
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works Faculty Publications

2017

Queryable Compression for Massively Streaming Social Networks Queryable Compression for Massively Streaming Social Networks

Chandra N. Sekharan
csekhar@luc.edu

Sridhar Radhakrishnan
University of Oklahoma Norman Campus

Ben Nelson
University of Oklahoma

Amlan Chatterjee
California State University, Dominguez Hills

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Sekharan, Chandra N.; Radhakrishnan, Sridhar; Nelson, Ben; and Chatterjee, Amlan. Queryable
Compression for Massively Streaming Social Networks. , , : , 2017. Retrieved from Loyola eCommons,
Computer Science: Faculty Publications and Other Works,

This Technical Report is brought to you for free and open access by the Faculty Publications at Loyola eCommons.
It has been accepted for inclusion in Computer Science: Faculty Publications and Other Works by an authorized
administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/128352221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

Queryable Compression on Streaming Social
Networks

Michael Nelson & Sridhar Radhakrishnan
School of Computer Science

University of Oklahoma
Norman, OK, USA

{Michael.A.Nelson-1, sridhar}@ou.edu

Amlan Chatterjee
Department of Computer Science

California State University Dominguez Hills
Carson, CA, USA

achatterjee@csudh.edu

Chandra N. Sekharan
Department of Computer Science

Loyola University Chicago
Chicago, IL, USA

chandra@cs.luc.edu

Abstract—The social networks of today are a set of massive,
dynamically changing graph structures. Each of these graphs
contain a set of nodes (individuals) and a set of edges among
the nodes (relationships). The choice of representation of a
graph determines what information is easy to obtain from it.
However, many social network graphs are so large that even
their basic representations (e.g. adjacency lists) do not fit in main
memory. Hence an ongoing field of study has focused on designing
compressed representations of graphs that facilitate certain query
functions.This work is based on representing dynamic social
networks that we call streaming graphs where edges stream into
our compressed representation.

The crux of this work is the use of a novel data structure for
streaming graphs that is based on an indexed array of compressed
binary trees that builds the graph directly without using any
temporary storage structures. We provide fast access methods for
edge existence (does an edge exist between two nodes?), neighbor
queries (list a node’s neighbors), and streaming operations
(add/remove nodes/edges). We test our algorithms on public,
anonymized, massive graphs such as Friendster, LiveJournal,
Pokec, Twitter, and others. Our empirical evaluation is based on
several parameters including time to compress, memory required
by the compression algorithm, size of compressed graph, and
time to execute queries. Our experimental results show that our
current approach outperforms previous approaches in various
key respects such as compression time, compression memory,
compression ratio, and query execution times and hence the best
to date overall.

Index Terms—Graph Compression, Binary Tree, Online Social
Networks, Streaming Graphs

I. INTRODUCTION

Given a social network, it can be represented as a graph
G = (V,E), where V is a set of nodes (individuals) and
E is a set of edges (relationships). Most social networks
like Facebook are undirected, meaning that the relationship is
automatically reciprocated. In contrast, a social network like
Twitter is directed, as meant by their concept of ’following’.
Clearly, we can see that knowledge learned from these graphs
is beneficial, as it may help to better coordinate events, suggest
friends, advertise, and recommend games.

Social networks are ever growing. For example, from De-
cember 2014 to March 2015, the number of daily active
Facebook users grew from 890 million to 963 million [1].
Social networks are not limited to the number of people in the
world, since entities such as companies and communities may

form an account as a new node. Clearly, such large, streaming
graphs present a challenge to social network analysis.

Many different queries may be run on social networks.
When developing a queryable compression technique, the
compressed structure is usually designed to be efficient with
a specific set of queries [7]. The most popular of these are
arguably community operations and the reachability query.
When building the algorithms used to answer these queries, the
neighbor enumeration and edge existence operations are put
to heavy use. This is true for many other classes of problems,
including network pattern mining and friend suggestion.

Consider our Friendster snapshot with n = 65608366 nodes
and m = 1806067135 edges. Using a boolean adjacency ma-
trix representation, we get a size of 656083662 bits = 538TB.
Assuming 64-bit pointers and an adjacency list representation
the memory needed can be estimated to be about 41 gigabytes
which exceeds the typical RAM size of most computers.
Queries such as neighbor enumeration and edge existence can
be time-consuming in such high memory environments. These
queries have time complexities of O(n) and O(1), respectively,
on the adjacency matrix and O(σ(n)) on the adjacency lists,
where σ(n)) is the degree of the graph. However, if the
structure does not fit in memory it must make access calls to
disk, which incur a high time penalty. Given this, our desire
is to compress the graph to a size that can fit in the main
memory but also provide mechanisms to perform neighbor
and edge queries directly on the compressed structure. It is
worth pointing out that for graphs represented in distributed
memories, our compression techniques can be easily extended.

Most raw, uncompressed graphs are downloaded from vari-
ous sources as plain text files. These files are merely the graph
in edge list form. That is, each line consists of two numbers, u
and v, separated by a space. A common requirement for most
compression algorithms is an intermediate structure, such as
an adjacency list, that is built from this edge list and used to
efficiently build a final compressed structure [10]. Since we
can incrementally build our compression, we do not require
such an intermediate structure.

