1 (num expressed) is also reported.

doi:10.1371/journal.pgen.1006423.t001
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It has been shown that local-eQTLs are more likely to be distal-eQTLs of target genes [30].
However, restricting the distal h2 estimates to known eQTLs on non-gene chromosomes dis-
covered in a separate cohort (see Methods) did not improve distal h2 estimates.

We examined the sensitivity of our local h2 estimates to uneven linkage disequilibrium (LD)
across the genome using LDAK [31], a method proposed to account for LD. Overall, we find
good concordance betweenGCTA and LDAK estimates, with slightly lower LDAK estimates
(S2 Fig). Given the limited sample size we will focus on local regulation for the remainder of
the paper.

Across all tissues 15–59% of genes had significant estimates (FDR< 0.1) as shown in
Table 1. Gene expression local heritability estimates were consistent betweenwhole blood tis-
sue from the DGN and GTEx cohorts (Spearman’s ρ = 0.27 [95% confidence interval (CI):
0.25–0.30]). In addition, the DGN estimates made here were consistent with those made in
Price et al. [29] using an Icelandic family cohort (ρ = 0.32 [0.30−0.35]).We also found that
more heritable genes tend to be more tolerant to loss of functionmutations (Fig 1). Presum-
ably, such genes are more tolerant to both loss of functionmutations and mutations that alter
gene expression regulation. This result is consistent with the finding that more eQTLs are
found in more tolerant genes [32].

Sparse local architecture revealed by direct estimation using Bayesian

Sparse Linear Mixed Modeling (BSLMM)

Next, we sought to determine whether the local common genetic contribution to gene expres-
sion is polygenic or sparse. In other words, whether many variants with small effects or a small

Fig 1. Genes with heritable expression in DGN whole blood are more tolerant to loss of function

mutations. The distribution of the probability of being loss-of-function intolerant (pLI) for each gene (from the

Exome Aggregation Consortium [32]) dichotomized by local heritability estimates. The Kruskal-Wallis rank sum

test revealed a significant difference in the pLI of heritability groups (χ2 = 234, P < 10−52). More heritable genes

(h2 > 0.1 in blue) have lower pLI metrics and are thus more tolerant to mutation than genes with lower h2.

doi:10.1371/journal.pgen.1006423.g001
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number of large effects were contributing to expression trait variability. To do this, we used the
BSLMM [14] approach, which models the genetic contribution as the sum of a sparse compo-
nent and a highly polygenic component. The parameter PGE in this model represents the pro-
portion of genetic variance explained by sparse effects. Another parameter, the total variance
explained (PVE) by additive genetic variants, is a more flexible Bayesian equivalent of the heri-
tability we have estimated using a linear mixed model (LMM) as implemented in GCTA.

For genes with low heritability, our power to discern between sparse and polygenic architec-
ture is limited. In contrast, for highly heritable genes, the credible sets are tighter and we are able
to determine that the sparse component is large. For example, the median PGE was 0.99 [95%
CI: 0.94–1] for genes with PVE> 0.50 (Fig 2A). The median PGE was 0.95 [95% CI: 0.72–0.99]
for genes with PVE> 0.1. Fittingly, for most (96.3%) of the genes with heritability> 0.10, the
number of SNPs included in the model was below 10.

Prediction models with a sparse component outperform polygenic

models

To further confirm the local sparsity of gene expression traits, we looked at the prediction per-
formance of a range of models with different degrees of polygenicity, such as the elastic net
model with mixing parameter values ranging from 0 (fully polygenic, ridge regression) to 1
(sparse, LASSO).We performed 10-fold cross-validation using the elastic net [23] to test the
predictive performance of local SNPs for gene expression across a range of mixing parameters
(α). Given common folds and seeds, the mixing parameter that yields the largest cross-valida-
tion R2 informs the degree of sparsity of each gene expression trait. That is, at one extreme, if

Fig 2. Sparsity estimates using Bayesian Sparse Linear Mixed Models in DGN whole blood. (A) This panel

shows a measure of sparsity of the gene expression traits represented by the PGE parameter from the BSLMM

approach. PGE is the proportion of the sparse component of the total variance explained by genetic variants, PVE

(the BSLMM equivalent of h2). The median of the posterior samples of BSLMM output is used as estimates of

these parameters. Genes with a lower credible set (LCS) > 0.01 are shown in blue and the rest in red. The 95%

credible set of each estimate is shown in gray. For highly heritable genes the sparse component is close to 1, thus

for high heritability genes the local architecture is sparse. For lower heritability genes, there is not enough evidence

to determine sparsity or polygenicity. (B) This panel shows the heritability estimate from BSLMM (PVE) vs the

estimates from GCTA, which are found to be similar (R = 0.96). Here, the estimates are constrained to be between

0 and 1 in both models. Each point is colored according to that gene’s elastic net α = 1 cross-validated prediction

correlation squared (EN R2). Note genes with high heritability have high prediction R2, as expected.

doi:10.1371/journal.pgen.1006423.g002
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the optimal α = 0 (equivalent to ridge regression), the gene expression trait is highly polygenic,
whereas if the optimal α = 1 (equivalent to LASSO), the trait is highly sparse. We found that
for most gene expression traits, the cross-validated R2 was smaller for α = 0 and α = 0.05, but
nearly identical for α = 0.5 through α = 1 in the DGN cohort (Fig 3). An α = 0.05 was also
clearly suboptimal for gene expression prediction in the GTEx tissues, while models with α =
0.5 or 1 had similar predictive power (S3 Fig). Together with the BSLMM results, this suggests
that given current data, the effect of local common genetic variation on gene expression is
sparse rather than polygenic for most genes.

