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a b s t r a c t

The behavior of gold as an investment asset has been researched
extensively. For the very long run, that is several decades, gold does
not outperform equities. However, for shorter periods, gold
responds to fears of inflation, stock market corrections, currency
crises and financial instabilities very vigorously. In this paper we
follow a decision tree methodology to investigate the behavior of
gold prices using both traditional financial variables such as equity
returns, equity volatility, oil prices, and the euro. We also use the
new Cleveland Financial Stress Index to investigate its effective-
ness in explaining changes in gold prices. We find that gold returns
depend on different determinants across various regimes.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

In a recent paper, Barro and Misra (2013) compute the average real rate of price change for gold in
the U.S. from 1836 to 2011 and find that it is 1.1% per year with a standard deviation of 13.1%. They
suggest that gold’s expected real rate of return, which includes an unobserved dividend yield, would
be close to the risk-free rate of return. This low average rate of return and its high volatility suggest
that a very long-term passive investment in gold does not appear to be very favorable and shorter
term strategies that identify economic variables that drive volatilities may be more profitable.

In this paper we give a rapid description of the general characteristics of the gold market and then
propose to investigate the behavior of gold prices across the most recent business cycle which
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includes the Global Financial Crisis. We identify on the basis of a selective review of the literature
several economic and financial variables that influence the price of gold and trace the significance
of these variables across the recent business cycle. To find what drives the behavior of gold returns
within a business cycle and across its various phases we employ a decision tree analysis.

2. Review of the literature

Erb and Harvey (2013) report that there are about 171,300 metric tons of gold above ground. Given
that there are 32,150 troy ounces per metric ton with a price of about $1400 per ounce, this yields an
overall value of about $7.7 trillion. More than half of all humanity’s gold has been extracted the last
50 years. The annual global gold production is about 2,500 metric tons per year and this supply is
relatively price inelastic. In contrast, the demand for gold is price elastic and is driven by jewelry,
industrial use, investment strategies and by inventory management in official institutions (central
banks and the IMF). Supply and demand fundamentals determine gold prices and such prices have
fluctuated in the past forty-five years from about $35 an ounce in 1970 to a record high of $1900 in
2010 to a relative low of $1183 in late 2013 and back up to $1400 in July of 2014. How can such large
fluctuations be explained?

There is a large literature that identifies economic variables that explain the theoretical grounds
that connect these variables to the fluctuations in the price of gold. Most of these studies also perform
empirical tests to confirm or reject the hypothesized relationships. In particular, the set of variables
used to correlate with gold returns includes inflation as measured by the Consumer Price index, vari-
ous energy prices, interest rates for both the short-term 3-month Treasury Bill and the longer-term
10-year Treasury Note, foreign currencies as described in the US Dollar trade weighted exchange rate,
equities as measured by the S&P 500 Index and its volatility measure by VIX. Representative such
studies are listed in both Erb and Harvey (2012) and also Aggarwal et al. (2015).

Aggarwal et al. (2015) offer a detailed analysis of the world metal markets and discuss in particular
the behavior of gold prices. The efficiency of gold markets is presented in Canarella and Pollard (1986)
and recently in Caminschi and Heaney (2013). Cheung and Lai (1983) investigate the long cycles of
gold returns. Fama and French (1988) examine the behavior of metal prices over the business cycle,
and as with equities, Aggarwal and Soenen (1988) report that gold returns are leptokurtic and nega-
tively skewed. Ciner et al. (2013) investigate the return relations between major asset classes using
data from both the US and the UK to examine time variation in conditional correlations to determine
when these variables act as a hedge against each other. A worth mentioning finding of this study is
that gold can be regarded as a safe haven against exchange rates in both countries.

