
Bounds on the Number of Longest Common

Subsequences

Ronald I. Greenberg

Loyola University of Chicago

rig@cs.luc.edu

1



• Will define LCS soon for those unfamiliar.

• For those familiar, a few words of where we’ll be going.

– Attack questions like “What is the maximum possible number
of different LCSs in two input strings of t total characters?”

– Has ramifications for running time as a function of input size
for algorithms that generate all LCSs.

1-1



Outline

• Background and Terminologies

• Summary of Results

• Bounding the Maximum Number of Distinct LCSs

• The Maximum Number of LCS Embeddings

• How Inefficient is it to Generate All LCSs Naively?

• Conclusion

2



Terminologies

• Input: Two sequences A = a1a2 . . . am and

B = b1b2 . . . bn (m ≤ n) over an alphabet Σ.

• common subsequence of A and B: a sequence that

can be obtained from either A or B by deleting some

symbols.

• longest common subsequence (LCS): a common

subsequence of greatest possible length.

• A pair of sequences may have many different LCSs.

In addition, a single LCS may have many different

embeddings, i.e., positions in the two strings to which

the characters of the LCS correspond.

3





Ink in different colors to show embeddings of different LCSs.

• Seven different embeddings and three distinct LCSs for the strings
A = bilabial and B = balaclava.

• The matches are circled and contours indicating rank boundaries
are shown by connecting lines.

• In the matrix, the [i, j] entry shows the rank L[i, j] as per

L[i, j] =







0 if i = 0 or j = 0
L[i− 1, j − 1] + 1 if i, j > 0 and ai = bj
max{L[i− 1, j], L[i, j − 1]} otherwise

• For the purposes of this talk, ignore the uses of bold for certain
circles and ranks.

• The naive method of generating all LCSs for this pair of strings
would produce a list of length 100, because there would be many
duplications. (From following all paths indicated by arrows; more
on this later.)

4-1



Motivation

• Much prior work on finding one LCS. (Applications

such as DNA sequence comparison, genome mapping,

UNIX diff.)

– Simple O(mn) dynamic programming solution.

– Other results improving time and/or space usage.

• Also works on finding all LCSs (e.g., Greenberg 2002,

Rick 2000, Gotoh 1990, Altschul & Erickson 1986).

– Time proportional to output size

(plus preprocessing of O(mn) or less).

– No nontrivial bound on time as a function of

input size.

5



Partial Summary of Results

Let D(t) be the maximum possible number of distinct LCSs

and E(t) be the maximum possible number of LCS

embeddings, each for two input sequences of total length t.

For simplicity, assume 6 | t here.
• 1.2t < 3t/6 ≤ D(t) ≤ 4t/5 < 1.32t .

• D(t) = 3t/6 if no repeated characters in either input seq.

• E(t) =

(

⌊(

5t+ 3 +
√

5(t+ 1)2 + 4
)

/10
⌋

⌈(

5t− 3−
√

5(t+ 1)2 + 4
)

/10
⌉

)

.

• limt→∞E(t) ≈ .965(1.62)t/
√
t .

• The time to naively generate all LCS embeddings or all

LCSs may exceed the output size by a factor of Θ(2t/
√
t).

6



• Everything works with 6 ̸ | t, but the D(t) expressions get a little
more complicated.

• The limit result doesn’t really merit listing as a main result in its
own right since it follows from the line above by using Stirling’s
approximation to the factorial, but this gives an easier to digets
notion of the magnitude of E(t).

• There are some other results as well, e.g., determination of the
maximum possible number of LCS embeddings in two input strings
that each contain n characters. Smaller than maximum possible
number of embeddings in two input strings of total length 2n.

6-1



The Maximum Number of Distinct LCSs —

Lower Bound

Theorem 1 D(t) > 3t/6 > 1.2t for t | 6.

Proof. Let the inputs be of the forms

abcdefghijkl. . .

and

cbafedihglkj. . .

7





The Maximum Number of Distinct LCSs —

Upper Bound

Theorem 3 D(t) ≤ 4t/5 < 1.32t.

Proof. Follows by induction once we show

D(t) ≤ kD(t− (k + 1)) for some k. The inequality

follows from letting k be the number of choices for the

first character in an LCS of the input strings. Once the

first character is chosen, Lemma 2 tells us that k + 1

characters of the input strings are removed from

consideration for construction of the remainder of the

LCS.

9



Ink in illustration of k crossing initial characters.

9-1



The Maximum Number of Distinct LCSs — No

Repeated Characters

Theorem 4 D(t) = 3t/6 for t | 6 if there are no repeated

characters in either input sequence.

Proof. Lower bound done earlier.

Upper bound like previous proof, except that when we

make one of k choices for the first character of the LCS,

we eliminate 2k characters from possible use in the

remainder of the LCS, so D(t) ≤ kD(t− 2k) for some k.

10



Can eliminate all characters that don’t appear in both sequences
from the start. Then when we make one of the k choices for the initial
character we eliminate from consideration both copies of each of the k
characters involved.

Again, draw.

