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Abstract

This paper presents a CAD tool, SystSim, to ease the design of systolic systems. Given a high-
level, functional description of processors, and a high-level description of their interconnection, SystSim
will perform simulations and provide graphical output. SystSim will also perform transformations such
as retiming, which eases use of the methodology of Leiserson and Saxe of designing a system with
broadcasting and then obtaining a systolic system through retiming.

*Work supported in part by NSF grant CCR-9109550.



1 Introduction

This paper presents a CAD tool for designing systolic (and semisystolic or synchronous) systems. Since
systolic arrays were first proposed by Kung and Leiserson[4], their suitability to the VLSI technology has
attracted many researchers’ interests. However, the design and analysis of systolic arrays is difficult and error
prone, so that various design methodologies[1, 5, 8, 10] and CAD tools[2, 11, 13, 14] have been proposed.

This paper discusses a CAD tool to support the design methodology proposed by Leiserson and Saxe(8, 9]
as well as additional transformations that may be used to optimize systolic systems [3, 7]. The basic method-
ology of Leiserson and Saxe is to first design a semisystolic or synchronous system that is not necessarily
systolic. While a systolic system may be viewed as a collection of processors (combinational logic) connected
by communication edges, with each edge containing at least one register (clocked memory), a semisystolic
system may, in general, include edges that contain no registers. (A semisystolic system must still meet the
requirement that there is no cycle in the communication graph that is entirely without registers.) It is often
easier to design a system with a specified functionality that is merely semisystolic, because such systems
can implement a broadcast, an essentially simultaneous communication of a datum to all processors in the
system. That is, despite staying within the usual systolic model that limits each processor to a constant
number of “local” connections, independent of system size, broadcasts can be accomplished in a semisystolic
system by having signals ripple through the system from one processor to another unimpeded by registers.
Once the semisystolic system has been designed, it can be automatically transformed to a systolic system
by the technique of retiming [8, 9].

SystSim is geared towards two major goals. First, it provides tools for describing arbitrary semisystolic
systems in a concise hierarchical fashion and then simulating their behavior. Instead of using a standard
logic simulator and building a system up from switch-level or gate-level descriptions, it is possible to start
from a higher-level functional description of modules and compose new subsystems from previously described
subsystems. Tools are provided to ease the composition of regular arrays of processors, but less homogeneous
systems may also be composed. As an important aid to the simulation process, SystSim provides some
graphical output capabilities that allow the user to view the data as it passes through the system from one
time step to the next. Second, in addition to the tools for describing and simulating semisystolic systems,
various automated transformations are provided. While some of these capabilities are still being programmed
for inclusion in the final version of this paper, SystSim currently will perform retiming to meet a specified
clock period when possible. It also supports the simple technique of slowdown, which is often useful in
conjunction with retiming. The final version of the paper will also implement such operations as hold-up,
interlacing, coalescing, and the use of the basic techniques for such purposes as maximizing clock rate,
maximizing throughput, and minimizing latency. [3, 7, 8, 9].

Section 2 of this paper gives a general description of the capabilities of SystSim, Section 3 provides a
simple example, and Section 4 provides concluding remarks.

2 SystSim Capabilities

This section describes the capabilities of SystSim. We begin with a discussion of how the user inputs a
system specification. Then we discuss the simulation and transformation capabilities.

2.1 Specification of User System

As mentioned in the introduction, the user inputs a system description in a concise hierarchical fashion. The
general form for describing a type of bottom-level processing element (PE) is as follows:

(defpe pe-type input list output_list delay compute_def self_loops) ,

where pe_type is a name for the type of PE, input_list is the list of the input ports of the PE, output_list
is the list of the output ports of the PE, delay specifies the time delay of the PE, compute_def is a list of



lisp forms that compute the PE outputs from the inputs, and self_loops is described below. In the current
implementation, it is assumed that all the internal paths from input ports to output ports of a PE have the
same delay. This delay can be taken as the maximum delay occurring in the PE, at the cost of a bit of
conservatism in the constraints on the clock period.

(As an aside to LISP experts, defpe, like defglue and deflinarray below are “macros”, i.e., the argu-
ments are not evaluated. This is of significance in terms of the exact syntax used in the example system
description of Section 3, but we will avoid getting bogged down in a CoMMON Lisp tutorial. Any doubts
about the syntax for system specification should be cleared up by the example; in this paper, additional
knowledge about CoMMON LisP should be necessary only to understand the exact form of the functional
specification for the processors. )

It should be noted that our general approach is to define types of PEs and to build up definitions of
larger subsystems from previously defined PEs or subsystems. After a subsystem has been defined, instances
(copies) may be created and named by using the general function create in the following form:

(create sys_name sys-type) .