Malliaris and Malliaris (2009) observe that while gold has been an important commodity for
several centuries, oil’s importance grew during the 20th century, and the euro has become important
during the 21st. This paper analyzes the inter-relationships among the price behavior of gold, oil and
the euro using a standard time series methodology and then employs neural networks to build a fore-
cast for each of these three variables. The authors also compare the results of the neural network to
those implied by the time series tests. The statistical evidence of time series analysis demonstrates
that both short-term and long-term relationships exist between the three variables. Both the time
series and neural network results indicate that the series move together though they identify slightly
different relationships. The time series results imply that oil adjusts to gold, the euro and oil have
equal influences on each other, and the weakest relationship is between gold and the euro. The neural
network methodology indicates that oil impacts gold more than gold impacts oil. Also, oil’s influence
on the euro is found to be greater than the euro’s effect on oil and lastly, that gold’s impact on the euro
is greater and faster than the euro’s impact on gold. Mensi et al. (2013) obtain results that show sig-
nificant transmission among the S&P 500 and commodity markets. In particular, these authors show
that past shocks and volatility of the S&P 500 strongly influenced the oil and gold markets.

Malliaris and Malliaris (2013) investigate inter-relationships among the price behavior of oil, gold
and the euro using time series and neural network methodologies. Traditionally gold is a leading
indicator of future inflation. Both the demand and supply of oil as a key global commodity are
impacted by inflationary expectations and such expectations determine current spot prices.
Inflation influences both short and long-term interest rates that in turn influence the value of the
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dollar measured in terms of the euro. Certain hypotheses are formulated in this paper and time series
and neural network methodologies are employed to test these hypotheses. The authors find that the
markets for oil, gold and the euro are efficient but have limited inter-relationships among themselves.

Pierdzioch et al. (2014) study whether the international business cycle, as measured in terms of the
output gaps of the G7 countries, has out-of-sample predictive power for gold-price fluctuations. These
authors concluded that the international business cycle has predictive power for gold-price
fluctuations. Finally, Białkowski et al. (2014) examines whether an asset bubble exists in the gold mar-
ket during the recent Global Financial Crisis period and show that a model accounting for the current
European sovereign debt crisis accurately tracks the gold price observed in the market.

This rapid and selective review suggests that the behavior of gold returns has not been fully
determined. This does not mean that we know only very little. Aggarwal et al. (2015) documents
numerous findings about the efficiency of the gold market, the distribution of prices, the role of gold
as a hedge or a safe haven and the great volatility of its return from 2% over very long investment
horizons to extremely high returns over shorter periods, such as from 1970 to 1975. It is the purpose
of this paper to investigate the behavior of gold returns during the recent financial period because
financial instabilities add further complications to the behavior of gold returns. To do this we identify
four regimes determined by the most recent business cycle and for each one of these we let a decision
tree analysis identify the variables driving the corresponding returns.

3. Data and methodology

The NBER gives the dates of the crisis as beginning with a peak in December 2007 and continuing to
the bottom in June 2009. [http://www.nber.org/cycles.html] This is a period of 388 days. Our data set
encompasses this crisis period and buffers on either side. It runs from March 1, 2004 through October
20, 2014, and is divided into four parts, with beginning and ending dates, and total size, as shown in
Table 1. From the period of the crisis top and bottom, we move backward and forward a little over
900 days, then we have an additional period, about the same size as the crisis at the very end. This
table also gives the name of each data set. Before refers to the 919 days prior to the crisis period;
During takes us from the peak to the bottom of the crisis; After moves from the bottom of the crisis
to March of 2013; lastly, Post continues for another 384 days afterward.

Our data has six base variables, Gold, the Cleveland Financial Stress Indicator [CFSI], Cushing Oil,
the S&P 500, the VIX, and the Euro. See the Appendix A for a listing of all inputs into the CFSI. Data
was downloaded from the St. Louis FRED database (DEXUSEU for the Euro, GOLDAMGBD228NLBM
for Gold, DCOILWTICO for Cushing Oil) and the Cleveland Federal Reserve for the CFSI (http://
www.clevelandfed.org/research/data/financial_stress_index/index.cfm). Values of the S&P 500 and
the VIX were sourced from Yahoo finance. Using these, we calculated derived variables on each series
including the percent change from yesterday to today, and the direction the series moved from the
close of yesterday to the close of today. We also created a Target variable by shifting the Gold direction
one day to give us the movement of Gold tomorrow. Thus, we have 18 input variables and one target
[Goldtp1], as show in Table 2.