BSLMM outperforms LMM in estimating h2 for small samples

In DGN, there is a strong correlation between BSLMM-estimated PVE and GCTA-estimated
h2 (Fig 2B, R = 0.96). In contrast, when we applied BSLMM to the GTEx data, we found that
many genes had measurably larger BSLMM-estimated PVE than LMM-estimated h2 (Fig 4).
This is further confirmation of the predominantly sparse local architecture of gene expression
traits: the underlying assumption in the LMM approach to estimate heritability is that the
genetic effect sizes are normally distributed, i.e. most variants have small effect sizes. LMM is
quite robust to departure from this assumption, but only when the sample size is rather large
(S4 Fig). For the relatively small sample sizes in GTEx (n� 361), we found that directly model-
ing the sparse component with BSLMM (polygenic + sparse components) outperforms LMM
(single polygenic component) for estimating h2. Here, unlike in previous sections (see Table 1
and S1 Fig), both the BSLMM and LMM model estimates are constrained to be between 0
and 1.

Fig 3. DGN cross-validated predictive performance across the elastic net. Elastic net prediction models were

built in the DGN whole blood and performance was quantified by the cross-validated R2 between observed and

predicted expression levels. (A) This panel shows the 10-fold cross validated R2 for 51 genes with R2 > 0.3 from

chromosome 22 as a function of the elastic net mixing parameters (α). Smaller mixing parameters correspond to more

polygenic models while larger ones correspond to more sparse models. Each line represents a gene. The

performance is in general flat for most values of the mixing parameter except very close to zero where it shows a

pronounced dip. Thus polygenic models perform more poorly than sparse models. (B) This panel shows the difference

between the cross validated R2 of the LASSO model and the elastic net model mixing parameters 0.05 and 0.5 for

autosomal protein coding genes. Elastic net with α = 0.5 values hover around zero, meaning that it has similar

predictive performance to LASSO. The R2 difference of the more polygenic model (elastic net with α = 0.05) is mostly

above the 0 line, indicating that this model performs worse than the LASSO model.

doi:10.1371/journal.pgen.1006423.g003
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To ensure that the high values of heritability estimated by BSLMM are due to actually higher
h2 and not to limitations or bias of the BSLMM, we use the fact that cross-validated prediction
R2 (observedvs predicted squared correlation when prediction parameters are estimated with-
out including the observations to be predicted) is bounded by the heritable component. In
other words, genetically based prediction models can only explain or predict the portion that is
heritable. As shown in Fig 4, most of the genes with high BSLMM heritability but low LMM h2

have large values of prediction R2. We further validated this behavior by showing Price et al.

Fig 4. BSLMM vs LMM estimates of heritability in GTEx. This figure shows the comparison between estimates of heritability using

BSLMM vs. LMM (GCTA) for GTEx data. Here, in both models the estimates are constrained to be between 0 and 1. For most genes

BSLMM estimates are larger than LMM estimates reflecting the fact that BSLMM yields better estimates of heritability because of its ability

to account for the sparse component. Each point is colored according to that gene’s prediction R2 (correlation squared between cross-

validated elastic net prediction vs observed expression denoted EN R2). At the bottom right of each panel, we show the correlation between

BSLMM (EN_v_BSLMM) and LMM (EN_v_LMM). BSLMM is consistently more correlated with the elastic net correlation. This provides

further indication that the local architecture is predominantly sparse.

doi:10.1371/journal.pgen.1006423.g004
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[29] identity-by-descent (IBD) heritability estimates correlate more strongly with BSLMM
than LMM estimates (S5 Fig). For all tissues, correlation is higher between IBD estimates and
BSLMM than between IBD and LMM. These findings provide strong evidence that LMM is
underestimating h2 for these genes.

Orthogonal decomposition of cross-tissue and tissue-specific

expression traits

Since a substantial portion of local regulation was shown to be common across multiple tissues
[27], we sought to decompose the expression levels into a component that is common across
all tissues and tissue-specific components. Fig 5 shows a diagram describing the decomposition
for which we use a linear mixed effectsmodel with a person-level random effect (see Methods).
We use the posterior mean of this random effect as an estimate of the cross-tissue component.

Fig 5. Orthogonal Tissue Decomposition of gene expression traits. For a given gene, the expression level is decoupled into a

component that is specific to the individual and another component that is specific to the individual and tissue. The left side of the

equation in the figure corresponds to the original “whole tissue” expression levels. The right side has the component specific for the

individual, independent of the tissue and the tissue-specific component. Given the lack of multiple replications for a given tissue/

individual we use a mixed effects model with a random effect that is specific to the individual. The cross-tissue component is estimated

as the posterior mean of the subject-specific random effect. The tissue-specific component is estimated as the residual of the model fit,

i.e. the difference between the “whole tissue” expression and the cross-tissue component. The rationale is that once we remove the

component that is common across tissues, the remaining will be specific to the tissue. Models are fit one gene at a time. Covariates are

not shown to simplify the presentation.

doi:10.1371/journal.pgen.1006423.g005
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We consider the residual component of this model as the tissue-specific component. We call
this approach orthogonal tissue decomposition (OTD) because the cross-tissue and tissue-spe-
cific components are assumed to be independent in the model.

