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ABSTRACT
Communications devices operating in the TV white space
(TVWS) spectrum will be strictly regulated, requiring com-
pliance with spectral masks to protect incumbent users and
sufficient frequency agility to allow access to numerous fre-
quency bands at different times and locations. Therefore, fu-
ture designs sampling directly at radio frequency (RF) have
been proposed. The purpose of this paper is to demonstrate
an implementation of such a transceiver at a scaled-down
frequency implemented on the OMAP–L137 evaluation mod-
ule, whereby the RF link can be replaced by the device’s au-
dio I/O, thus enabling easier observation and algorithm test-
ing for students.

1. INTRODUCTION

In the UK, the television white space (TVWS) spectrum is
split into 40 channels of 8MHz bandwidth, ranging from 470
to 790MHz. Access to this section of spectrum will be tightly
governed by Ofcom who are expected to enforce a number of
requirements to protect incumbent users [1]. These restric-
tions include strict adherence to spectral masks and a high
level of frequency agility to allow devices to adjust frequency
based on geo-location. The spectral mask, as outlined in Fig-
ure. 1, permits -55dB interference into adjacent channels and
-69dB into next-adjacent channels.

Many current wireless standards are based on orthogo-
nal frequency division multiplexing (OFDM) as a modula-
tion scheme. However, OFDM offers only poor frequency
selectivity unless very tight additional transmit and receive
filters are employed. Therefore, multicarrier transceiver de-
signs based on filter bank techniques, many of which pre-
date OFDM [2, 3, 4, 5], have experienced a renaissance in
recent years [6, 7, 8] due to their improved spectral resolu-
tion and advantages in synchronisation when compared to
OFDM [17, 22].

Typically, operation of filter bank transceivers is con-
fined to baseband where specific frequency bands are di-
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Figure 1: Spectral mask defining PSD levels in adjacent (m±
1) and next-adjacent 8MHz TVWS channels (m±2) [1].

vided among different users or sub-channels. Operating a fil-
ter bank transceiver at radio frequency (RF), however, could
yield the required frequency selectivity and agility demanded
of TVWS devices. This is becoming a realistic possibility
with the recent advancements in the development of high-
speed digital-to-analogue converters (DACs) and analogue-
to-digital converters (ADCs) [16]. Subsequently, filter bank
based transceiver designs for the TVWS range, sampling di-
rectly at RF, have been suggested [11, 10, 12, 9].

In order to aid the understanding of the transceiver con-
cept, this paper proposes a filter bank based design which is
scaled down in frequency by several orders of magnitude,
replacing the RF chain with high-frequency audio. Simi-
lar developments have been previously suggested for sim-
pler transceiver designs such as a system for MIMO channel
measurements [14], a baseband SC-FDMA transceiver [15],
a software π /4-DQPSK modem [21] and a differential QPSK
modem [20] using audio I/O. An additional benefit of such
a scaled-down version is the easier development of algo-
rithms that will support the above TVWS transceiver in stu-
dent projects, ranging from equalisation and synchronisation
tasks [17] to TVWS-specific frequency-agile functions such
as spectrum aggregation [19] or cognitive aspects.

To realise such a scaled-down implementation, the
OMAP–L137 evaluation module (EVM) has been selected,
which allows the use of a powerful dual-core processor,
combining an ARM ARM926EJ-S applications processor
with a Texas Instruments TMS320C6747 DSP, to realise
the demanding complexity of the TVWS filter bank based
transceiver [11]. Interfacing of the transmit and receive sig-
nals is carried out by the on-board DAC and ADC of the
TLV320AIC3106 audio codec.

The remainder of this paper is organised as follows.
Sec. 2 provides an overview of the proposed transceiver ar-
chitecture operating at an RF sampling rate of 1.92GHz,
while Sec. 4 introduces a version whereby sampling is scaled
down by a factor of 2 ·104, enabling I/O via the OMAP–L137
audio codec at a sampling rate of 96kHz. Simulations and
measurements are presented in Sec. 5 and conclusions are
drawn in Sec. 6.

