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Minimizing Channel Density with Movable Terminals�Ronald I. Greenbergy Jau-Der ShihzDecember 13, 1994AbstractWe give algorithms to minimize density for VLSI channel routing problems with terminalsthat are movable subject to certain constraints. The main cases considered are channels withlinear order constraints, channels with linear order constraints and separation constraints, chan-nels with movable modules containing �xed terminals, and channels with movable modules andterminals. In each case, we improve previous results for running time and space by a factor ofL= lgn and L, respectively, where L is the channel length, and n is the number of terminals.1 IntroductionThe channel routing problem has received a great deal of attention in VLSI layout design. Inthe usual model, terminals lie on grid points along two horizontal line segments which delimit thechannel. Each terminal is labeled with a net number, and the problem is to connect terminalsbelonging to the same net, using horizontal and vertical wire segments in a grid of two layers, onereserved for horizontal wires and one for vertical wires. Nets can connect from one layer to anotherby way of a via; nets cannot intersect one another on the same layer. Figure 1 shows a routing ofan example problem. We refer to each of the vertical grid lines as a column, while the horizontalgrid lines are referred to as rows or tracks.Usually, it has been assumed that the positions of terminals on each side (top and bottom) are�xed but that the distance between the sides (the channel width) can be varied, and the minimumwidth is sought. While determining the width required to route a channel is NP-complete [9], a goodestimate in practice is the channel density, the maximum over all columns of the number of netsthat must cross the column. In fact, many existing channel routers achieve widths that are usuallywithin one of the density, e.g., [8]. (Focusing on density may also be appropriate when more thantwo interconnection layers are available, in which case the lower bound on width becomes densitydivided by the number of layers allowing horizontal routing; e.g., see [5] for multilayer channelrouting.)In this paper we consider the situation in which the orderings of the terminals along each side ofthe channel are �xed, but the exact positions may vary. There are a number of practical situationsin which such exibility arises [2], and it can lead to substantial reduction in channel density andwidth [2, 4]. When only the ordering of terminals on each side is �xed, Gopal, Coppersmith, and�This work was supported in part by NSF grants CCR-9109550 and CCR-9321388.yElectrical Engineering Department, University of Maryland, College Park, MD 20742 (rig@eng.umd.edu)zDepartment of Information Engineering, Kaohsiung Polytechnic Institute, Ta-Hsu, Kaohsiung, Taiwan 84008,Republic of China (jdshih@nas04.kpi.edu.tw) 1
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3 2114 4Figure 1: A representative channel routing problem in two layers. The horizontal wires (solid) arein one layer and the vertical (dashed) in the other layer. The vias are represented by squares andthe terminals by circles.Wong [4] give an O(n2) algorithm to minimize the width1, where n is the number of terminals.LaPaugh and Pinter [7] presented an O(n2 lgn) algorithm to minimize the channel density withthe additional constraint that the relative positions of the terminals on each side are �xed. Thatis, the terminals lie on a single top module and a single bottom module, and the only freedom is toshift the modules relative to each other. More recently, Johnson, LaPaugh, and Pinter [6] providedan O(n3) algorithm to minimize density when there are multiple modules and terminal positionsare �xed within each module, but the only other