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Fast and Space-Efficient Location of Heavy or
Dense Segments in Run-Length Encoded

Sequences
(Extended Abstract)

Ronald I. Greenberg

Loyola University, 6525 N. Sheridan Rd., Chicago, IL 60626, USA,
rig@cs.luc.edu,

http://www.cs.luc.edu/~rig

Abstract. This paper considers several variations of an optimization
problem with potential applications in such areas as biomolecular se-
quence analysis and image processing. Given a sequence of items, each
with a weight and a length, the goal is to find a subsequence of con-
secutive items of optimal value, where value is either total weight or
total weight divided by total length. There may also be a specified lower
and/or upper bound on the acceptable length of subsequences. This pa-
per shows that all the variations of the problem are solvable in linear
time and space even with non-uniform item lengths and divisible items,
implying that run-length encoded sequences can be handled in time and
space linear in the number of runs. Furthermore, some problem varia-
tions can be solved in constant space. Also, these time and space bounds
suffice for certain problem variations in which we call for reporting of
many “good” subsequences.

Keywords: maximum consecutive subsequence sum, maximum-density segments,
biomolecular sequence analysis, bioinformatics, image processing, data compres-
sion

1 Introduction

Let S be a sequence comprised of n runs, where the ith run (1 ≤ i ≤ n) has
weight wi and length li ≥ 0. Initially, we define a segment of S to be a consecutive
subsequence of runs, i.e., segment S(i, j) is comprised of runs i through j. The
weight of S(i, j) is

weight(i, j) =
j∑

k=i

wk ,

the length of S(i, j) is

length(i, j) =
j∑

k=i

lk ,



and the density of S(i, j) is

density(i, j) = weight(i, j)/length(i, j) .

Prior works on algorithms for biomolecular sequence analysis have considered the
problem of finding a segment of S that is heaviest (maximizing weight(i, j)) or
densest (maximizing density(i, j)), subject to constraints that the segment length
must be at least L and/or at most U [1–4].1 For brevity, we will refer to these as
an L constraint and/or U constraint. In addition, the heaviest segment problem
with no constraints on segment length is discussed by Bentley [5]. (This version
of the problem was motivated by image processing tasks.) Note that for heaviest
segments only we may consider empty segments, which may be represented by
choosing i > j.

Most of the prior results were for the uniform version of the problem in
which li = 1 for all i; exceptions will be noted below. (In the uniform case, the
problem is often described as one of finding a subsequence of consecutive items
of maximum sum or of maximum average.) We will also introduce below a new
variation of the non-uniform version of the problem that we will refer to as the
non-uniform case with breakable or non-atomic runs. With non-atomic runs, we
will allow each end of a segment to include just a portion of the length of a run.
When a run is partially included in a segment, a pro rata portion of its weight
will be included in the weight of the segment.

While the non-uniform problem with atomic runs was considered by Gold-
wasser et al. [1] and an interesting application might be discovered, a particularly
interesting use of the non-uniform model would be for working with sequences
that have been compressed. That is, given a sequence under the uniform model,
a simple compaction would be to replace any set of r consecutive items of weight
w with a run of length r and weight wr under the non-uniform model, which
corresponds to the standard compression technique of run-length encoding. Run-
length encoding tends to be particularly useful in monochrome image process-
ing. It could also have potential for such applications as DNA sequence analysis,
since each item in a DNA sequence is chosen from just four different nucleotides.
(Furthermore, in DNA sequence analysis, researchers may often be interested,
on the first pass, in just a binary distinction between C/G and other [6–10].) To
work with such a compressed sequence but be able to find a heaviest or densest
segment in the uncompressed sequence, we must be able to break runs.

We begin by reviewing prior results for heaviest segments and then for densest
segments. When discussing the problems together, we may use the term optimal
to mean heaviest or densest, and we may refer to the weight or density of a
segment as its value.

The first result was an unpublished result of Kadane [5] for the unconstrained
heaviest segment problem. This solution uses O(n) time and constant space (be-

1 Note that Lin et al. [3] use the term “heaviest” to mean what we define as “optimal”
below.



yond the space used to represent the input)2. With an L constraint, an algorithm
of Huang [4] can be used to find a heaviest segment in O(n) time and O(n) space
as noted by Lin et al. [3]. Lin et al. further showed how to obtain the same time
and space bounds with both an L constraint and a U constraint [3].