For obvious reasons, the original edge list text files are
stored with common compression programs such as gzip.
For large graphs like our Friendster graph, this is at least
41GB of necessary memory just in the preprocessing stage.

In this paper, we also present a method of compressing
the graph directly from its gzipped edge list format. Since
our compression scheme uses no intermediate structure when
compressing, this ensures minimal memory overhead.

As previously mentioned, social networks are dynamic due
to constantly changing user base or changing relationships.
Hence our approach is to have a structure which can modify
the compressed graph as edges and nodes are added and
removed.

Social network graphs and their queries are node-centric,
as evidenced by the popularity of the neighbor query. Our
novel compression technique is based on indexed arrays of
compressed binary trees. The binary trees will be responsible
for compressing a node’s edges, and the indexes will provide
quick access to those nodes in the compressed graph. Our
motivation for using binary trees is an extension from our work
with the quadtree data structure [12]. The quadtree structure
in our previous work could be thought of as compressing the
graph’s entire 2d adjacency matrix representation, whereas the
present approach compress the individual rows of the matrix
into binary trees, exploiting the node-centric nature of queries.
This allows for increased query efficiency.

Our contributions can be summed up as:
• We introduce the indexed array of binary trees data

structure that incrementally constructs the compressed file
as nodes and edges are added and removed (streaming
graph model). Existing algorithms require an intermedi-
ate representation (e.g.,adjacency list or matrix) before
compression.

• We have provided a method of compressing the graph
directly from its gzipped edge list form.

• We have developed algorithms for edge and neighbor
queries that directly operate on the compressed file.

• A detailed empirical study is also presented that uses
the SNAP database [14] to obtain data on several social
networks. The compressed output is directly created from
the SNAP data sets that are in edge list format .

• Comparison with state-of-the-art techniques including
Backlinks compression and Slashburn compression re-
veals that our approach is superior in many respects such
as compression time, compression memory, and query
execution times. The compression ratios of the datasets
using our algorithms are smaller than Backlinks [4] and
Slashburn [9] which is to be expected because of the
data being streamed in incrementally as opposed to being
available in its entirety. Our present technique improves
the compression ratio from our previous work [12] and
results in better query times. Keeping in mind the inherent
challenges in the streaming graphs model for compression
and query times, we believe our present approach is
overall the best to date.

The rest of the paper is organized as follows. In Section
II, we review related work and show that all existing work
is based on the availability of the entire adjacency matrix or
list for compression to complete. In Section III, we formally
define our queries and review common social network graph

terms. Our new binary tree compression is introduced and
described in Section IV. We report empirical results in Section
V. Finally, we conclude the paper in Section VI.

II. RELATED WORK

Social network compression is preceded by the more general
case of web graph compression. In such a case, the web
pages are vertices and hyperlinks are directed edges. While
we believe that we are the first ones to provide a compression
technique for streaming graphs that supports the same query
operations as we do, there are several existing works that have
similar compression algorithms that are worth noting.

Adler and Mitzenmacher [2] introduced a web graph com-
pression scheme by finding nodes with similar sets of neigh-
bors. Randall et al. [13] were the first to use the lexicographical
ordering of a web pages URL to compress a graph. Their
method exploits the fact that many pages on a common
host have similar sets of neighbors. Boldi and Vigna [3]
continued taking advantage of properties of web graphs in
lexicographical ordering. They found that proximal pages in
URL lexicographical ordering often have similar neighbor-
hoods. This lexicographical locality property allowed them to
use gap encodings when compressing edges. In order to further
improve compression, Boldi et al. [3] developed new orderings
that combine host information and Gray/lexicographic order-
ings.

In 2009, Chierichetti et al. [4] modified the Boldi and
Vigna [3] compression method to better target social networks.
Their method exploits the similarity and locality properties of
web pages along with the idea that social networks have a
high number of reciprocal edges. This method is called the
Backlinks Compression scheme.

In 2014, Liakos et al. [8] also improved Boldi-Vigna’s
compression ratio and access times by separately compressing
the dense main diagonal stripe of the graph’s adjacency matrix.

In 2010, Maserrat and Pei [11] introduced a compression
scheme specifically designed to compress social networks
while maintaining sublinear neighbor queries. They achieve
this by implementing a novel Eulerian data structure using
multi-position linearization. Their results are the first to answer
out-neighbor and in-neighbor queries in sublinear time.

In 2014, Lim et al [9] invented Slashburn, a new ordering
method to run on the graph before a general compression.
The idea is to stray away from the definition of ‘caveman’
communities and instead use the idea of real world graphs
being more like hubs and spoke connected only by the hubs.
After running their ordering function, they use a block-wise
encoding method (such as gzip) for the actual compression.
The technique described in Slahburn [9] is novel that reduces
the total number of blocks (where a block is a sub-matrix
with non-zero entries). Their query times focus more on the
problem of matrix-vector multiplication, which is used in prob-
lems such as PageRank, diameter estimation, and connected
components [6].