The Charts in Fig. 1 shows the relationship of Gold with each of the other variables. Each of the
charts has the data scaled between 0 and 1 over the entire set. We see that, in the scaled values,
the relationship Gold has with each of the variables varies over time.

Table 1
Data set details.

Set name Begin date End date Count

Before 1-March-04 30-November-07 919
During 3-December-07 30-June-09 388
After 1-July-09 28-March-13 914
Post 2-April-13 20-October-14 384
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In VIX, for example, prior to the crisis, the series intertwine and after a large peak in the VIX near
the center, VIX drops to well below the scaled Gold values. Oil begins above Gold then plunges below
and, after the crisis, stays close to, but below, Gold until early 2013 when these two again intertwine.
The S&P 500 is above Gold for the initial period, then drops below where it remains until early 2013. At
that point, the S&P climbs and stays above Gold. The Euro and the CFSI have more complicated
relationships that cross over the scaled Gold prices numerous times. These shifts in relationships
might indicate that a single model across the entire data set would not do as well as individual models
might.

For each data set, we ran a C5.0 decision tree model using IBM’s SPSS Modeler data mining software
package. A decision tree is a classification model that, by examining rows in a training set, builds rules

Table 2
List of variables used in the models.

Gold CFSI Oil SP VIX Euro

GChg CFSIChg Ochg SPChg VChg Echg
GDir CFSIDir ODir SPDir Vdir Edir
GDirtp1
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Fig. 1. Charts showing the relationship of Gold with each other variable.
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that assign each row in the data set to a predefined class. These classes are the values of the target
variable (Gold’s direction tomorrow) which here consist of Up and Down. These models are based
on Hunt’s algorithm (Tan et al., 2006) and are derivatives of the original ID3 model (Han et al.,
2012). The algorithm recursively partitions the data set into smaller sets, based on values of the input
variables, which are more likely to have a single value of the target field. At each node of the tree, the
variable is selected that gives the most pure (that is, most single-valued on the target variable) results
in the following node. The splits are called branches, and each branch has a node that contains a subset
of the initial data set. The tree stops growing either when all final nodes are single valued on the tar-
get, or when there is no remaining variable that can be applied to give a more pure split.

The results of the decision tree can be inspected in several ways. First, a matrix showing the counts
of correct and incorrect classifications can be generated. Second, we can look at the variable impor-
tance chart. Last, we can inspect the shape of the tree and the rules. If the input rows on which the
decision tree is trained are such that the rows do not give conflicting results (conflicting results occur
when two rows are identical except for the value of the target) then the decision tree should be able to
correctly assign the rows to their respective classes, and the matrix will show us higher percentages of
correct classifications. The variable importance output shows the inputs that were used by the deci-
sion tree with their respective importance to the classification process. These weights are comparative
and sum to 1. It is of interest to see, among multiple models, which variables move in and out of
prominence. When looking at the shape of the tree, a deeper tree with more layers uses more variables
in the classification process. A wider tree uses more splits of a single variable at a given level.

4. Results

A C5.0 decision tree was trained for each of the four data sets. Table 3 displays these results with
the decision tree classifications for each data set in the columns. The left-most column of the table
gives the actual direction that Gold moved on day t + 1. The interior cells contain the count and per-
centages for the intersection of the actual and decision tree directions. We see that, in the data set
Before the crisis, that the decision tree classified 382 rows as Down for Gold tomorrow that did in fact
move Down. The tree also classified 26 rows as Down that actually moved Up. Also in the Before data
set, 35 rows were classified as Up that in fact moved Down, and 475 rows were classified as Up that
did move Up the next day. The percentages of correct classifications for each of the data sets are shown
in bold type. Decision tree classifications are correct over 90% of the time in 3 of the 4 sets. In the After
set, correctness ranges from 86% to 89%. These results indicate that the decision trees were able to
classify rows as indicating the Up or Down movement of Gold tomorrow in an accurate way.

