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The motion of two identical masses connected by an ideal string
symmetrically placed over a corner

Constantin Rasinariua)

Department of Science and Mathematics, Columbia College Chicago, Chicago, IL 60605

Asim Gangopadhyayab)

Department of Physics, Loyola University Chicago, Chicago, IL 60605

(Received 21 September 2015; accepted 21 August 2016)

We introduce a novel, two-mass system that slides up an inclined plane while its center of mass

moves down. The system consists of two identical masses connected by an ideal string

symmetrically placed over a corner-shaped support. This system is similar to a double-cone that

rolls up an inclined set of V-shaped rails. We find the double-cone’s motion easy to demonstrate

but difficult to analyze. Our example here is more straightforward to follow, and the experimental

observations are in good agreement with the theoretical predictions. VC 2016 American Association of
Physics Teachers.

[http://dx.doi.org/10.1119/1.4962226]

I. INTRODUCTION

Anyone who has tried to hang a coat on a corner of a table
knows the futility of such an endeavor. In fact, for a frictionless
rectangular table the coat will slide toward the corner even if
that corner is tilted upward. This situation is reminiscent of a
double-cone that rolls up an incline, which is a nice classroom
demonstration. The double-cone moves to lower its center of
gravity even while its end points ascend on V-shaped rails.1

Due to this seemingly paradoxical motion, a double-cone has
significant pedagogical appeal, yet there have been very few
quantitative studies of the dynamics of this demonstration.1–4

This lack of analysis is likely due to the difficulty in identifying
the points of contact between the double-cone and the rails.4

Here, we provide a simple mechanical model to emulate the
motion of the coat on the corner of a table. This example con-
sists of a (massless) string that connects two hanging masses
and slides up an inclined plane. Similar to the motion of the
double cone, here, as the string moves up the incline, the center
of gravity of the system moves down. However, unlike the
double-cone, this system is easy to investigate and is well
within the capabilities of undergraduate students.

II. THE SYSTEM

We consider two equal masses A and B connected via an
ideal string of length L that is symmetrically placed over the
corner O of a frictionless table, as depicted in Fig. 1. The
center point of the string is labelled P. Initially, the system is
at rest with the masses at table height and horizontally sepa-
rated by the length L of the string. We first investigate the
motion of the system assuming a horizontal table. Then we
will show that the corner of the table can be tilted upwards
by an angle h and the point P will still accelerate (upward)
toward the table’s corner, and we determine an upper limit
for the angle h. As the system is released and point P advan-
ces toward the corner, we will be interested in finding the
acceleration of P as a function of time and as a function of
the angle a subtended by the edges of the table at the corner
O (see Fig. 1). For this we want to find the motion of the two
masses and of their center of mass.

The central point P moves along the bisector of angle a,
which we take to be the w-axis with the origin at O (Fig. 1).

The center of mass of the system moves along the w-axis
towards O and also moves down along the z-axis. Initially,
the center of mass of the system is at the level of the table, at
z¼ 0. Some time after release, as depicted in Fig. 1, masses
A and B have descended by a vertical distance u cos b as
point P moves along w towards the vertex O. Here, b is the
angle that the hanging masses make with the vertical, which
is indicative of the acceleration of the masses (it will be
shown later that this angle is constant). Mass A moves along
side s of the table and vertically along z, with mass B moving
symmetrically along the other edge of the table. We begin by
determining the angle b for the general case of a tilted table.

III. DYNAMICAL CONSTRAINTS

We now consider a table that is tilted (by angle h) sym-
metrically about the bisector of angle a so that corner O is
the highest point, as shown in Fig. 2. Moreover, we assume
the string is oriented so that the portion in contact with the
top of the table is always horizontal. Because the table is
assumed frictionless, the interaction between a piece of
string and the table will always be perpendicular to the sur-
face of the table, and we denote by ~N the force of the table
on the small portion of the string that is in contact with the
edge of the table. The tension forces acting on this segment
of string are given by Tt̂ for the portion of the string on the
table, and by Tt̂

0
for the hanging portion of the string, where

t̂ and t̂
0
are unit vectors that point along these string segments

(see Fig. 2). Note that, owing to our assumptions of a

Fig. 1. Two identical masses A and B connected by an ideal string of length

L, falling symmetrically over the corner of a horizontal table. Note that point

P moves toward point O, opposite to the directed segment OP
�!

.
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massless string and the smoothness of the table, the tension
can be safely assumed to be uniform along the string.
Because the string is strictly massless, the net force on any
segment must be zero; applying this to the portion of the
string in contact with the edge of the table then gives
~N þ T t̂ þ T t̂

0 ¼ 0. This equation tells us that
t̂ þ t̂ 0 ¼ �~N=T, and this vector must be perpendicular to the
unit vector ‘̂ that points along the edge of the table.

