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Weiss,Senior Member, IEEE

Abstract

In this work a formation flying based architecture is presented within the context of a distributed antenna array.

An artificial potential function method is used to control the formation whereby deviation from an all-to-all interaction

scheme and swarm shaping are enabled through a self-similarconnection network. Introduction of an asymmetric term

in the potential function formulation results in the emergence of structures with a central symmetry. The connection

network then groups these identical structures through a hierarchical scheme. This produces a fractal shape which

is considered for the first time as a distributed antenna array exploiting the recursive arrangement of its elements to

augment performance. A 5-elementPurina fractal is used as the base formation which is then replicated a number of

times increasing the antenna-array aperture and resultingin a highly directional beam from a relatively low number

of elements. Justifications are provided in support of the claimed benefits for distributed antenna arrays exploiting

fractal geometries. The formation deployment is simulatedin Earth orbit together with analytical proofs completing

the arguments aimed to demonstrate feasibility of the concept and the advantages provided by grouping antenna

elements into coherent structures.

Index Terms

Autonomous Formation Flight, Fractal, Artificial Potential Functions, Antenna Array, Hierarchical Network,
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I. I NTRODUCTION

The value of exploiting formation flight techniques for space science, remote sensing and telecommunications

applications is gaining popularity [1]–[5]. So far proposed formation flying concepts have been based on a relatively

low number of cooperating spacecraft, as in the case of Lisa,Proba-3 or StarLight missions [6]–[8]. The exploitation

of a formation flight architecture with an increased number of elements which maintains an acceptable level of

system complexity can be pursued through the control of autonomous and independent agents as a single group

entity [2], [9].

Coupling reliable formation flying capabilities with the possibility of producing complex patterns using spacecraft

will enable the potential of grouping a number of antenna elements into a cooperative structure. This has long been

known and applied in antenna array theory [10], [11] and proposed at conceptual level for space applications [12]–

[14].

The key point in the exploitation of formation flying techniques for the deployment of an antenna array is that

the performance of a homogeneous pattern of array elements can be matched or surpassed by fractal geometries as

per [15] and [16]. Fractal geometries as defined by [15] can beconsidered self-similar structures propagated from a

core initiator through a number of stages of growth by an identicalgenerator. Application of fractal geometries in

antenna array design has mainly focussed on single structures, that is to say one device housing the antenna array.

In this context each satellite houses an antenna which contributes to form the fractal pattern. Hence, the problem

turns into producing a fractal pattern from a formation of spacecraft which provides a platform for a number of

array elements able to exploit the fractal pattern characteristics.

From a control point of view this can be realised through artificial potential functions (APFs) which represent a

popular control method particularly suited to large structures of autonomous agents, such as discussed in e.g. [17]–

[19]. The way to obtain complex formations through APFs, while maintaining a high degree of reliability and

analytically provable characteristics, can be revealed through the design of a limited connection network. Network

characteristics reflect on the final pattern deployed through APF acting along its edges. In particular when the

connection network presents self-similarity characteristics, i.e. the same network structure repeats for nodes and

groups of nodes, this impacts not only on the final formation but also on the stability and robustness properties

which are the same when considering the control of single spacecraft or groups of those. As consequence the overall

control architecture result is scalable and possesses a certain degree of fault tolerance.

From the array point of view, self-similarity and sparseness lead to a number of benefits — similar performance

in operation across a number of frequencies becomes possible due to the repetitive nature of the array pattern as

per [15] and [16], array performance degrades gracefully with element failure and finally equivalent performance

can be achieved for a fraction of the number of elements used in square lattice arranged arrays [20].

This paper proposes the deployment of a distributed fractalantenna array across a large group of satellites. Previous

works, [14] and [13], have discussed the benefits of flying an arbitrary formation of distributed antenna elements to

take advantage of the lower risks and costs associated with anetwork compared to a single large element. On the
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other hand there are examples in literature that investigate the benefits of a fractal shaped monolithic antenna [15].

The present work merges for the first time the concepts of distributed antenna arrays, fractal antennas and formation

flying. The inherent control complexity is reduced through joint control techniques making use of APF and a self-

similar communication network. In a similar fashion the overall antenna gain and performance is increased, even

though when compared to a similar performing planar structure a reduced set of radiating elements is used.

A description of the theoretical background is provided in Sec. II and is followed by a more detailed mathematical

analysis related to the specific problem in Sec. III. The topics covered include: the control method in terms of the

APF characteristics and communication network; as well as an overview of fractal antenna theory, its application

to a specific geometry and the resulting performance. In Sec.IV numerical simulations are performed for the case

of an architecture in geostationary orbit although the set of equation used is valid in general for circular orbits and

nothing prevents the concept from being applied to any otherorbit. Discussion and Conclusions follow in Sec. V

and Sec. VI respectively. This paper demonstrates the potential of implementing an innovative architecture based

on multiple autonomous spacecraft forming a fractal array.

Notation. In this paper, vectors and matrices are denoted by lowercaseand uppercase bold face variables,

respectively. For two vectorsx andy, x · y is the scalar product. The first and second derivatives of a function

x with respect to time are, respectively, denoted byẋ and ẍ. Finally, a linear approximation of a functionf at a

given point is represented bỹf .

II. M ETHODOLOGY

A group ofN spacecraft is considered, divided into subgroups ofn agents such thatN = nk with k ∈ N
+. It is

assumed that each spacecraft carries an element of the arraywhere the pairspacecraft-array elementwill be named

from here on as agent.Spacecraftandarray elementwill instead be used when referring to these components of the

complete system. The agents are connected according to a nondirectional graph described by an adjacency matrix

A ∈ N
N×N containing binary elementsaij , with i, j ∈ [1, N ]. The spacecraft are controlled through pairwise APFs

which act only along the edges of the graph. There is no globalposition or orientation of the agent formation, but

within the formation, relative positions are considered for agents and groups of agents while relative orientation

is considered for groups of agents only. This implies that the single array elements are pointed correctly or, as

assumed here, are isotropic sources.