This research was partly inspired by our previous work
involving quadtree compression [12]. There we treated the

boolean adjacency matrix as a 2D space to be compressed
by a quadtree. The resulting tree was outputted in BFS
order as a string of bits. Like the method presented in this
paper, the quadtree approach also was a compression that
required no intermediate representation to compress. While
the graph’s final compressed size was indeed comparable
with existing compression standards, the query times were
slower than desired. Our proposed approach overcomes this
deficiency by (i) by following a node-centric compression
scheme, and (ii) using an indexed array of compressed binary
trees rather than a quad-tree. The work described here for
streaming graphs achieves a degree of performance that, in
most metrics of importance to compression, either meet or
exceed previous results, especially query times. Our present
work’s compression ratios turn out to be less than for the
benchmarks we compared with, however, this is only due to the
inherent difference in the model (streaming vs non-streaming).

III. PRELIMINARIES

In this section, we describe some social network char-
acteristics, common operations, and standard compression
techniques.

A. Social networks

Social networks (SN) are graphs wherein a node represents
a person and an edge is a friendships between two people.
Here we will describe the general characteristics that emerge
in these types of graphs.

1) Sparseness: Most importantly, SNs are very sparse. This
means that there are very few edges relative to the total number
of possible edges. For example, our LiveJournal graph contains
about 4.8 million nodes and about 69 million edges. The total
number of possible edges is (4.8∗106)2 = 2.3∗1013. Therefore
we only have (100∗(6.9∗106)/(2.3∗1013) = 3∗10−5% of the
total edges possible. If we were to draw the boolean adjacency
matrix for this graph, it would be mostly zeros.

2) Similarity: This property states that nodes close to
each other in a lexicographical ordering have similar sets of
neighbors. For example, in a high school with 300 students,
the nodes might be numbered 0 − 299 in a lexicographical
ordering. Since the students are likely to be friends with each
other, many of the nodes will have similar sets of neighbors.

3) Locality: Locality is tied closely with similarity, but
the distinction is important. With locality, a node tends to
be connected to other nodes closer to its position in the
lexicographical ordering. In other words, node 0 is more likely
to be connected to node 100 rather than node 1000000.

B. Social network compression

Next, we outline common compression exploits for the char-
acteristics described in Section III-A. Our new compression
technique doesn’t make explicit use of any of these exploits,
but our benchmark compression and many other algorithms
do. Regardless, these techniques are standard background
knowledge when understanding any SN compression.

1) Gap encoding: This technique takes advantage of the
locality property. Even though the label numbers for a node’s
neighbors may be large, the numbers should be close to each
other. Therefore instead of actually encoding the large label
numbers, we encode the differences (gaps) between them. For
example, if we have nodes labeled 1000000 and 1000001,
instead of encoding these two large numbers, we can encode
the difference between them, 1.

2) Removing neighbor redundancies: Next, we exploit the
similarity property. Since this property states that nodes close
to each other in the ordering share common neighbors, we can
see that those similar neighbors present redundant information
that can be optimized out. When encoding a node n, we check
k of the previously encoded nodes for common neighbors. If
a sufficiently similar node x is found, node n is compressed
based on x.

It is important to realize the negative affect this technique
has on access operators. Since we are linking nodes to previous
nodes, we can form a chain references. Therefore, when
querying a node, we may end up having to query all the nodes
in the reference chain. This is also why streaming is usually
impractical on such compression schemes. One edge update
may cause a large chain of updates.

3) Node re-ordering: If the ordering of the nodes in the
graph is random, then the previous two exploits will fail.
Therefore, a common bit of preprocessing is to re-order the
nodes in the input graph based on some ordering scheme. The
standard is a BFS lexicographical re-ordering. Recently, there
is also Slashburn - a SN specific, node re-ordering technique
[9].

C. Social network operations

Lastly, we review the common operations performed on
social network graphs.

1) Edge existence queries: The most basic of the operation
is checking whether or not an edge exists between two nodes.
More formally, given a graph G = (V,E) and an edge (u, v),
determine if (u, v)εE.

2) Node neighbor queries: As previously stated, neighbor
queries are arguably the most important for SNs. Given a graph
G = (V,E) and a node u, list all the out-neighbors of u. For
a SN query-able compression to be effective, it must be able
to answer this query efficiently.

3) Edge addition/removal: This operation is available only
in streaming graph compressions, otherwise known as incre-
mental graph compressions. These compressions allow edges
and nodes to be efficiently added and removed without having
to completely re-compress the graph.

IV. INDEXED ARRAY OF COMPRESSED BINARY TREES

Next, we move on to the description of our new compression
technique. For every input graph G = (V,E), we assume that
E is sorted and nodes in V are labeled from 0 to |V |− 1. We
also assume that |V | is rounded up to the next power of two.

This assumption is only necessary for a direct construction,
rather than an incremental one.

A. Node-centric, indexed structures
As previously mentioned, SNs and their query operations

are node-centric. This indicates that our compression method
must also be node-centric. That is, our compression technique
will compress one node at a time, in order. Compressing a node
consists of compactly representing all the node’s neighbors in a
meaningful way. After a node is compressed, it is now a string
of bits which are simply appended onto the final bitstring.

A consequence of being node-centric is that when querying
for an edge (u, v), we must start at the beginning of the
compressed graph and read sequentially up to node u. A
workaround for this is to include an array of indexes that point
to the positions of every node in the compressed graph. This
is a common practice and sacrifices minimal space for a great
speed increase on queries [8]. In our case, the space require-
ment is O(nlog(n)), yet we receive a time improvement of
O(n2).