First, we sought to demonstrate that OTD is able to identify the cross-tissue and tissue-spe-
cific components via simulations. We generated simulated traits so that the true cross-tissue and
tissue-specific components are known. To preserve the correlation structure between genes and
tissues, we considered the estimated cross-tissue and tissue-specific components as the true val-
ues. Then, we simulated expression traits as the sum of the cross-tissue and tissue-specific
components and an error term (expression trait = cross-tissue + tissue-specific+ noise). We
simulated expression traits using different magnitudes of the noise level and then applied our
OTD approach. Simulated values were constructed using noise variance equal in magnitude to
the original variance of the expression levels of each gene. This is a rather conservative choice
since the variance of the noise component is unlikely to be larger than the total variance of the
expression trait. In S6 Fig, we show for one simulated example the correlation between true and
OTD-estimated components for one representative gene, SLTM, and the distribution of the
correlation between true and OTD-estimates for all genes. The median Pearson correlation
between true and OTD-estimted cross-tissue components was 0.54 [95% CI: 0.33–0.77] and for
tissue-specific components was 0.75 [0.46–0.88], demonstrating the robustness of our model
(S6 Fig).

For the OTD derived cross-tissue and 40 tissue-specific expression phenotypes, we com-
puted the local heritability and generated prediction models. The decomposition is applied at
the expression trait level so that the downstream genetic regulation analysis is performed sepa-
rately for each derived trait, cross-tissue and tissue-specific expression, which greatly reduces
computational burden.

Cross-tissue expression phenotype is less noisy and shows higher

predictive performance

Our estimates of h2 for cross-tissue expression traits are larger than the corresponding esti-
mates for each whole tissue (S7 Fig) because our OTD approach increases the ratio of the
genetically regulated component to noise by averaging across multiple tissues. In addition to
the increased h2, we observe reduction in standard errors of the estimated cross-tissue h2. This
is due, in part, to the larger effective sample size for cross-tissue phenotypes. There were 450
samples for which cross-tissue traits were available whereas the maximum sample size for
whole tissue phenotypes was 362. Similarly, cross-tissue BSLMM PVE estimates had lower
error than whole tissue PVE (S8 and S9 Figs).

As for the tissue-specific components, the cross-tissue heritability estimates were also larger
and the standard errors were smaller reflecting the fact that a substantial portion of regulation
is common across tissues (S10 Fig). The percentage of GCTA h2 estimates with FDR<0.1 was
much larger for cross-tissue expression (20%) than the tissue-specific expressions (6–13%, S1
Table). Similarly, the percentage of BSLMM PVE estimates with a lower credible set greater
than 0.01 was 49% for cross-tissue expression, but ranged from 24–27% for tissue-specific
expression (S9 Fig).

Cross-tissue predictive performance exceeded that of both tissue-specific and whole tissue
expression as indicated by higher cross-validated R2 (S11 Fig). Like whole tissue expression,
cross-tissue and tissue-specific expression showed higher predictive performance when using
more sparse models. In other words elastic-net models with α� 0.5 predicted better than the
ones with α = 0.05 (S11 Fig).
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Cross-tissue expression phenotype recapitulates published multi-tissue

eQTL results

To verify that the cross-tissue phenotype has the properties we expect, we compared our OTD
results to those from a joint multi-tissue eQTL analysis [33], which was previously performed
on a subset of the GTEx data [27] covering 9 tissues. In particular, we used the posterior proba-
bility of a gene being actively regulated (PPA) in a tissue. These analysis results are available on
the GTEx portal (see Methods).

First, we reasoned that genes with high cross-tissue h2 would be actively regulated in most
tissues so that the PPA of a gene would be roughly uniform across tissues. By contrast, a gene
with tissue-specific regulation would have concentrated posterior probability in one or a few
tissues. Thus we decided to define a measure of uniformity of the posterior probability vector
across the 9 tissues using the concept of entropy. More specifically, for each gene we normal-
ized the vector of posterior probabilities so that the sum equaled 1. Then we applied the usual
entropy definition (negative of the sum of the log of the posterior probabilities weighted by the
same probabilities, see Methods). In other words, we defined a uniformity statistic that com-
bines the nine posterior probabilities into one value such that higher values mean the gene reg-
ulation is more uniform across all nine tissues, rather than in just a small subset of the nine.

Thus, we expected that genes with high cross-tissue heritability would show high probability
of being active in multiple tissues and have high uniformity measure. Reassuringly, this is
exactly what we find. Genes with high cross-tissue heritability concentrate on the higher end of
the uniformity measure (Fig 6, S12 Fig).

For the original whole tissue, we expected the whole tissue expression heritability to corre-
late with the posterior probability of a gene being actively regulated in a tissue. This is
confirmed in Fig 7A where PPA in each tissue is correlated with the BSLMM PVE of the

Fig 6. Measure of uniformity of the posterior probability of active regulation vs. cross-tissue heritability.