constraint is a �xed order for the modules on eachside.In the above works, however, the resulting channel length may be as large as p+ q, where p isthe number of top terminals and q is the number of bottom terminals (or as large as the sum ofthe module lengths in the module-based version of the problem). In contrast, Cai and Wong [1, 2]minimize density for a channel of �xed length L (perhaps as small as max fp; qg) under a widevariety of constraints on the terminal positions. For channels with only linear order constraints(the orderings of the terminals on each side of the channel are �xed), they proposed an O(pqL)algorithm to minimize the channel density. If we add separation constraints (the distance betweeneach pair of consecutive terminals is within a certain range), their running time and space becomeO(pqL3) and O(pqL2), respectively. With multiple modules and �xed terminals within each module,they obtain O(L3) time and space. If the terminals within the modules are also movable, then therunning time and space become O(pqL3).In this paper we provide more e�cient algorithms for these four problems of Cai and Wong [1, 2].In each case, we improve the running time by a factor of L= lg(p + q) and the space by a factorof L. (Unlike Cai and Wong, however, we do not handle \position constraints", which specify aset of allowable columns for each terminal.) The third of these four problems can also be solvedby a method of Chao and LaPaugh [3] that is discussed further and compared to our method inSection 7.The remainder of this paper is organized as follows. In Section 2, we introduce some additionalterminology and notation which will be used throughout this paper. Section 3 describes an algo-rithm to �nd the minimum channel density for channels with linear order constraints by using adynamic programming approach. The algorithm is then extended in Sections 4, 5, and 6 to handlechannels with separation constraints, channels with movable modules, and channels with movablemodules and movable terminals, respectively. Finally, in Section 7, we provide some concluding1This does not contradict the NP-completeness result, due to the use of a model in which there is complete freedomto choose the amount of space between adjacent terminals.2



remarks.2 PreliminariesWe begin by giving a more formal problem de�nition and some notation. We de�ne t1; t2; : : : ; tpand b1; b2; : : : ; bq to be the terminals on the top and bottom side of the channel, which are orderedfrom left to right. We are given L column positions in which to place the terminals while retainingthe given ordering on each side. The goal is to �nd the positions of the terminals such that thechannel density is minimized.Note that the density at any given column depends only on the �xed order of the terminals oneach side and the position of that column within those orderings. Then let d1(i; j) be the densityat the column of ti when ti is placed between bj and bj+1, let d2(i; j) be the density at the columnof bj when bj is placed between ti and ti+1, and let d3(i; j) be the density at the column of ti and bjwhen they are aligned. These density functions can be computed in O(pq) time for all possible i; j.The computation is a simple double loop over i and j; for example, d1(i + 1; j) can be computedin constant time from d1(i; j) by looking at which terminals are connected to ti and ti+1. (If thereare many terminals per net, we can perform a preprocessing step that removes all but the leftmostand rightmost terminal of each net on the top and bottom of the channel.) We assume throughoutthis paper that the d1, d2, and d3 values have been computed and saved. Also, for any given targetdensity d, we de�ne an indicator variable �d1(i; j) as follows�d1(i; j) = ( 1 if d1(i; j) � d1 if d1(i; j) > d ;and we de�ne �d2(i; j) and �d3(i; j) analogously. We