The last argument to defpe, self-loops, is the name of a function for creating communication edges that
link an input and output port of the same instance of the PE. Such functions are defined in the same way
as functions to create communication edges between two different subsystems. The general syntax for these
“gluing functions” is

(defglue glue_name glue_def)

where glue_name is a name for the glue function. At present, glue_defis to be just a list of invocations of the
function edge; later we will allow it to be more general LIsP code using the edge function. An invocation of
the function edge is in the following form:

(edge tail_sys tail_port head-sys head_port num_regs) .

Such an invocation creates an edge directed from the port named tail_port on the subsystem tail_sys to the
port named head_port on the subsystem head-sys, but defglue is designed so that the “gluing function” can
be applied to many different pairs of subsystem instances. defglue creates a function of two arguments
to be known as subsysi and subsys2 within glue_def. (When a gluing function is given as the self-loops
argument of defpe, the two arguments it will later be applied to will be the same PE.) Hence, an edge from
the first of the two subsystems being connected together to the second can be written as

(edge subsys1 tail_port subsys2 head_port num_regs) .

(The syntax for defining communication edges is slightly verbose with respect to the example system
definition in Section 3, but it will allow implementation of a potentially useful capability for accessing ports
that have not been assigned distinct names within the top-level subsystems being connected. For example,
it may be desirable to access a port that would be described in English as “the port named foo on the 5th
element of the subsysI”, where subsysl is a linear array of other subsystems.)

Once subsystems and gluing functions have been defined, subsystems can be connected in various ways to
define larger subsystems. For example, we may connect several into a linear array, square array, or hexagonal
array; or we may simply connect arbitrary pairs of subsystems in building up an irregular structure. We
will complete implementation of all of these connection methods and possibly others for the final paper; at
present we restrict attention to the composition of linear arrays, which has already been implemented. In
order to describe a linear array, it suffices to say

(deflinarray sys-type subsys-type glue_fn N) ,

where subsys_type is the type of subsystem the linear array is built from, sys_type is a name for this type of
linear array, glue_fn is the gluing function to use for connecting adjacent subsystems, and N is the number
of elements in the array. ;



2.2 Simulations and Transformations

After a semisystolic system has been created, built-in functions of SystSim can be invoked to initialize the
system (by giving all the data values a special value representing an undefined state) and to tick the clock.
Each time the clock is ticked, all the data values are updated. (A topological sort of the portion of the
communication graph involving edges with no registers is performed. Then the processor outputs can be
computed in an appropriate order to yield valid results.) It is also straightforward to set values of input
ports of the system and read values of output ports. The progress of the simulation can also be viewed
graphically as described in Section 2.3.

The most interesting of the basic techniques for transforming systems is retiming. Retiming involves
rearranging the registers in the system without affecting the input/output behavior of the system as a
whole. Retiming is the main tool in transforming a nonsystolic system to a systolic system under the
methodology of Leiserson and Saxe[8, 9]. Often, to obtain a systolic system, it is also necessary to apply the
technique of slow-down, which simply involves duplicating (or triplicating, etc.) every register in the system.
It is also possible to consider more general tasks than transforming a nonsystolic system to a systolic one.
Specifically, we might like to find that retiming of a semisystolic system that minimizes the clock period,
where the clock period must be long enough to accommodate the maximum sum of processing delays among
communication paths that contain no registers. In SystSim, we have implemented a function cp to compute
the smallest allowable clock period without retiming and a function meetcpspec that retimes to meet a
specified clock period if that specification can be met. The relatively trivial operation of slow-down has
also been implemented. SystSim allows specification of arbitrary delays for processing elements, though the
simple example in Section 3 uses only elements of delay 1. The algorithms implemented in SystSim are
efficient algorithms for the general-delay case as derived by Leiserson and Saxe[9]. Soon, we will implement
additional operations such as hold-up, interlacing, coalescing, and higher-level operations for such purposes
as minimizing clock period, maximizing throughput, minimizing latency, and exploring the tradeoffs among
these goals [3, 7, 8, 9]. :

2.3 Graphical Output

Viewing snapshots of the system is a natural way to arrange the movement of data and verify the behavior
of systolic (and semisystolic) systems. However, it is tedious and error prone to track down the snapshots
of complex systems with a pen and a paper, so SystSim automates this task.

Screen 1 shows a typical view of the computer screen which the user of SystSim works on. In the
window at lower left, the user initiates the lisp interpreter, loads SystSim, and loads or types definitions of
semisystolic systems. Then he can create and simulate systems, obtaining the snapshot display in the large,
upper window. The snapshot window displays the current data values of all the ports. (Some of the data
values in Screen 1 are truncated for lack of space, but there is also a capability for zooming in part of the
display.) Registers are shown as small black boxes on the communication edges.