The next step is to compare the importance of the specific variables to each of the models. Table 4
lists these relative importance values. For each model, the values sum to 100 and only those variables
which were used have values assigned. Variables with values of 10 and over are shown as shaded and
in bold font. We see that, in the Before model, much of the decision trees ability to classify correctly
was due to the percent change in the Euro, the direction the Euro moved, and the percent change in
Oil. During the crisis, the direction oil moved was most important, followed closely by the percent
change in the CFSI and the Euro, and the price of Gold. After the crisis the CFSI and the change in
the VIX dominate the variable importance, with the direction of the S&P also contributing. In the last
period, we see the direction of the CFSI as most important with the percent change in Oil very close.

Table 3
Decision tree classification results.

GoldDirTp1 Before During After Post

Down Up Down Up Down Up Down Up

Down Count 382 35 178 8 356 73 186 13
Column% 93.6 6.8 92.7 4.1 89.4 14.1 91.6 7.2

Up Count 26 476 14 188 42 443 17 168
Column% 6.4 93.2 7.3 95.9 10.6 85.9 8.4 92.8

The percentages of correct classifications for each of the data sets are shown in bold type.
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The VIX and the S&P directions and the values of the CFSI also contribute. While Table 4 shows the
individual influence of each variable, Table 5 sums these values across each base variable and it
derived variables. Thus CFSI in Table 5 represents the sum of CFSI, CFSIChg, and CFSIDir in Table 4.

Table 5 allows us to see more easily the impact of each of the base variables. We notice that the
Cleveland Financial Stress Indicator is gaining more prominence while the Euro is dropping in impact.
Gold had its largest influence during the crisis, and the pattern for Oil seems to repeat. The S&P shows
a slighter increase, and the VIX peaked in the After period.

Finally, we have the shapes of the trees. Fig. 2 shows the shapes of each of the trees. The Before and
After trees appear slightly more complex, and the During and Post trees have fewer layers. A less
complex tree indicates that the algorithm was able to classify the data more quickly using fewer vari-
ables. However, the two sets on the right are smaller than those on the left, so this may account for the
simpler structure.

Each shape is generated by the rules associated with the paths. For example, in the Before model,
one shorter set of paths of the tree is shown below (see Fig. 3). A path reads from its beginning in the
upper left and ends with either ‘‘=> Down’’ or ‘‘=> Up’’, indicating the direction that Gold will move
tomorrow. The first path states ‘‘If Echg is less than or equal to .001 and less than or equal to -.008
and Oil is less than or equal to 61.89, then Gold will be Down tomorrow. This path branches on the
value of Oil, and offers an alternative for Oil greater than 61.89 by adding the conditions that if
GDir is Down and VIX is less than or equal to 16.03 then Gold will be Up tomorrow. These paths
can be seen on the upper left area of the Before tree shape figure.

The total number of rules for each direction is shown in Table 6. We see that the smaller time per-
iods generate fewer rules, but the number of rules is not proportional to the set size.

Table 4
Variable importance per model.

Variable Before During After Post

CFSI 9 22 12
CFSIChg 15 5
CFSIDir 2 20
Euro 9 6 1
Edir 15
Echg 56 13 6
Gold 12 6
GChg 3 2
GDir 1 1
Oil 1 6
Ochg 13 19
ODir 18 7
SP 5
SPChg 2
SPDir 14 13
VIX 9 4 6 1
VChg 5 9 22 5
Vdir 1 9 15

Table 5
Variable importance summed by category.

Before During After Post

CFSI 2 24 22 37
Euro 56 22 12 1
Gold 0 16 2 6
Oil 13 19 13 19
SP 0 5 14 15
VIX 14 14 37 20
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Fig. 2. Tree structures.

