uuuuuuuuuuuuuuuuu

Loyola University Chicago

Loyola eCommons
8tor$£)wg;ksscience: Faculty Publications and Faculty Publications
1-1989

Euclidean Traveling Salesman Heuristics

Ron Greenberg
Rgreen@luc.edu

Cindy Phillips

Joel Wein

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

b Part of the Theory and Algorithms Commons

Recommended Citation

Ron Greenberg, Cindy Phillips, and Joel Wein. Euclidean traveling salesman heuristics. In Connection
Machine Projects Technical Report MIT/LCS/RSS 4, Laboratory for Computer Science, Massachusetts
Institute of Technology, January 1989.

This Technical Report is brought to you for free and open access by the Faculty Publications at Loyola eCommons.
It has been accepted for inclusion in Computer Science: Faculty Publications and Other Works by an authorized
administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.


https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

6.849J/ 18.436J Project Report
Ron Greenberg, Cindy Phillips, and Joel Wein
April 13, 1987

1 Introduction

We implemented a series of Euclidian traveling salesman heuristics. We assume for the
sake of brevity that the traveling salesman problem (TSP) is sufficiently well known that
it needs no description. Throughout this discussion, the variable n refers to the number
of cities.

The general strategy we adopted was to generate an initial tour of varying quality,
and then “tweak” it to two-optimality as described in sections 2 and 3. The cities were
generated randomly and locally, using the *lisp command random!! to generate z and y
coordinates between 1 and n, the number of cities. This yields a probability of 1/n that
two cities will have identical coordinates. The only serious data structure issue was how
to represent the tour. Throughout most of our code we represent the tour by two pvars
(tour-x!! and tour-y!!) containing the z and y coordinates of the city represen:ed by that
processor. The tour is formed by passing through the cities in processor order. Then we
refer to the “edge” in a given processor, we mean the edge of the tour that originates at
the city stored in that processor. The space cost of representing the edges explicitly was
prohibitive; we assume a complete graph on the n generated cities. Distance between
the cities is calculated by the standard Euclidean metric. :

2 Building the Initial Tour

2.1 Background

Once one assumes a triangle inequality on the set of distances between the cities, there
are several known heuristics that are guaranteed to produce a tour of length at worst
some small constant factor longer than the optimal tour length [2,3,6]. One standard
approach is based on the construction of a minimum spanning tree (MST). Given the
depth first traversal of such a tree one can “shortcut” around the repeated nodes to
construct a tour of all the cities. This tour is no more than twice as long as the optimal
tour.

Christofides improved this result by constructing a minimum spanning tree and then
a minimum weight matching on the odd-degree nodes. He then constructs an Euler tour
of this graph and shortcuts it to a tour. The resulting tour length is no worse than 3/2
the optimel length.

These techniques seem well suited for parallelization, since building minimum span-
ning trees and min-weight matchings is possible in polylogarithmic time. The minimum



spanning tree methods prove not to be useful for us, however, since they assume one
processor per edge. Working only with a representation of the city positions, we saw no
way to develop a poly-logarithmic time algorithm for the minimum spanning tree. Es-
sentially the troublesome step reduces to “Given n processors each representing a point
in space, find the closest point to each point.” We can, of course, gain from parallelism
a factor of n.

Given this situation, one can either use O(n)-time heuristics, or look for other poly-
logarithmic techniques. We pursued a small subset of each.

The simplest TSP heuristics are “greedy” heuristics, that at each step choose the
city that is “best” in some sense — closest city, lowest cost inserted city, etc. [2,6]. In
the nearest neighbor heuristic, for example, at each step the city closest to the last
city on the tour is added. This heuristic is easily implemented in O(n) parallel tir-
Rosenkrantz, Stearns, and Lewis proved that in the worst case the ratio of the leng-
of nearest-neighbor to optimal tours can grow as O(lgn) and that in fact this rate -
be achieved [6).

However, the experimental results of Bentley and Saxe [2] indicate that quite often
the results of the Nearest Neighbor Algorithm are comparable to or better than those
of the MST heuristic. Given the ease of implementation of greedy techniques and their
comparable running times and experimental performances, it seemed worthwhile to in-
vestigate these greedy heuristics.

2.2 Greedy Heuristics

All of the greedy heuristics can be described within the following general framework:

0. Start the tour at an arbitrary city.

1. Choose a city to add to the tour.
2. Choose a position in the tour at which to add the city.

3. Add the city, and return to step 1.

For this reason, most of the greedy heuristics are performed by a single *lisp function
which calls subroutines to perform functions involved in choosing the cities and posi-
tions and making the insertions. The exception is the nearest neighbor-heuristic, which
was coded separately since it requires significantly less work to perform the relevant
subfunctions.

The simplest of the greedy heuristics is the nearest-neighbor heuristic. This heuristic
involves starting the tour at an arbitrary city and performing n — 1 iterations of adding
to the end of the tour the city nearest the last one visited. This is very straightforward
to implement both sequentially and in parallel. The sequential running time is O(n?);
in parallel, it is O(n). Furthermore, the constant in the running time is smaller than

2



for the other heuristics to be discussed. It will also be seen that although the nearest-
neighbor heuristic does not generally provide as short a tour as some of the other greedy
heuristics, it responds well to tweaking.

The other heuristics can be classified as insertion or addition heuristics. Most are
discussed in Rosenkrantz, Stearns, and Lewis [6]; two are obvious extensions. All of
these methods involve choosing a city for insertion which is best in some sense relative
to the tour constructed so far. In nearest-insertion and nearest-addition, we choose the
city which is closest in distance to the tour constructed so far (where distance to the
tour is the minimum of all the distances to points on the tour). In farthast-insertion
and farthest-addition, we choose the city which is farthest in distance from the tour. In
cheapest insertion we choose the city for which we incur the least cost by adding it to
the tour in its best place. In random insertion, we just pick the next random city not
in the tcur. There are two ways of deciding where to insert the selected city into the
tour, which is what creates the distinction between insertion and addition heuristics. In
insertion heuristics, the chosen city is inserted in the position in the tour which incurs
the least cost, while in addition heuristics the city is added at the position which was
responsible for making it best. For example, in nearest-addition, we add the closest city
to the tour at the position of the tour which is closest to it (even though adding in
another position could be less costly).

All of the insertion and addition heuristics can be implemented in O(n?) time se-
quentially and O(n) time in parallel. This is easy to see for the addition methods. For
insertion methods, we just use a technique mentioned in Rosenkrantz, Stearns, and Lewis
with regard to nearest-insertion. Namely, instead of recomputing the distance of all cities
to the tour after each insertion, we have each city keep track of its distance to the tour
and just perform a constant time update of each city’s distance by checking its old dis-
tance against its distance to the most recently inserted city. Rosenkrantz, Stearns, and
Lewis recognized only an O(n’?lgn) (sequential) algorithm for cheapest-insertion, but,
in fact, the same technique is applicable to cheapest-insertion.

There are only a couple of implementation details of the insertion and addition heuris-
tics which are at all worth mentioning, since the translation from the descriptions above
to *lisp is quite straightforward. One detail which might be useful is that the basic
index-sort type of technique was used. That is, instead of shifting the city data down
the sequence of processors in order to accomodate the insertion of a city, each processor
(city) simply keeps track of what position it belongs in as the tour is constructed. Then
at the erd, a single routing operation is used to put the cities in the desired tour order.
Another technique which we have found to be generally useful in *lisp programs is to
avoid multiple references to data of some other processor if that data can be stored lo-
cally for several future references. With these techniques, we avoid costly communication
operations as much as possible.

There are a few interesting observations about the general performance of the various
greedy heuristics. Nearest-neighbor is fastest, as would be expected. The addition
methods take about twice as long as nearest-neighbor, and the insertion methods take
about 6 or 7 times as long. Since the addition methods generally yield the longest tours,

3



they seem to offer no advantage over use of the nearest-neighbor heuristic. Only if they
were generally more amenable to tweaking, would they be useful. We did encounter one
example of this behavior among our test cases, but this is probably not true in general.
The greedy heuristic which yields the shortest tour is almost always farthest-insertion
(surprisingly, better even than cheapest-insertion). The tours constructed by farthest-
insertion are, however, generally less amenable to improvement through tweaking than
are the other tours, so it is not necessarily best when tweaking techniques are included
in the set of techniques.

2.3 Partitioning Heuristics

In situations where the data points are uniformly distributed in the plane, more local
techniques for initial-tour building can provide expected polylogarithmic performance.

A technique that can be executed extremely quickly on the Connection Machine
is building a strip tour. We consider the points distributed in an n x n square. We
partition the square into J/n vertical strips, either letting each strip contain /n points,
or by letting each strip be of physical width \/n. We then sort the points in each of these
strips by y coordinates. The strip tour is the result of starting at the bottom left hand
corner, constructing the tour that goes up the first strip then to and down the second,
up the third, etc. The last point is joined to the first by one long edge. Building this
tour is quite simple on the CM. We start with an initial random tour in two pvars, one
for z coordinates, one for y and proceed as follows:

1. Sort the tour by z coordinates. (Make sure to take the y coordinates to the right
places)

2. Set up a boolean segment pvar to mark the boundaries of the strips.

3. Now do a segmented sort , i.e. sort in each strip by y-coordinates. (An easy way
to accomplish this is to add n *i to each value, where i is the segment number,
and then do a regular sort.)

4. “Flip” the odd numbered segments — to set up the tour order so that we are
traversing down those segments.

The result is the strip tour. It requires two *sort operations and one additional
reasonably local routing operation. The time of execution is accordingly extremely fast.
On a 16K machine we constructed a strip tour for a 65,536 city world in .99 seconds.

Although the length of the strip tour is bounded above by 2n./n for an n X n square,
it performs significantly worse than the greedy heuristics. Thus the time gained in the
initial tour construction is lost in tweaking this worse initial tour to two-optimality.