use these � values throughout our algorithms toexpress the feasibility, at a given density, of certain relative positionings of terminals.The high-level structure of all our algorithms is as follows. Given a target density d, we computethe minimum channel length required to achieve the density. Based on the computed channel lengthand L, we increase or decrease the target density. By using a binary search on all the possiblechannel densities, we can �nd the minimum density achievable in length L.3 Channels with Linear Order ConstraintsIn this section, we give an algorithm to minimize the channel density for channels with linearorder constraints. We begin by showing how to �nd the minimum channel length at a given targetdensity d. To do that, we introduce some subproblems used as the basis for a solution by dynamicprogramming. (We show in detail only how to �nd the minimum channel length, but one canreadily retrace the computations leading to this result to determine the corresponding terminalplacement.)The length function Ld(i; j) is de�ned to be the minimum number of columns spanned by topterminals t1; : : : ; ti and bottom terminals b1; : : : ; bj , with the restriction that each of those columnshas density at most d when all the other terminals are placed to the right of both ti and bj . Ifthe target density d is unachievable, then Ld(i; j) is de�ned to be 1. We de�ne Ld1(i; j) the sameway as Ld(i; j) but with the constraint that ti is to the right of bj . Ld2(i; j) and Ld3(i; j) are de�ned3



similarly but with the constraint that ti is to the left of bj , and ti is aligned with bj, respectively.We now show how to compute these functions recursively using the shorthandLd(i; j) = minfLd1(i; j); Ld2(i; j); Ld3(i; j)g :The �nal answer to our problem is Ld(p; q).Consider �rst the computation of Ld1(i; j). By the de�nition of Ld1(i; j), ti must be to the rightof bj. Thus we require one column more than are spanned by t1; t2; : : : ; ti�1 and b1; b2; : : : ; bj , andwe must check the density constraint in this new column:Ld1(i; j) = (Ld(i� 1; j) + 1)�d1(i; j) :Similarly, we can express Ld2(i; j) and Ld3(i; j) asLd2(i; j) = (Ld(i; j � 1) + 1)�d2 (i; j)and Ld3(i; j) = (Ld(i� 1; j � 1) + 1)�d3(i; j) :For initial conditions, we have, for c = 1; 2; 3,Ldc(0; j) = j jYk=1 �dc (0; k); j = 0; 1; : : : ; q ;and Ldc(i; 0) = i iYk=1 �dc (k; 0); i = 0; 1; : : : ; p ;where we think of t0 and b0 as dummy terminals at the left of their respective sides that do notcontribute to density.Theorem 1 Given a target density d, the minimum channel length subject to linear order con-straints can be computed in O(pq) time and space.Proof. We have already noted that the � values can be computed in O(pq) time, and an additionalO(p+ q) time su�ces to determine the initial conditions. Then we compute the values of the threelength functions together in order of increasing i and j using the recurrences above. There is a totalof O(pq) values to compute, and each can be computed in O(1) time from previously computedvalues.Corollary 2 The minimum density of a channel subject to linear order constraints can be foundin O(pq lg(p+ q)) time and O(pq) space.Proof. The minimum density problem can be solved by binary search on density, which is at mostp+ q.
4