Uniformity was computed using the posterior probability of a gene being actively regulated in a tissue, PPA, from the

Flutre et al. [33] multi-tissue eQTL analysis. (A) Representative examples showing that genes with PPA concentrated in

one tissue were assigned small values of the uniformity measure whereas genes with PPA uniformly distributed across

tissues were assigned high value of uniformity measure. See Methods for the entropy-based definition of uniformity. (B)

This panel shows the distribution of heritability of the cross-tissue component vs. a measure of uniformity of genetic

regulation across tissues. The Kruskal-Wallis rank sum test revealed a significant difference in the cross-tissue h2 of

uniformity groups (χ2 = 31.4, P < 10−6).

doi:10.1371/journal.pgen.1006423.g006
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expression in that tissue. In the off diagonal elements we observe high correlation between
tissues, which was expected given that large portion of the regulation has been shown to be
common across tissues. Whole blood has the lowest correlation consistent with whole blood
clustering separately from other tissues [27]. In contrast, Fig 7B shows that the tissue-specific
expression PVE correlates well with matching tissue PPA but the off diagonal correlations
are substantially reduced consistent with these phenotypes representing tissue-specific com-
ponents. Again whole blood shows a negative correlation which could be indicative of some
over correction of the cross-tissue component. Overall these results indicate that the cross-
tissue and tissue-specific phenotypes have properties that are consistent with the intended
decomposition.

Discussion

Motivated by the key role that regulatory variation plays in the genetic control of complex traits
[1–3], we performed a survey of the heritability and patterns of effect sizes of gene expression
traits across a comprehensive set of human tissues. We quantified the local and distal heritabil-
ity of gene expression in DGN and 40 different tissues from the GTEx consortium.Distal com-
ponents estimates were too noisy to draw meaningful conclusions.

Using results implied by the improved predictive performance of sparse models and by
directly estimating sparsity using BSLMM (Bayesian Sparse Linear Mixed Model), we show evi-
dence that local common variant regulation is sparse across all the tissues analyzed here. Our
finding that a handful of genetic variants seem to contribute to the variability in gene expres-
sion traits has important implications for the strategies used in future investigations of gene
regulation and downstream effects on complex traits. For example, most fine mapping meth-
ods that attempt to find the causal SNPs that drive a GWAS locus focus on a limited number of
variants. This only makes sense in cases where the underlying genetic architecture is sparse,

Fig 7. Comparison of heritability of whole tissue or tissue-specific components vs. PPA. Panel (A) of this

figure shows the Pearson correlation (R) between the BSLMM PVE of the original (we are calling whole here)

tissue expression levels vs. the probability of the tissue being actively regulated in a given tissue (PPA). Matching

tissues show, in general, the largest correlation values but most of the off diagonal correlations are also relatively

high consistent with the shared regulation across tissues. Panel (B) shows the Pearson correlation between the

PVE of the tissue-specific component of expression via orthogonal tissue decomposition (OTD) vs. PPA.

Correlations are in general lower but matching tissues show the largest correlation. Off diagonal correlations are

reduced substantially consistent with properties that are specific to each tissue. Area of each circle is proportional

to the absolute value of R.

doi:10.1371/journal.pgen.1006423.g007
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that is, when a handful of causal variants are determining the variability of the traits. We note
that any rare variants not tagged by common variants are not included in our gene expression
heritability estimates and prediction models. For genes with moderate and low heritability the
evidence is not as strong, due to reduced power, but results are consistent with a sparse local
architecture. Sparse models capture the most variance in gene expression at current sample
sizes and have been used successfully in gene expression predictionmethods [15, 34–36]. Better
methods to correct for hidden confounders that do not dilute distal signals and larger sample
sizes will be needed to determine the properties of distal regulation.

Given that a substantial portion of local regulation is shared across tissues, we proposed
here to decompose the expression traits into cross-tissue and tissue-specific components in
order to facilitate biological interpretation. This approach, called orthogonal tissue decomposi-
tion (OTD), aims to decouple the shared regulation from the tissue-specific regulation. The
orthogonality is a feature that simplifies the interpretation of association results. Many groups
have proposed integrating genotype and expression data to understand complex traits [15, 22,
35–38]. When we find a gene target of interest, a natural question is whether the association is
driven by processes within a specific tissue or across all tissues. Through integration of our
OTD expression traits with studies of complex diseases, we expect results from the cross-tissue
models to relate to mechanisms that are shared across multiple tissues, whereas results from
the tissue-specificmodels will inform us about the context specificmechanisms. We examined
the genetic architecture of the derived cross-tissue and tissue-specific traits and found that they
follow similar sparse patterns as the original whole tissue expression traits. The cross-tissue
component benefits from an effectively larger sample size (16 tissues/person on average) than
any individual tissue trait, which is reflected in more accurate heritability estimates and consis-
tently higher prediction performance. Encouragingly, we find that genes with high cross-tissue
heritability tend to be regulated more uniformly across tissues. As for the tissue-specific expres-
sion traits, we found that they recapitulate correlation with the vector of probability of tissue-
specific regulation.