Considering that the motion of mass A is confined to a vertical
plane containing the edge of the table, we see from Fig. 2 that

we can write t̂
0
as a linear combination of unit vectors ‘̂ and ẑ

t̂
0 ¼ a ‘̂ þ b ẑ; (1)

where a and b are constant coefficients. We need to deter-
mine these coefficients in order to find the angle b. Since t̂

0

is a unit vector, we have

t̂ 0 � t̂ 0 ¼ 1 ¼ a2 þ b2 þ 2ab cos c; (2)

where cos c ¼ ‘̂ � ẑ. Moreover, because t̂ � ‘̂ ¼ sin ða=2Þ, the
fact that t̂ þ t̂

0
is perpendicular to ‘̂ implies that

t̂ 0 � ‘̂ ¼ �t̂ � ‘̂ ¼ �sin ða=2Þ. Hence, taking the dot product
of ‘̂ with Eq. (1), we find that

aþ b cos c ¼ �sin
a
2

� �
: (3)

Solving Eqs. (2) and (3) for b, we find

b ¼ 6
cos a=2ð Þ

sin c
(4)

and, guided by Fig. 2, we choose the negative sign. Having
found b, the coefficient a is then found to be

a ¼ �b cos c� sin
a
2

� �
¼ cos a=2þ cð Þ

sin c
: (5)

We can now determine the angle b defined by
cos b ¼ t̂ 0 � ð�ẑÞ. This angle is a crucial parameter that is
related to the acceleration in the forward direction because the
masses only accelerate horizontally when b 6¼ 0. Using Eq. (1),
we have

cos b ¼ t̂ 0 � �ẑð Þ ¼ �a cos c� b

¼ � cos c
sin c

cos
a
2
þ c

� �
þ cos a=2ð Þ

sin c

¼ sin
a
2
þ c

� �

¼ cos
p
2
� a

2
� c

� �
; (6)

which gives

b ¼ 6
p
2
� a

2
� c

� �
: (7)

Note that for a horizontal table, with h¼ 0 and c ¼ p=2,
angle b should be positive. Thus, choosing the negative sign
in Eq. (7) we obtain

b ¼ a
2
þ c� p

2
; (8)

which, for a horizontal table, gives

b ¼ a
2
: (9)

As illustrated in Fig. 3, this last relationship can be verified
experimentally. Note that if we start the system from a differ-
ent initial configuration where b differs from a=2, and the two
masses hang symmetrically at a given depth below the table,
then the angle b will not remain constant, as the onset of the
motion will induce oscillations of the moving masses.

IV. THE EQUATIONS OF MOTION FOR A

HORIZONTAL TABLE

In this section, we return to the case of a horizontal table,
which has h¼ 0, c ¼ p=2, and b ¼ a=2. From the geometry
of the system (see Fig. 1), we have

u ¼ L=2� w tan b (10)

and

s ¼ w sec b : (11)

Mass A moves along side s with speed _s and along u with
speed _u, so its velocity vector is ~vA ¼ _s ‘̂ þ _u t̂

0
. Since the

kinetic energy of B is the same as that of A, the total kinetic
energy of the system is given by

T ¼ 2
m

2

� �
_s2 þ _u2 þ 2j _sjj _uj cos p=2þ bð Þ
� �

¼ 2
m

2

� �
_s2 þ _u2 � 2j _sjj _uj sin b
� �

¼ m _w2 sec2bþ tan2b� 2 tan2b
� �

¼ m _w2 : (12)

Fig. 2. Illustration of the dynamical constraints in the general case of the

table tilted by an angle h.
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Meanwhile, taking the surface of the table as our reference
point, the potential energy is

V ¼ �2mgu cos b

¼ �2mgðL=2� w tan bÞ cos b

¼ 2mgw sin b� mgL cos b : (13)

Knowing both T and V in terms of the single variable w,
the Lagrangian L ¼ T � V for the system is

Lðw; _wÞ ¼ m _w2 � 2mgw sin bþ mgL cos b: (14)

The corresponding Euler-Lagrange equation reads

2m €w þ 2mg sin b ¼ 0: (15)

Thus, the point P moves with a constant acceleration

€w ¼ �g sin b ¼ �g sinða=2Þ: (16)

As one would expect, when a¼ 0 the acceleration €w van-
ishes (which explains why we are able to hang our coats on
nails), while for a! p it becomes �g.