B. Compressed binary trees
A binary tree is a tree in which every non-leaf node has a

maximum of two children. A full binary tree of depth k has
2k leaf nodes. When a graph G = (V,E) is represented as a
|V |× |V | boolean adjacency matrix, each row n of the matrix
represents all the neighbors of node n. Knowing this, we can
represent a matrix row of width |V | with a binary tree of depth
log2(|V |). This is shown in Figure 1.

Fig. 1: Binary tree from a row of an adjacency matrix

For a compressed binary tree, each node in the tree is
encoded with one bit each. A node is set to true if it is a
non-leaf node, or if it is a leaf node corresponding to an edge.
All nodes marked false are leaf nodes. This encoding scheme
prunes off sections of the matrix row that are empty, while
the path to an edge must travel to the bottom of the tree. A
compressed binary tree of Figure 1 is illustrated in Figure 2.

When a compressed binary tree is output to a bitstring, the
graph is read in BFS order starting at the root. Therefore,
the bitstring for the graph in 2 would be 11011. We can see
that the row’s compression actually fails, since the row is not
large and sparse enough. Figure 3 shows a compression that
succeeds on a sparser adjacency row.

C. Analysis
Recall that a graph has n nodes and m edges. Each edge is

stored as a 1 in the boolean adjacency matrix, with the rest of

Fig. 2: A compressed binary tree from a row of an
adjacency matrix

Fig. 3: A successful compression

the entries being 0. Given a binary tree mapped to a row of
the matrix, a path to an edge has depth dlog2(n)e. Each node
along this path requires 2 bits for its children, for a total of
2mdlog2(n)e+1. This is roughly twice the theoretical lower
bound for representing all edges. However, most paths are
going to share nodes in the upper levels of the binary tree.
Maximizing the number of shared nodes is the purpose of
node re-ordering.

We can see that the worst case results in a perfect binary
tree, which is where all nodes have two children and all leaf
nodes are at the same depth. This gives us 2n+1 − 1 nodes.
These trees can formed from graphs such a complete graph
or a graph such that every other edge (in the sorted order)
is missing, such as the adjacency matrix in Figure 4. Here,
we are given a boolean adjacency representation of a graph.
Since it is checkered, there is no possible compression for this
graph, and we are left with a perfect binary tree. There are
other possible worst case graphs, but there can be no two edges
missing, (un, vn) and (un+1, vn+1), such that n is even. The
parent node of those edges would become compressed, and
we would no longer have a perfect binary tree. Since social
network graphs are extremely sparse, they are far away from
the worst case, as verified in Section V.

D. Direct construction

Since the input graph is usually a list of edges, there are two
ways to compress. This first is to incrementally add (stream)
each edge one at a time. This yields a time complexity of
O(mn), which is slow on graphs with a number of edges in
the billions, especially due to the cost of the decompression

Fig. 4: A worst case adjacency matrix

step. A more interesting approach is to assume we are given
all the edges at once. This way, we can achieve an initial
compression with a time complexity of O(mlogn).

Using the assumption that edges are in order, we will show
that each node’s compressed tree can actually be constructed
left-to-right. Suppose that |V | = 8 and that our input edge list
consists only of (0, 0) and (0, 7). These edges are on opposite
sides of each other in the binary tree for node 0. Notice that
from these two edges, we can completely construct the final
tree. This is because we know that everything between these
two nodes should be set to false and pruned away. The parents
of the edge nodes should obviously be set to true since they
are non-leaf nodes. We know formally describe this process
in Algorithm 1.

Algorithm 1: Binary tree compression
Input: A node’s sorted edge list
Output: The compressed node as a bitstring

1 begin
2 curPos← 0;
3 for each edge destination, v do
4 dcn← deepestCommonNode (curPos, v);
5 for each node from curPos up to dcn do
6 color any right siblings as 0
7 color parent as 1

8 for each node from dcn down to v do
9 color any left siblings as 0

10 color parent as 1

11 curPos← v

12 dcn← deepestCommonNode (curPos, n);
13 color dcn right child as 0;
14 return tree in BFS order;

DEFINITION - Deepest Common Node (DCN) - Given two
leaf nodes in a binary tree, ni and nj , the DCN is the deepest
non-leaf node in the tree such that it lies on both ni’s and
nj’s paths to the root of the tree. For example, in Figure 1,
the lead nodes for indexes 1 and 2 have a DCN at the root.

In Algorithm 1, we can see that we are compressing one
node at a time using the node’s sorted edge list. In Line 4,
we calculate the deepest common node in the tree that the
two edge nodes share. In Lines 5 through 7, we traverse up to

the DCN between two leaf nodes, and set all parents to true
and all siblings to false along the way. Similarly, in Lines 8
through 11, the same is done when traversing from the DCM
to the second node. Lines 12 and 13 handle filling the rest of
the tree, in case the last edge was not the rightmost node in
the binary tree. This concept is further illustrated in Figure 5.

Fig. 5: Left-to-right compressed binary tree construction

Finally, we use Algorithm 1 to compress each node and then
we store them in an indexed array. We describe this process
in Algorithm 2. For our index’s integer encoding scheme, we
use Delta Encoding [5].