This section shows how a self-similar formation can be obtained from mutually interacting agents, and how the

array performance can be analysed for such a system. For thispurpose artificial potential function characteristics

and communication graph topology are described. The fundamental concept of applying fractal geometries to the

design of antenna arrays using a self-scaling method is described for the case of planar configurations only, although

similar arguments can be applied to linear and 3D formations.

July 18, 2013 DRAFT



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 4

A. Artificial Potential Functions

The spacecraft are controlled through artificial potentialfunctions (APFs) operating along the edges of a com-

munication network. The APFs operate on a pairwise basis, that is they do not depend on position or velocity of

the agents but only on their state relative to the other spacecraft with which they are connected; in particular the

Morse potential is used. This is composed of an attractive component

Ua
ij = −Ca

ij exp

(

−|xij |
La
ij

)

(1)

and a repulsive component

U r
ij = Cr

ij exp

(

−|xij |
Lr
ij

)

, (2)

whereCa
ij andCr

ij are constants regulating the magnitude of the potential, while La
ij andLr

ij are constants related

to the attractive and repulsive scale lengths. The subscripts i, j refer to the potential sensed by agenti because of

interaction with agentj. The relative position vector of agenti with respect to agentj is denoted byxij . The control

law is completed by a virtual viscous-like damping in the form σvi, with σ being a positive damping constant to

be defined later andvi representing agent velocity. This control law together with the hypothesis of no external

disturbances and idealised sensing and actuation capabilities results in the motion equations

ẋi = vi (3)

mv̇i = −∇Ua
i −∇U r

i − σvi , (4)

wherem defines the agent mass and is assumed the same for all agents, and

∇(·) = ∂(·)
∂xi

(5)

Ua
i =

∑

j

(aijU
a
ij) and U r

i =
∑

j

(aijU
r
ij) , (6)

with aij being the entry of the adjacency matrix to be defined next.

B. Adjacency Matrix

As reported in Sec. II-A, agents communicate through a network of links. In general in a network system studied

through graph theory an adjacency matrix contains non-zeroentries in the(i, j) location whenever there is a directed

edge from nodei to nodej, indicating a communication link between the two agents represented by these nodes.

Moreover the matrix is not weighted, i.e. the elementsaij ∈ {0, 1} are binary. The strength of the interactions is

provided by the APF via (6). While the proposed adjacency matrix is symmetric, i.e. the graph is not directed, this

does not imply that the virtual interactions amongst the agents are symmetric.

Within the adjacency matrixA for a system withN = nk agents, the edges belonging to fully connectedn-agent

subgroups formn × n submatrices along the block-diagonal. The remainder of thematrix contains links between

agents in thenk−1 different subgroups.
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Example 1. For the casen = 5 and k = 2, there are5 subgroups creating5 × 5 submatrices along the

diagonal of the adjacency matrix, as indicated in Fig. 1. Thecommunication between any pair of subgroups is

maintained through one linking agent per subgroup (the central one), accounting forn−1 connections each. Beside

that relative orientation of peripheral subgroups with respect to the central one is ensured by 1 linking agent per

peripheral subgroup connecting to the adjacent one in the central core.

Example 2. For the casen = 5 andk = 3, there are25 subgroups creating5× 5 submatrices along the diagonal

of the adjacency matrix. These ones are connected in groups of 5 as described in Example 1, and are represented

by the25× 25 squares along the diagonal of Fig. 2. The communication between any pair of25-agent subgroups

is this time ensured by groups of 5 agents that replace the single agents of Example 1.

The network is designed such that the peripheral nodes are weaker than the central ones. This means that loss of

control of one node due to loss of link is more likely for nodesthat belong to peripheral region of the formation,

hence they do not play as bridge between large portions of theensemble. This implies that the loss of some links is

more likely to produce the disconnection of a smaller and peripheral portions of the network than of a large portion.

Each node is in any case at least connected ton− 1 other nodes. When the number of generators increases, those

groups which were end-points for the previous generator become embedded and more firmly bonded into the larger

pattern. This ensures that in the most critical scenario theloss of at leastn− 1 links is needed for fragmentation

to occur. In Fig. 3 the node degree is reported for the adjacency matrix of dimension 125, that is the number of

links each node is connected to. Nodes are sorted from the central to the peripheral ones.

C. Fractal Electrodynamics

Based on the above control methods to shape a group of agents into a fractal geometry, this section addresses

their performance as an antenna. This is assessed by means offractal electrodynamics, which is defined as the

combined study of fractal geometries with electromagnetictheory and provides methods for the theoretical analysis

and synthesis of fractal antenna arrays. One of the key metrics used to evaluate antenna array performance is

directivity — it defines how the power radiated varies as a function of the angle of arrival when observed in the

antenna far field. Utilising the methods described in this section, specific fractal geometries and their directivity

will be addressed in Sec. III-D.

Since the focus of this work lies in the control of two-dimensional planar structures, only the design and analysis

of planar fractal antenna arrays is described. As the proposed fractal antenna array is part of a satellite constellation

whose aperture is small when compared to its orbit, Cartesian coordinates are used to describe it. Directivity, which

is generally derived from the product of the array factor [10] and the radiation characteristics of the individual

antenna array elements, is here only dependent on the array factor since isotropic antenna elements are assumed.

The array factor is a function of the geometry of the array andthe excitation phase. Varying the separation and/or

phase between the antenna elements allows the total field of the array to be controlled and alters the characteristics

of the array factor. Fig. 4 shows a symmetric planar array with uniformly spaced elements, separated by distances

dx and dy in the x- and y-directions. The array factor for such a symmetric planar array configuration has been
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Fig. 1. Adjacency matrix for the casen = 5 andk = 2, creating a group ofN = 25 agents. Non-zero entries are represented by dots.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

column index i

ro
w

 in
de

x 
j

Fig. 2. Adjacency matrix for the casen = 5 andk = 3, creating a group ofN = 125 agents. The self-similarity of the matrix can be observed.