A. The motion of the masses

At this point, we are well equipped to describe the motion
of the two masses. We consider only mass A, because the
motion of B follows from symmetry. As the system evolves,
from Eqs. (10) and (11), we find that A moves along the edge
of the table with acceleration

€s ¼ €w sec b (17)

and along u with acceleration

€u ¼ �€w tan b: (18)

To determine the trajectory, we express the position of
mass A in terms of the coordinates ‘ and z, as measured from
the origin O; that is, the position vector of mass A is given
by ~rA ¼ ‘ðtÞ ‘̂ þ zðtÞ ẑ. Assuming the masses are released
from rest at the height of the table, we have

‘ tð Þ ¼ �s0 �
1

2
€s þ €u sin bð Þt2

¼ �s0 �
€w

2
sec b� tan b sin bð Þt2

¼ �s0 �
€w

2
cos bð Þt2

¼ �s0 þ
g

2
sin b cos bð Þt2; (19)

where s0 ¼ ðL=2Þ cosecb is the initial position of the mass
along the edge of the table, and we have made use of Eq.
(16) in the last line. At the same time, we have

z tð Þ ¼ � 1

2
€u cos bð Þt2

¼ � g

2
sin2b
� �

t2:
(20)

These equations give a linear trajectory for the mass
described by

‘ ¼ �s0 � zcotb: (21)

The acceleration of mass A can be found from Eqs. (19)
and (20) as

~aA ¼ €‘ ‘̂ þ €z ẑ ¼ g sin b½ðcos bÞ‘̂ � ðsin bÞẑ�: (22)

For a horizontal table, the vectors ‘̂ and ẑ are orthogonal
(̂‘ � ẑ ¼ 0), so the magnitude of the acceleration is
aA ¼ g sin b ¼ g sinða=2Þ. We note that this is precisely the
acceleration that results when a mass slides down a friction-
less incline of angle a=2. When a¼ 0 (and hence b¼ 0) the
system will not move and aA¼ 0. But as a! p, the compo-
nents €‘ ! 0 and €z !�g so that aA approaches g as expected.
Because B moves symmetrically on the other side of the table,
the magnitude of its acceleration will be identical: aB¼ aA.

Interestingly, from Eq. (16) we see that aA ¼ j€wj, which
demonstrates that point P also accelerates as if it were sliding
down an incline of angle a=2. This result is not a simple coin-
cidence. Let us consider folding the table along the bisector
while keeping the edges horizontal, as illustrated in Fig. 4(a).
This (tent-like) structure is completely equivalent to the initial
horizontal table, as all the constraints derived in Sec. III
remain the same, leading to b ¼ a=2. Hence, both point P and
mass A move with the same acceleration magnitude
g sinða=2Þ. In the limiting case of a completely folded table,
as shown in Fig. 4(b), one simply obtains an incline of angle
a=2. In this case, if the motion is started with the string per-
pendicular to the incline, we again find that point P and mass
A move synchronously with the same acceleration magnitude.

B. The motion of the center of mass

The center of mass of the system moves simultaneously
along the w and z axes, as depicted in Fig. 5 (see also Fig. 1).

Fig. 3. Experimental check: (top) prior to release; (bottom) just after release.

The angle of the moving string with the vertical is observed to be (approxi-

mately) b ¼ p=4, in agreement with the prediction of Eq. (9), given a table

corner angle of a ¼ p=2. In reality, given the finite size of mass A, we can-

not start from strictly u¼ 0, which generates an oscillation of very small

angular amplitude around b ¼ p=4.
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Thus, the center of mass descends on a oblique path making
an angle d with respect to the horizontal. To determine d, we
note that mass A hangs at an angle b with respect to the verti-
cal axis, as shown in Fig. 2. If~rA and~rB are the position vec-
tors for masses A and B, respectively, then the center of mass
position is given by 1

2
~rA þ~rBÞð . As previously discussed, the

position of mass A can be written

~rA ¼ ‘ðtÞ ‘̂A þ zðtÞ ẑ; (23)

with ‘ðtÞ and z(t) given by Eqs. (19) and (20), respectively.
In this equation, we write ‘̂A to represent the unit vector
along the edge of the table for mass A. Similarly, the position
of mass B is given by

~rB ¼ ‘ðtÞ ‘̂B þ zðtÞ ẑ; (24)

where ‘̂B is the unit vector along the edge of the table for
mass B. Using the geometry of Fig. 2 to note that
‘̂A þ ‘̂B ¼ �2 cosða=2Þ ŵ, the position of the center of mass
then becomes

~rCM ¼ ½‘ðtÞ cos b�ŵ þ zðtÞ ẑ; (25)

where, for a horizontal table, we have used a=2 ¼ b.
The acceleration of the center of mass can be found by dif-

ferentiating the position vector twice. Carrying out the dif-
ferentiation and again making use of Eqs. (19) and (20), we
find that the center of mass undergoes a constant
acceleration

~aCM ¼ ð€‘ cos bÞŵ þ €z ẑ

¼ �g sin b½ð cos2bÞŵ þ ðsin bÞẑ�: (26)

Because the center of mass starts from rest, its trajectory
points in the same direction as the (constant) acceleration.