We did not have time to implement what ultimately would be the most promising
method of initial tour generation: Karp’s partitioning algorithm [4]. This algorithm can
roughly be understood as follows:



1. Divide the original area into 2F subrectangles.
2. Construct an optimal tour in each subrectangle.

3. Combine these local tours through shortcutting.

This algorithm can be implemented in O(lg N x(time of constructing each local tour)).
If we were to partion in such a way as to expect O(lg N) cities per square, constructing
the exact local tour in each square would take us back to expected polynomial time. If
we were again to use a heuristic to construct the local tours, (such as nearest neighbor),
we would have a polylogarithmic heuristic that would be expected to be niore accurate
than the strip tour.

3 Tweaking

In this section we discuss the implementation of tweaking heuristics. We first define
the twesking operation. We then discuss three implementations of tweaking. The first
implementation finds tweaks in parallel but performs them sequentially. Te other two
implementations perform tweaks in parallel.

After building an initial tour, we perform tweaking based on the quadrangle inequality.
More specifically, suppose we are given some directed tour of the cities such as the tour
illustrated in figure 1. In this tour, it is better to replace the long pair of crossing edges
(a,b) and (d,c) with the edges (¢,b) and (d,a). The direction of the directed path T}
must be reversed. We call such an edge replacement with path reversal a tweak. A tweak
is advantageous if by performing the tweak we reduce the length of the tour. If no pair
of edges can be tweaked advantageously, we say the tour is 2-optimal. We repeatedly
perform advantageous tweaks until a termination criterion is satisfied. We implemented
tweaking with two termination criteria. If the user furnishes an optional parameter
indicating the desired percentage improvement p, then tweaking stops when the tour is
p percent shorter than the initial tour or when the tour is 2-optimal. Otherwise, if no
percent-improvement goal is specified the tour is tweaked until it is 2-optimal.

One might at first believe that by considering the tour undirected, allowing traversal
in either order, path reversal in tweaks is unnecessary. If the tour in figure 1 were
undirected, however, then we could not distinguish between the desired edge pair (c,b),
(d,a) and the edge pair (b,d), (a,c) which shortens the tour by chopping it into two
smaller disjoint tours. In a directed tour, to tweak edges (headl, taill) and (head?2,
tail2), we merely tie headl to head2 and taill to tail2 and reverse the path from tail2 to
headl.

The tour is represented as a pvar of cities, or more precisely two global pvars tour-x!!
and tour-y!! containing the z and y coordinates respectively of the cities ir. the plane.
Consecutive cities in the pvar represent consecutive cities on the tour with wraparound.
The tweaking routine operates as a procedure (as opposed to a function). It interpretes
the cities in tour-x!! and tour-y!! as an initial tour and modifies them during the tweaking.



Figure 1: We tweak a pair of edges by replacing them by two edges, one that joins the
heads and one that joins the tails. Half the tour is then reversed to yield a new directed
tour. A tweak is advantageous if by performing the tweak we reduce the length of the

tour.

In our tour representation, a tweak consists of flipping a set of consecutive entries in
the city pvar. For example, to perform the tweak illustrated in figure 1, we take the piece
of the tour pvar tour-x!! (similarly tour-y!!) from processor ¢ to processor a inclusive and
reverse it. Alternatively, we can reverse from processor b to processor d inclusive to get
the directed tour going in the opposite direction. Thus we can always tweak by flipping
a consecutive set of cities in the pvar representation without worry of wraparound. To
actually perform the reversal, we broadcast the addresses of the processors at the ends
of the path to be reversed. All cities then determine if they must move and if so what
processor they must move to. Then all cities ship themselves off if necessary with a
*pset.

_ The choice of edge pair to tweak is also heuristic. Initially at least it seems that tweak-
ing the longest edges will maximize our gain. Using this assumption, in our simplest,
“global” tweaking routine we chose an edge pair as follows:

1. make all edges in the tour active. If edge (z,y) is in the tour, then the processor
containing city z controls edge (z,y).

2. Find the edge (a,b) of maximum length quickly using the wired OR (*max).
3. Broadcast (a,b).

4. Each city ¢ which is followed by city d in the tour calculates the incremental change
to the tour caused by tweaking (a, b) and (¢, d).

5. Choose the most advantageous tweak using the *max function. If the best tweak
is advantageous, perform that tweak and go back to step 1. If no tweak is advan-
tageous, go back to step 2 and inactivate edge (a, b).

The tour is 2-optimal if no active edges remain. The only way we can see to determin-
istically find the tweak with the maximum gain in constant time is to use Q(n?) space

6



and check each pair of edges in parallel. Unfortunately the space cost is prohibitive. We
could determine the best tweak in ©(n) time but we felt it was better to do ©(n) good
tweaks in that time than one great tweak.

We implemented two versions of the tweaking heuristic that allow limited parallization
of tweaking. We discussed in our proposal some of the difficulties of parallization, for ex-
ample, calculation of the tour resulting from parallel overlapping reversals and efficiently
choosing in parallel a set of good tweaks. We chose the simplest form of parallelization,
namely we divided the tour into disjoint sets of consecutive cities and performed the
tweaking procedure in parallel on each set of cities. For each group of cities, we find
the maximum-length active edge and perform the most advantageous tweak with that
edge, if any. For this simple division, tweaks do not interfere. In a parallel tweak, each
group performs the best tweak that it found in the last iteration of the ‘weak-finding
procedure provided that the tweak is advantageous. We only perform parallel tweaks
when at least one group has found an advantageous tweak. By dividing in'o groups, we
can determine and perform multiple advantageous tweaks at the same time, but each
iteration runs more slowly. Each global wired-OR operation (such as *max) and each
broadcast is replaced by a segmented scan. We estimated that a parallel iteration runs
about 32 time slower than a global iteration so we never perform parallel tweaking on
less than 32 groups.

Our first attempt at parallel tweaking is a one-pass version. We divide the cities into
groups of 4, and perform tweaks in parallel on each group until all groups are 2-optimal.
We then double the group size and repeat the process until there are less than 32 groups.
We then do a straight global 2-optimization. As with the global tweaking routine, all
parallelized versions will accept an optional argument specifying a satisfactory percentage
improvement and the routine will terminate if the tour achieves the desired percentage
improvement.

We also implemented a parallel tweaking procedure that operates in multiple passes.
For the multiple-pass version, we start by performing some tweaks at the top level. Then
we divide the cities into 32 groups of size n/32 and perform some number of parallel
tweaks at that level. Then we halve the group size, and so on until the groups are of
size 2. We then go back to the global level and continue to smaller groups, with the
groups now shifted. If the groups are of size g, then we tweak until all the groups are
2-optimal or until we perform g/4 parallel tweaks, or until we have achieved the desired
percent improvement if any. If we are trying to make the tour 2-optimal, the procedure
must end at the top level (ie. the global tweaking). In the best case, we perform n/4
tweaks at each level so we achieve O(nlgn) tweaks in ©(n) time. That is, the overall
time is dominated by the time spent at the global level since the time spent on each level
is roughly geometrically decreasing, and yet we can possibly perform the same number
of tweaks on each level. We chose to go from global tweaks to tweaks at smaller levels
because we envisioned that the globally best tweaks would be performed first, bringing
cities closer to where they would ultimately be, and then local tweaks would act as
fine-tuning.

The two parallel versions of tweaking have large pieces of code in common. We chose

7



to write the two procedures as separate functions rather than using macros because
macros can be very difficult to test and can waste a lot of time compiling during debug-
ging. Similarly, we chose to make the *lisp termination statements more complicated
rather than use macros to distinguish versions that do straight 2-opted vs. versions that
also look for a goal percentage. The cost in lisp time for the extra tests is probably min-
imal. We did not do any “speed hacking” using Paris code, etc. We aimed for readable,
easily debugged code that had no obvious inefficiencies (using, for example, *pset rather
than *pref). :

Tweaking a tour to 2-optimality required much less time if the tour was already near
optimal. Tweaking a random tour required at least twice as much time as tweaking a tour
built by one of the initial tour heuristics. Of course we expected much poorer behavior
on inferior initial tours because many more tweaks are required to reach 2-optimality.
If we are actually tweaking to full 2-optimality (no goal percentage), we spend O(n)
time just to verify the termination criterion. By the final stages when we are performing
mostly local tweaking, we spend O(n) time finding a pair to tweak, since most of the
longest-length edges have stabilized. In the worst case, it seems that 2-opting can require
more than O(n®) time since finding a tweak can be O(n)-time in the worst case and we
can perform more than O(n?) tweaks. That is, pairs of edges may be tweaked more than
once, although not consecutively. In practice, we observed about O(n?) behavior.

Had we had more time, we would have implemented the Lin, Kernighan general-
ization of tweaking called k-opting [5]. Their algorithm exchanges k edges of the tour,
determining both k and the edge-sets to exchange on the fly. We anticipate that the time
spent determining a k-tweak will increase substantially over the time to find a 2-tweak, .
but the number of tweaks may also diminish substantially.

4 Results and Conclusions

In this section we attempt to draw some conclusions about the best strategies for achiev-

ing near-optimal solutions to the Euclidian TSP on the Connection Machine. We begin
by presenting the results of our limited testing in tabular form. We then suggest possible

explanations for the results we achieved and speculate about which methods might be
best asymptotically in terms of both time and final tour length. All of our conclusions
about performanece of initial tour methods, etc. are implicitly prefaced by the statement
“for a uniformly distributed set of points ...” We did not have time to implement any
other distributions of initial tours.

Our results appear in a table at the end of this report. The first part of the table
presents the results of all of our basic methods on test cases of 128 and 256 cities. More
specifically, we apply every initial tour method and then tweak them to 2-optimality
using the global tweaking (tweaks performed sequentially). The results are presented in
increasing order of final tour length. Next we selected the most promising initial tour
methods for testing on larger problems with more sophisticated tweaking approaches.
We list the results of one-pass and multiple-pass 2-optimal tweaking as well as parallel

8



tweaking to a given goal percentage improvement. We conclude with the results of strip
tours performed on worlds of 16k and 64k cities.

The features of the Connection Machines that proved most valuable were the fast max,
min, and broadcast and the scanning facility. Due to our dense problem representation,
chosen to allow us to attack large problems, the advantage of the Connection Machine
often consisted primarily of a factor of n improvement resulting from the fast max, min,
and broadcast operations. In the construction of strip tours and the attempts at parallel
tweaking, the novel facilities of the Connection Machine were used more fully.