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Figure 2: Three types of length functions: (a) Ld1(i; j; k) (b) Ld2(i; j; k) (c) Ld3(i; j)4 Channels with Linear Order Constraints and Separation Con-straintsIn this section, we extend the algorithm of Section 3 to handle channels with linear order constraintsand separation constraints. Let the separation constraints have the following form: the distance sibetween ti and ti+1 must satisfy li � si � ri, and the distance s0j between bj and bj+1 must satisfyl0j � s0j � r0j .To handle the distance constraints, we have to modify the length functions. Let Ld1(i; j; k) andLd2(i; j; k) be de�ned as in Section 3 but with the restriction that the horizontal distance betweenti and bj equals k (in absolute value). We de�ne Ld3(i; j) exactly as before. The constraints for thethree length functions are illustrated in Figure 2. Then, Ld(i; j) is obtained by minimizing over thethree types of length functions and all possible k's.Consider Ld1(i; j; k) �rst. There are three cases: (1) ti�1 is to the right of bj, (2) ti�1 is to theleft of bj , and (3) ti�1 is aligned with bj. And the minimum among the three cases is the minimumchannel length. In the �rst case,Ld1(i; j; k) = mink0 fLd1(i� 1; j; k0) + k � k0g�d1(i; j) ;with li�1 � k � k0 � ri�1. Figure 3(a) illustrates the restriction on k0. The second case can beanalyzed similarly, and we haveLd1(i; j; k) = mink0 fLd2(i� 1; j; k0) + kg�d1(i; j) ;with li�1 � k + k0 � ri�1. In the third case, which is possible only when li�1 � k � ri�1, we �ndLd1(i; j; k) = (Ld3(i� 1; j) + k)�d1(i; j) :The three cases are shown in Figure 3. In all cases, we have 0 < k < L, and we assign a lengthfunction value of 1 for values of k that are impossible given the other constraints.From the above argument, Ld1(i; j; k) can be expressed asLd1(i; j; k) = ( (minA1)�d1(i; j) if li�1 � k � ri�1(minA2)�d1(i; j) otherwisewhere A1 = fLd3(i� 1; j) + kg [A2 ;and A2 = f minli�1�k�k0�ri�1fLd1(i� 1; j; k0) + k � k0g; minli�1�k+k0�ri�1fLd2(i� 1; j; k0) + kgg :5
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ti�1 k0 k + k0 kti�1 tibj (c)Figure 3: Three possibilities of Ld1(i; j; k): (a) ti�1 is to the right of bj. (b) ti�1 is to the left of bj .(c) ti�1 is aligned with bj.Similarly, Ld2(i; j; k) and Ld3(i; j) can be expressed as follows:Ld2(i; j; k) = ( (minB1)�d2(i; j) if l0j�1 � k � r0j�1(minB2)�d2(i; j) otherwiseand Ld3(i; j) = ( (minC1)�d3(i; j) if [li�1; ri�1] \ [l0j�1; r0j�1] 6= ;(minC2)�d3(i; j) otherwisewhereB1 = fLd3(i; j � 1) + kg [B2 ;B2 = f minl0j�1�k+k0�r0j�1fLd1(i; j � 1; k0) + kg; minl0j�1�k�k0�r0j�1fLd2(i; j � 1; k0) + k � k0gg ;C1 = fLd3(i� 1; j � 1) +maxfli�1; l0j�1gg [ C2 ;C2 = f min(k00;k0)2Si;jfLd1(i� 1; j � 1; k0) + k00g; min(k00;k0)2Ti;jfLd2(i� 1; j � 1; k0) + k00gg ;Si;j = f(k00; k0)jli�1 � k00 � ri�1 and l0j�1 � k00 + k0 � r0j�1g ;and Ti;j = f(k00; k0)jl0j�1 � k00 � r0j�1 and li�1 � k00 + k0 � ri�1g :Theorem 3 Given a target density d, the minimum channel length subject to linear order con-straints and separation constraints can be computed in O(pqL2) time and O(pqL) space.Proof. We compute values of the length functions in order of increasing i, j and k, and then theminimum channel length ismin� min0<k<LLd1(p; q; k); min0<k<LLd2(p; q; k); Ld3(p; q)� :There are O(pqL) values of Ld1 and Ld2 to be computed, and each can be computed from previouslycomputed values in O(L) time. In addition, there are O(pq) values of Ld3 to be computed, each intime O(L2).Corollary 4 The minimum density of a channel subject to linear order constraints and separationconstraints can be found in O(pqL2 lg(p+ q)) time and O(pqL) space.6



5 Channels with Movable ModulesThis section considers the problem of channels with movable modules but with the terminals at�xed positions within their modules. We �rst augment the set of terminals to include the endpointsof the modules. Then we insert pseudo-terminals on the modules until every column in the modulescontains a terminal or a pseudo-terminal as in [2]. As a result, the separation constraints betweenterminals inside a top module have the form li = ri = 1 (an adjacency constraint), and theseparation constraints between the right endpoint of a top module and the left endpoint of themodule immediately to its right are li = 1, and ri = 1. (The constraints on the bottom aresimilar.) Now we can see this problem as a channel subject to linear order