The25-agent matrix of Fig. 1 is replicated now 5 times along the diagonal and the other entries of the matrix, grouped in5× 5 squares are in

the same positions as the links in the25-agent matrix.
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Fig. 3. Node degrees as number of links belonging to each node. A self-similar scheme can be observed with nodes in centralposition being

the most connected ones. In this scheme the maximum number ofconnections per node is 28.
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θ
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Fig. 4. Symmetric planar array in thex− y plane with inter-element spacings ofdx anddy , and definition of spherical anglesθ andφ for the

wavenumber vectork of a farfield source.

derived as [10] based on the weightingSmn of fractal elements,

Γ(ux, uy) =















S11 + 2
M
∑

m=2

(

Sm1 cos(mux) + S1m cos(muy) + 2
N
∑

n=2

Smn cos(mux) cos(nuy)

)

, M odd

4
N
∑

n=1

M
∑

m=1

Smn cos
(

(m− 1
2
)ux

)

cos
(

(n− 1
2
)uy

)

, M even,

(7)

whereby the array factorΓ(ux, uy) is expressed in dependency of a wavenumberk projected onto thex− y plane
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of the array, giving projection lengths weighted by the inter-element spacingsdx anddy,

ux = dx |k|(sin θ cosφ − sin θ0 cosφ0) (8)

uy = dy |k|(sin θ sinφ − sin θ0 sinφ0) . (9)

In (8) and (9),θ andφ are the angle of incident of a potential source illuminatingthe array,|k| = 2π
λ

the modulus

of the wavenumber depending on the wavelengthλ of the source, andθ0 andφ0 define the look direction of the

array.

Deterministic fractal arrays are constructed in a self-similar manner and consist of many smaller parts whose

shape resembles that of the overall object. They are formed by the repetition of a generating sub-array at scale one;

to construct higher scales of growth, repetitions of this small sub-array are used. Utilising (7) and the methodology

defined above, it is possible to construct and analyse a deterministic planar fractal array. The pattern of the generating

sub-array is achieved by switching elements of a fully populated symmetric array on or off according to

Smn =











1, if element (m,n) is turned on

0, if element (m,n) is turned off
, (10)

until the desired fractal pattern emerges.

Following (10), the thinned generating sub-array can be copied, scaled and translated to produce the final array.

Due to the recursive nature of the development procedure, deterministic fractal arrays created in this manner can

conveniently be thought of as arrays of arrays. The array factor for a deterministic fractal array may be expressed

in a general form given as a product of scaled versions of the same generating sub-array pattern [15],

ΓP (u) =

P
∏

p=1

Γfrac(δ
p−1u) , (11)

whereΓP (u) represents the array factor of the fractal generating sub-array resulting from the thinning of the

symmetric planar array, andu is the vector of dependent variables. The expansion factorδ controls how much the

array grows with each application of the generating sub-array and is inherited from the size of the symmetric planar

array prior to thinning. Further, the parameterP in (11) represents the scaling level/growth stage.

The directivityD(θ, φ) of an array measures the power radiated in a specific direction defined by spherical anglesθ

andφ, such as for the planar case in Fig. 4. While for single-element antennas the electrical and physical dimensions

require adjustment to achieve a steering towards specified directions, grouping individual antenna elements into

arrays can enable highly directional radiation pattern. For a planar antenna array with a symmetrical radiation

pattern, the directivity is given by

D(θ, φ) =
F 2(θ, φ)

1
4π

2π
∫

0

π
∫

0

F 2(ϑ, ϕ) sin(ϑ) dϑ dϕ

, (12)

whereF (θ, φ) denotes the radiation intensity of the antenna in the direction of the anglesθ andφ. For the case

of isotropic sources, where individual antenna radiation patterns are unity and the radiation intensity reduces to the

antenna array factorΓP (θ, φ) in (11), andF (θ, φ) = Γp(θ, φ) can be substituted into (12).
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By grouping a number of smaller distributed antenna elements it is possible to form a fractal antenna array.

The design and analysis of a fractal antenna array has been described above and provides the possibility to

increase directivity and steer the main beam of an antenna. This offers a number of benefits in the context of space

communications, including cost reduction and risk mitigation due to reduced number of antenna array elements.

Fractal arrays evaluated following the procedure detailedabove belong to a special category of thinned arrays.

Application of the pattern multiplication theorem to the analysis and design of planar fractal arrays is considered

in subsequent sections.

III. C ONTROL LAW AND FRACTAL ANTENNA ANALYSIS

In this section the characteristics of the control technique used to drive an ensemble of agents towards the

formation of a fractal pattern and the issues related to the design of a fractal shaped antenna array are considered. It

is first shown how asymmetry in attraction-repulsion potential leads necessarily to a central symmetry configuration.

It is then shown how the APF coefficients are calculated in order to get the desired distance between agents.

Analysis of the control law is completed by considering the nonlinear stability characteristics. Fractal antenna

design methodology is finally illustrated in detail for the case of aPurina fractal antenna array [15]. With reference

to Sec. II, from now on only the case of an initiator ofn = 5 elements is considered.

A. Central Symmetry Emergence

Central symmetry emerges at initiator level by means of asymmetry between the interactions of one single agent

with the group. This is obtained through a different value oftheLr
ij parameter along the directed edges connecting

the agent to the other 4 in the initiator structure. This is here explained by finding the conditions that make the

artificial potential derivatives null along two orthogonalaxes which are centred on the agent considered and define

the plane where the control is exerted. The out of plane motion is undertaken through other means and is explained

in Sec. IV. Considering the 5-agent scheme, given in Fig. 5, the first derivative of the artificial potential sensed by

agent 1 can be calculated for the regular pentagon formationpictured. Then the conditions that apply to the APF

coefficients in order to reach a stable equilibrium are deduced. APF derivatives can be calculated as

∂Ui

∂xi

=

n
∑

j=1

(

Ca
ij

La
ij

exp

(

−|xi − xj |
La
ij

)

−
Cr

ij

Lr
ij

exp

(

−|xi − xj |
Lr
ij

))

xi − xj

|xi − xj |
(13)

∂Ui

∂yi
=

n
∑

j=1

(

Ca
ij

La
ij

exp

(

−|xi − xj |
La
ij

)

−
Cr

ij

Lr
ij

exp

(

−|xi − xj |
Lr
ij

))

yi − yj
|xi − xj |

, (14)

with Ui = Ua
i + U r

i . Excluding the trivial case forLr
ij = La

ij andCr
ij = Ca

ij , (13) and (14) can be driven to zero

while satisfying the stability conditionLr
ij < La

ij [18]. From here on, just changes inLr
ij are considered, where

i, j refers to the indexing within the 5 agent group. In contrast,La
ij , C

a
ij andCr

ij are considered independent from

the pair of agents i.e. they take the same value for every index i, j and will hence be omitted below.