Any simulation, transformation, or viewing commands are generally initiated by typing in the window
at lower left. For example, the user can type commands to tick the clock or try to meet a clock period
specification, or he can enter arbitrary Lisp code invoking elementary functions of SystSim. Functions we
did not yet discuss since they relate specifically to the graphical output are (show-elem) and (zoom). After
invoking (show-elem), the user can select an element in the display with the mouse and see the names of
the ports for that element, as is also shown in Screen 1. After (zoom) is invoked, the mouse is used to select
a rectangular region of the display for enlargement, as illustrated in Screen 2. (Screen 2 also illustrates the
selection of a different element via the (show-elem) command.) When the display has been zoomed, the
mouse can also be used to scroll the display or zoom back out. (Screen 2 shows a scroll bar for horizontal
scrolling and a button for zooming out. Scrolling has not been completely implemented yet, but the final
implementation will include horizontal and vertical scrolling.)



3 An Example: A Priority Queue

This section illustrates the capabilities of SystSim with the example of a priority queue. We begin by
explaining the design and the description for SystSim of a semisystolic priority queue (which is not systolic).
Then we show the results of some simulations and transformations, including making the system systolic.

3.1 Priority Queue Description
A priority queue is a data structure which supports the following two operations:

e INSERT(x) : Insert a key x into the queue.
e EXTRACT : Extract the smallest key from the queue.

In our example, we will use character strings for the keys, so that smallest means alphabetically earliest.

It is relatively easy to come up with a convincing design for a semisystolic priority queue in the form of |
a linear array, as sketched by Leiserson[6, Sec. 3.2.1]. In the design described here, priority queue processing
elements are connected as shown in Screen 1. (The hosts at the ends of the arrays are used to control the
external interfaces of the priority queue.) The smaller picture of a single PE shows the names of the input
and output signals. The basic organization is to have each processor store a key as internal state (hence
the self loop with ports cout and cin, which necessarily contains a register) and to also allow processors
to pass a character to the left (via bout) or right (via aout). In addition, there is a signal (represented by
extractin and extractout) passed through the system that is 1 (true) to tell a processor to do its part for
an EXTRACT operation and 0 (false) to tell it to do its INSERT behavior. (We will assume that the queue
never idles, since idling can be achieved by inserting an element larger than the maximum allowed for true
data. In our example, we use “ZZZ” for this special “infinite” data value.)

It is a great convenience, to be able to broadcast the signal telling processors which operation to perform,
so that they can all perform a single queue operation together, rather than figuring out how to orchestrate the
behavior of processors to perform parts of different queue operations at any given time. Hence, extractin
is simply passed straight through to extractout by each processor. When the operation is extract, the
behavior of the processors is particularly simple. Given that the semisystolic system will maintain the
invariant that the stored keys of the processors as given by the cin values are in sorted order, we simply
need each processor to pass its stored key to the processor on its left and to replace its stored key with the
one being passed in from the right. Since keys only need to be passed one step to the left, we put a register
on the leftgoing communication edges. For insertion, it is again helpful to use rippling logic. The key to be
inserted is input at the left end of the array, and each processor passes to the right the larger of its stored
key and its received key and stores the smaller of the two.

In total, the operations performed by each processor are as follows. (We include here a slight additional
twist to improve performance. Instead of waiting for an extract operation to pass data to the left we finish
any operation by placing the newly computed stored key on the leftgoing communication edge as well, so
that it will be immediately available to the processor on the left at the beginning of the next cycle. Viewing
the graphical simulations discussed below should give the reader fuller confidence in the correctness of this
approach.)

extractout — extractin

if extractin = 1 then
cout — bin

else
cout «— min{ain, cin}
aout — max{ain, cin}

endif

bout — cout



(defglue PQPESELFGLUE
(edge subsysi ’cout subsysi ’cin 1)

)

(defglue PQPEGLUE
(edge subsysl ’extractout subsys2 'extractin 0)
(edge subsysi ’aout subsys2 ’ain 0)
(edge subsys2 ’bout subsysi ’bin 1)
)

(defpe PQPE (ain bin extractin) (aout bout extractout) 1
( (setf extractout extractin)
(cond ( (eq 1 extractin)
(setf cout bin) )
( (eq O extractin)
(cond ( (string-lessp ain cin)
(setf cout ain)

(setf aout cin) )
%
(setf cout cin)
(setf aout ain) )
(setf bout cout)
)
' PQPESELFGLUE

)

(deflinarray °’PQ °’PQPE ’PQPEGLUE 6)

Figure 1: The SystSim description of a semisystolic priority queue of length 6

Based on the design, we have just given for a semisystolic priority queue, the complete SystSim description
for a priority queue of length 6 is as in Figure 1.