We encountered trade-offs in the choice of initial-tour construction method. Farthest
insertion seemed to produce tours that were nearly 2-optimal and quite good even com-
pared to 2-opted versions of the other methods. As the problem size grew, however, we
were ab.e to beat farthest-insertion in both time and tour length using parallel tweaking
with a suitable goal percentage starting from a faster initial tour construction method.

As seen from the relatively small running times of tweaking with percentage goals,
It appears that most of the gain from tweaking occurs early in the procedure. Unfortu-
nately, it is quite difficult to decide upon a reasonable goal percentage. The percentage
improvement depends upon the quality of the initial tour. Also, different initial tours of
similar juality can lead to different percent improvement depending upon which local
minimum the tweaking routine arrives at. If the user is too pessimistic, the routine will
run very fast, but the improvement will not be anywhere near as good as it could be. If
the user is too optimistic, the routine may end up doing straight 2-opting (ie. tweaking
until the tour is 2-optimal). The situation is particularly delicate since, according to our
limited testing, the fall-off in gain vs. time is very steep near the ultimate percent gain,
but the cost of additional percentage gain is very small even up to, say, 2 percent off the
ultimate gain. Of course the user does not want to 2-opt in order to determine a good
goal percentage, so we conclude that it might have been better to monitor the gain of
the system and stop when the average gain over a “reasonable” period of time is “small”,
or until the search for an advantageous tweak requires, say, O(n) time.

As the size of the problem grew, the multiple-pass tweaking seemed to perform the
best of the three tweaking routines. We feel that the multiple-pass tweaking could
be made more efficient by modifying the termination criteria as described above, and
perhaps by reducing the time spent on each level. For the relatively small problems that
we tested, the routine did not perform many passes. That is, the routine only went
from top-level down to small groups two or three times. We would have to experiment
to determine a good trade-off between number of passes and time spent in overhead for
the transitions between computing phases. With so few passes, we pay much more for
“just missing” 2-optimality at the top level. We must complete the whole pass before
we recognize that we are done, and with so few passes, the relative time wasted is large.

It seems that for medium-sized problems of a few hundred to a few thousand cities the
most promising of the approaches we tried is the nearest-neighbor initial tour followed
by multiple-pass parallel tweaking. The blazing speed of the strip tour leads us to believe
that for large problems we will benefit from a similar expected log-time heuristic such



as the Karp partitioning method. Hopefully, such a method net only would be very fast
but also would produce much better tours than the strip method and be amenable to

parallel tweaking.

References

[1] J. L. Bentley, “A case study in applied algorithm design: The traveling salesman
problem,” unpublished manuscript, April 1983.

[2] J. L. Bentley and J. B. Saxe, “An analysis of two heuristics for the Euclidesn trav-
eling salesman problem,” Proceedings of the Eighteenth Annual Allerton Conference
on Communications, Contral, and Computing, Monticello, IL, October 1980, pp.
41-49.

[3] D. S. Johnson and C. H. Papadimitriou, “Performance guarantees for heuristics,”
in The Traveling Salesman Problem (Lawler, Lenstra, Kan, Shmoys, Editers), 1985,
pp. 145-180.

[4] R. M Karp, “Probabilistic analysis or partitioning algorithms for the traveling-
salesman problem in the plane,” Mathematics of Operations Besearch, Vol. 2, No. 3,
August 1977, pp. 209-224.

[5] S. Lin and B. W. Kernighan, “An effective heuristic for the traveling-salesman-
problem,” Operations Research, Vol. 21, pp. 498-516.

[6] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, “An analysis of several heuristics
for the traveling salesman problem,” SIAM Journal of Computing, Vol. 6, No. 3,
September 1977.

10



XX:XX:<RIG>TSPTABLE.TXT.8

NO. OF CITIES: 128
Tour Type
RANDOM

2-OPT FARTHEST-ADDITION
2-OPT NEAREIT-ADDITION
2-0PT

2-0PT RANDOM- INSERTION
2-0OPT FARTHEST-INSERTION
2-0PT NEAREST-NEIGHBOR
2-0PT CHEAPtST-INSERTION
FARTHEST-INSERTION
RANDOM- INSERTION

2-OPT NEAREST-INSERTION
CHEAPEST - INCERTION
NEAREST-INSERTION
NEAREST-NEICHBOR
NEAREST-ADDITION
FARTHEST-ADC ITION

NO. OF CITIES: 256
Tour Type
RANDOM

2-0OPT NEAREST-NEIGHBOR
2-0OPT RANDOM-INSERTION
2-OPT NEAREST-ADDITION
2-OPT FARTHEST-INSERTION
FARTHEST-INSERTION

2-0PT FARTHEST-ADDITION
2-OPT CHEAPESY- INSERTION
2-0PT STRIP

2-0PT

RANDOM- INSERTION

2-OPT NEAREST-INSERTION
CHEAPEST-INSZRTION
NEAREST - INSERTION
NEAREST-NEIGHBOR
NEAREST-ADDITION

STRIP

FARTHEST-ADD [TION

NEARES T-NEIGHBOR

1 P STRIP
M-P-P STRIP
M-P-P 25% STRIP
M-P-P 27% STRIP
1 P 27% STRIP

p

P-P NEARES™-ADDITION
-P-P NEARES--ADDITION
P-P
P-P

P
P 15% NEAREST-NEIGHBOR
P 18% NE\REST-NEIGHBOR
-P 19% NEAREST-NEIGHBOR
P 18% NEAREST-NEIGHBOR
P 19% NE\REST-NEIGHBOR

20% NE REST-ADDITION
22% NE/REST-ADDITION

Tour Length
8302.784

1177.5277
1183.0123
1217.7987
1222.7161
1222.8916
1224.2448
1237.9708
1242.6844
1263.5787
1278.4491
1326.713

1379.6909
1483.7495
1592.5822
2255.458

Tour Length
34790.285

3174.9563
3271.2817
3282.564
3298.053
3312.3005
3335.6665
3347.3225
3349.41
3364.3945
3383.9958
3428.0579
3731.0981
3886.2168
3931.2803
4312.006
4657.516
6138.9346

3173.7473
3174.9563
3330.959

3220.9531
3179.172

3214.6233
3181.9436

3365.4734
3349.41
3474.752
3390.747
3391.9812

3282.926

3317.6902
3448.6506
3357.1597

Initial T

our Time

Total (CMX)

3.372300
3.354416

6.377315
7.715856
1.136359
7.436869
7.715856
6.377315

(33.22x)
(33.26%)

(47.48%)
(44.83%)
(35.67%)
(45.08%)
(84.83%)
(47.48%)

7.743375 (44.64%)

7.436869

(45.08%)

7.743375 (44.64%)
1.136359 (35.67%)
3.344416 (33.26%)
3.372300 (33.22%)

Initial Tour Time
Total (CMx)

2.394484
12.842165
6.700523
15.379892
15.379892
6.692418
14.763211
0.200846

12.842165
15.382431
14.763211
15.382431
2.394484
6.700523
0.200846
6.692418

2.394488
2.394484
2.394484
2.394484
2.394484
2.394484
2.394484

0.200846
0.200846
0.200846
0.200846
0.200846

6.700523
6.700523
6.700523
6.700523

(36.33%)
(47.46%)
(33.82%)
(44.94%)
(44.94%)
(33.40%)
(45.35%)
(47.61%)

(47.46%)
(45.08%)
(45.35%)
(45.08%)
(36.33x%)
(33.82%)
(47.61%)
(33.40%)

(36.33%)
(36.33%)
(36.33%)
(36.33%)
(36.33%)
(36.33%)
(36.33%)

(47.16%)
(47.16%)
(47.16%)
(47.16%)
(47.16%)

(33.82%)
(33.82%)
(33.82%)
(33.82%)

4/12/87 16:45:18 Page |

Additional
Total (CMX

29.077866
12.581933
56.505714
13.126816
11.225888
12.336342
14.180634

12.763078

Additional
Total (CHX

47.698112
48.390713
61.337593
27.496212

144.704160
81.837746
94.274208

152.761860

79.219681

43.773930
47.618198
§.509444
9.030879
16.936022
5.981272
18.201437

65.557373
56.640156
13.774291
18.017279
31.094189

40.594517
49.852062
11.005413
21.463181

Time
)

(35.41%)
(35.25%)
(35.24%)
(35.20%)
(35.91%)
(35.24%)
(35.93%)

(35.50%)

Time
)

(34.74%)
(35.16%)
(34.76%)
(34.84%)

(34.66%)
(34.70%)
(35.14%)
(34.78%)

(34.87%)

(35.08x%)
(35.00%)
(35.50%)
(35.29%)
(34.87%)
(34.23%)
(35.81%)

(35.25%)
(34.94%)
(33.80%)
(34.27%)
(35.12%)

(34.54%)
(32.92%)
(33.67%)
(34.45%)

Total Time (sec.)
Total (CMX)

32.450165
15.926349 (34.83%)
56.505714 (35.24%)
19.504131
18.931744
13.472701
21.517502
.715856 (44.83%)
.377315 (47.48%)
.506453
.436869 (45.08%)
.783375 (44.64%)
.736359 (35.67%)
.J44416 (33.26%)
.372300 (33.22%)

WW=NNOON

Tota® Time (sec.)
Tota® (CHMx%)

50.092598

61.23288

68.03812

42.876106 .
15.379892 (44.94%)

151.39658

96.60096

94.47505

152.761860 (34.78%)
12.842165 (47.46%)
94.60211

14.763211 (45.35%)
15.382431 (45.08%)
2.394484 (36.33%)
6.700523 (33.82%)
0.200846 (87.61%)
6.692418 (33.40%)

46.168415
50.012684
6.9039283
11.425463
19.330505
8.335756
20.59592

65.75822

56.841003
13.975137
18.218124
31.295034

47.29504

56.552586
17.705936
28.153704



XX:XX:<RIG>TSPTABLE.TXT.8

NO. OF CITIES: 2048
Tour Type

RANDOM
FARTHEST-INSERTION

NEAREST-NEIGHBOR

M-P-P 10% NEAREST-NEIGHBOR
1-P-P 10% NEAREST-NEIGHBOR
M-P-P 12% NEAREST-NEIGHBOR
M-P-P 13X NEAREST-NEIGHBOR

STRIP
M-P-P 25% STRIP
N-P-P 20% STRIP

NO. OF CITIES: 16K
Tour Type

RANDOM
STRIP
STRIP (EQUIPOPULATED STRIPS)