constraints and specialseparation constraints.The length functions used in this section are as de�ned in Section 3. The approach to calculatethese length functions is the same except for a modi�cation to handle adjacency constraints. Usingthe notational shorthand Ldx;y(i; j) = minnLdx(i; j); Ldy(i; j)o ;we have: Ld1(i; j) = ( (Ld(i� 1; j) + 1)�d1(i; j) if ri�1 =1(Ld1;3(i� 1; j) + 1)�d1(i; j) if ri�1 = 1Ld2(i; j) = ( (Ld(i; j � 1) + 1)�d2(i; j) if r0j�1 =1(Ld2;3(i; j � 1) + 1)�d2(i; j) if r0j�1 = 1Ld3(i; j) = 8>>><>>>: (Ld(i� 1; j � 1) + 1)�d3(i; j) if ri�1 = r0j�1 =1(Ld1;3(i� 1; j � 1) + 1)�d3(i; j) if ri�1 = 1 and r0j�1 =1(Ld2;3(i� 1; j � 1) + 1)�d3(i; j) if ri�1 =1 and r0j�1 = 1(Ld3(i� 1; j � 1) + 1)�d3(i; j) if ri�1 = r0j�1 = 1and Ld(i; j) = minfLd1(i; j); Ld2(i; j); Ld3(i; j)g :Theorem 5 Given a target density d, the minimum channel length for channels with movablemodules can be computed in O(L2) time and space.Proof. We can compute Ld1(i; j), Ld2(i; j), and Ld3(i; j) from previously computed values in O(1)time. Including the pseudo-terminals, there are O(L) terminals on each side of the channel, whichyields O(L2) length function values to be computed.Corollary 6 The minimum density with movable modules can be found in O(L2 lg(p + q)) timeand O(L2) space.6 Channels with Movable Terminals and ModulesIn this section, we consider channels with movable terminals and modules. That is, the moduleson each side of the channel are movable as in Section 5, and we also allow the terminals to movewithin their modules. To handle this situation, we have to introduce new de�nitions and lengthfunctions. 7
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tikl bjFigure 4: Three types of length functions: (a) Ld1(i; j; k; l) (b) Ld2(i; j; k; l) (c) Ld3(i; j; k; l)De�ne a left terminal to be the leftmost terminal of a module. Also de�ne M(p) to be themodule where terminal p is located, vi to be the length of M(ti), and wj to be the length of M(bj).The length functions used here have four variables i; j; k, and l as illustrated in Figure 4; here kand l represent the distance from the rightmost of ti and bj to the left edges of their modules.The length function Ld(i; j) is equal to the minimum of the three types of length functions for allpossible k's and l's (where each length function accounts for the lengths of the modules containingt1; t2; : : : ; ti and b1; b2; : : : ; bj).For many values of k and l, we can immediately set length function values to 1. For example,if terminal ti is the mth terminal in its module, then Ld1(i; j; k; l) =1 for any k < m� 1. In whatfollows we give recurrences for the length functions under the assumption that such restrictionshave already been taken into account.To simplify the presentation, we de�ne notational shorthand as in Section 5:Ldx;y(i; j; k; l) = minnLdx(i; j; k; l); Ldy(i; j; k; l)oand Ld(i; j; k; l) = minfLd1(i; j; k; l); Ld2(i; j; k; l); Ld3(i; j; k; l)g :We �rst consider Ld1(i; j; k; l). There are two cases according to whether ti is a left terminal ornot. We seek the minimum among the channel lengths obtained in the following three subcases:(1) ti�1 is to the right of bj , (2) ti�1 is to the left of bj, and (3) ti�1 is aligned with bj. Note that ifthe relative position of M(ti) and M(bj) is �xed, then the actual positions of the terminals on thetwo modules have no e�ect on the value of the length functions as long as the density is less thanor equal to d.Case (A): ti is not a left terminal.(1): In the subcase where ti�1 is to the right of bj, we know that we can place ti�1 in the columnjust before ti, since ti�1 and ti are on the same module, and the de�nition of Ld1(i; j; k; l) impliesthat there are no bottom terminals between bj and ti. Thus we haveLd1(i; j; k; l) = Ld1(i� 1; j; k � 1; l � 1)�d1 (i; j) :(2) and (3): In the subcases where ti�1 aligned with or to the left of bj, we know that we canplace bj in the column just before ti if wj � l� 1; otherwise, we can place bj at the right end of itsmodule.Putting the subcases together, we haveLd1(i; j; k; l) = ( Ld(i� 1; j; k � 1; l � 1)�d1(i; j) if wj � l � 1minfLd1(i� 1; j; k � 1; l � 1); Ld2;3(i� 1; j; wj + k � l; wj)g�d1(i; j) if wj < l � 18