In this paper, we quantitate the genetic architecture of gene expression and develop predic-
tors across tissues. We show that local heritability can be accurately estimated across tissues,
but distal heritability cannot be reliably estimated at current sample sizes. Using two different
approaches, BSLMM and the elastic net, we show that for common local gene regulation, the
genetic architecture is mostly sparse rather than polygenic. Using new expression phenotypes
generated in our OTD model, we show that cross-tissue predictive performance exceeded that
of both tissue-specific and whole tissue expression as indicated by higher elastic net cross-vali-
dated R2. Predictors, heritability estimates and cross-validation statistics generated in this
study of gene expression architecture are freely available (https://github.com/hakyimlab/
PrediXcan) for use in future studies of complex trait genetics.

Methods

Genomic and transcriptomic data

DGN dataset. We obtained whole blood RNA-seq and genome-wide genotype data for
922 individuals from the Depression Genes and Networks (DGN) cohort [26], all of European
ancestry. For all analyses, we used the HCP (hidden covariates with prior) normalized gene-
level expression data used for the trans-eQTL analysis in Battle et al. [26] and downloaded
from the NIMH repository. The 922 individuals were unrelated (all pairwise p̂ < 0.05) and
thus all included in downstream analyses. Imputation of approximately 650K input SNPs
(minor allele frequency [MAF]> 0.05, Hardy-Weinberg Equilibrium [P> 0.05], non-
ambiguous strand [no A/T or C/G SNPs]) was performed on the Michigan Imputation Server
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(https://imputationserver.sph.umich.edu/start.html) [39, 40] with the following parameters:
1000G Phase 1 v3 ShapeIt2 (no singletons) reference panel, SHAPEIT phasing, and EUR popu-
lation. Approximately 1.9M non-ambiguous strand SNPs with MAF> 0.05, imputation R2>

0.8 and, to reduce computational burden, inclusion in HapMap Phase II were retained for sub-
sequent analyses.

GTEx dataset. We obtained RNA-seq gene expression levels from 8555 tissue samples (53
unique tissue types) from 544 unique subjects in the GTEx Project [27] data release on 2014-
06-13. Of the individuals with gene expression data, genome-wide genotypes (imputed with
1000 Genomes) were available for 450 individuals.While all 8555 tissue samples were used in
the OTD model (describedbelow) to generate cross-tissue and tissue-specific components
of gene expression, we used the 40 tissues with the largest sample sizes (n> 70) when quantify-
ing tissue-specific effects (see S1 Table). Approximately 2.6M non-ambiguous strand SNPs
included in HapMap Phase II were retained for subsequent analyses.

Framingham expression dataset. We obtained exon array expression and genotype array
data from 5257 individuals from the Framingham Heart Study [41]. The final sample size after
quality control was 4286. We used the Affymetrix power tools (APT) suite to perform the pre-
processing and normalization steps. First the robust multi-array analysis (RMA) protocol was
applied which consists of three steps: background correction, quantile normalization, and sum-
marization [42]. The background correction step uses antigenomic probes that do not match
known genome sequences to adjust the baseline for detection, and is applied separately to each
array. Next, the normalization step utilizes a ‘sketch’ quantile normalization technique instead
of a memory-intensive full quantile normalization. The benefit is a much lower memory
requirement with little accuracy trade-off for large sample sets such as this one. Next, the
adjusted probe values were summarized (by the median polish method) into log-transformed
expression values such that one value is derived per exon or gene. The summarized expression
values were then annotated more fully using the annotation databases contained in the
huex10stprobeset.db (exon-level annotations) and huex10sttranscriptcluster.db (gene-level
annotations) R packages available from Bioconductor [43, 44]. In both cases gene annotations
were provided for each feature.

Plink [45] was used for data wrangling and cleaning steps. The data wrangling steps
included updating probe IDs, unifying data to the positive strand, and updating locations to
GRCh37. The data cleaning steps included a step to filter for variant and subject missingness
and minor alleles, one to filter variants with Hardy-Weinberg exact test, and a step to remove
unusual heterozygosity. To make our data compatible with the Haplotype Reference Consor-
tium (HRC) panel (http://www.well.ox.ac.uk/*wrayner/tools/),we used the HRC-check-bin
tool in order to carry out data wrangling steps required. The data were then split by chromo-
some and pre-phased with SHAPEIT [46] using the 1000 Genomes phase 3 panel and con-
verted to vcf format. These files were then submitted to the Michigan Imputation Server
(https://imputationserver.sph.umich.edu/start.html) [39, 40] for imputation with the HRC ver-
sion 1 panel [47]. We applied Matrix eQTL [48] to the normalized expression and imputed
genotype data to generate prior eQTLs for our heritability analysis.

Partitioning local and distal heritability of gene expression

Motivated by the observeddifferences in regulatory effect sizes of variants located in the vicin-
ity of the genes and distal to the gene, we partitioned the proportion of gene expression vari-
ance explained by SNPs in the DGN cohort into two components: local (SNPs within 1Mb of
the gene) and distal (SNPs on non-gene chromosomes) as defined by the GENCODE [49] ver-
sion 12 gene annotation. We calculated the proportion of the variance (narrow-sense
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heritability) explained by each component using the following mixed-effectsmodel:

Yg ¼
X

k2local

wlocal
k;g Xk þ

X

k2distal

wdistal
k;g Xk þ �

where Yg represents the expression of gene g, Xk is the allelic dosage for SNP k, local refers to
the set of SNPs located within 1Mb of the gene’s transcription start and end, distal refers to
SNPs in other chromosomes, and � is the error term representing environmental and other
unknown factors. We assume that the local and distal components are independent of
each other as well as independent of the error term. We assume random effects for
wlocal

k;g � Nð0; s2
w;localÞ, wdistal

k;g � Nð0; s2
w;distalÞ, and � � Nð0; s2

�
InÞ, where In is the identity matrix.