NO. OF CITIES: 64K
Tour Type

RANDONM
STRIP

NO. OF CITIES: 64K
Tour Type

RANDOM
STRIP

Tour Length
2158810.3
. 74873.89
84210.66
75782.18
75757 .61
73232.75
106459.57

79819.62
85159.73

Tour Length
1.3980667¢8

2368123.0
2369464.0

Tour Length

2.2420385e9
1.8902352e7

Tour Length

2.237172e9
1.8913808e7

Initial Tour Time
Total (CMx)

123.861069 (45.11%)

19.261005 (36.07%)
19.261005 (36.07%)
19.261005 (36.07%)
19.261005 (36.07%)
19.261005 (36.07%)

0.231038 (52.87%)

0.231038 (52.87x)
0.231038 (52.87%)

Initial Tour Time
Total (CHx)

0.283137 (54.80%)
0.235359 (60.47%)

Initial Tour Time
Total (CHMxX)

Initial Tour Time
Total (CMxX)

0.992828 (89.42%)

4/12/87 16:45:18 Page 2

Additional Tiie‘
Total (Cmx)

10.292409 (33.18%)
39.122208 (37.50%)
24.036905 (33.75%)
51.730186 (34.11%)

296.028990 (34.66%)

61.908379 (34.02%)

Additional Time
Total (Cwx)

Additional Time
Total (CMx)

Additional Time
Total (Chx)

Total Tiie (s&.)
Total (CHx)

123.861069 (85.11%)

19.261005 (36.07%)
29.553413
58.383213
43.297913
70.991198

0.231038
296.26008
62.139416

(52.87%)

Total Time (sec.)
Total (CM)

Total Timeé (sec.)
Total (c:) 5

Total Time (sec.)
Total (CHX)



Z:>wein>tsp.lisp.11 4/13/87 12:01:21

;i3 -%- Package: x1isp ; Syntax: Common-Lisp; Mode: LISP -x-
:i:: Lisp Machine Conveniences

;; These don’t seem to stop package from getting changed when debugger entered
;(Z1:setq-standard-value z1:package (find-package °x1isp))
;(21:setq-standard-value si:package (find-package "x1isp))

(21:setq-standard-value si:xprinarrayx t)
;333 Potentially required xlisp junk

(proclaim ’(~defun dist-sq distance tour-length t-l1-rand t-1-tour show-rand show-tour
make-cities near-neighbor-tour insert-pos-cost!! find-best-position
find-insert-city find-insert-pos insert insert-city-cost!!
init-tour-perigee-and-dist update-tour-perigee-and-dist
insertion-tour sort-tour-by-x sort-tour-by-y strip-tour-num 2-opt
one-pass-par-2-opt tweak par-tweak 1-p-p n-n-t f-i-t n-i-t r-i-t
c-i-t n-a-t f-a-t s-t 2-opt-times par-2-opt mult-pass-par-2-opt))

;:3; Generaliy Useful =Lisp stuff

;; Can be changed to achieve different compilation for the simulator and the actual CH.
(defconstant simulator-flag t)

;; Makes usajes of cm:time refer to regular time function when using simulator.
(unless (find-package ’cm) (export 'time (make-package 'cm)))

;; Simulator doesn’t recognize :no-collisions in spset, so will give :default then.
(defmacro xpset-no-coll (&rest args)
‘(xpset ,(if simulator-flag ’:default *:no-collisions) . ,args))

;;; Debugging Aids. Prints values of a variable, a pvar, or pvar restricted to
;:: active processors, along with a label.

(defmacro show-var (var) °(format xstandard-outputx “~%~s: ~s® °,var ,var))

(defmacro stow-pvar (pvar)
*(progn (format szstandard-outputx "~%~s:* ’,pvar) (ppp ,pvar)))

(defmacro show-pvar-css (pvar)
*(progn (format sstandard-output* "~X~s:* °,pvar) (ppp-css ,pvar)))

::; Macro to find first processor realizing min or max of a pvar (and optionally the value)
:3: The processor where the extreme is realized is returned by the function. The value

::: of the extreme is placed in the variable named by the optional argument if it {is present.

(defmacro find-extreme-proc (xmin-or-xmax pvar-name &optional (value-var-name nil))
(if value-var-name
*(sxwhen (=!! (1! (setq ,value-var-name (,smin-or-smax ,pvar-name))) ,pvar-name)
(xmin (self-address!i!)))
*(swhen (=11 (1! (,smin-or-smax ,pvar-name)) ,pvar-name)
(xnin (self-addressi!)))))

::; Subroutines to compute square of distance and distance between two points in the plane

(xdefun dist-sq!! (x1!! y1ll x21} y21!)
(xlet ((diff-xil (=11 x111 x211))
(diff-yll (=11 y11| y211)))
(declara (type (signed-pvar 17) diff-x11 diff-yl1))
(+11 (%10 diff-xi! diff-xit) (x1} diff-yl) diff-y!!))))

(xdefun distance!!l (x1!! y11! x21} y21!)
(xlet ((diff-x!! (=11 x11! x211))
(ciff-ytl (=11 y111 y211)))
(declare (type (signed-pvar 17) diff-x!| diff-yi1))
(sqre!! («!1 (=11 diff-xil diff-xtt) (x1} diff-y!! diff-yt1)))))

Page 1



Z:>wein>tsp.lisp.11 4/13/87 12:01:21

iii; Global variables Generally Useful for Traveling Salesman

(proclaim *(type (signed-pvar 19) world-size!! rand-x!{ rand-y!1
next-x!! next-y!! perigeeil))

(proclaim *(type float-pvar dist-to-next!! dist-to-tour!!))

(defvar n) ;number of cities

(xdefvar world-sizell) ;upper bound on x and y coordinates
(*defvar rand-x!1) ;random x coordinates

(xdefvar rand-y!i) ;random y coordinates

(xdefvar tour-x!1) iX coordinates of tour

(3defvar tour-yll) iy coordinates of tour

(xdefvar save-tour-x!1}) ;used to save a tour

(xdefvar save-tour-yii) ; for later use

;:; Global variables used in constructing insertion tours

(xdefvar pos-in-tour!!) ;position in tour of this city (processor)
(xdefvar next-x!!) ;X coordinate of next city in the tour
(xdefvar next-y!}) ;y coordinate of next city in the tour
(xdefvar dist-to-nextl}) ;distance to next city in the tour
(xdefvar dist-to-touril) ;distance (maybe not literally) to tour
; a metric for choice of insert-city
(=defvar perigeei!) inearest point of tour to this city
( xdefvar insert-city-x11) iX coordinate of city to be inserted
(xdefvar insert-city-yil) iy coordinate of city to be inserted
(defvar insert-city) ;city to be inserted into tour (processor number)

(defvar precede-insert-city) icity in tour to precede inserted city (processor number)
i33; Functions and Macros of General Usefulness for Traveling Salesman

i:; Function to generate an example with num-cities cities.
i:; Generates random x and y coordinates having values in [0,num-cities), and
;3: Takes initial ordering of cities in processors as initial tour.

(*defun make-cities (num-cities) ;May want to sort to get rid of duplicates, but we didn't
(setq n num-cities)
(=all
(xwhen (<I'! (self-addressil) (i} nue-cities))

(xset world-sizel! (I| num-cities))
(*set rand-x!! (random!! world-sizelt))
(sset rand-y!! (random!! worid-sizell))
(sset tour-xi! rand-x!1i)
(xset tour-y!l rand-y!1))))

i:; Functions print random coordinates and tours in reasonably readable fashion.

(*defun show-rand (8aux (x (make-array n)) (y (make-array n)))
(pvar-to-array rand-x!! x :cube-address-end n)
(pvar-to-array rand-y!! y :cube-address-end n)

(pprint (map “arrey #°cons x y)))

(=defun show-tour (&aux (x (make-array n)) (y (make-array n)))
(pvar-to-array tour-x!! x :cube-address-end n)
(pvar-to-array tour-yll y :cube-address-end n)

(pprint (map "arrey #°cons x y)))

;:; Functions to save and restore tours.

(xdefun save-tour ()
(zall
(zset save-tour-x!! tour-xii)
(zset save-tour-yil tour-yii)))

(xdefun restore-tour ()
(=all (=set tour-xi! save-tour-xii)
(3set tour-y!| save-tour-yil)))

Page 2



Z:>wein>tsp.lisp.11 4/13/87 12:01:21

i3; Functions to compute the length of a tour in processor order.

(3?ef?? tour-length (x-coords!! y-coords!!)
xa
(*when (<11 (self-address!!) (1! n))
(xlet ((prev-neighbor!! (mod!! (1-11 (self-address!!)) (!! n)))
(next-x!!)
(next-y!!)
(edge-to-next!!))
(*pset-no-coll x-coords!! next-x!! prev-neighbor! )
(xpset-no-coll y-coards!! next-y!! prev-neighbor!!)
(*set edge-to-next!! (distance!! x-coords!! y-coords!! next-x!! next-y!l))
(*sun edge-to-nexti!)))))

(xdefun t-1-rand () (tour-length rand-x!! rand-yl!))
(xdefun t-1-tour () (tour-length tour-x!! tour-y!!))
;3:: Initial Tour Construction -- Approach A: Nearest Neighbor
:i; Function to build a nearest-neighbor initial tour
(xdefun near-neighbor-tour (&aux nearest)
(‘:l}et ((not-in-tour!! ti1) ;; t for processors not yet put in improved initial tour
(dist-sqll)) 3: square of distance to last city on nearest neighbor tour

(declare (type float-pvar dist-sqli!))
(declare (type boolean-pvar not-in-tour!!))

(setf (pref tour-x!! 0) (pref rand-x!! 0)) ;First city in tour will be
(setf (pref tour-yl! 0) (pref rand-yl! 0)) ; the first random one.
(setf {pref not-in-tour!! 0) nil) ;Check off that city.