Echg <= 0.001  
Echg <= -0.008  

Oil <= 61.890 => Down  
Oil > 61.890  

GDir = Down  
VIX <= 16.030 => Up  
VIX > 16.030 => Down  

GDir = Up => Down 

Fig. 3. One set of paths in the Before tree.

Table 6
Number of Down and Up Rules
in each Set.

Down Up

Before 68 68
During 36 36
After 62 61
Post 35 37
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Overall then, we have four data sets, two larger and two smaller. For each time period, the decision
tree built for that period is able to do a good job in classifying the direction that Gold will move the
next day. However, we see that each decision tree values the input variables in different ways. These
shifts over time are most apparent in Table 5 where the impact of each base variable and its derived
counterparts are summed.

5. Conclusions

Gold has been described as the ‘‘golden constant’’ because it has behaved as a hedge against infla-
tion in a very long investment horizon. So, real gold returns over, say, 100 years are zero. Real returns
for equities over a similar very long investment horizon are much higher, around 7%. A fundamental
question is: how did gold returns behave during the recent financial crisis when inflation was very
low?

In this paper we use daily data of several variables from March 1, 2004 through October 20, 2014.
The variables considered are: Gold, the Cleveland Financial Stress Indicator [CFSI], Cushing Oil, the S&P
500, the VIX, and the Euro. We use the National Bureau of Economic Research dates to identify 4
periods: before the crisis, the recession, the recovery and the post recovery described in Table 1.
We employ a decision tree methodology and obtain very interesting results summarized in Table 5.
In particular we find that the 3 most important variables for the BEFORE period are the Euro, VIX
and Oil; for the DURING period are the CFSI, Oil and the Euro; for the AFTER period are the VIX,
CFSI and the S&P 500 Index and for the POST period are the CFSI, VIX and Oil. The implication of
our results is that gold has become an important asset whose return is driven by portfolio allocation
strategies influenced by the regime changes in the economy.

Appendix A

Cleveland Financial Stress Index Components.

Markets Component Description

Credit Covered Interest
Spread

Measures uncertainty about government bond markets

Corporate Bond
Spread

Measures the broad perceptions of medium- to long-term
risk in corporations of all sectors

Liquidity Spread Measures changes in the bid and ask prices on three-
month Treasury bills, which reflects liquidity in financial
markets

Commercial Paper
and T-bill Spread

Measures the short-term risk premium on financial
companies’ debt

Treasury Yield Curve
Spread

Measures the likelihood of recession because it captures
long-term uncertainty and short-term liquidity

Equity Stock Market
Crashes

Measures the extent to which equity values in the S&P 500
financial Index have dropped over the previous year. It
also captures expectations about the future of the banking
industry

Foreign
exchange

Weighted Dollar
Crashes

Measures flight from the U.S. dollar toward a broad set of
foreign currencies

Funding Financial Beta Measures the contribution of the banking sector to overall
stock market volatility

Bank Bond Spread Measures the broad perceptions of medium- to long-term
risk in banks issuing A-rated bonds

52 A.G. Malliaris, M. Malliaris / Finance Research Letters 13 (2015) 45–53



Appendix A (continued)

Markets Component Description

Interbank Liquidity
Spread

Measures the perception of counterparty risk in interbank
lending

Interbank Cost of
Borrowing

Measures the degree of apprehension with which banks
loan to one another

Real Estate Commercial Real
Estate

Measures the risk associated with investing in commercial
real estate

Residential Real
Estate

Measures the risk associated with investing in residential
real estate

Securitization Residential MBS Measures the ability of agencies to raise capital and
relative riskiness of the securitized asset

Commercial MBS Measures the ability of originators to raise capital and
relative riskiness of the securitized asset

Asset-Backed
Securities

Measures the ability of originators to raise capital and
relative riskiness of the securitized asset
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