We calculated the total variability explained by local and distal components using restricted
maximum likelihood (REML) as implemented in the GCTA software [28].

In an effort to determine if distal heritability estimates could be improved, we also tested a
mixed-effectmodel restricting the distal component to known eQTLs on non-gene chromo-
somes discovered in the Framingham cohort at FDR< 0.05. When we found the distal estimate
could not be improved, we focused on estimating local heritability without the distal compo-
nent in the equation above.

For the purpose of estimating the mean heritability (see Table 1, S1 Fig and S1 Table), we
allowed the heritability estimates to take negative values (unconstrainedmodel). Despite the
lack of obvious biological interpretation of a negative heritability, it is an accepted procedure
used in order to avoid bias in the estimated mean [10, 29]. Genes with FDR< 0.1 (derived
from the two-sidedGCTA P-value) were considered to have significant heritability.

For comparing to BSLMM PVE, we restricted the GCTA heritability estimates to be within
the [0, 1] interval (constrained model, see Figs 2, 4 and 6).

Quantifying sparsity with Bayesian Sparse Linear Mixed Modeling

(BSLMM)

We used BSLMM [14] to model the effect of local genetic variation (common SNPs within 1
Mb of gene) on the genetic architecture of gene expression. BSLMM uses a linear model with a
polygenic component (small effects) and a sparse component (large effects) enforced by spar-
sity inducing priors on the regression coefficients [14]. BSLMM assumes the genotypic effects
come from a mixture of two normal distributions and thus is flexible to both polygenic and
sparse genetic architectures [14]. We used the software GEMMA [50] to implement BSLMM
for each gene with 100K sampling steps per gene. BSLMM estimates the PVE (the proportion
of variance in phenotype explained by the additive genetic model, analogous to the heritability
estimated in GCTA) and PGE (the proportion of genetic variance explained by the sparse
effects terms where 0 means that genetic effect is purely polygenic and 1 means that the effect
is purely sparse). From the second half of the sampling iterations for each gene, we report the
median and the 95% credible sets of the PVE, PGE, and the |γ| parameter (the number of SNPs
with non-zero coefficients).

Determining polygenicity versus sparsity using the elastic net

We used the glmnet R package to fit an elastic net model where the tuning parameter is chosen
via 10-fold cross-validation to maximize prediction performancemeasured by Pearson’s R2

[51, 52].
The elastic net penalty is controlled by mixing parameter α, which spans LASSO (α = 1, the

default) [19] at one extreme and ridge regression (α = 0) [20] at the other. The ridge penalty
shrinks the coefficients of correlated SNPs towards each other, while the LASSO tends to pick
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one of the correlated SNPs and discard the others. Thus, an optimal prediction R2 for α = 0
means the gene expression trait is highly polygenic, while an optimal prediction R2 for α = 1
means the trait is highly sparse.

In the DGN cohort, we tested 21 values of the mixing parameter (α = 0, 0.05, 0.1, . . ., 0.90,
0.95, 1) for optimal prediction of gene expression of the 341 genes on chromosome 22. In order
to compare prediction R2 values across α values, we used common folds and seeds for each
run. For the rest of the autosomes in DGN and for whole tissue, cross-tissue, and tissue-specific
expression in the GTEx cohort, we tested α = 0.05, 0.5, 1.

Orthogonal Tissue Decomposition (OTD)

We use a mixed effectsmodel to decompose the expression level of a gene into a subject-spe-
cific component and a subject-by-tissue-specific component. We fit the model one gene at a
time and to simplify notation we assume the gene index, g, is implicit and drop it from the
equations below. The expression Y of a gene g for individual i in tissue t is modeled as

Yi;t;g ¼ Yi;t ¼ YCT
i þ YTS

i;t þ Z0ibþ �i;t

where YCT
i is the random subject level intercept, YTS

i;t is the random subject by tissue intercept, Zi

represents covariates (for overall intercept, tissue intercept, gender, and PEER factors), and �i,t is
the error term. We assume YCT

i � Nð0; s2
CTÞ, YTS

i;t � Nð0; s2
TSÞ, � � Nð0; s2

�
Þ, and that all three

terms are independent of each other. All variances are estimated by restrictedmaximum likeli-
hood (REML). Yi,t,g = Yi,t is a scalar. Zi is a vector of length p, which represents the number of
covariates. β is a vector of length p and represents the effects of covariates on the expression level
of the gene. The prime in Z0ib represents the inner product between the two vectors. All variances
are estimated by restrictedmaximum likelihood (REML). These variances will be different for
each gene. The tissue-specific component’s variance is common across tissues. Differences
between tissues will be reflected in the posteriormean of each tissue/individual random effects.

For the cross-tissue component (YCT
i ) to be identifiable, multiple replicates of expression are

needed for each subject. In the same vein, for the tissue-specific component (YTS
i;t ) to be identifi-

able, multiple replicates of expression are needed for a given tissue/subject pair. GTEx [27]
data consisted of expression measurement in multiple tissues for each subject, thus multiple
replicates per subject were available. However, there were very few replicated measurement for
a given tissue/subject pair. Thus, we fit the reduced model and use the estimates of the residual
as the tissue-specific component.