Taking the planar formation in Fig. 5, the equilibrium alongy is trivially satisfied for all possible distancesd

either in caseLr
ij = Lr for all (i, j), that is it takes the same values along all the edges, or in thecase one agent has
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Fig. 5. Configuration with 5 agents — all having APFs with identical coefficients — arranged in a homogeneous formation.

a different repulsive scale distance. This can be understood by simply considering the symmetry of the formation

aboutx-axis. Equilibrium along thex-axis does not lead to an explicit expression for the equilibrium distance,

nonetheless the derivative of the potential w.r.t.x referring to any agent can be calculated. Due to the homogeneity

of the configuration any agent can be taken to analyse the artificial potential field. In particular for agent 1,

∂U1

∂x1

∣

∣

∣

pent.
= 2

Ca

La

(

exp

(

− d

La

)

cosα+ exp

(

− d2
La

)

cosβ

)

−2
Cr

Lr′

(

exp

(

− d

Lr′

)

cosα+ exp

(

− d2
Lr′

)

cosβ

)

, (15)

where

d2 =
d

2

√

(

tanα+
1

cosα

)2

+ 1 = kd (16)

can be determined, withk > 1. This is considered as an initial equilibrium scenario for some equilibrium distance

d and forLr = Lr′ that is the same repulsive scale distance sensed by all the agents. In this scenario (15) must

equal zero, but ifLr 6= Lr′ and in particularLr < Lr′ the separation distance must shrink. Thus the equilibrium

distance reduces as the scale separation distance shrinks.This can be verified by differentiating (15) w.r.t.Lr′,

leading to

∂2U1

∂x1∂Lr′

∣

∣

∣

pent.
= 2

Cr

Lr′2

(

exp

(

− d

Lr′

)

cosα+ exp

(

− kd

Lr′

)

cosβ

− d

Lr′
exp

(

− d

Lr′

)

cosα− kd

Lr ′
exp

(

− kd

Lr′

)

cosβ

)

. (17)

The expression in (17) is negative definite, since a reduction of Lr′ produces an acceleration on agent 1 in the

direction of the positivex-axis and therefore leads to a reduction of its equilibrium distance,

∂2U1

∂x1∂Lr′

∣

∣

∣

pent.
< 0

∴

(

1− d

Lr′

)(

exp

(

− d

Lr′

)

cosα

)

+

(

1− kd

Lr ′

)(

exp

(

− kd

Lr′

)

cosβ

)

< 0 . (18)
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Fig. 6. Contours for the potential sensed by an agent at the origin (a) in the case all agents have the same value of the repulsive potential scale

lengthLr and (b) in the case the central agent has a repulsive scale distanceLr ′ < Lr .

This is always satisfied ford > Lr′. The sufficient conditiond > Lr′ can be obtained by a wide choice of system

parameters, which can be easily seen by inspecting the equilibrium distance for the simple case of two agents. This

case is obtained by summing up and setting equal to zero the derivatives in (1) and (2) for|xij |2 = d, and then

solving for d,

d =
LaLr

Lr − La
ln

CaLr

CrLa
> Lr . (19)

In particular forCa = Cr the relationship shown in (19) is true as long asLa 6= Lr. However, as stability imposes

La > Lr, to make the potential function convex in the vicinity of theequilibrium, it can be concluded that (19)

is always verified for stable potentials and possible to achieve for other choices of the parametersCa andCr.

The other agents in the group considered in Fig. 5 tend to keepthe same relative distance w.r.t. agent 1.

This produces the new equilibrium configuration that sees the agent with reduced separation distance finding its

equilibrium position in the centre of the 5-agent group while fulfilling also equilibrium conditions for the other

agents. A contour plot of the potential which agent 1 senses is reported in Fig. 6 for both equilibrium and non-

equilibrium parameter choices.

By similarly working theCr parameter, the same effect can be obtained as (15) is linear in Cr. Here, parameter

Lr′ is used to force the central symmetry configuration over the pentagon one, while parameterCr is used to

produce the desired inter-agent distance only. The cross configuration generated by the asymmetry in the potential

repulsive scale length is sketched in Fig. 7.

Considering that interactions amongst agents are only along the edges of the adjacency matrix, a representation

of the repulsive and attractive scale parameter as well as ofthe other coefficients influencing (1) and (2) can be

given in terms of matrix which have the same structure of the adjacency matrix described in Sec. II-B. An extract
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Fig. 7. Cross pattern emerging by shrinking the repulsive potential scale length sensed by the agent in the centre.

from the top left-hand corner of the repulsive distance matrix is given by

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


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








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





































, (20)

where zeros are in the same positions as in the adjacency matrix in Figs. 1 and 2, and where the coefficients regulating

the interactions among nodes which are centres of two different 5-agent groups are denoted byLr
2. Finally Lr

3 is

used to indicate the value along the edges connecting peripheral agents across different 5-agent groups. Hence

coefficientsLr, La, Cr andCa can be arranged in square matrices of dimensionN ; as these coefficients refer to

the edges of the graph, they take a different value dependingon which agent the edge is connected to.

One consideration which is worth noting is that arrangementin pentagon configuration is not guaranteed by the

conditionLr ′ = Lr. While havingLr′ 6= Lr will for sure exclude an equilibrium configuration in the shape of a

pentagon, the contrary can not be stated. The cross configuration in Fig. 7 can be obtained for both the choices

of Lr′ considered. From this point of view, excluding one of the twoconfigurations can be seen as a method for

escaping one local minimum configuration.