2. TRANSCEIVER DESIGN

2.1 System Overview

The aim of the transceiver system is to up- and down-convert
the entire 40 TVWS channels between baseband and the
UHF range 470–790MHz. The upconverter in the transmit-
ter must be able meet the strict leakage requirements out-
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Figure 2: Proposed multi-stage TVWS filter bank transmitter
(above) and receiver (below) with a polyphase filter (PPF) in
stage 1 and an FBMC modulator in stage 2.

lined in the spectral mask [1] as shown in Fig. 1. This
will be achieved through the use of a filter bank multicar-
rier (FBMC) system to provide acceptable frequency selec-
tivity. The proposed transceiver design adopts a two-stage
approach, as in [11, 10], to allow for modularity in the devel-
opment and to reduce the number of input and output streams
to the system [10]. Figure. 2 outlines the first two stages of
the proposed transceiver design.

The bottom branch in Fig. 2 implements the receiver,
which samples an input RF signal at fs. In the first stage,
an analytic signal is created by means of a complex valued
polyphase bandpass filter. The 40 TVWS channels are then
aligned so that they sit at DC by appropriate modulation with
a complex valued exponential of normalised frequency Ω. In
the second stage, the 40 TVWS channels are extracted by an
analysis filter bank. The output of the filter bank is oversam-
pled by a factor of two in order to ease synchronisation and
further filtering of the separate channels. A third stage, which
is for testing purposes and not shown in Figure. 2, performs
preprocessing which creates an overall Nyquist system with
the matching stage 3 of the transmitter.

The implementation of the transmitter uses matching
dual components to the receiver, as shown in the top branch
of Fig. 2, with the 40 TVWS channels being combined in
stage 2 by means of an oversampled synthesis filter bank.
The band position is corrected by modulation before being
passed to stage 1 for complex bandpass filtering. The RF
signal is formed by taking the real part of the analytic output.
Again, a third stage for testing and measurement, not shown
in Fig. 2, creates Nyquist systems with the matching stage 3
in the receiver.

2.2 Stage 1

The first stage of the filter bank receiver extracts the entire
TVWS region, with a centre frequency of fc = 630MHz,
from the fs = 1.92GHz sampled RF signal. This creates an
analytic baseband signal with the 40 8MHz channels aligned
from DC. This is achieved through the use of an analytic
bandpass filter with centre frequency fc, and band limita-
tion which allows decimation by a factor K1 = 5. Alterna-
tive parameterisations exist here, as detailed in [10], but for
the purposes of this work, only a single parameterisation will
be discussed. Fig. 3 details the required filter characteristic
for stage 1. Aliasing is permitted in the transition bands, en-
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Figure 3: Stage 1 filter with passband width of 320MHz
to capture TVWS spectrum, and with transition bandwidth
BT,1.
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Figure 4: Stage 2 prototype filter with 8MHz passband width,
transition bandwidth BT,2 and decimation to 16MHz sam-
pling rate.

abling a transition bandwidth BT,1,

BT,1 =
1.92GHz

K1
−320MHz . (1)

In order to align the decimated TVWS region at DC, a correc-
tion by the lower frequency of 470MHz can be accomplished
after aliasing by selecting Ω = 2π ·470MHz · K1

fs
.

The implementation of the stage 1 transmitter is the dual
of the receiver, with a frequency shift by Ω followed by
upsampling in the form of an interpolating bandpass filter
H1(e jΩ). Here the widened transition bands are not a prob-
lem due to the input signal to stage 1 adhering to the strict
spectral mask characteristics. The real valued output from
the analytic bandpass filter is then fed to the ADC operating
at RF frequency.

2.3 Stage 2

A sampling rate of fs = 1.92GHz and decimation by K = 5
at stage 1 means that a total of K2 = 48 individual TVWS
channels need to be extracted in stage 2, with only 40 of
those channels being utilised. A modulated filter bank is an
efficient approach here due to the uniform ordering of the
channels. The filter bank will be oversampled by a factor of
two in order to ease the synchronisation of individual chan-
nels, while also easing the prototype filter characteristic. The
characteristic, shown in Fig. 4, allows a maximum possible
transition bandwidth BT,2, and assumes that the Nyquist sys-
tem imposed in stage 3 will ensure that all TVWS channels
are perfectly band-limited.

The design here takes the form of an oversampled mod-
ulated generalised DFT (GDFT) filter bank, which allows
the channels to be aligned in ascending order from DC to
320MHz.