(swhen (<1! (self-address!!) (1! n))
(dotimes (i (1- n))

(=vhen not-in-tour!!

(xset dist-sqll :; Compute distance of each active city to last city on nn-tour.
(dist-sq!! rand-x!! rand-y!! (1| (pref tour-x!!| 1)) (11 (pref tour-yil 1))))

(setq nearest (find-extreme-proc =mmin dist-sq!!))) ;Find proc realizing min dist.

(setf (pref tour-x!! (1« i)) (pref rand-x!! nearest)) ;Make him next in the tour.

(setf (pref tour-y!! (1+ 1)) (pref rand-y!| nearest))

(setf (pref not-in-tour!! nearest) nil)))))) ;Check him off.

Page 3



Z:>wein>tsp.lisp.11 4/13/87 12:01:21

:3:: Initial Tour Construction -- Approach B: Insertion and Addition Methods
::: Often all of these methods will be referred to as insertion methods

::; for convenience. There is one general function which performs any

;3; of a number of such methods and which appears at the bottom of the

:;:: next page. Preceding it here are various subroutines which it uses.

::; Finds cost of each choice of insert city for the city to precede given
:3; by argument.

(xdefun insert-city-costi! (pos)
(=11 (=11
(distance!! rand-x!! rand-y!! (1! (pref rand-x!! pos)) (!! (pref rand-y!! pos)))
(distance!! rand-x!! rand-yi! (11 (pref next-x!! pos)) (1! (pref next-y!! pos)))
(1! (pref dist-to-next!!i pos))))

)

::; Finds the distance of each city to the tour using appropriate metric for the
::; appropriate mode (e.g. "distance” could be min. cost of inserting into tour).
::; Then finds the point on the tour nearest to the city (refered to as "perigee”).
(xdefun find-tour-perigee-and-dist (pass mode)
(case mode
(({nearest farthest nearest-addition farthest-addition) ;; distance is actual dist. to tour
(1f (zerop pass) ;initialize
(xset dist-to-tour!! (dist-sq!! rand-x!1 rand-y!! (!1 (pref rand-xii 0))
(11 (pref rand-yll 0))))
(swhen (not!! pos-in-touril) ;: update by checking dist. to last city insertsd
(xlet ((dist-to-new!! (dist-sq!! rand-xi! rand-y!!
(11 (pref rand-xi! insert-city))
(11 (pref rand-y!! insert-city)))))
(declare (type float-pvar dist-to-newi!))
(=when (>!! dist-to-tour!! dist-to-new!!)
(zset dist-to-tour!! dist-to-newl!!)
(xset perigeel! (1! insert-city)))))))
{cheapest ;; distance is cost of inserting city into tour
(if (zerop pass) ;initialize
(zset dist-to-tour!! (insert-city-costii 0))
(=when (not!! pos-in-tour!l) ;; update: check insertion before/after last inserted
(xlet ((dist-to-new!! (insert-city-costil insert-city))
(dist-to-precede-new!! (insert-city-costi! precede-insert-city)))
(declare (type float-pvar dist-to-new!! dist-to-precede-new))
(swhen (>!1 dist-to-tour!! dist-to-precede-new!i)
(sset dist-to-tour!l dist-to-precede-new!!)
(xset perigeell (1! precede-insert-city)))
(awhen (>1! dist-to-tourl! dist-to-new!!)
(xset dist-to-tour!! dist-to-newi!)
(zset perigeel! (11 insert-city)))))))
(random nil)
(otherwise
(format serror-outputz
“find-tour-perigee-and-dist: mode not implemented-- ~s” mode)))
(if (zerop pass) (=set perigeei! (11 0))))

:3; Finds cost of each choice of insert position for insert-city

(tdefun(insert-pm-mtll ()
(-11 (!t
(distancei! rand-x!! rand-y!! insert-city-x!! insert-city-y!!)
(distance!! next-xi! next-y!! insert-city-xi! insert-city-yi!))
dist-to-nextl!l))

;;; Finds the best place to insert insert-city.

{xdefun find-best-position ()
(xwhen pos-in-tour!! (find-extreme-proc smin (insert-pos-costi!))))

Page 4



Z:>wein>tsp.lisp.11 4/13/87 12:01:21

i3; The following two subroutines find the city to insert next and the city
i3: in the tour which should precede it according to the desired mode of
::: insertion. Results go into insert-city and precede-insert-city.

(xdefun fini-insert-city (tour-size mode)
(case moas
((farth:st farthest-addition) ;insert city farthest from tour
(setq insert-city
{»when (not!! pos-in-tour!!) (find-extreme-proc xmax dist-to-tour!!))))
((nearest nearest-addition cheapest) ;insert city nearest to tour
(setq insert-city
.®when (not!! pos-in-tour!l) (find-extreme-proc =min dist-to-tour!!))))
(random ;insert next random city
(setq insert-city tour-size))
(otherwise (format xerror-outputs
“find-insert-city: mode not implemented-- ~s* mode))))

(xdefun find-insert-pos (mode)
(case mod::

((farth:st nearest random)

(setq precede-insert-city (find-best-position))) ;; insert into least costly position
((neare:t-addition farthest-addition cheapest)

(setq precede-insert-city (pref perigeeli insert-city))) ;; insert after nearest tour pos
(otherw'se (format xerror-outputx

“find-insert-pos: mode not implemented-- ~s* mode))))

;:; Inserts city after precede-by in the partial tour.

(xdefun insert (city precede-by)
(let ((pozition (1+ (pref pos-in-tour!! precede-by)))) ;; pos. to be taken by insert-city
(*when pos-in-tour!l (swhen (>=1! pos-in-tour!! (1! position)) :: push up all cities
(xset pos-in-tour!! (1+11 pos-in-tour!l)))) ;;: from that pos. on
(setf (pref pos-in-tour!! city) position)
(setf (pref next-x!! city) (pref next-x!! precede-by)
(pref next-y!! city) (pref next-y!! precede-by)
(pref next-x!! precede-by) (pref rand-xi| city)
(pref next-y!! precede-by) (pref rand-y!l city))
(*set dist-to-next!! (distancel! rand-x!! rand-y!! next-x!! next-ylil))))

:3; Function to build an initial tour by an insertion (or addition) method.
;i; Possibilities are farthest-insertion, nearest-insertion, random-insertion,
i:; cheapest-insertion, nearest-addition, and farthest-addition.

i3; Uses the standard index-sort hack of letting everyone keep track of

;3 his position in the tour and only moving things around at the end.

(xdefun insertion-tour (mode)
(xall
(*when (<!! (self-addressi!) (1! n))
(xset jos-in-tour!! nilll
next-x!! rand-xi1
next-y!! rand-y!!
4ist-to-next!! (1! 0))
(setf {pref pos-in-tourt! 0) 0) ;Initial tour is self-loop on
; first random city.
(dotim:s (i (1- n))
(find-tour-perigee-and-dist { mode) ;Find dist. to tour, perigee.
(find-insert-city (1+ 1) mode) ;Sets insert-city.
(xse insert-city-x!1 (!! (pref rand-x!! insert-city))) ;Inform everybody of
(xsei. insert-city-y!! (11 (pref rand-y!! insert-city))) ; insert-city coords.
(find-1insert-pos mode) ;Sets precede-insert-city.
(insert insert-city precede-insert-city)) ;Do the insertion.
(*pset-no-coll rand-x!! tour-x!! pos-in-tour!!) ;Route everyone to positions
(*pset-no-coll rand-y!! tour-y!| pos-in-tour!!)))) ; determined for tour.

Page §



Z:>wein>tsp.lisp.11 4/13/87 12:01:21

:::: Initia) Tour Construction -- Approach C: Strips Tours
H Assume that we receive tour in form rand-x!! rand-yi!

;This is a function to sort the random tour by x-coordinates and arrange the y’'s correctly
;We add 1/(self-address 2) to use as a pointer to the spot from which it came

(*xdefun sort-tour-by-x ( &aux num-of-bits)
(xall

;Have to add self-address to them so we can pull the y's along.

{(swhen (<!! (self-addressi!) (!! n))

(zlet
((new-tour-xi1!)
(new-tour-y!i tour-y!l)
(y-pointers!ii)
(y-pointers-aux!!))

(setq num-of-bits (ceiling (log (xmax tour-xi!) 2)))

(xset new-tour-x!!
(deposit-byte! !
(=11 (1t (expt 2 num-of-bits)) tour-xit)
(11 0)
(1! num-of-bits)
(self-addressii) ))

(zset tour-x!! (sort!i new-tour-xi! °<=il))
;Recover pointers from low order bits that were appended
(sset y-pointers!! (load-byte!! tour-x!! (i1 0) (!! num-of-bits)))

(zset y-pointers-aux!i y-pointersil!)
(zset tour-x!! (load-byte!! tour-xi! (1! num-of-bits) (!! num-of-bits)))

(*pset-no-coll (self-address!!) y-pointersi! y-pointers-auxil)
(zpset-no-coll new-tour-y!! tour-y!! y-pointers!i)))))

(xdefun sort-tour-by-y ()

(xall

(=when (<!! (self-addressi!) (!! n))

(xlet
( (buffer!l))
(xset buffer!! tour-xii)
(zxset tour-x!! tour-y!t)
(zset tour-yil! bufferi!)
(sort-tour-by-x)
(xset buffer!! tour-xti)
(xset tour-x!! tour-y!!)
(zset tour-yi! buffer!!)))))

Page 6



Z:>wein>tsp.lisp.11 4/13/87 12:01:21

JOEL: CAN YOU TIDY THIS UP AND CUT OUT ENOUGH WHITE SPACE TO MAKE HERE TO NEXT PAGE
BOUNDARY ACTUALLY FIT ON ONE PAGE?
; Function for computing the tour by making strips and then going long strips
(t?efun strip-tour (switch &aux sqrtn)
xall
(swhen (<!! (self-address!!) (!! n))
(xset Tour-x!! rand-x!!)
(x*set tour-y!! rand-y!!)
(sort-tour-by-x)

(setq sqrtn (floor (sqrt n)))
;MARK WHICH BLOCK EVERYONE IS IN

if switch is 1 go by num of cities, 2 by length

;We want to add to each block

(xlet ( (sqrt-markl!)