Algorithm 2: Indexed array of binary trees compression
Input: The graph as a sorted edge list
Output: The compressed graph as a bitstring

1 begin
2 length← 0;
3 index← int[|V |];
4 for each node, n do
5 index[n]← length;
6 compressed[n]← CompressNode

(node.edges);
7 length+ = Delta(compressed[n].length)

8 return index + compressed;

Algorithm 2 loops through each node and uses Algorithm
1 to compress the node. While doing so, it also keeps track of
the index position of the encoded node. Finally, it returns the
list of indexes appended with the list of compressed nodes.

1) Proof of correctness:
Theorem:

Given a graph G = (V,E), Algorithm 2 provides a lossless
compression of G.

Proof:
Since Algorithm 2 already outputs a compressed version of G,
we must prove that this compression can be unambiguously
reverted back to the original graph.

Let G′ be the compressed version of G. Then it is sufficient
to show that given G′, we can obtain the original edge list E
of the graph G.

Here we must make a note that the list of neighbors of each
node is equivalent to E. That is,

⋃|V |−1
u=0 (u, vεN(u)) ≡ E,

where N(u) lists the neighbors of u.
Therefore, since our compression simply compresses the

neighbors of each node, it is sufficient to show that an arbitrary

compressed binary tree correctly stores the neighbors of the
node it belongs to. In other words, we must prove that every
edge destination v appears as the appropriate leaf node in u′s
binary tree.

As before, let u be an arbitrary node and N(u) be the
neighbors of u. Clearly, row u of the boolean adjacency matrix
will contain 1′s for each index vεN(u) and 0′s for every other
index in the row.

If we start at the root of the compressed binary tree, then
that node represents indexes 0 through |V |−1 of the adjacency
matrix row. If the node is set to TRUE, then it has children
to navigate to; i.e., the node leads to an edge. If it is set to
FALSE, then it contains no children; i.e., it does not lead to
an edge.

As we traverse through the left or right children, the range of
indexes that the current node covers strictly decreases based
on which child we navigated to. If we reach the maximum
depth, the range of the current leaf node targets a single index
of the adjacency matrix row. Since Algorithm 1 produces
trees with leaf nodes only where the target index is vεN(u),
and Algorithm 2 uses it to actually compress the nodes, our
compression is correct.

2) Compressing directly from a gzip compressed edge list:
During our experiments, we encountered such large graphs that
even the raw edge list format required over 30GB of RAM.
Since most computers these days do not have access to large
amounts of main memory, we devised a way to compress
directly from a much smaller 8GB gzipped edge list. It is
important to note that the gzipped file must also be sorted.

The technique is uses the zLib library that gzip is built on.
This library allows us to partially inflate (decompress) the file
in chunks. Since the file is sorted, we can decompress a single
node before we re-compress it with our method. Obviously,
this technique only affects compression time and memory
required for compression. These differences are shown in V.

E. Querying the compressed structure

We provide three operations that can be performed on our
structure: checking edge existence, getting a node’s neighbors,
and adding/removing edges. While these are all separate
operations, they all involve knowing how to efficiently traverse
the compressed tree in bitstring form.

Normally when traversing trees, the user has access to
pointers. However, since this is a compressed tree, we must
read bit-by-bit from left to right. We stored the tree as labels in
BFS order, therefore we must start at the root and keep track
of where in the tree we are as we traverse. As we do this,
we must also make note of the next node in the tree we are
interested in. In the next section, Algorithm 3 demonstrates
this through the edge query.

1) Edge query: In this section, we present and describe the
algorithm for checking edge existence in our structure. The
process is formally given in Algorithm 3.

Algorithm 3 is an edge query, but it also represents the
basics of traversing through our compressed tree. We can see
that begCol and endCol are the variables describing the node

Algorithm 3: Array of Binary Trees (ABT) Compression
- Edge Query
Input: The compressed adjacnecy row as a bitstring, v
Output: True or False

1 begin
2 cur = 0, begCol = 0, endCol = n, nextIndex = 0,

nodesAtDepth = 1, nodesAtNextDepth = 0;
3 for i = 0; i < bitstring.Size(); do
4 for j = i; j < nodesAtDepth; j ++ do
5 curNode← bitstring.GetBit (j);
6 if j == nextIndex then
7 if curNode == 1 then
8 if curDepth == maxDepth then
9 return True;

10 midCol← (begCol + endCol)/2
11 pos← 0 if y < midCol : else 1
12 nextIndex← i+ nodesAtDepth+

nodesAtNextDepth+ pos
13 if pos begCol ← midCol else endCol

← midCol
14 nodesAtNextDepth += 2;
15 else if curNode == 0 then
16 return False;

17 else if curNode == 1 then
18 nodesAtNextDepth += 2;

19 i += nodesAtDepth;
20 nodesAtDepth = nodesAtNextDepth;
21 nodesAtNextDepth = 0;

currently being examined. Note that each non-leaf node in the
binary tree represents a range of nodes as edge destinations
in the graph. Leaf nodes have a range of size one, i.e., the
actual edge. nextIndex is the position of the next node in the
tree along the path to our edge. Keeping track of how many
nodes in the current and next depths is crucial to calculating
nextIndex. The loop defined on Line 6 handles searching
through each node in the current depth of the tree. Line
8 checks if the node currently being examined is the next
node of interest on our path to the edge. If it is, Line 9
checks if the node is marked True and Line 10 tests if it
is an edge node. Notice that we cannot return True until we
have reached the bottom of the tree. In lines 13 and 17, we
increment nodesAtNextDepth by 2, since the presence of
an uncompressed node indicates that its two children will be
at the next depth.