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Figure 5: This �gure shows how to calculate the channel length when ti is a left terminal.Case (B): ti is a left terminal.(1): In the subcase where ti�1 is to the right of bj, we know that we can push ti�1 to the rightedge of its module, giving usLd1(i; j; k; l) = minl0<l�kfLd1(i� 1; j; vi�1; l0)g�d1(i; j) + maxf0; vi � k � (wj � l)g :The term added at the end accounts for the possible increase in channel length when moduleM(ti)is included, as shown in Figure 5.(2): In the subcase where ti�1 is to the left of bj , we know that we can place bj in the columnjust before ti if wj � l � 1; otherwise we can push bj to the right edge of its module.(3) In the subcase where ti�1 is aligned with bj, we can push ti�1 to the right edge of its moduleif l � wj � k; otherwise we can push bj to the right edge of its module.Putting the subcases together gives:Ld1(i; j; k; l) = minl0;k0;k00;l00fLd1(i� 1; j; vi�1; l0); Ld2(i� 1; j; k0;minfwj ; l � 1g); Ld3(i� 1; j; k00; l00)g�d1(i; j)+maxf0; vi � k � (wj � l)g ;where l0 < l�k, k0 > vi�1+k+minfwj� l;�1g, and k00 and l00 are de�ned as follows. If l�wj > k,then l00 = wj and k00 > vi�1 + wj + k � l. If l � wj � k, then k00 = vi�1 and l00 < l � k.We can write recurrences for L2 in a fashion similar to L1. When bj is not a left terminal,Ld2(i; j; k; l) = ( Ld(i; j � 1; k � 1; l � 1)�d2(i; j) if vi � k � 1minfLd2(i; j � 1; k � 1; l � 1); Ld1;3(i; j � 1; vi; vi + l � k)g�d2 (i; j) if vi < k � 1When bj is a left terminal,Ld2(i; j; k; l) = mink0;l0;l00;k00fLd2(i; j � 1; k0; wj�1); Ld1(i; j � 1;minfvi; k � 1g; l0); Ld3(i; j � 1; k00; l00)g�d2(i; j)+maxf0; wj � l � (vi � k)g ;where k0 < k� l, l0 > wj�1+ l+minfvi�k;�1g, and l00 and k00 are de�ned as follows. If k� vi > l,then k00 = vi and l00 > wj�1 + vi + l � k. If k � vi � l, then l00 = wj�1 and k00 < k � l.Finally, we consider L3. It is easy to see that when ti is not a left terminal,Ld3(i; j; k; l) = Ld2(i� 1; j; k; l)�3(i; j) :9



Similarly, when bj is not a left terminal,Ld3(i; j; k; l) = Ld1(i; j � 1; k; l)�3(i; j) :Finally, if ti and bj are both left terminals,Ld3(i; j; k; l) = minwj�1+l<l0 Ld1(i; j � 1; k; l0) + maxf0; wj � l � (vi � k)g :Theorem 7 Given a target density d, the minimum channel length problem for channels withmovable modules and terminals can be computed in O(pqL2) time and space.Proof. All the length functions Ld1(i; j; k; l), Ld2(i; j; k; l), and Ld3(i; j; k; l) can be computed from thepreviously computed values in O(1) time because all the minimizations appearing in our recurrencescan be performed on the y. In fact the minimizations never depend on the values of both k and l;for example the minimization over l0 < l � k needs only be performed for each value of l � k, andthere is no need for more than O(1) extra storage as long as these minimizations are peformed inorder of the value of l � k. There is a total of O(pqL2) length functions, which yields the statedrunning time and space.Corollary 8 The minimum density of a channel with movable modules and terminals can be solvedin O(pqL2 lg(p+ q)) time and O(pqL2) space.7 Conclusion and ExtensionsWe have presented algorithms to minimize the channel density for a variety of problems. Thesealgorithms improve the previous known results by O(L= lg(p + q)) in running time and O(L) inspace. These algorithms can also easily be extended to channels with exits or channels with irregularboundaries as in [1] without increasing the complexity. In