10-1



The Maximum Number of LCS Embeddings –

Relation to Maximum Number of Embeddings of

a Single LCS

• Claim: The total number of LCS embeddings is

maximized when there is just one LCS.

• Rigorous argument deferred.

• Based on claim, focus henceforth on maximum

number of embeddings of a single LCS.

11



The Maximum Number of Embeddings of an LCS

of Specified Length

Lemma 5 The maximum possible number of embeddings

E(n,m, l) of a single LCS of length l in two input

sequences of lengths m and n is

E(n,m, l) = max
y≤l

(

m− y

l − y

)(

n+ y − l

y

)

.

Proof. Lower bound from embeddings of al−yby in

am−yby and al−ybn+y−l. Upper bound follows since each

character of any LCS must have a fixed embedding in at

least one of the two input strings; y is no. of characters

with a fixed embedding in the first input string.

12



The Maximum Number of Embeddings of an LCS

of Specified Length — Choice of y

Lemma 6 The value of y maximizing E(n,m, l) is

y∗ =
⌈

l(n−l)+l−m
m+n−2l

⌉

.

Lemma 7 The maximum possible number of embeddings

E(n, n, l) of a single LCS of length l in two input

sequences of length n is

E(n, n, l) =

(

n− ⌊l/2⌋
n− l

)(

n− ⌈l/2⌉
n− l

)

.

13



The Maximum Number of Embeddings of an LCS

Theorem 8 The maximum possible number of

embeddings of a single LCS in two input sequences of

length n is

(

⌊

1
2

(

1 + 1/
√
5
)

(n+ 1)
⌋

⌈(

5n− 1−
√

5(n+ 1)2 − 4
)

/10
⌉

)

∗
(

⌊(

5n+ 1 +
√

5(n+ 1)2 − 4
)

/10
⌋

⌊

1
2

(

1− 1/
√
5
)

(n+ 1)
⌋

)

.

14



The Maximum Number of Embeddings of an LCS

- Limit

Corollary 9 The limit as n goes to infinity of the

maximum possible number of embeddings of a single LCS

in two input sequences of length n is

φ2
√
5

2π

(

φ2
)n
/

n ≈ .932(2.62)n/n ,

where φ = (1 +
√
5)/2 (the golden ratio).

Proof. Use Stirling’s approximation to the factorial:

n! =
√
2πn(n/e)n(1 + Θ(1/n)) .

15



For this form of Stirling’s approximation, see Knuth1973 p. 111.

15-1



The Maximum Number of Embeddings of an LCS

— Only Total No. of Input Characters

Constrained

Lemma 10 With LCS length l, E(t) =
(

t−l
l

)

.

Theorem 11

E(t) =

(

⌊(

5t+ 3 +
√

5(t+ 1)2 + 4
)

/10
⌋

⌈(

5t− 3−
√

5(t+ 1)2 + 4
)

/10
⌉

)

.

Corollary 12

limt→∞ E(t) = φ
√√

5/(2π)φt/
√
t ≈ .965(1.62)t/

√
t .

16



Initial lemma here follows from the earlier lemma for inputs of length
m and n.

Final corollary with t = 2n does not make E(t) as small as on previous
slide. Difference is ≈ .682/

√
n versus .932/n, i.e., bigger by a factor of

about .732
√
n.

16-1



How Bad is it to Generate All LCSs Naively?

The method:

• Compute ∀ i & j “bottom-up” ranks L[i, j] =






















0 if i = 0 or j = 0

L[i− 1, j − 1] + 1 if i, j > 0 and ai = bj

max{L[i− 1, j], L[i, j − 1]} otherwise

• Backtrace from position [m,n]. At each stage, if [i, j]

is a match, can add a character to LCS and go to

[i− 1, j − 1]. Also, an option to not add a character

to LCS and move to [i− 1, j] or [i, j − 1] if rank there

equals L[i, j].

17



Flip back to bilabial/balaclava table.

17-1



How Bad is it to Generate All LCSs Naively?

Theorem 13 The naive method of generating all LCS

embeddings (or all LCSs) may require time exceeding the

output size by a factor of Θ(
(

n+m
m

)

) in the worst case.

Proof sketch: For lower bound, can just consider a pair of

sequences with no matches, but this comes from

operating extremely naively. Even if we reduce the

naivety by printing outputs whenever we hit a node of

rank 0, we can still construct examples with Ω(
(

n+m
m

)

)

overhead. For upper bound, a proof by induction on

n+m; additional details too much to include here.

18



Some Recap & Conclusions

• 1.2t < D(t) < 1.32t . Would be nice to close the gap.

• limt→∞E(t) ≈ .965(1.62)t/
√
t .

• Time to naively generate all LCS embeddings or all LCSs

may exceed the output size by a factor of Θ(2t/
√
t).

• Any algorithm that finds all distinct LCSs by generating

all embeddings and removing duplicates has a worst-case

inefficiency factor exponential in the input size.

• Using the naive method to generate all embeddings and

removing duplicate embeddings or LCSs is inefficient by

an even larger exponential factor in the worst case.

• Some results have been obtained in context of specified

input lengths m and n; would be nice to extend all.

19