2) Neighbor query: The neighbor query completely reads
through the compressed tree, returning any leaf nodes set
to true. By storing the positions and dimensions of multiple
nodes, we can do this in one read.

3) Streaming edges: Adding an edge begins by finding the
deepest node along its path that hasn’t been pruned off. Once
we find the proper location, we build the rest of the path

by inserting the proper bits into the bitstring. If the edge
to be added is close to an existing edge, the space added
and execution time will be minimal. This process is formally
described in Algorithm 4.

Removing an edge is the mirror of adding, but it still begins
by finding the highest node in the path that it can compress.
Then every bit representing nodes below it in the path are
removed. Finally, the highest node is set to false. Compression
benefits will be better the farther away the edge to be removed
is from the other edges.

Algorithm 4: ABT Compression - Streaming an edge
Input: The compressed graph as a bitstring, x, y

1 begin
2 cur = 0, begCol = 0, endCol = n, nextIndex = 0,

nodesAtDepth = 1, nodesAtNextDepth = 0;
3 for i = 0; i < bitstring.Size(); do
4 for j = i; j < nodesAtDepth; j ++ do
5 curNode← bitstring.GetBit (j);
6 if j == nextIndex then
7 if curNode == 1 then
8 midCol← (begCol + endCol)/2
9 pos← 0 if y < midCol : else 1

10 nextIndex← i+ nodesAtDepth+
nodesAtNextDepth+ pos

11 if pos begCol ← midCol else endCol
← midCol

12 nodesAtNextDepth += 2;
13 else if curNode == 0 then
14 bitstring.SetBit (j, 1);
15 //Partially decompress j′s children all

the way to the leaf node for (x, y)
return;

16 else if curNode == 1 then
17 nodesAtNextDepth += 2;

18 i += nodesAtDepth;
19 nodesAtDepth = nodesAtNextDepth;
20 nodesAtNextDepth = 0;

The beginning of Algorithm 4 is similar to the edge query
in Algorithm 3. That is, it must first traverse through the tree
to find the deepest compressed node that ranges over our edge.
This first step completes at Line 12, where we first come across
a node of interest that is set to False. Immediately, the next
thing to do is set this node to True as we are about to partially
decompress it. A partial decompression means we only add
children set to True on the path to our leaf node. All other
children are left compressed and set to False. Since we are
operating on a bitstring, this consists of inserting the nodes’
bits into their proper position.

V. EXPERIMENTS AND RESULTS

Our experiments involve running ABT compression and our
benchmark Backlinks compression [4] on the datasets in Table
I. Backlinks compression (BLC) was chosen as the benchmark
compression since it is the state-of-the-art technique for social
networks [8]. We have also compared the bits-per-edge of
these two techniques against Slashburn compression [9] and
reported the results in Table VIII. We chose to compare against
Slashburn since they are technically a re-ordering algorithm
that is subsequently compressed with gzip, which we also
apply to our compressions as an additional step.

In this paper, we have set BLC to use BFS for the re-
ordering algorithm and we have set the window size to k = 10.
The datasets are stored as an edge list and the final output of
the compressions is a bitstring.

We run all of our algorithms on a machine with an Intel(R)
Xeon(R) CPU E5520 @ 2.27GHz (4 cores) with 64GB of
RAM.

A. Compression

Our compression results in Table II provide a comparison
among the original edge list file, our compression technique
(ABT), Backlinks Compression (BLC), and the gzipped files
of each.

When examining the initial compression sizes of ABT and
BLC, it is clear that BLC outperforms ABT in terms of size.
This is to be expected as ABT is a streaming compression. In
order to allow a compressed structure to be easily query-able
and modifiable, it must be slightly inflated. For example, the
copy list technique used in BLC is one of the main reasons
for their high compression rates. However, this is also the
bottleneck for their slower query times and inability to stream
edges. When a query or modification occurs on a node that
copies its edges from a chain of previous nodes, the operation
may occur on each node in the chain.

BLC’s process of building copy lists is also one of the
reasons why their compression times are so long. As previ-
ously mentioned, we have set the window size to a common
k = 10. This means that we actually examine each node
10 times. Additionally, since BLC requires an adjacency list
intermediate structure, the query times for that list also affect
compression run times. ABT builds the structure directly from
the edge list, therefore it compresses much faster.

Our reasoning for applying the additional gzip compression
is a matter of in-memory querying vs storing on secondary
memory. A non-gzipped compressed graph is easily queryable
but takes up more memory. Once the user is done querying the
graph, they may gzip the structure and store it in secondary
memory.

As expected, gzipping ABT and BLC shrinks the size gap.
This is best shown in the Friendster graph, where the gap
shrinks from 2GB to 0.1GB. The best explanation for this
occurrence is that ABT is more susceptible to gzip due to the
runs of 0s indicating the compressed sections of the adjacency
matrix rows.