When considering a cross configuration as in Fig. 7, differently from the pentagon case, the potential field for
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the agent in the centre cannot be considered as for the others. Anyway it is in equilibrium whatever choice ofLr

parameter is done. This is due to the symmetry of potential acting on this agent which translates into two pairs

of equal and opposite terms for the sums in (13) and (14) making both equations trivially null. For this reason

the agent withLr = Lr′ will find its equilibrium position at the centre enabling thecross formation. This also

justifies the consideration about the two possible arrangements for agents with the same repulsive scale distance

parameter: being the central position an equilibrium one, also a group of agents with the same repulsive potential

can spontaneously arrange in a cross configuration. Equilibrium for the surrounding agents according to the scheme

of Fig. 7 is only determined by (13), as they-component is null by symmetry. The equilibrium distanced as shown

in Fig. 7 is found by solving for the valued that satisfies

Cr

Lr

(

exp

(−d

Lr

)

+ exp

(−2d

Lr

)

+
√
2 exp

(√
2d

Lr

))

=

Ca

La

(

exp

(−d

La

)

+ exp

(−2d

La

)

+
√
2 exp

(

−
√
2d

La

))

, (21)

which is obtained by expanding (13). As it can be seen there isno closed-form analytical solution. On the other

hand, a stable equilibrium distance exists for a choice of the free parametersCa, Cr, La andLr satisfying the

conditions stated in [19]. In particular for givenLr andLa, with La > Lr, a stable equilibrium can be found by

tuning the parametersCa andCr . This is further elaborated in Sec. III-B.

B. APF Coefficient Definition

The coefficients of the APF acting along the edges of the graphare calculated such to set the desired distance

amongst the spacecraft. Just theCr coefficient is calculated as function of the others which areset. The change

of Cr parameter only or, more precisely, the change in the ratioCr/Ca is sufficient to modify the position of

the minimum, hence the design distance, for the APF used. In particular, an interaction between two spacecraft

belonging to two differentn-agent groups is considered, with a design distancedd; the ratioCr/Ca can hence be

calculated by manipulating (19) as
Cr

Ca
=

Lr

La
exp

(

dd
La − Lr

LaLr

)

. (22)

Once the coefficients are set, (22) can be reversed to calculate the equilibrium distance. When more than 2 agents

are involved, an analytic expression for the equilibrium distance cannot be defined, but given a desired distance,

one can always get an expression for the value of the ratioCr/Ca that produces that separation. In particular

for a fully connected group of 5 agentsCr/Ca ratio can be calculated equating to zero the gradient of the

potential for the formation according to the scheme in Fig. 7. As they-component is trivially null,Cr/Ca can be

calculated considering justx-component of the gradient in (13). This corresponds to (21), which can be manipulated

algebraically to obtain

Cr

Ca
=

Lr

La

exp
(

− dd

La

)

+ exp
(

− 2dd

La

)

+
√
2 exp

(

−
√
2dd

La

)

exp
(

− dd

Lr

)

+ exp
(

− 2dd

Lr

)

+
√
2 exp

(

−
√
2dd

Lr

) . (23)
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This tuning method can be extended to the other links of the adjacency matrix; by defining the coefficients in this

way the desired self-similar pattern is produced.

C. Stability of Control Law

The stability can simply be proved following a procedure similar to the one in [18]. Consider the time derivative

of the energy as the sum of artificial potential and real kinetic energy,

dEt

dt
=

dKt

dt
+

dUt

dt
, (24)

where

Ut =
1

2

∑

i

∑

j

aijUij (25)

is the total potential energy per unit mass with

Uij = Ua
ij + U r

ij , (26)

and

Kt =
1

2

∑

i

Ki =
1

2

∑

i

(vi · vi) (27)

the total kinetic energy per unit mass. Expanding (24),

dEt

dt
=
∑

i

(

∇Ut · vi +
∂Kt

∂vi

· v̇i

)

(28)

where the gradient operator∇(·) is defined in (5). Substituting (4) and (26) into (28) yields

dEt

dt
=

∑

i

[

∇Ut · vi +
∂Kt

∂vi

· (−∇Ui − σvi)

]

(29)

∴

dEt

dt
=

∑

i

[

(∇Ut · vi −∇Ui · vi)− σ|vi|2
]

. (30)

As the potential depends upon pairwise interactions, the derivative w.r.t. xi is not null for both theUij andUji

potentials that constitute the total potentialUt. If the agents interacted in a symmetric way, this would cancel out

with the gradient∇Ui, but as the sum of the potential derivatives upon any agent includes asymmetric terms, this

does not occur. Nevertheless the difference between the gradients can be always damped by the artificial viscous

damping. Hence, it can be concluded that

∃ σ > 0 :
∑

i

[

(∇Ut · vi −∇Ui · vi)− σ|vi|2
]

≤ 0 . (31)

This is enabled by the fact that artificial potential and its derivative are bounded functions.

As total energy time derivative can be made a negative semi-definite function, this can be compared to a Lyapunov-

like function whose derivative is always proved to be negative and zero at equilibrium, corresponding to null speed.

Thus the system will leak energy and stabilise eventually into a static formation which corresponds to the minimum

of total energy.
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(a) (b) (c)

Fig. 8. First three stages of growth of thePurina fractal array for (a)P = 1, (b) P = 2, and (c)P = 3.

The stability characteristic outlined above does not implythat the system will relax into the desired formation

as the energy might be minimized, even just in local sense, with a configuration that is not the one the system was

meant to take.

D. Fractal Antenna Array Design and Analysis

A distributed antenna array spread across a satellite formation offers the potential of improved directivity and

gain for increasing number of elements. However, controlling a large number of satellites flying in relatively close

proximity to one another does not provide a convenient solution. A more practical design would involve a formation

with a reduced number of elements, that is able to achieve similar performance. Basing antenna array formations on

fractal geometries provides not only the potential to reduce the number of elements but also offers the possibility to

operate across a range of frequencies and the self-replicating nature of fractal patterns extends to their performance

characteristics too; this means that rapid analysis of a wide range of antenna characteristics is possible.