Using the acceleration components in Eq. (26), the angle of
the center-of-mass trajectory in Fig. 5 is found to be

d ¼ tan�1 sin b
cos2b

� �
: (27)

In the limit a! p (so that b! p=2), the acceleration of the
center of mass becomes ~aCM ¼ �g ẑ, while the angle of the
trajectory approaches d! p=2, as expected.

V. TILTED TABLE

So far we have been considering the motion of the string
on a horizontal plane. We now relax this constraint and find,
surprisingly, that the string will slide up an inclined plane.
For a given corner angle a, we can tilt the table upwards at
an arbitrary angle h by symmetrically raising the point O in
such a way so that the two edges of the table intersecting at
O make the same angle with the horizontal. It is then natural
to determine the maximum tilt angle hmax for which point P
still moves towards O.

The angle b that the hanging mass makes with the vertical
(see Fig. 2), expressed in Eq. (7) in terms of c, is essential
for ensuring that there is a forward acceleration (e.g., b¼ 0
signals that the string is vertical and hence there is no hori-
zontal force on the masses, and hence no pull towards the
corner). Thus, we need to relate b to the angle of inclination
h of the table. From Fig. 2, because the vectors ‘̂; t̂, and ŵ
all lie on the plane of the table, we can deduce that
‘̂ ¼ sinða=2Þ t̂ � cosða=2Þ ŵ. Taking the scalar product of
this relation with ẑ, we get

ẑ � ‘̂ ¼ cos c ¼ sin h cos
a
2

� �
; (28)

where we have used t̂ � ẑ ¼ 0 and ŵ � ẑ ¼ �sin h.
Meanwhile, from Eq. (6) we know that

cos b ¼ sin
a
2
þ c

� �

¼ sin
a
2

� �
cos cþ cos

a
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2c

p
: (29)

Combining these last two equations, we obtain the connec-
tion between the dynamical angle b, the inclination of the
table h, and the corner angle a

cos b ¼ sin
a
2

� �
cos

a
2

� �
sin h

þ cos
a
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 a=2ð Þ sin2h

q
: (30)

To find the maximum angle hmax at which the string will
no longer be able to climb, we note that there will be no
acceleration towards O when the angle b becomes zero,
which implies

sin
a
2

� �
cos

a
2

� �
sin hmax

þ cos
a
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 a=2ð Þ sin2hmax

q
¼ 1 : (31)

Fig. 4. Symmetrically folding up the table along the bisector while keeping

its edges horizontal.

Fig. 5. The path of the center of mass of the system below a horizontal table.
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This is a quadratic equation for sin hmax that can be solved
to give

sin hmax ¼ tan
a
2

� �
for 0 � a � p=2 : (32)

Thus, for a ¼ p=2 we find hmax ¼ p=2; that is, the string will
advance towards the corner for any angle of inclination
except a vertical table. In a moment, we will show that this
is also true for a > p=2.

Note that we could have determined the angle hmax from
the geometry of the table as well. The upward motion of P is
possible only if the center of mass of the system moves
downward. Hence, from Fig. 6 we see that when the inclina-
tion h reaches the maximum value hmax, the corner of the
table should be a distance L=2 higher than the initial location
of point P. In this geometry, the center of mass will move
exactly horizontally as point P moves up the plane, which
gives

L

2
¼ wmax sin hmax ¼

L

2
cot

a
2

� �
sin hmax

¼ L=2

tan a=2ð Þ sin hmax: (33)

Thus, we arrive at the same condition as in Eq. (32).
Note also that for small values of a, we have hmax ’ a=2,

and in general hmax > a=2. Figure 7(a) shows that for a ¼
p=2 and a vertical table, the masses (and hence the center
of mass) will remain at the same height as point P is moved
toward O. On the other hand, Fig. 7(b) shows that for a ver-
tical table with a corner angle a > p=2 the masses (and
hence the center of mass) will decrease in height as point P
moves toward O. In practice, of course, it is impossible to
have a completely frictionless apparatus. Therefore, the
motion will most likely cease before reaching a vertical tilt
of the table.

VI. CONCLUSIONS

We analyzed a system that consists of two identical
masses connected by an ideal string placed symmetrically
over a corner of a frictionless table. On a horizontal table,
the string moves towards the corner for any value of the cor-
ner angle a. If the table is tilted upward, we find that the
string still moves towards the corner provided that the tilting
angle is less than a critical value. This system is reminiscent
of a double-cone rolling up a set of inclined V-shaped rails.
The double-cone’s motion, while relatively easy to demon-
strate, is rather difficult to analyze. The example considered
here is straightforward to understand, and it does not involve
the subtleties of the three-dimensional geometry required
for the involved analysis of the double-cone problem.
Indeed, we find that the corner problem is not without
intrigue. If the corner angle is greater than p=2, then the
string will slide up and jump over the corner, even for a ver-
tical plane.
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decrease in height.
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