In the case of finding a densest segment, the problem is trivially solvable in
O(n) time and constant space if there is no L constraint; just find the single
run of maximum density. Lin et al. [3] showed that with an L constraint, a
densest segment can be found in time and space O(n lg L). Goldwasser et al. [2,
1] improved the time and space bounds to O(n). They further showed that the
same bounds hold with both an L constraint and a U constraint [1]. In addition,
they showed that with only an L constraint, the results could be extended to
the non-uniform version of the problem [1]. Finally, they showed that with both
constraints, O(n+n lg(U−L+1)) time suffices when li ≥ 1 for all i. Goldwasser
and I have, however, observed that the analysis in [1] can be modified to yield
O(n) time and space for any lengths satisfying li ≥ 0 for all i.

This paper explains in Sect. 2 why all the results mentioned so far can be
extended to the non-uniform model with atomic runs. In Sect. 3, we show that the
space usage for finding a heaviest segment with an L constraint can be reduced
to constant space. In Sect. 4, we show that all the results can be maintained
even if we allow breakable runs. As indicated above, the use of breakable runs is
of particular interest in connection with run-length encoded sequences, but the
results of Sect. 4 apply even when li values are allowed to be nonintegral and
when runs can be broken into any fraction. In Sect. 5, we consider variations
on the problem in which we seek not just one optimal segment but all optimal
segments or all optimal segments of maximal or minimal length, or even a more
general concept as considered by Huang [4].

2 The Non-Uniform Model

Most of the prior algorithms for finding a heaviest segment or finding a dens-
est segment may essentially be cast into the following basic framework. (The
approach of Huang [4] is somewhat exceptional, and we show in Section 3 that
it can be greatly simplified when we seek only a heaviest segment with L con-
straint.) We sweep left to right across the given sequence considering each po-
sition in turn as a possibility for the right endpoint of an optimal segment. At
each such step we determine a best choice of the left endpoint, called a “good
partner” for the current right endpoint, that is at least as far to the right as
the prior good partner. It is relatively easy to see that the good partner should
never “back up” when seeking a heaviest segment. For densest segments, the

2 This measure of space usage is analogous to the concept of algorithms that sort
in-place (e.g., [11]) by using only a constant amount of storage outside the input
array. Interestingly, the algorithm of Kadane has an even stronger property that one
need not store the entire input array at one time; rather one may read the input
piecemeal and never use more than constant storage in a strict sense.



correctness of this approach is based on the following lemma that is essentially
the same as one proven by Goldwasser et al. [2, Lemma 9]:

Lemma 1. Let S(i, j) be a densest segment among those ending at index j and
having length at least L. Similarly, let S(i′, j′) be a densest segment among those
ending at index j′ and having length at least L. If j′ > j and i′ < i, then
density(i, j) ≥ density(i′, j′). ut

Except in the unconstrained heaviest segment problem, the existing algo-
rithms make use of a cleverly precomputed data structure of size O(n) to deter-
mine how far to move the left endpoint at each step without overshooting the
proper location for the good partner of the right endpoint. (In the unconstrained
heaviest segment problem, no such data structure is necessary, because a simple
check indicates whether the left endpoint should stay at the same position as in
the last step or move to the same position as the right endpoint.)

For the most part, the li values of the input sequence are irrelevant to the
operation of the algorithms that find an optimal segment. The main place they
have an effect is in providing an additional constraint (beside the constraint that
the good partner does not back up) on the range of indices to consider for the
current good partner. In the uniform case, the additional constraint is trivial;
a good partner of position j must be in the range j − U to j − L. In the non-
uniform case, however, these constraints are easily precomputed. In O(n) time
and space, a simple scan through the input sequence allows us to calculate Uj

and Lj for all j, such that the good partner for j is between Uj and Lj . Instead
of precomputing, these constraints can actually be managed on the fly, so that
constant space will suffice for finding a heaviest sequence with an L constraint
as shown in Section 3.

There is one more complication involved in finding a densest segment with
L and U constraints. This problem is actually solved by dividing the input
sequence into contiguous blocks of length U − L before proceeding with any
other operations. Thus, the problem of finding a good partner breaks down into
a problem of comparing a good partner found in a specific block with no explicit
U constraint to a good partner found in the next farther block with no explicit
L constraint. Whereas Goldwasser et al. [1] proposed dividing the sequence into
blocks of U − L runs, Goldwasser and I have observed that dividing into blocks
of length at least U − L and as close as possible to U − L yields O(n) time and
space for finding a densest segment.