; THIS

(seg-lengthl!)
(min-addr!!)
(max-addr!!)
(seg!!)
(back-seg!!))

(1f (eql switch 1)
(xset sqrt-markl!| (truncate!! (/1! (self-address!i) (!! sqrtn))))
(xset sqrt-mark!! (truncate!l! (/11 tour-xi| (1l sqrtn)))))

(xset. tour-y!!l (+!! tour-y!!
(xt1 (! n)
sqrt-mark!!)))
(sort-tour-by-y)
(xset tour-y!l (mod!! tour-y!! (!! n)))

IS EXPERIMENTAL

;Now tour is exactly as we want it except we want to flip every other segment
;That corresponds to going up and down the columns

;THIS IS OK IF switch = 1

; Have to do segmneted max and min scans subtract and use that fdor sqrtn here

;FIND THE SEGMENT PVARto use here -
(when (eql switch 2)
(swhen (>!! (self-address!!) (11 0))
(xif (/=11 (prefl! sqrt-mark!! (self-address!!))
(pref!! sqrt-mark!! (-1! (self-addressi!) (!l 1))))
(xpset-no-coll
(1! t)
seg!!
(self-address!!))
(*pset-no-coll
(1! nil)
seg!!
(self-addressi!))))

(setf (pref seg!! 0) t)
;MAKE BACWARDS SEeGMENT

(*when (>!! (self-addressit) (1! 0))
(*pset-no-coll seg!! back-segi! (-11 (self-address!!) (1l 1))))
(setf (pref back-segl! (- n 1)) t)

;Find min length -- {e endpoints of each segment

(xset min-addri! (scan!! (self-address!!) ’mint!
:segment-pvar seg!!))

; Find maximum address

(xset max-addr!! (scan!! (self-address!!) °max!!
:segment-pvar back-seg!!
:direction :backward))

;Firs% build the lengths of each segment

(xset seg-lengthi! (e!!
(1)
(-1
max-addr!!

Page 7



Z:>wein>tsp.lisp.11 4/13/87 12:01:21 Page 8

min-addr!!)))

(xif (=11 (11 1) (mod!! sqrt-marki! {11 2)))
(=pset-no-coll
tour-yl|
tour-yl1 :
(+1! (self-addressii)
seg-lengthi|
(=11 (velt (311 (11 2)
(-1t
(self-addressii)
min-addrii))))))))
;THIS IS WHAT WORKED BEFORE
(when (eql switch 1)
(xif (=11 (11 1) (mod!! sqrt-mark!! (11 2)))
(*pset-no-coll
tour-y!!
tour-y!! :
(+1! (self-addressi!)
(11 sqrtn)
(=11 (Tl (=11 (11 2)
(modi! (self-address!!) (!t sqrtn))))))))))))
(*defun test-1-2 (&aux length)
(print n)
(print “Random Toour length”)
(setq length (tour-length rand-x!! rand-y!i))
(print length)
(strip-tour 1)
(print "options length and distance”)
(setq length (tour-length tour-x!! tour-y!!))
(print length)
(strip-tour 2)
(setq length (tour-length tour-xi! tour-y!l))
(print length)
(print “near-nbr-tour”)
(n-n-t)
(setq length (tour-length tour-xi! tour-yli!))
(print length))



Z:>wein>tsp.lisp.11 4/13/87 12:01:21

:35: Heuristics for tour improvement based on
;i35 2-optimality/quadrangle-defun

:This procedure tweaks the tour in tour-x!! and tour-y!! until it is 2-optimal or, if the
;optiona! parameter is used, until the desired percentage gain is achieved.

(xdefun 2-opt (&optional (percent-goal nil)
0 &aux max-gain max-tail-addr max-gain-addr tour-goal)
(xa

(*when (<11 (self-address!!) (1! n))

(xlet ((activel! t!!) ;; edges that are still eligible for tweaking
(max-head-x!!) ;; x-coordinate of the head of the longest active edge
(max-head-y!!) ;; y-coordinate of the head of the longest active edge
(max-tail-x!!) ;; x-coordinate of the tail of the longest active edge
(max-tail-yl!) ;; y-coordinate of the tail of the longest active edge
(max-length!!) ;; length of the longest active edge
(edge-to-next!!) ;Distance of edge to next city
(gainl!) ;reduction in tour length if the edge starting at this city is

itweaked with the maximum-length edge
(prev-neighbor!! (mod!! (1-1! (self-addressii)) (11 n)))
(next-x!1) ;; x-coordinate of the city after this one in the tour
(next-yl!)) ;; y-coordinate o o g
(If percent-goal (setq tour-goal (x (- 1 percent-goal) (t-l-tour))))
;: repeat until goal met or no good tweaks (ie. only one edge left active)
(do () ((or (= (xsum (1f!! activel! (11 1) (11 0))) 1)
(and percent-goal (< (t-1-tour) tour-goal))) nil)
(xset activell ti!)
(setf max-gain -1)
(*pset-no-coll tour-x!! next-x!| prev-neighbori!) ;get coords of next city
(*pset-no-coll tour-y!! next-y!! prev-neighbor!!)
(xset edge-to-next!! (distance!l tour-x!! tour-y!| next-xi!| next-yl!))
(do () ;until we find a good tweak or no good tweaks left in tour
((or (> max-gain 0) (= (ssum (ifl! activell (11 1) (11 0))) 1) ) nil)
(xwhen activell
(*set max-length!! (1! (smax edge-to-next!!))) ;find max length edge
(*when (=1! max-length!! edge-to-next!!) ;; break ties to find processor
(setf max-tail-addr (xmin (self-addressii)))) ;; with max length edge
(xset max-head-x!! (1! (pref tour-x!| (mod (1+ max-tail-addr) n))))
(zset max-head-y!! (1! (pref tour-y!! (mod (1+ max-tail-addr) n))))
(*set max-tail-yl! (1| (pref tour-y!! max-tail-addr)))
(*set max-tail-x!| (1! (pref tour-x!! max-tail-addr)))
(xset gain!!
(=11 (1! max-length!! edge-to-next!!)
(+!11 (distance!! max-head-x!! max-head-y!| next-x!! next-y!!)
(distance!! max-tail-x|! max-tail-y!l tour-xi! tour-yl!))))
(swhen (not!! (=!! (self-address!!) (!! max-tail-addr)))
(setf max-gain (*max gainii))) ;find best edge to tweak with max edge
(xwhen (=1!! (!! max-gain) gaini!)
(setf max-gain-addr (=min (self-address!i))))
(if (<= max-gain 0) (setf (pref active!l max-tail-addr) nil))))
(if (> max-gain 0) (tweak max-tail-addr max-gain-addr)))))))

Page 9



Z:>wein>tsp.lisp.11 4/13/87 12:01:21

iThis procedure is identical to the above procedure except that it performs at most
in/4 tweaks on the tour (or until a termination criterion is met). It procedure returns
it if it performed all n/4 tweaks and it returns nil if the procedure terminated early.

(xdefun 2-opt-times (&optional (percent-goal nil)
i &aux max-gain mex-tail-addr max-gain-addr tour-goal)
(*a

(=when (<!! (self-addressi!) (i! n))
(xlet ((active!! t!i)
(max-head-xi1)
(max-head-yi!)
(max-tail-xi!)
(max-tail-y!!)
(max-lengthi!)
(edge-to-next!!) ;Distance of edge to next node
(gaint!) H
(prev-neighbori! (mod!! (1-1! (self-addressi!)) (1! n)))
(next-x11)
(next-yi!))
(if percent-goal (setq tour-goal (= (- 1 percent-goal) (t-1-tour))))
(dotimes (j (/ n 8) nil)
(if (or (= (=sum (if11 activel! (1l 1) (11 0))) 1)
(and percent-goal (< (t-1-tour) tour-goal))) (return t))
(xset activel! til)
(setf max-gain -1)
(zpset-no-coll tour-x!! next-x!! prev-neighborii)
(zpset-no-coll tour-yi! next-y!! prev-neighbor!!)
Etset)edge-t.o-ncxtll (distance!! tour-xi! tour-y!! next-x!l| next-yil))
do (
((or (> max-gain 0) (= (=sum (ifI1 activell (11 1) (11 0))) 1) ) ni1);;3 helps
(swhen active!l
(zset max-length!! (1! (smax edge-to-next!l)))
(swhen (=!! max-length!! edge-to-next!!)
(setf max-tail-addr (=min (self-addressii))))
(*set max-head-xi! (!! (pref tour-xi! (mod (1+ max-tail-addr) n))))
(xset max-head-y!! (1! (pref tour-y!! (mod (1+ max-tail-addr) n))))
(xset max-tail-yl! (1! (pref tour-y!! max-tail-addr)))
(xset max-tail-xil (1! (pref tour-x!! max-tail-addr)))
(zset gaini!
(=11 (+!! max-length!! edge-to-next!!)
(+!1 (distance!! max-head-x!! max-head-y!! next-xi! next-yi!)
(distance!! max-tail-x!| max-tail-y!! tour-x!i tour-yli))))
(=when (not!! (=1! (self-address!i) (1! max-tail-addr)))
(setf max-gain (smax gainil)))
(=when (=1! (!! max-gain) gaini!)
(setf max-gain-addr (wmin (self-addressi!))))
(if (<= max-gain 0) (setf (pref active!l max-tail-addr) nil))))
(if (> max-gain 0) (tweak max-tail-addr max-gain-addr)))))))

;:This procedure accepts the processor addresses of the tails of two edges to tweak. It
;ithen performs the tweak by reversing the tour between the head of the edge with lower
;iprocessor address and the tail of the edge with higher processor address inclusive

(xdefun tweak (taill-addr tafl2-addr)

(xlet ((min-tailil (11 (min taili-addr tail2-addr))) ;; tail of edge with higher proc addr.
(max-tailll (1! (max taili-addr tail2-addr))) ;; tail of edge with lower proc addr.
(where-toll))

(swhen (and!! (>!1 (self-address!!) min-tailll) (<s!! (self-address!!) max-tailil))
(xset where-to!! (-1! (+!! min-taill! (!! 1) max-tail!l) (self-addressi!)))
(=pset-no-coll tour-xi! tour-x!! where-tol!)