the process of minimizing density fora �xed channel length, we have provided even more e�cient algorithms to minimize length at a�xed density. By running the latter type of algorithm O(p+ q) times, we can also minimize morecomplex cost measures, such as area (where density is treated as width) in a channel of length atmost L. We can also improve the space bound for our algorithms to �nd minimum channel lengthor minimum density if we are not worried about recovering the actual terminal placement. Sincethe length function values for a given sum of i and j depend only on values with a lesser sum of iand j, we need only store the values for one previous sum at a time. Thus all the space requirementsdecrease by a factor of maxfp; qg (or L for the case of movable modules with �xed terminals).For the case of movable modules with �xed terminals, density can be minimized in a channelof length L in O(n3 lgn) time independent of L (which improves upon the time in Section 5 forL > n3=2) using the method of Chao and LaPaugh [3]. Like our approach, this would involve usingbinary search along with a dynamic programming method that determines minimum channel lengthfor a �xed density [3, p. 4]. Their length functions include one more parameter than ours, and theyrequire a more complicated method to compute each value quickly, including a preprocessing stepto analyze the overlap of individual pairs of modules. Their method cannot be extended to handlechannels with movable terminals as well as movable modules [3, p. 44]. Obviously, their methodcan be applied to the problem considered in Section 3 (linear order constraints for independentterminals) by thinking of each terminal as a module by itself, but the running time is never as good10



as in Section 3. Their method may be applicable to the problem considered in Section 4 (withseparation constraints), but the running time would be worse than the O(n3 lgn) time obtained inthe other case [3, p. 44]. An interesting open question is to solve the problems of Sections 4 and 6in time polynominal in n only.References[1] Yang Cai and D. F. Wong. Minimizing channel density by shifting blocks and terminals. InIEEE International Conference on Computer-Aided Design (ICCAD-91), pages 524{527. IEEEComputer Society Press, 1991.[2] Yang Cai and D. F. Wong. Optimal channel pin assignment. IEEE Trans. Computer-AidedDesign of Integrated Circuits, 10(11):1413{1424, November 1991.[3] Liang-Fang Chao and Andrea S. LaPaugh. Finding all minimal shapes in a routing channel.Technical Report CS-TR-384-92, Princeton University Department of Computer Science, Au-gust 1992.[4] Inder S. Gopal, Don Coppersmith, and C.K. Wong. Optimal wiring of movable terminals. IEEETrans. Computers, C-32(9):845{858, September 1983.[5] Ronald I. Greenberg, Alexander T. Ishii, and Alberto L. Sangiovanni-Vincentelli. MulCh: Amulti-layer channel router using one, two, and three layer partitions. In IEEE InternationalConference on Computer-Aided Design (ICCAD-88), pages 88{91. IEEE Computer SocietyPress, 1988.[6] D. S. Johnson, A. S. LaPaugh, and R. Y. Pinter. Minimizing channel density by lateral shifting ofcomponents. In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms,pages 122{131, 1994.[7] Andrea S. LaPaugh and Ron Y. Pinter. On minimizing channel density by lateral shifting. InIEEE International Conference on Computer-Aided Design (ICCAD-83), pages 123{124. IEEEComputer Society Press, 1983.[8] James Reed, Alberto Sangiovanni-Vincentelli, and Mauro Santomauro. A new symbolic channelrouter: YACR2. IEEE Trans. Computer-Aided Design of Integrated Circuits, CAD-4(3):208{219, July 1985.[9] Thomas G. Szymanski. Dogleg channel routing is NP-complete. IEEE Trans. Computer-AidedDesign of Integrated Circuits, CAD-4(1):31{41, January 1985.
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