The above observations are encapsulated in the following theorem:

Theorem 2. O(n) time suffices to find a length-constrained heaviest segment
or densest segment even with non-uniform run lengths. ut

All results given later in this paper will also be applicable to the non-uniform
model.



3 Constant-Space Location of a Heaviest Segment with
an L Constraint

In this section, we show that a heaviest segment with an L constraint but no
U constraint can be found in O(n) time and constant space, improving on the
O(n) space result that follows from the approach of Huang [4].

As in the approaches discussed in Sect. 2, we make a scan left to right across
the input sequence, considering each position in turn as a possible location for
the right endpoint of a heaviest segment. As we do so, we keep track of the good
partner (a best left endpoint for the current right endpoint), which also moves
rightward. Since weight(i, j) is just weight(i, j−1)+wj , a good partner p of j−1
serves as a good partner of j unless a segment of higher weight than S(p, j) is
obtained by considering left endpoints p′ with length(p′, j) ≥ L ≥ length(p′, j−1).
By keeping track of the location that is length L away from j, as well as keeping
track of the current good partner and the heaviest segment seen so far, we
can find a heaviest segment in O(n) time and constant space. We present the
algorithm in Fig. 1, but, for simplicity, we find only the weight of a heaviest
segment; it should be clear that we could easily keep track of an actual heaviest
segment as well. The pseudocode in Fig. 1 also incorporates the use of non-
uniform lengths as discussed in Sect. 2.

1 Lherestart ← 1
2 maxsofar ← maxendinghere ← Lherewt ← Lherelength ← 0
3 for j ← 1 to n do
4 Lherelength ← Lherelength + lj
5 Lherewt ← Lherewt + wj

6 maxendinghere ← maxendinghere + wj

7 while Lherestart ≤ j and Lherelength− lLherestart ≥ L do
8 Lherelength ← Lherelength− lLherestart
9 Lherewt ← Lherewt− wLherestart

10 Lherestart ← Lherestart + 1
11 maxendinghere ← max{maxendinghere,Lherewt}
12 endwhile
13 if Lherelength ≥ L
14 then maxsofar ← max{maxsofar,maxendinghere}
15 endif
16 endfor

Fig. 1. The algorithm to find the weight of a heaviest segment with L constraint and
non-uniform lengths in O(n) time and constant space.

We summarize with the following theorem:

Theorem 3. A heaviest segment with length greater than or equal to L can be
found in O(n) time and constant space. ut



4 Non-Atomic Runs

In this section, we show that all the results so far can be extended to work with
non-atomic runs. Note that all the running times remain linear in the number
of runs and that L, U , and the li values may even be nonintegral. We make use
of the following two lemmas:

Lemma 4. To find an optimal (heaviest or densest) segment, we need only con-
sider a segment containing a partial run if its length is exactly L or U .

Proof. Consider a segment of length strictly between L and U that contains a
partial run. Then the length constraints allow us to use more of this run or trim
off part of this run. One of these changes must not decrease the value (weight or
density) of the segment, since the density of a run is considered to be uniform.

ut
Lemma 5. To find an optimal segment, we may limit attention to segments
with a partial run on at most one end.

Proof. Consider a segment with partial runs on each end. Without loss of gen-
erality, suppose that that the run truncated on the left has lower density than
the run truncated on the right. If the utilized portion of the run on the left is
shorter than the unutilized portion of the run on the right, we can completely
eliminate the run on the left and add a corresponding portion of the run on the
right. On the other hand, if the utilized portion of the run on the left is longer
than the unutilized portion of the run on the right, we can completely include
the run on the right at the expense of the run on the left. Either way, neither
the weight nor density of the segment will decrease. ut

With these lemmas in mind, we see that we need not deviate too far from
working with atomic runs to obtain an optimal segment when we are allowed to
break runs. We need only consider small adjustments in addition to each of the
segments considered as a possible optimal segment when working with atomic
runs. For example, to update the algorithm of Fig. 1 to work with breakable
runs, we can just add the following code after Line 11:

if Lherelength− L < lj
then Lhereadjwt ← Lherewt− (Lherelength− L)wj/lj

maxendinghere ← max{maxendinghere,Lhereadjwt}
endif

and the following code after Line 14:

Lhereadjwt ← Lherewt− (Lherelength− L)wLherestart/lLherestart
maxsofar ← max{maxsofar,Lhereadjwt}

(Note that this modification is correct under the assumption that L ≥ 0, which
places no restriction on the utility of the algorithm, since li ≥ 0 for all i.)