(=pset-no-coll tour-y!! tour-y!! where-toi!))))

-



Z:>wein>tsp.lisp.11 4/13/87 12:01:21

;This procedure performs one-pass parallel 2-optimization. It divides the cities into
;disjoint groups of size & and performs a parallelized version of 2-opt on each city
;using scans instead of *max and broadcast. It tweaks until each group is 2-optimal
;(or a goal percentage achieved), then doubles the size of the group and continues until

;there are fewer than 32 groups. It then finishes up with a final call to the global
;2-optimization procedure :

(xdefun one-pass-par-2-opt (&optional (goal-percent nil)
e &aux group-size num-groups max-gain tour-goal)
xa

(*xwhen (<1! (self-address!i!) (11 n))
(xlet ((activel!l til) ;; variables with same names have same function as in 2-opt
(max-head-x!1)
(max-head-y!!)
(max-tail-x!t1)
(max-tail-y!!)
(max-lengthi!)
(edge-to-next!!)
(gaintt)
(max-gain!!)
(prev-neighbor!! (mod!! (1-11 (self-addressi!)) (11 n)))
(next-x!1!)
(next-y!1!)
(max-tail-addr!!)
(max-gain-addri!)
(city-groups!!) ;; segment pvar
(rev-city-groupsi!)) ;; segment pvar for reverse scanning
(if goal-percent (setq tour-goal {(* (-1 goal-percent) (t-1-tour))))
(seiq group-size &)
(setq num-groups (/ n group-size))
(do () ((or (< num-groups 32)
(and goal-percent (< (t-1-tour) tour-goal))) nil)
(xset city-groups!! (=1t (mod!! (self-addressi!) (1! group-size)) (11 0)))
(xif (pluspl! (self-address!!))
(xpset-no-coll city-groupsi! rev-city-groupsi! (1-11 (self-addressi!))))
(setf (pref rev-city-groups!! (1- n)) t)
(xset activel!l ti!)
(do () ((or (not (xor activell)) ;; do until no good tweaks or goal reached
(and goal-percent (< (t-1-tour) tour-goal))) nil)
(setf max-gain -1)
(*=pset-no-coll tour-x!l| next-x1! prev-neighbor!!)
(=pset-no-coll tour-yl! next-yl! prev-neighbor!!)
(xset edge-to-next!! (distance!ll tour-x!! tour-yl! next-x!!| next-y!!))
(do () ;until find good tweak or no good tweaks exist, search for tweak
((or (> max-gain 0) (not (¥or active!l))) nil)
;;next two lines find max length of an edge
(xset max-length!} (scan!! (ifl! activell edge-to-nexti! (11 -1)) ‘max!!
:direction :backward
:segment-pvar rev-city-groupsit! ))
(xset max-length!l (scanl! max-length!| *copy!! :segment-pvar city-groupsit))
;; find processor number of tail of max-length edge (breaking ties with max)
(sset max-tail-addr!l (scan!l (ifll (and!! activell
(s1! max-lengthl! edge-to-next!!))
(self-addressi!) (11 -1)) "maxi|
:direction :backward
:segment-pvar rev-city-groups!! ))
(xset max-tail-addr!! (scani! max-tail-addri! °*copy!!
:segment-pvar city-groups!!))
(*set max-head-x!! (scanil (ifll (s1! (self-address!!) max-tail-addri!)
(pref!! tour-xi! (-odllghu)nx-uil-lddrll)
it n
(11 -1)) ’max!! :direction :backward
:segment-pvar rev-city-groupst!))
;segmented version of pref’ing value and broadcasting
(sset max-head-x!! (scan!! max-head-x!! *copy!! :segment-pvar city-groupsi!))
(xset max-head-y!! (scan!! (if11 (=11 (self-address!!) max-tail-addr!l)
(prefl! tour-y!! (mdll{lol!)-:x-uil-lddrll)
11 n))
(1! -1)) 'max!! :direction :backward
:segment-pvar rev-city-groups!! ))
(xset max-head-y!! (scan!! max-head-y!! °"copy!! :segment-pvar city-groups!!))
(*set max-tail-y!! (scan!! (if11 (=11 (self-address!!) max-tail-addr!il)
tour-y!! (1! -1)) °*maxil! :direction :backward
:segment-pvar rev-city-groupsi! ))
(zset max-tail-y!! (scan!! max-tail-y!! 'copy!! :segment-pvar city-groups!!))

Page 11



Z:>wein>tsp.lisp.11 4/13/87 12:01:21

(sset max-tail-xI! (scanl! (ifi} (=1 (self-address!!) max-tail-addri!)
tour-xi1 (1! -1)) 'max)! :direction :backward
( t tafl-xt1 ( 1 17 t-w"ll g A e
Tgset max- -x scan!! max-tail-xi! *copyt! :Segment-pvar city- oups | |
(zset gainit i:; find reduction from tweak with max-length edg r 4
(=11 (11 max-Tength!! edge-to-next!|)
(¢!l (distance!! max-he -x!11 max-head-y!! next-xi1} next-yl!1|)
(distance!! max-tajl-xi! max-tail-yl! tour-x!i tour-yit))))
(*set max-gainii (scan!! ({f(} (and!!
(notil (=11 (self-addressi)) max-tail-addrit))
activel!) gainti (11 -1)) "max| |
:direction :backward
:segment-pvar rev-city-groupsii))
(=set max-gainli (scani! max-gaini! *copy! | :Segment-pvar city-groupsii))
(setf max-gain (=max max-gainil))
(xif (and!] (<=t max-gain!! (11 0))(=1} (self-addressii) max-tail-addri!))
(zset activel! nilty))
(when (> max-gain 0) ;; if we’'re going to tweak, find out where
(*set max-gain-addri| (scani! (if1} (=11 gaini! max-gainil)
(self-addressi!) (1! -1))
‘max!! :direction :backward
:Segment-pvar rev-city-groupsii))
(%set max-gain-addri! (scanii ®ax-gain-addr!! *copyi!
:Segment-pvar city-groupsii))
;i only groups that perform a tweak have all cities reactivated, others have some inactive
(=if (>11 max-gainii (11 0)) (zset activell ti1))
(par-tweak mex-tail-addri! max-gain-addr!! max-gainii))))
(setq group-size (= group-size 2))
(setq num-groups (/ num-groups 2))))
;i account for progress made so far when calling 2-opt with a goal-percentage
(if (not goal-percent) (2-opt)
(if (> (t-1-tour) tour-goal) (2-opt (- 1 (/ tour-goal (t-1-tour)))))))))

i; simply a parallelized version of tweak. Only tweak where gain was positive. Now the
:: tail addresses are pvars instead of lisp variables

(=defun par-tweak (tafll-addrii tail2-addri} max-gaint!)
(xwhen (>11 max-gaini! (11 0))
(xlet ((min-taili! (mini! taill-addri! tail2-addrit))
(max-taill| (max!! taili-addrii tail2-addrii))
(where-tol1))

(*when (andi! (>1! (self-addressii) min-tailil) (<=1 (self-addressi!) max-tailit))
(xset where-toll (-11 (+!] min-tailil (11 1) max-tailll) (self-addressii)))
(=pset-no-coll tour-x!! tour-x!} where-tol|)

(zpset-no-coll tour-yi!| tour-y!! where-toll)))))

;i if there are less than 32 groups, the slowdown due to segmentation overrides the benefits
:; of parallelization.

(xdefun par-2-opt (&optional (goal-percent ni1))
(1f (< n 128) (2-0pt goal-percent)
(mult-pass-par-2-opt goal-percent)))

;; at theé start, them 1-centered, and so on) so that different cities can be §rouped together
;3 if they didn’t move during the last pass. The basic Toop is identical to the one-pass
i; version; only the control structure changed

(xdefun mult-pass-par-2-opt (&optional (goal-percent nil)
&aux group-size hum-groups max-gain tour-gosl)
(xall

(xwhen (<11 (self-addressii) (i} n))

(xlet ((activel! t!1)
(max-head-x!1)
(max-head-y!1)
(max-tafl-x11)
(max-tail-yil)
(max-Tength!!)
(edge-to-next!!)
(gainil)
(max-gaini!)
(prev-neirburll (modt! (1-1! (self-addressii)) (1! n)))
(next-xi1
(next-yi!)