TABLE I: The dataset stats

Directed? —V— —E— #Reciprocal Edges
Facebook FALSE 4039 88234 88234
Friendster FALSE 65608366 1806067135 1806067135

LiveJournal TRUE 4847571 68993773 26142536
LiveJournal(com) FALSE 3997962 34681189 34681189

NotreDame TRUE 325729 1497134 407026
Pokec TRUE 1632803 30622564 8320600
Twitter TRUE 81306 1768149 425853

TABLE II: Compressed graph sizes

.txt .txt.gz ABT ABT.gz BLC BLC.gz
Facebook 835KB 214KB 96.45KB 82KB 110.32KB 93KB
Friendster 31GB 8.2GB 7.7GB 5.3GB 5.7GB 5.2GB

LiveJournal 1.1GB 248MB 224MB 168MB 139.98MB 122MB
LiveJournal(com) 479MB 119MB 111.17MB 82MB 110.21MB 95MB

Pokec 405MB 127MB 110.89MB 82MB 70MB 64.MB
Twitter 20MB 6.1MB 4.8MB 3.7MB 3.3MB 3.1MB

Table II shows a comparison among the sizes of the raw graphs, our ABT compression, the BLC benchmark, and all
of their respective gzipped files. The .txt files are the original edge list representations of the graphs. The .txt.gz are

those files after being gzipped.

TABLE III: Compression times

ABT BLC
Facebook 0.32s 1.1s
Friendster 4.1h 10h

LiveJournal 8.6m 18.1m
LiveJournal(com) 4.0m 11.4m

Pokec 4.3m 8.9m
Twitter 10.9s 26.3s

The data in Table III shows the total run time of both the ABT and BLC algorithms on each graph. Clearly, the run
times depend on the size of the input graph.

TABLE IV: Compression memory usage

txt → ABT gz → ABT txt → BLC gz → BLC
Facebook 931KB 310KB 3027KB 2406KB
Friendster 39GB 17GB 58GB 36GB

LiveJournal 1324MB 472MB 1818MB 966MB
LiveJournal(com) 590MB 231MB 920MB 560MB

Pokec 516MB 238MB 711MB 433MB
Twitter 25MB 11MB 38MB 24MB

In Table IV, we list the different memory requirements for running our algorithms. Not only does it show that ABT
requires less memory than BLC, but it also shows the benefits of loading directly from a gzipped graph file.

TABLE V: Edge existence execution times

ABT (ms) BLC (ms)
Facebook 0.0008 ± 0.0016 0.009 ± 0.017
Friendster 0.0011 ± 0.0026 0.037 ± 0.091

LiveJournal 0.0002 ± 0.0006 0.067 ± 0.12
LiveJournal(com) 0.0003 ± 0.0006 0.007 ± 0.02

Pokec 0.0008 ± 0.0016 0.011 ± 0.0126
Twitter 0.0011 ± 0.003 0.008 ± 0.011

Table V shows the average edge query execution times, along with their standard deviation. All times are in
milliseconds.

TABLE VI: Neighbor query execution times

ABT (ms) BLC (ms)
Facebook 0.0009 ± 0.0017 0.010 ± 0.017
Friendster 0.002 ± 0.0025 0.039 ± 0.089

LiveJournal 0.0006 ± 0.0008 0.067 ± 0.11
LiveJournal(com) 0.0005 ± 0.0009 0.008 ± 0.026

Pokec 0.0012 ± 0.002 0.012 ± 0.0133
Twitter 0.0012 ± 0.003 0.009 ± 0.012

Table VI is the same as Table V, but for the neighbor query instead.

TABLE VII: Add edge execution times

ABT (ms) BLC (ms)
Facebook 0.0052 ± 0.012 -
Friendster 0.012 ± 0.073 -

LiveJournal 0.0036 ± 0.0088 -
LiveJournal(com) 0.0028 ± 0.0054 -

Pokec 0.0064 ± 0.017 -
Twitter 0.0072 ± 0.014 -

Again, Table VII is the same as Table V but for streaming
access times. Note that since BLC is not a streaming

compression, it does not have any entries.

TABLE VIII: Comparison with Slashburn graphs
(bits-per-edge)

ABT ABT.gz BLC BLC.gz SB
LiveJournal 26 19.5 16.2 14.15 16.5

Barabasi 17.2 8 20.8 13.36 8.5

Additionally, we provide Table VIII as a quick comparison
with Slashburn [9]. The size metrics are in the traditional

bits− per − edge.

Next, we report that ABT uses much less memory during
compression than BLC. This is obviously because ABT does
not require an intermediate structure in order to efficiently
compress. This benefit is massive, as many techniques are
restricted to smaller graphs due to the larger graphs requiring
too much memory. This fact, coupled with our new ability
to also compress directly from the gzipped edge list file,
guarantees minimal memory overhead.

Finally, since we use gzip to improve our results, we also
include a compression comparison with Slashburn [9]. This
is because Slashburn is technically a re-ordering algorithm
that uses gzip to compress blocks in the adjacency matrix
that formed as a result of the re-ordering. For the sake of
consistency with Slashburn’s paper, we present the results
using the traditional bits-per-edge metric.

B. Query operations

Our ABT structure facilitates two query operations, the edge
query and the neighbor query. These are also the two queries
supported by BLC.

Since both compression techniques are node-centric, we can
use indexes for fast access to each node. For ABT, once the
node of interest has been navigated to, we immediately begin
reading the compressed tree. If it is an edge query, we stop
when we find the edge, or when we find a compressed node
that indicates that the edge does not exist. If it is instead a
neighbor query, we must read the entire tree.