2.4 Baseband Processing

Baseband processing is not formally part of the filter bank
transceiver, but is needed to ensure that the signals are suit-
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Figure 5: Stage 3 root Nyquist(3) characteristic. Sampled at
16MHz, this filter restricts the bandwidth to 5.3MHz.
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Figure 6: Polyphase implementation of (top) transmitter and
(bottom) receiver filter bank based multicarrier modulation.

ably limited to 8MHz bandwidth in the transmitter, and that
appropriate synchronisation and equalisation takes place in
the receiver, thus creating an overall Nyquist system between
transmitter and receiver. For convenience and testing as sug-
gested in [11], a Nyquist(3) system may be operated here,
requiring the baseband signals be sampled at a frequency of
( 16

3 )MHz. The corresponding filter characteristic for pro-
cessing in the transmitter and receiver for such a stage 3 is
detailed in Fig. 5. The spectral mask conditions defined in
Fig. 1 must be met by the combination of the filters in stages
2 and 3.

3. FILTER BANK IMPLEMENTATION AND
DESIGN

3.1 Filter Bank Implementation

The implementation of filter banks is crucial to the function-
ality and complexity of the overall transceiver system. We
here have followed the implementation approach in [23, 24],
which is equivalent to other efficient realisations [18]. The
idea is depicted in Fig. 6, where a tap-delay-line is always
operated at the lowest rate. The only multiplications which
occur are with the prototype filter coefficient pn, or are part
of a modified fast Fourier transform operation.

3.2 Prototype Filter Realisation

To construct prototype filter coefficients that conform with
spectral mask requirements in Fig. 1 [1], filters with length
L1 = 600 and L2 = 1200 coefficients are required for stages
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Figure 7: Magnitude responses of (top) stage 1, (middle) 2,
and (bottom) 3 prototype filters.

1 and 2, respectively. The resulting magnitude responses
of the prototype filters are shown in Fig. 7, detailing stage
1 and 2 filters, and additionally the stage 3 filter used for
baseband processing. The filter characteristics are in float-
ing point format and can be seen to satisfy the spectral mask
requirements.

3.3 Computational Complexity

The implementation in Sec. 2.2 assumes a complex band-
pass polyphase filter for stage 1, combined with a frequency
shift Ω. With a filter length L1 = 600, the complexity
is C1 = L1/K1 + 1 complex valued multiply accumulates
(MACs). The filter bank implementation in stage 2, with
the implementation detailed in Sec.3.1 leads to a complexity
of C2 = L2/K2 + 2log2K2 complex MACs (CMACs) [23].
Therefore, overall implementation cost for only stages 1 and
2 is C1 +C2 = 600/5+1+1200/48+12≈ 158 CMACs per
sampling period. This complexity holds for both the trans-
mitter and receiver parts of the proposed system. While this
does not seem exorbitant, a sampling rate of 1.92GHz will
impose a very significant computational burden that can only
be addressed on a powerful FPGA with optimised parallel
processing.

4. OMAP L-137 IMPLEMENTATION

The high computational complexity of the proposed filter
bank transceiver motivates the implementation of a scaled
down version operating at a lower frequency for educational
and demonstration purposes. We here propose a scaling fac-
tor of 2 ·104, which brings the RF frequency of 1.92GHz into
the audio range of 96kHz.
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Figure 8: OMAP137 implementation with audio codec.

4.1 Relevant OMAP L-137 Features

For implementation of the scaled-down TVWS transceiver
system, the OMAP L-137 evaluation module has been se-
lected, which contains a Texas Instruments TMS320C6747
digital signal processor (DSP) and an on-board DAC and
ADC on the OMAP’s TLV320AIC3106 audio codec. The
audio codec can sample at a maximum rate of 96kHz, with
a 3dB cut-off of the anti-alias and reconstruction filters at
43kHz. This permits simulation of the “RF” signal at 96kHz,
with the scaled-down “UHF” band sitting in the frequency
range from 23.5kHz to 39.5kHz, divided into 40 “TVWS”
channels each with a bandwidth of 400Hz.

The DSP operates at a clock rate of 300MHz, and is ca-
pable of performing one CMAC within four clock cycles.
Thus, a maximum of 75 MCMACs per second is achiev-
able, which accommodates the required 96kHz·158 CMACs
= 15.168 MCMACs/s and any required overheads for mem-
ory moves and interrupt handling.