The method described in Sec. II-C is followed here to design and analyse a planar array based on the Vicsek or

Purina [15] fractal. A 3-by-3 symmetric planar array is thinned down to form thePurina fractal pattern which has

the simple sub-arrayS1 at growth scaleP = 1,

S1 =













1 0 1

0 1 0

1 0 1













. (32)

The array fractal patternSP at an arbitrary growth scaleP ∈ N, P ≥ 2 is given by

SP = S1 ⊗ SP−1 , (33)

with ⊗ denoting the Kronecker product, whereby a unit entry means that an element is switched on, while

zero indicates that the array element is switched off, generating the entries previously discussed in (10). Fig. 8

demonstrates the first three stages of growth for thePurina fractal array.
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The array factor associated with the generating sub-array in Fig. 8(a) can be derived from (7) by settingdx =

dy = λ
2

with λ the wavelength of the signal,M = 2 andS11 = 1, resulting in

Γfrac(ux, uy) = 1 + 4 cosux cosuy . (34)

Substituting the array factor in (34) into (11), and with an expansion factor ofδ = 3 relating to the size of the full

square lattice array, the product form of the array factor equation at growth stageP ,

ΓP (ux, uy) =

P
∏

p=1

{

1 + 4 cos(3p−1ux) cos(3
p−1uy)

}

, (35)

which is based on the simplification of (8) and (9) due todx = dy = λ
2

to

ux = π(sin θ cosφ − sin θ0 cosφ0) (36)

uy = π(sin θ sinφ − sin θ0 sinφ0) . (37)

With θ0 andφ0 indicating the look-direction of the beamformer, (34) can be recasted in terms of spherical coordinates

θ andφ. Assuming for simplicity that the look direction of the beamformer is towards broadside withθ0 = φ0 = 0,

the array factor

ΓP (θ, φ) =

P
∏

p=1

{

1 + 4 cos(3p−1π sin θ cosφ) cos(3p−1π sin θ sinφ)
}

(38)

results. Substituting (38) into (12) for isotropic sources, a reduced expression

DP (θ, φ) =
Γ2
P (θ, φ)

1
4π

2π
∫

0

π
∫

0

Γ2
P (ϑ, ϕ) sin(ϑ) dϑ dϕ

(39)

for the directivity of thePurina array based on isotropic sources is obtained.

With the help of (39), the directivity plots for the different growth stages of thePurina fractal array in Fig. 8

can now be computed. These are shown for the first three growthstages in Fig. 9 for the case ofφ = 0◦. In each

case the directivity pattern has been normalised to its own maximum, making it possible to compare the relative

performance of the various stages of growth. It can be noted that, as the number of elements increases, the gain

of the main beam increases w.r.t. the sidelobe level. Also, with increasingP , the beamwidth decreases, i.e. the

resolution of the array is enhanced. Additionally, self-similarity in the fractal array leads to self-similarity in the

produced radiation pattern. Note how each stage provides anenvelope for the rescaled version of the following

stage.

The above steps have detailed the step-by-step procedure used in the design and analysis of a fractal array.

Combining the antenna elements has the potential to alter the radiation characteristics of an ensemble of antennas

and can result in a steerable and highly directive beam.

IV. SIMULATION RESULTS

The control method illustrated in this paper is used to simulate a possible operative scenario in which a spacecraft

formation is used to form a distributed array in Earth orbit.A geostationary orbit — a circular Earth orbit with radius
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Fig. 9. Directivity plots for the first three stages ofPurina fractal arrays shown in Fig. 8, with an assumed direction of the main beam towards

broadside (θ = 0).

42157 km and 0 deg inclination — is chosen to simulate the dynamics although the application is not specifically

aimed at telecommunications. Deployment of a fractal antenna array is simulated where the system is composed

of 125 radiating elements.

The system requirements suggest suitable actuators and to acertain degree limit the choices regarding agent

selection and separation. The method of control and the possibilities offered by reducing the size of individual

radiating elements while maintaining an overall large aperture drive towards the selection of a satellite in the size

range of pico- or nano-satellite suitable for a separation in the order of 1m. This is the separation chosen as the

inter-spacecraft distance is still small enough to controlmotion through mutually exchanged electromagnetic forces

and far apart enough to allow for relatively coarse accuracy, in particular at the release from a carrier spacecraft or

launcher.

The 125 unitary mass agents reproduce the shape of aPurina fractal at a growth stage ofP = 3; they are

deployed in 25 groups of 5-agent subgroups which is the elementary unit of the formation (N = 125, n = 5). The

dynamics of the spacecraft formation is based on Clohessi-Wilthshire (CW, [21]) linearised equations in an orbiting

reference frame.

The reference frame forms a Cartesian coordinate system, and is arranged such that

• thex-axis is tangent to the orbit and parallel to the orbital velocity vector,

• the y-axis is parallel to angular momentum vector, and

• the z-axis is orthogonal to the first two and pointing towards the Earth’s centre of gravity.

The CW equations in this reference frame are

ẍ = −2νż
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ÿ = −ν2y (40)

z̈ = −2νẋ− 3ν2z ,

whereν is the orbital frequency.

Initial conditions were set such as each spacecraft had an initial position randomly picked within a sphere centred

on its final position and radius equal to 1.5 times the distance to its nearest neighbour to account for possible initial

swapped positions between near agents; initial relative velocities are null. This corresponds to assuming that a

carrier spacecraft or launcher releases the agents with coarse accuracy i.e. not completely random. Attitude for the

single spacecraft is not considered while overall attitudecontrol for rotation around thex andy axes is guaranteed

by positioning control through a parabolic potential that flattens the formation onto thex–y plane. Sensors are

idealised, that is, the exact position of any one agent is known without delay by all the agents to which it is linked.