Similar to ABT, BLC may also use indexes to jump to the
node being queried. However, the decoding process is more
complicated than reading our simple tree. It not only involves

back tracing the copy lists, but also many integer decodings.
Thus, on average, ABT outperforms BLC on both the edge
and neighbor queries.

The neighbor query is essentially the same as the edge query
for both ABT and BLC. Just as ABT requires the entire tree
to be read, BLC requires that the entire adjacency list be read.
Though again, BLC’s neighbor query suffers from the same
problem that its edge query has with the copy lists. Therefore,
since the queries are so similar, we can see that their access
times are nearly identical but with higher variance.

C. Streaming operations

As described earlier, our compression method supports the
streaming operation. That means that we are able to directly
add/delete edges into the compressed structure without having
to completely re-compress the graph. Conversely, BLC does
not support this operation, mainly due to its incorporation of
copy lists.

In Algorithm 4, we state that the streaming process is
identical to the edge query operation. The only difference
is that once we have navigated to the correct node, we
may decompress or compress it by adding or removing the
appropriate bits respectively.

By comparing Table V and Table VII, we see that although
the edge query times are clearly faster that the streaming times,
there is still a direct relationship between them. Since both
operations navigate the tree in the same manner, the gaps
between times are due to the actual cost of moving bits in
the bitstring.

VI. CONCLUSIONS

In this paper, we have presented a novel, queryable, stream-
ing social network compression using an indexed array of
compressed binary trees. We build this structure directly
from the graph’s gzipped edge list text file without using
any intermediate structure such as an adjacency list. These
two techniques guarantee minimal memory overhead. Our
compression also supports two queries, namely the edge
and neighbor queries. Our approach facilitates the dynamic
addition or removal of (streaming)edges from the compressed
structure without having to completely re-compress the graph.

We also provide various comparisons among our compres-
sion, Backlinks [4] (as a benchmark), and Slashburn [9].
These comparisons use metrics such as compression size,
time to compress, memory usage, and query times. Our basic
query operations run, on average, 10 times faster than our
BLC benchmark and our compression ratios exceed Slashburn
compression. Because our technique is for streaming graphs,
our compression ratios are less than BLC which is to be
expected. Further work is being envisioned to improve the
algorithms in [11], [9] using ideas presented in this work.

REFERENCES

[1] http://www.cnbc.com/id/102610670, 2015.
[2] Micah Adler and Michael Mitzenmacher. Towards Compressing Web

Graphs. In Proceedings of the Data Compression Conference, DCC ’01,
pages 203–212, Washington, DC, USA, 2001.

[3] P. Boldi and S. Vigna. The Webgraph Framework I: Compression
Techniques. In Proceedings of the 13th International Conference on
World Wide Web, WWW ’04, pages 595–602, New York, NY, USA,
2004. ACM.

[4] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher,
Alessandro Panconesi, and Prabhakar Raghavan. On Compressing Social
Networks. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’09, pages
219–228, New York, NY, USA, 2009. ACM.

[5] P Elias. Universal codeword sets and respresentations of the integers. In
IEEE Transactions on Information Theory, pages 194–203, Piscataway,
NJ, USA, 1975. IEEE Press Piscataway.

[6] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. PEGA-
SUS: A Peta-Scale Graph Mining System Implementation and Observa-
tions. In Proceedings of the 2009 Ninth IEEE International Conference
on Data Mining, ICDM ’09, pages 229–238, Washington, DC, USA,
2009. IEEE Computer Society.

[7] Chinmay Karande, Kumar Chellapilla, and Reid Andersen. Speeding
Up Algorithms on Compressed Web Graphs. Internet Mathematics,
6(3):373–398, February 2009.

[8] Panagiotis Liakos, Katia Papakonstantinopoulou, and Michael Sioutis.
Pushing the envelope in graph compression. CIKM ’14, pages 1549–
1558, November 2014.

[9] Yongsub Lim, U. Kang, and C. Faloutsos. SlashBurn: Graph Compres-
sion and Mining beyond Caveman Communities. Knowledge and Data
Engineering, IEEE Transactions on, 26(12):3077–3089, Dec 2014.

[10] Sebastian Maneth and Fabian Peternek. A Survey on Methods and
Systems for Graph Compression. 6(3), 2015.

[11] Hossein Maserrat and Jian Pei. Neighbor Query Friendly Compression
of Social Networks. In Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’10, pages 303–325, New York, NY, USA, 2010. Springiner-Verlag
New York.

[12] Michael Nelson, Sridhar Radhakrishnan, Amlan Chatterjee, and Chandra
Sekharan. On compressing massive streaming graphs with Quadtrees.
In Big Data (Big Data), 2015 IEEE International Conference on, IEEE
BigData ’15. IEEE Computer Society, 2015.

[13] Keith H. Randall, Raymie Stata, Janet L. Wiener, and Rajiv G. Wick-
remesinghe. The Link Database: Fast Access to Graphs of the Web.
In Proceedings of the Data Compression Conference, DCC ’02, pages
122–131, Washington, DC, USA, 2002. IEEE Computer Society.

[14] Stanford Network Analysis Project. Stanford Large Network Data
Collection. https://snap.stanford.edu/data/index.html, 2011.

	Queryable Compression for Massively Streaming Social Networks
	Recommended Citation

	tmp.1503866424.pdf.9gppj