The overall setup is shown in Fig. 8, whereby the scaled-
down RF signal is provided by the audio codec’s output, and
can be looped-back into the same device, or connected to a
second OMAP which performs the receiver functions.

4.2 Multirate System Issues

The overall system uses data streams exchanged with the au-
dio codec based on a Texas Instruments loop-back applica-
tion example supplied with the OMAP evaluation module.
At 96kHz, coming from the ADC or going to the DAC, a
block of 15 · 128 samples is utilised in both transmitter and
receiver. Then, in both transmitter and receiver a tap-delay-
line (TDL) is operated stage 1 as well as stage 2 for the im-
plementation according to Fig. 6. For stage 1, the TDL runs
at 96/K1 kHz = 19.2 kHz, and a block of 3 · 128 samples
at this rate is held between stages 1 and 2. In stage 2, the
TDL is operated at 19.2 · 2

K2
kHz = 800 Hz, yielding a block

of 16 samples at the twice oversampled baseband rate within
every of the 48 filter bank channels. Of these channels only
the lower 40 are utilised, while the upper 8 channels are zero
padded in the transmitter and discarded in the receiver.

To enable correct transient behaviour between blocks of
data, all TDLs in the system have to be carried forward from
one block to the next.

5. SIMULATIONS AND MEASUREMENTS

For the proposed system, all components are scaled down by
a factor of 2 · 104. However, the relative cost per sampling
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Figure 9: Power spectral densities of (top) stage 1 and (bot-
tom) stage 2 signals, with spectral masks indicated as dashed
lines.

period and the filter designs as outlined in Sec. 3.2 remain
the same for the demonstrator at a sampling rate of 96kHz
as compared to the RF version sampled at 1.92GHz. This
section first explores the measured power spectral densities
from system simulations in Sec. 5.1 before some measure-
ments are discussed in Sec. 5.2

5.1 Power Spectral Densities

For a Matlab simulation with square-root Nyquist(3) fil-
ters operating in the baseband, i.e. creating signals that are
strictly limited to within the 8MHz TVWS channels, power
spectral density plots are provided in Fig. 9. The signal at
stage 1 occupies the full TVWS region from 470 to 790MHz,
while the stage 2 signal translates to the downconverted
TVWS band region with K1 = 5 and K2 = 48 8MHz chan-
nels, only the first 40 of which are occupied. The remaining
8 channels are vacated and display sufficiently low leakage.
Overall, the spectral mask requirement of 69dB attenuation
in next-adjacent channels [1] is met. Analysing the audio I/O
of the OMAP system yields plots closely related to those in
Fig. 9, with a differently scaled frequency axis, whereby the
sampling rate is 96kHz, and the equivalent 400Hz channels
occupy the range between 23.5 and 39.5kHz.

5.2 Measurements

Due to the filtering and upsampling in the transmitter, and
the filtering and downsampling in the receiver, an increase in
word length can be observed, particularly in the receiver. For
the latter, the rate is reduced by a factor 5 ·48 = 240≈ 43.953

leading to an increase in word length from the 16 bit accuracy
of the ADC to (16+3.953)dB with close to 120dB dynamic
range.

For the RF system, where the 1.92GHz ADC has a lower
resolution of approx. 12 bits, the ultimate aim will be to ex-
tract baseband signals with near 16 bit resolution, which can
aid in providing the dynamic range that is required for wide-
band communications systems.
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6. CONCLUSION

Recent work on the design of a TVWS transceiver operating
at an RF sampling rate of 1.92GHz has been reviewed, using
an up- and downconversion via a two-stage filter bank ap-
proach. Employing an efficiently implemented filter bank as
an up- or downconverter yields a flexible system, where the
cost of extracting all 40 TVWS channels is not significantly
higher than that of extracting a single channel, since the filter
bank implementation’s cost is primarily determined by the
prototype filter, which is equivalent to a transmit or receive
filter of a single channel system.

The design issues experienced with a DSP implemen-
tation of a TVWS transceiver demonstrator running on an
OMAP L137 are similar to the RF system, but operate at a
2 ·104 scaled-down sampling frequency. Baseband signals of
400Hz bandwidth correspond to the 8MHz TVWS channels.
The demonstrator will be a useful platform in future stu-
dent projects, where the aim is to design synchronisation and
equalisation algorithms, or also TVWS-specific approaches
such as spectrum estimation, adaptive channel selection, or
spectrum aggregation.
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