Although actuators are not modelled here, some characteristics relating to the possible use of electromagnetic

forces are considered. In particular, actuators of the kindproposed in [22] and [23] are considered. As these

actuators, particularly those based on Coulomb forces, cannot be used concurrently due to interference issues, a

duty cycle is set up and the ensemble is split into a number of groups so that any two groups which are active at

the same time are relatively far apart. This allows interferences to be neglected. Each group is controlled across a

time period of the duty cycle. Over the whole duty cycle each group of agents is controlled for the same amount

of time. As consequence, agents belonging to more than one group — e.g. linking agents between groups — are

controlled for longer. The frequency of the duty cycle needsto be high enough not to allow spacecraft to drift away

between control periods. This can be bounded from below by considering a linearised version of the control law

and computing the frequency of the associated harmonic oscillator. Considering the APF only, the control can be

linearised about the equilibrium as

m ˜̈xi =
∑

j

{

Ca
ij

La
ij

exp

(

−dij
La
ij

)

−
Cr

ij

Lr
ij

exp

(

−dij
Lr
ij

)

−

[

Ca
ij

La
ij
2
exp

(

−dij
La
ij

)

−
Cr

ij

Lr
ij
2
exp

(

−dij
Lr
ij

)]

(xi − dij)

}

, (41)

where it is assumed that the equilibrium position is at a distanced from the neighbouring agents and that these

agents are fixed in their positions. The sum is extended to allthe neighbouring agents acting along one axis. As an

example, considering the central agent of Fig. 7, this meansthat only 2 agents contribute to its oscillatory motion

along the orthogonal axes.

Since (41) is in the form of a linearised harmonic oscillatorperturbed by a constant acceleration, the frequency

associated with this system is

ωi =

√

√

√

√

∑

j

Ca
ij

La
ij
2
exp

(

−dij
La
ij

)

−
Cr

ij

Lr
ij
2
exp

(

−dij
Lr
ij

)

. (42)

Therefore, the frequency at which control is performed should not be smaller thansupi ωi, which is obtained by

considering all the sets of values defining the control of thegroups. For the case reported here, the whole duty
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TABLE I

NUMERICAL VALUES OF COEFFICIENTS USED IN NUMERICAL SIMULATIONS.

Ca Cr La Lr Lr′

fully connected groups (FGCs) 4 3.94722 2 1 0.5

centres of FGCs 1 0.99596 4.5 4 2

periph. agents betw. adjacent FGCs 0.8925 1 2 0.5

centres of 25-agent groups 2500 2505.3 10 9.9 4.5

peripheral of 25-agent groups 69.96 70 3 2.9

σ = 0.1 for all the agents

cycle lasts 2 seconds and the 125 spacecraft are considered as belonging to 9 groups, which are

• the 5 5-agent groups at the centre of the 25-agent groups,

• the 5 5-agent groups at the top of the 25-agent groups,

• the 5 5-agent groups at the bottom of the 25-agent groups,

• the 5 5-agent groups at the left of the 25-agent groups,

• the 5 5-agent groups at the right of the 25-agent groups,

• the agents linking the centres of the 5-agent groups in the 25-agent groups,

• the agents bonding the 5-agent side by side in the 25-agent groups,

• the agents bonding the centres of the 25-agent groups, and

• the agents bonding the sides of the 25-agent groups.

The connections between each group (consisting of 25 agents) are ensured by pairs of agents instead of groups

of agents. This allows a reduction of the computational efforts for each agent and a reduction of the computational

resources needed for the simulation. On the other hand this reduces the control power and slows down the deployment

of the formation. Tab. I shows the values of the coefficients used.

The agent at the centre of the formation (say agent 1) is the only one linked to the centre of the reference frame

by a quadratic potential in the formUc = ζ|x1|2, with ζ = 0.1 as a weighting parameter. This is to provide a

kind of orbit tracking capability or, in practical terms, the possibility to stay anchored to the centre of the reference

frame. This also suggests the task of tracking the orbit can potentially be carried out by a single agent only, while

the others just track their relative position with respect to the central agent. Without loss of generality, for simplicity

here the central agent is assumed to track the orbit. The control law is applied for justx andy axes of the orbital

reference frame with control onz-axis performed through a simple parabolic potentialUzi = ζ|zi|2, for i = 1 . . .N ,

that flattens the formation on the planez = 0, where againζ = 0.1 is a weighting parameter. The actions of both

the quadratic potentials are damped by virtual dissipativetermsσẋi.

Snapshots from the deployment are shown in Fig. 10. It can be noted that after one day the deployment exhibits

slight distortions in particular within peripheral groups.
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Finally in Fig. 11 errors on the designed relative position after one day are plotted. The error measure is the

difference between the actual distance of each spacecraft from the centre of the formation and the ideal design

distance; this is then plotted as a percentage of the desiredspacing. It can be seen that the maximum error is lower

than 5%. The evaluations of both the snapshots in Fig. 10 and the error in Fig. 11 are considered after a maximum of

24 hours; this is sufficient to prove the self arranging capabilities of the control technique. After a further 24 hours

the magnitude of the maximum error is halved as compared to the 24h values in Fig. 11. Theoretically a complete

relaxation with no positioning errors is possible but only after an infinite period of time due to the viscous-like

damping.
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Fig. 10. Formation deployment in GEO, with snapshots taken at (a) t = 0s, (b) t = 60s, (c) t = 3600s = 1h, and (d)t = 86400s = 24h.

V. D ISCUSSION

The idea of meeting needs for highly directional antenna arrays through a space based fractionated architecture is

constructed around the possibility of locating a number of spacecraft, each carrying an antenna element, according

July 18, 2013 DRAFT



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, VOL. XX, NO. XX, MONTH YEAR 21

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

agent index

re
la

tiv
e 

er
ro

r 
in

 d
is

ta
nc

e 
/[%

]

Fig. 11. Errors in relative design positioning after 1 day from release of the formation. Distances are computed with respect to the agent at the

centre of the formation, and the distance error expressed asa percentage of the ideal design distance.

to a precise fractal scheme. This improves overall antenna performance and capabilities while using a contained

number of elements. In turn the possibility of using small spacecraft enables the formation of a fractionated antenna,

but requires accurate spacing between the elements. Orientation is not considered here for single agents as they

are assumed to be isotropic sources. Thus, in the case of an antenna array as described above, the relative agent

positions within the whole array is the key requirement as this influences the performance of the array. Hence

considering just coarse attitude control for single agents, a description of the system characteristics in a global

sense is possible as long as relative positions are precisely known. Utilising this knowledge, directivity through array

phasing is achievable at group level for compensation of global attitude errors and at agent level to accommodate

misalignment of the single elements.