Incorporating other variations of the problem as well, we can state the fol-
lowing theorem:



Theorem 6. O(n) time and space suffices to find a length-constrained heaviest
segment or densest segment even with non-atomic runs. Furthermore, constant
space suffices to find a heaviest segment with no upper bound on segment length.

ut

5 Finding “All” Optimal Segments

Huang’s algorithm [4] actually generates not only a heaviest segment (of length
at least L) but all heaviest segments that cannot be extended, i.e., that are of
maximal length. In fact, Huang’s algorithm finds all segments of maximal length
that are at least as heavy as any overlapping segment.3 In this section, we show
that if one seeks to report even all optimal segments, the run time may be Θ(n2)
in the worst case, but reporting all optimal segments of minimal length does not
change any of the time and space bounds discussed so far. We also show that
Huang’s goal can be achieved for heavy segments with a simpler algorithm and
that the space usage can be reduced from two numeric arrays of length n to a
single boolean array of length n.

We begin with the worst-case lower bound for finding all optimal segments.
This result is actually quite trivial, since an input sequence with wi = 0 for all
i makes every segment optimal with L = 0 and no U constraint.

Theorem 7. Finding all optimal segments requires Θ(n2) time in the worst
case. ut

(It is also possible to construct more interesting sequences with many optimal
segments. Furthermore, while a U constraint will keep the number of optimal
segments below n2, the number of optimal segments may still be Θ(nU).)

We now note that finding all optimal segments of minimal length can be done
with the same time and space bounds as finding one optimal segment:

Theorem 8. Reporting all optimal segments of minimal length can be done in
O(n) time and space. For heaviest segments with no U constraint, the space can
be reduced to O(1).

Proof. We can begin by simply finding the optimal value (weight or density of an
optimal segment) using the algorithms discussed so far. Then we can essentially
rerun the same algorithm but report an optimal segment each time that we find
a good partner of a right endpoint for which the value of the corresponding
segment equals the optimal value. The only remaining detail is that where there
is a tie among candidates for the good partner, we must choose the rightmost
good partner. This choice is easy to make; for example in the algorithm for
heaviest sequences with an L constraint (Fig. 1), we could maintain good partner
information as well as best value information at Lines 11 and 14. When there is a
tie in the two values to which we are applying the max operator, we would retain
the good partner corresponding to Lherewt in preference to maxendinghere, and
maxendinghere in preference to maxsofar. ut
3 Note that Huang uses the term “optimal” for a different meaning than in this paper.



Finally, we give a simpler method than Huang’s [4] to find all segments
of maximal length (with no U constraint) that are at least as heavy as any
overlapping segment, and we reduce the space usage. For simplicity, we stick
to the uniform model (li = 1∀i) and L = 0. The enhancements of non-uniform
lengths, breakable runs, and L > 0 can be incorporated by combining ideas
presented in earlier sections of this paper. In the case we focus on now, however,
our statement about space usage can be particularly strong; it includes even
space used to store input data as long as we are allowed to read the input twice.

Theorem 9. All segments of maximal length that are at least as heavy as any
overlapping segment can be reported in O(n) time using just one boolean array
of length n plus constant additional space.

Proof. The key observation is that S(i, j) satisfies the criterion if and only if (1)
the heaviest non-empty segment ending with position i−1 and the heaviest non-
empty segment beginning with position j + 1 each have negative weight (if they
exist), and (2) for any position from i to j, the heaviest segment beginning there
and the heaviest segment ending there have nonnegative weight. The algorithm in
Fig. 2 completes the proof. (For simplicity, we report only non-empty segments.)

ut

6 Conclusion

We have seen that finding a length-constrained heaviest segment or densest seg-
ment in a sequence composed of either atomic or non-atomic items, each of
arbitrary weight and nonnegative length, can be accomplished in time and space
linear in the number of items. Furthermore, constant space suffices to find a
heaviest segment when there is no upper bound on segment length. In addition,
the same results apply to finding all optimal segments of minimal length. A
remaining open problem is to improve on the linear space requirement for vari-
ations of the problem that involve an upper bound on segment length or finding
a densest segment.
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