Yi;t ¼ YCT
i þ Z0ibþ �i;t

We consider the expression level of a gene at a given tissue for individual i to be composed
of a cross-tissue component which we represent as YCT

i and a tissue-specific component, which
given the lack of replicates, we estimate as the difference between the expression level and the
cross-tissue components (after adjusting for covariates). The assumptions are the same as the
full model, i.e., YCT

i � Nð0; s2
CTÞ, � � Nð0; s2

�
Þ, and that both terms are independent of each

other.
The mixed effectsmodel parameters were estimated using the lme4 package [53] in R.

Batch effects and unmeasured confounders were accounted for using 15 PEER factors com-
puted with the PEER [54] package in R. We also included gender as a covariate. Posterior
modes of the subject level random intercepts were used as estimates of the cross-tissue compo-
nents whereas the residuals of the models were used as tissue-specific components.
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The model included whole tissue gene expression levels in 8555 GTEx tissue samples from
544 unique subjects. A total of 17,647 protein-coding genes (defined by GENCODE [49] ver-
sion 18) with a mean gene expression level across tissues greater than 0.1 RPKM (reads per
kilobase of transcript per million reads mapped) and RPKM> 0 in at least 3 individuals were
included in the model.

OTD simulation

To test the robustness of our method, we generated simulated expression levels so that we
could compare our estimates with the ground truth. To preserve correlation structure between
genes and tissues, we used the cross-tissue and tissue-specific estimates of OTD based on the
observeddata as a basis for the simulations. Thus, we simulated expression phenotypes as the
sum of the observedOTD cross-tissue and tissue-specific components plus an error term
derived by randomly sampling a normal distribution with a standard deviation equal to 1, 2, or
10 times the variance of each gene’s component sum. We performedOTD on the simulated
phenotypes and compared the OTD-estimated cross-tissue and tissue-specific expression levels
for each gene to the true levels using Pearson correlation. As expected, higher levels of noise
reduced the correlation between true and simulated values, but the correlation remained signif-
icant for all simulated phenotypes.

Comparison of OTD trait heritability with multi-tissue eQTL results

To verify that the newly derived cross-tissue and tissue-specific traits were capturing the
expected properties, we used the results of the multi-tissue eQTL analysis developed by Flutre
et al. [33] and performed on nine tissues from the pilot phase of the GTEx project [27]. In par-
ticular, we downloaded the posterior probabilities of a gene being actively regulated in a tissue
(PPA) from the GTEx portal at http://www.gtexportal.org/static/datasets/gtex_analysis_pilot_
v3/multi_tissue_eqtls/Multi_tissue_eQTL_GTEx_Pilot_Phase_datasets.tar. PPA can be inter-
preted as the probability a gene is regulated by an eQTL in tissue t given the data. In the GTEx
pilot, the most significant eQTL per gene was used to compute PPA [27]. PPA is computed
from a joint analysis of all tissues and takes account of sharing of eQTLs among tissues [33].
For example, consider a SNP showing modest association with expression in tissue t. If this
SNP also shows strong association in the other tissues, then it will be assigned a higher proba-
bility of being an active eQTL in tissue t than if it showed no association in the other tissues
[33].

We reasoned that genes with large cross-tissue component (i.e. high cross-tissue h2) would
have more uniform PPA across tissues. Thus we defined for each gene a measure of uniformity,
Ug, across tissues based on the nine-dimensional vector of PPAs using the entropy formula.
More specifically, we divided each vector of PPA by their sum across tissues and computed the
measure of uniformity as follows:

Ug ¼ �
X

t

pt;g logpt;g

where pt,g is the normalized PPA for gene g and tissue t.

Supporting Information

S1 Fig. Local and distal heritability (h2) of gene expression levels in whole blood from the
DGN RNA-seq dataset. In order to obtain an unbiased estimate of mean h2, we allow the val-
ues to be negative when fitting the restrictedmaximum likelihood (unconstrained REML). (A)
Local (SNPs within 1Mb of each gene) and (B) distal (all SNPs on non-gene chromosomes)
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gene expression h2 estimates ordered by increasing h2. Gray segments show two times the stan-
dard errors of each h2 estimate. Notice the larger range and errors of the distal estimates.
(PNG)

S2 Fig. DGN local heritability estimation comparison betweenLDAK and GCTA. The Pear-
son correlation betweenGCTA and the LD-adjusted kinship local h2 estimates of gene expres-
sion is 0.96.
(PNG)

S3 Fig. GTEx whole tissue cross-validatedpredictive performance across the elastic net.
The difference between the cross validated R2 of the LASSO model and the elastic net model
mixing parameters 0.05 and 0.5 for autosomal protein coding genes per tissue. Elastic net
with α = 0.5 values hover around zero, meaning that it has similar predictive performance to
LASSO. The R2 difference of the more polygenic model (elastic net with α = 0.05) is mostly
above the 0 line, indicating that this model performs worse than the LASSO model across tis-
sues.
(PNG)

S4 Fig. Correlation between heritability models compared to sample size. The Pearson cor-
relation between estimates of heritability using BSLMM vs. GCTA is dependent on sample size
(R = 0.99, P = 3x10−9).
(PNG)