From a control point of view the need for precise close formation flying can be tackled through using reliable

techniques and implementing these on relatively small agents. In this respect, artificial potential functions are

particularly suited for the task as their stability characteristics are analytically provable, hence they do not need

extensive Montecarlo test campaigns to validate their behaviour. Moreover, APFs allow for highly non-linear control
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through quite straightforward computation due to their smoothness. As the amount of information needed is just

the relative position of a number of neighbours, the connection network presented here has the double advantage

of shaping the formation on one side and reducing the number of connections on the other. These combined

characteristics make small spacecraft, even with reduced computation capabilities, able to carry out the task of

arranging into a formation through exclusively inter agentinteraction in a decentralised way.

The artificial potential functions account for collision avoidance of the spacecraft as long as they are connected in

the network, which holds for any two spacecraft whose nominal positions are in close proximity. Two agents may

then collide if they are in close proximity while they are notmeant to be, hence there is not a connection between

them. This is anyway avoided by choosing the initial conditions adequately, that is collocating each spacecraft within

its basin of attraction with an initial velocity within the control capability of the actuators. This also accounts for the

problem of local minima which are typical of APF control methods. It would be possible to account for collision

of non-communicating spacecraft by triggering avoidance manoeuvres in case of closeness revealed by any sensor

scanning of the local neighbours. These kinds of avoidance manoeuvres are to be designed not to introduce persistent

instability in the control of the agents already linked through the network and their analysis is beyond the scope

of this work.

Although the paper is not focussed on the dynamics of the formation in the orbit environment, the definition of

the simulation scenario imposes to consider specific orbit parameters and suitable actuators. Here, a geostationary

orbit was considered although agents are not specifically targeted at telecommunication purposes. When dealing

with actuator modelling, it was decided to keep the topic as close as possible to one of control, that is, actuator

characteristics were considered only in part. Although theresponse of the actuators was not included, their choice

took into account the close proximity scenario and the use ofinter-agent electromagnetic forces was proposed

rather than thrusters, which may imply plume impingement problems. Moreover the APF methods drive the system

through an oscillatory stage before the achievement of the equilibrium configuration during which residual energy

(both virtual potential and real kinetic) is dissipated. This translates into fuel wasting when considering the use of

thrusters. The introduction of a duty cycle in the control operation is a consequence of the choice of actuators.

Another advantage of having actuators that mimic the virtual inter-agent action of the artificial potential makes the

analysis applicable to a wider selection of possible actuators. The duty cycle just applies to inter agent actions for

which Coulomb forces can be considered. Indeed in [24] and [22] it was shown how a closely spaced formation can

be maintained in GEO orbit using this type of actuation. For what concerns thez-axis, the use of Lorentz forces

as in [23] might be considered, although their effectiveness is to be investigated further in relation to the magnetic

environment.

The communication network was intended in the first place forcontrol purposes only, but the need for task

assignment in the fractionated architecture as well as array phasing can be carried out through the same architecture.

In particular, the system inherits a structured hierarchical network, where the ranking of the agents depends on the

number of links they are connected to. This does not imply that the resulting architecture is centralised, but allows

the task assignment to be carried out on the basis of the hierarchy of the agents. For instance the guidance for the
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whole formation can be carried out by a number of spacecraft which communicate in an all-to-all scheme in order

to share the computational efforts (e.g. the centres of the 25-agent groups), and then passed to another module able

to compare this to the navigation to eventually generate a control input for the whole formation. This is different

from the guidance, navigation and control functions that each spacecraft carries out: while each spacecraft should

find its position in a distributed architecture, the whole system follows a guidance law that enables the mission task

achievement. It is worthwhile stressing how the position ofeach agent is not pre-determined in a strict sense. The

links of each agent are pre-assigned, but this does not prevent agents, or groups of agents belonging to the same

level to swap their positions.

A final consideration about the planarity of the formation can be done. The main claim of this paper, for what

concerns the control part, is to propose a control architecture that exploits emergent behaviour shaped by the

connection network. It was considered that a 2D applicationis sufficient to prove the main feature of the technique.

Nevertheless the same considerations about the emergence of a central symmetry and the building up of several

hierarchical levels in a self-similar fashion can be applied to 3D formations as well as an initiator composed of a

different number of agents.

VI. CONCLUSIONS

In this paper the deployment of a self-similar formation of autonomous agents aimed at producing a fractal

geometry array was for the first time investigated in the context of a space-based distributed antenna array. Artificial

potential functions and self-similar adjacency matrices were used to obtain self-similar patterns in a formation of

mobile agents, while electrodynamic analysis was used to assess the performance and potential benefits that arise

from the fractal patterns. The formation deployment was simulated in geostationary Earth orbit, and demonstrated

the feasibility of the concept.

The exploitation of emergent self-similar, or fractal, patterns in space-based antenna arrays is encouraged by

the reduced sensitivity of the performances of the array to element failure, and by the possibility to account for

positioning errors through actively controlling the phasing of the array elements. Moreover the fractal geometry

of the array allows for performances in terms of directivitythat are comparable, or even improved, to that of a

classical square lattice scheme which makes use of a higher number of elements.

The APF method enables the use of analytic tools to draw the characteristics of the control law in terms of

the stability and achievement of final desired configuration. The self-similar connection scheme used accounts

for multiple redundancy towards dispersion, that is any link between two agents can be lost without catastrophic

consequences for the whole formation. The system is cooled-down using artificial damping which, in terms of

control, represents an improvable means as the dissipationof artificial potential energy may translate into real fuel

waste for the actual agents. The aim of avoiding undesirableeffects due to the choice of thrusters as actuators

drove towards considering electromagnetic inter-agent forces to control the formation for simulation purposes in

GEO environment.

Finally, the use of multiple independent elements to form the array allows for relaxation of attitude control
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requirements for the single agents, shifting from an attitude problem to one of relative agent/group positioning that

defines the attitude for the whole formation.
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