At present, we have also done a bit of ad hoc coding for the two independent hosts at the end of the array,
which simulate a single host that has two buffers, one at each side of the queue. (Some of the host generation
will probably be automated in a later implementation.) Host2 inserts the special “infinity” element of the
input data set into the queue so that the queue can be placed into a well-defined state by initially performing
a series of EXTRACT operations. Hostl inserts and extracts data and controls the operation of the queue
by changing the output signal of its extractout port. We have also defined two Lisp functions extract
and insert for convenience. The former performs the number of EXTRACT operations specified by the
argument to the function. It sets extractout of Hostl to 1, and runs the appropriate number of clock
cycles. The latter function takes an argument that is placed on aout of Hostl, sets extractout of Hostl to
0, and runs the simulation. For convenience, we have coded extract and insert to look up the amount of
slowdown applied to the system and to run the corresponding number of clock cycles. We have also arranged
that the bin value for Host1 is printed after every clock cycle under the label “OUTPUT FROM PRIORITY
QUEUE TO HOST1”.

3.2 Priority Queue Simulation and Transformation

The initial priority queue created in the Section 3.1 is one with broadcasting and a clock period of 6 (Screen 1).
The clock period of 6 is required by the need for signals to ripple through 6 processors on a single clock



cycle. To begin the simulation of the initial priority queue, the queue was reset with EXTRACT operations.
(“ZZZ” was used as a queue entry which is to be larger than every other one.) Then data were inserted and
extracted as follows:

(insert ’usa)
(insert ’korea)
(insert ’brazil)
(insert ’china)
(insert ’spain)
(insert ’japan)
(extract 6)

As indicated earlier, each INSERT and EXTRACT operation corresponds to one clock cycle. At the end
of each simulation cycle, the output from the queue to the left host is the current minimum queue entry.
This is the crucial thing to look at in verifying valid operation. Screen 1 shows the outputs of SystSim after
6 data were inserted. As mentioned before, some of the data are truncated, but the full values can be seen
by zooming in as in Screen 2. Screen 3 shows the outputs of SystSim after the final 6 EXTRACT operations.
(Data items represented by «» are undefined, i.e., floating. We could have continued to place some data
item on the ain and aout lines during extraction, but this would just confuse the picture.) In the window at
lower left, the output from the queue to Host1 after each EXTRACT operation is displayed. It was observed
that the host computer accessed the data at each clock tick correctly, but the clock period of 6 is undesirably
long.

In order to improve the clock period, the queue was retimed to meet a clock period specification of 2.
We initialized the system and did

(meetcpspec 2.)

Then the same simulation procedure as used above was performed again. In this second simulation, the
queue intervals look different but the same behavior was obtained from Hostl’s point of view. Screen 4
shows how the registers were rearranged by the retiming and the results of the second simulation. Each
operation still took one clock tick. It can be observed that the outputs from the queue to Hostl did not
change, but the required clock period had been reduced to 2 units.

As it turns out; 2 is the best clock period that can be obtained without applying slow-down, but we can
see what happens if we try for a shorter clock period by inputting: :

(meetcpspec 1.)

This clock period specification cannot be met, but some retiming is done in the process of trying as shown in
Screen 5. SystSim signaled the failure as shown in the window at lower left. This system was also simulated,
and again, the queue internals look different, but its behavior was all the same to Hostl.

Finally, the system is made 2-slow (Screen 6), and the system is successfully retimed to obtain a clock
period of 1 by inputting:

(slowdown 2)
(meetcpspec 1.)

Finally, the systolic system we have just obtained was simulated. Screen 7 shows part of the system after
6 date were inserted. The data extracted by Hostl during the 6 EXTRACT operation is shown in Screen 8.
Two clock cycles are now run for each queue operation, and again Host1 sees the same thing (except that it
takes twice as long, so that only every other output is relevant). '
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4 Conclusion

A CAD tool for designing systolic systems has been implemented and proved to be useful in the example of
designing a systolic priority queue. One can verify that the systolic priority queue operates correctly, but it
would have been more difficult if an attempt had been made to design it directly instead of going through
the approach of transforming a semisystolic system. The contrast is even more marked with the inclusion
of additional operations such as deletion or the use of variable-length keys[6]. In fact, even the semisystolic
design becomes more convincing after simulation.

There are many capabilities still to be added to SystSim. We intend to include facilities for defining
interconnection topologies other that linear arrays, and to include other means of manipulating system
descriptions. For example, there should be functions to return the length of a system that is a linear array
of subsystems or to refer to an element in the array, just as is the case for ordinary arrays. We also intend
to include additional capablities for system analysis and transformation. Finally, it may be desirable to
implement the more general delay model touched upon by Leiserson and Saxe [9], in which the delay in a
processor may be different for each input-output path.
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