Page 12



Z:>wein>tsp.lisp.11 4/13/87 12:01:21 Page 13

(max-tatl-addri!)
(max-gain-addrii)
(city-groups!!)
(rev-city-groups!!))
(if goal-percent (setq tour-goal (= (- 1 goal-percent) (t-1-tour))))
;; repeat passes until goal reached (if any) or the tour is 2-optimal, which means 2-o0pt
;:; at the global level (signaled back from the 2-opt routine]
(do ((num-iters 0 (1+ num-iters))) ((or (and goal-percent (¢ (t-1-tour) goal-percent))
(2-opt-times goal-percent)) nil) :
(setq group-size (/ n 32))
(setq num-groups 32)
(do () ((or (< group-size &)
(and goal-percent (< (t-1-tour) tour-goal))) nil)
(xset city-groups!! (=11 (mod!! (self-address!!) (1! group-size))
(1! (mod num-iters group-size))))
(=2if (pluspl! (self-address!!))
(*pset-no-coll city-groups!! rev-city-groups!! (1-11 (self-address!i))))
(setf (pref rev-city-groups!! (1- n)) t)
(xset active!! til)
;; do until all groups 2-opt (no active edges) or goal reached or done enough par tweaks
(dotimes (k (max (/ group-size &) 4))
(if (or (not (xor activell))
(and goal-percent (< (t-1-tour) tour-goal))) (return t))
(setf max-gain -1)
(xpset-no-coll tour-x!! next-x!! prev-neighbor!!)
(xpset-no-coll tour-y!! next-yl!! prev-neighbor!!)
(sset edge-to-next!! (distancel! tour-x!l| tour-y!! next-x!!| next-y!l))
(do () ;; until find good tweak or no good tweak, search for tweak
((or (> max-gain 0) (not (xor activel!))) nil)
(xset max-length!! (scan!! (ift! activell edge-to-next!! (11 -1)) °'max!|
:direction :backward
:segment-pvar rev-city-groups!!))
(xset max-length!! (scan!! max-length!! 'copy!! :segment-pvar city-groups!!))
(xset max-tail-addri! (scan!ii (ifil (and!! activell
(=11 max-length!! edge-to-next!l))
(self-address!!) (11 -1)) 'max!!
:direction :backward
:segment-pvar rev-city-groups!!))
(xset max-tail-addr!! (scan!! max-tail-addr!! °copy!!
:segment-pvar city-groupsili))
(xset max-head-x!! (scani! (ifll (=il (self-address!!) max-tail-addr!!)
(pref!! tour-xi! (lodllz'loll max-tail-addr!!)
11 n)))
(11 -1)) °*max!! :direction :backward
:segment-pvar rev-city-groupsil))
(xset max-head-x!! (scan!! max-head-x!! 'copy!! :segment-pvar city-groups!!))
(xset max-head-y!! (scant! (iftl (sl (self-address!!) max-tail-addr!l)
(prefi! tour-y!! (mod!!(1+!! max-tail-addr!!)
(tt n)))
(11 -1)) *max!! :direction :backward
:segment-pvar rev-city-groups!!))
(xset max-head-y!! (scan!! max-head-y!! °copy!! :segment-pvar city-groupsi!))
(xset max-tail-y!! (scan!! (ifll (=11 (self-address!!) max-tail-addri!)
tour-yl! (1! -1)) "max!! :direction :backward
:segment-pvar rev-city-groups!!))
(xset max-tail-y!! (scan!! max-tail-y!! ‘cecpy!! :segment-pvar city-groupsi!))
(sset max-tail-x!! (scani!l ({if1} (=l! (self-address!!) max-tail-addr!!)
tour-x!! (11 -1)) "max!! :direction :backward
:segment-pvar rev-city-groups!!))
(xset max-tail-x!! (scan!! max-tail-x!| 'copy!! :segment-pvar city-groups!l!))
(xset gainl!
(=11 (¢! max-lengthl| edge-to-next!!)
(+11 (distance!! max-head-x!! max-head-y!! next-x!!| next-y!!)
(distance!! max-tail-x!! max-tail-y!! tour-x!! tour-y!1))))
(xset max-gain!! (scan!i! (ifl! (and!!
(noti! (s!! (self-address!!) max-tail-addri!))
activell) gainll (1! -1)) "maxi|
:direction :backward
:segment-pvar rev-city-groups!!))
(sset max-gain!! (scan!! max-gain!! "copy!! :segment-pvar city-groups!!))
(setf max-gain (*max max-gainil))
(xif (and!! (<=!! max-gaini! (!! 0))(=!! (self-address!!) max-tail-addri!))
(xset active!! nilll))
(when (> max-gain 0)
(sset max-gain-addr!! (scan!! (if11 (=!! gainil max-gainil)
(self-addressii) (1t -1))
'max!! :direction :backward



Z:>wein>tsp.lisp.11

4/13/87 12:01:21

:segment-pvar rev-city-groupsti) )
(*set max-gain-addri! (scani| Rax-gain-addri! *copy|
:ségment-pvar city-groupsii))
(x1f (>11 max-gainil (1} 0)) (sset activei! ti))
(par-tweak mdx-tail-addri! max-gain-addr!! Bax-gaini!))))
(setq group-size (/ group-size 2))
(setq num-groups (2 num-groups 2)))
(1f goal-percent ;; adjust goal percentage gain to reflect progess
(setq goal-percent (- 1 (/ tour-goal (t-)-tour))))))))))

Page 14



Z:>wein>tsp.lisp.11

ii: Functions with abbreviated names to perfrom heuristics
(xdefun n-n-t () (near-neighbor-tour))

(xdefun f-i-t () (insertion-tour ’farthest))

(xdefun n-i-t () (insertion-tour ’nearest))

(xdefun r-i-t () (insertion-tour ’random))

(xdefun c-i-t () (insertion-tour *cheapest))

(*defun n-a-t () (insertion-tour "nearest-addition))
(*defun f-a-t () (insertion-tour *farthest-addition))
(xdefun s-t (type) (strip-tour type))

(xdefun 1-p-p (&optional (goal-percent nil))
(one-pass-par-2-opt goal-percent))

(xdefun m-p-p (&optional (goal-percent nil))
(mult-pass-par-2-opt goal-percent))

4/13/87 12:01:21

Page 15



Z:>wein>tsp.lisp.11 4/13/87 12:01:21

i:; Function to make a random problem, try and time many different
i:; heuristics applied to it, and rank results by tour length.

(*defun try-problem (num-cities &optional (time nil))
(make-cities num-cities)
(setq lengths nil) :
(format xstandard-outputx *~% RANDOM tour length ~s~%* (t-1-tour))
(if (not time) (2-opt) (terpri) (cm:time (2-0pt)))
(format xstandard-outputx “~% 2-0PT tour length ~s~x* (t-l1-tour))
(push “(,(t-1-tour) 2-opt) lengths)
(if (not time) (n-n-t) (terpri) (cm:time (n-n-t)))
(format xstandard-outputx *~% NEAREST-NEIGHBOR tour length ~s~x* (t-1-tour))
(push *(,(t-1-tour) n-n-t) lengths) {
(1f (not time) (2-opt) (terpri) (cm:time (2-opt)))
(format xstandard-outputx "~% 2-OPT NEAREST-NEIGHSOR tour length ~s~x* (t-1-tour))
(push *(,(t-1-tour) 2-opt n-n-t) lengths)
(if (not time) (n-i-t) (terpri) (cm:time (n-i-t)))
(format xstandard-outputx “~% NEAREST-INSERTION tour length ~s~%* (t-1-tour))
(push “(,(t-1-tour) n-i-t) lengths)
(if (not time) (2-opt) (terpri]) (cm:time (2-opt)))
(format xstandard-output: *~% 2-OPT NEAREST-INSERTION tour length ~s~X= ( t-1-tour))
(push *(,(t-1-tour) 2-opt n-i-t) lengths)
(if (not time) (r-i-t) (terpri) (cm:time (r-i-t)))
(format xstandard-outputz “~% RANDOM-INSERTION tour length ~s-~x® (t-1-tour))
(push *(,(t-1-tour) r-i-t) lengths)
(1f (not time) (2-opt) (terpri) (cm:time (2-opt)))
(format xstandard-outputz “~% 2-0PT RANDOM-INSERTION tour length ~s~%X* (t-1-tour))
(push °*(,(t-1-tour) 2-opt r-i-t) lengths)
(1f (not time) (f-i-t) (terpri) (cm:time (f-i-t)))
(format xstandard-outputz “~% FARTHEST-INSERTION tour length ~s~%* ( t-1-tour))
(push *(,(t-1-tour) f-i-t) lengths)
(if (not time) (2-opt) (terpri) (cm:time (2-opt)))
(format xstandard-outputx *~% 2-0PT FARTHEST-INSERTION tour length ~s~%* (t-1-tour))
(push *(,(t-1-tour) 2-opt f-i-t) lengths)
(1f (not time) (c-i-t) (terpri) (cm:time (c-i-t)))
(format xstandard-outputx "~-% CHEAPEST-INSERTION tour length ~s~%* (t-1-tour))
(push *(,(t-1-tour) c-i-t) lengths)
(1f (not time) (2-opt) (terpri) (ca:time (2-opt)))
(format xstandard-outputs *~% 2-OPT CHEAPEST-INSERTION tour length ~s~X" (t-1-tour))
(push °(,(t-1-tour) 2-opt c-i-t) lengths)
(if (not time) (n-a-t) (terpri) (cm:time (n-a-t)))
(format xstandard-outputs “~% NEAREST-ADDITION tour length ~s~%* (t-1-tour))
(push *(,(t-1-tour) n-a-t) lengths) >
(if (not time) (2-opt) (terpri) (cm:time (2-0pt)))
(format xstandard-outputx *~% 2-OPT NEAREST-ADDITION tour length ~s~X" (t-1-tour))
(push *(,(t-1-tour) 2-opt n-a-t) lengths)
(if (not time) (f-a-t) (terpri) (cm:time (f-a-t)))
(format xstandard-outputx “~% FARTHEST-ADDITION tour length ~s~%X" (t-1-teur))
(push *(,(t-1-tour) f-a-t) lengths)
(if (not time) (2-opt) (terpri) (cm:time (2-0pt)))
(format xstandard-outputs "~% 2-0PT FARTHEST-ADDITION tour length ~s~%* (t-1-tour))
(push *(,(t-1-tour) 2-opt f-a-t) lengths)
(if (not time) (s-t 2) (terpri) (cm:time (s-t 2)))
(format xstandard-outputs "~% STRIP tour length ~s~x* (t-1-tour))
(push *(,(t-1-tour) s-t) lengths)
(1f (not time) (2-opt) (terpri) (cm:time (2-opt)))
(format xstandard-outputs “~% 2-OPT STRIP tour length ~s~%" (t-1-tour))
(push *(,(t-1-tour) 2-opt s-t) lengths)
(print (sort lengths #°< :key #’car))
)

Page 16



Z:>wein>tsp.lisp.11 4/13/87 12:01:21 Page 17

;JOEL: CAN WE CHUCK FROM HERE ON?

(xdefun compare-times ()

(print "Length of Random Tour:*)

(print (t-1-rand))

(print “NEAREST NEIGHBOR")

(cm:time (n-n-t))

(print (t-1-tour))

(cm:time (2-o0pt))

(print (t-1-tour))

(print * farthest INSERTION")

(cm:time (f-1-t))

(print (t-1-tour))

(print “2opt*)

(cm:time (2-opt))

(print (t-1-tour))

(print “STRIPS*)

(cm:time (strip-tour 2))

(print (t-1-tour))

(print “2o0pt”)

(cm:time (2-o0pt))

(print (t-1-tour)))



	Euclidean Traveling Salesman Heuristics
	Recommended Citation

	MergedFile