S5 Fig. BSLMM and LMM estimates of heritability in GTEx compared to IBD estimates.
This figure shows the comparison between estimates of heritability using BSLMM vs. LMM
(GCTA) for GTEx data. Here, in both models the estimates are constrained to be between 0
and 1. For most genes BSLMM estimates are larger than LMM estimates reflecting the fact that
BSLMM yields better estimates of heritability because of its ability to account for the sparse
component. Each point is colored according to that gene’s estimate of h2 by shared identity by
descent (IBD) in Price et al. [29]. At the bottom right of each panel, we show the IBD correla-
tion with BSLMM (IBD_v_BSLMM) and LMM (IBD_v_LMM). BSLMM is consistently more
correlated with the IBD estimate. This provides further evidence that LMM is underestimating
h2 for these genes.
(PNG)

S6 Fig. Identifiability of cross-tissue and tissue-specificcomponents shown in simulated
data. The simulated phenotype is the sum of the observed cross-tissue and tissue-specific com-
ponents (estimated via OTD in the observeddata) plus an error term derived by randomly
sampling a normal distribution with variance equal to the variance of each gene. (A) Correla-
tion between true and OTD-estimated cross-tissue and tissue-specific components for one
gene, SLTM. (B) Histogram of the correlation between true and OTD-estimated components
across all genes.
(PNG)

S7 Fig. Cross-tissue and whole tissue comparison of heritability (h2, A) and standard error
(SE, B). Cross-tissue local h2 is estimated using the cross-tissue component (random effects) of
the mixed effectsmodel for gene expression and SNPs within 1 Mb of each gene. Whole tissue
local h2 is estimated using the measured gene expression for each respective tissue and SNPs
within 1 Mb of each gene. Estimates of h2 for cross-tissue expression traits are larger and their
standard errors are smaller than the corresponding estimates for each whole tissue expression
trait.
(PNG)
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S8 Fig. GTEx whole tissue expression Bayesian Sparse LinearMixed Model. Comparison of
median PGE (proportion of PVE explained by sparse effects) to median PVE (total proportion
of variance explained, the BSLMM equivalent of h2) for expression of each gene. The 95% cred-
ible set of each PGE estimate is in gray and genes with a lower credible set (LCS) greater than
0.01 are in blue. For highly heritable genes the sparse component is close to 1, thus for high
heritability genes the local architecture is sparse across tissues. For lower heritability genes,
there is not enough evidence to determine sparsity or polygenicity.
(PNG)

S9 Fig. GTEx orthogonal tissue decomposition cross-tissue and tissue-specificexpression
Bayesian Sparse LinearMixed Model. Comparison of median PGE (proportion of PVE
explained by sparse effects) to median PVE (total proportion of variance explained, the
BSLMM equivalent of h2) for expression of each gene. The 95% credible set of each PGE esti-
mate is in gray and genes with a lower credible set (LCS) greater than 0.01 are in blue. For
highly heritable genes the sparse component is close to 1, thus for high heritability genes the
local architecture is sparse across tissues. About twice as many cross-tissue expression traits
have significant PGE (LCS> 0.01) compared to the tissue-specific expression traits.
(PNG)

S10 Fig. Cross-tissue and tissue-specificcomparison of heritability (h2, A) and standard
error (SE, B) estimation. Cross-tissue local h2 is estimated using the cross-tissue component
(random effects) of the mixed effectsmodel for gene expression and SNPs within 1 Mb of each
gene. Tissue-specifc local h2 is estimated using the tissue-specific component (residuals) of the
mixed effectsmodel for gene expression for each respective tissue and SNPs within 1 Mb of
each gene. Estimates of h2 for cross-tissue expression traits are larger and their standard errors
are smaller than the corresponding estimates for each tissue-specific expression trait.
(PNG)

S11 Fig. GTEx orthogonal tissue decomposition cross-tissue and tissue-specificexpression
cross-validatedpredictive performance across the elastic net. The difference between the
cross validated R2 of the LASSO model and the elastic net model mixing parameters 0.05 and
0.5 for autosomal protein coding genes per cross-tissue and tissue-specific gene expression
traits. Elastic net with α = 0.5 values hover around zero, meaning that it has similar predictive
performance to LASSO. The R2 difference of the more polygenic model (elastic net with α =
0.05) is mostly above the 0 line, indicating that this model performs worse than the LASSO
model across decomposed tissues.
(PNG)

S12 Fig. Continuous distribution of heritability of the cross-tissue component vs. a mea-
sure of uniformity of genetic regulation across tissues. The measure of uniformity was
computed using the posterior probability of a gene being actively regulated in a tissue, PPA,
from the Flutre et al. [33] multi-tissue eQTL analysis. Genes with PPA concentrated in one
tissue were assigned small values of the uniformity measure whereas genes with PPA
uniformly distributed across tissues were assigned high value of uniformity measure. See
Methods for the entropy-based definition of uniformity. The blue line is the best fit linear
regression and shows a significant positive correlation between h2 and uniformity (β = 0.12,
P = 2e − 11).
(PNG)

S1 Table. Estimates of cross-tissue and tissue-specific local h2. Expression levels derived by
Orthogonal Tissue Decomposition and h2 estimated using the --reml-no-constrain
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method.
(PDF)

S1 Text. Membership of the GTEx Consortium.
(XLSX)
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