

Strathprints Institutional Repository

Vasile, Massimiliano and Vetrisano, Massimo and Gibbings, Alison and Garcia Yarnoz, Daniel and Sanchez Cuartielles, Joan-Pau and Burns, David and Hopkins, John-Mark and Colombo, Camilla and Branco, Joao and Wayman, Alastair and Eckersley, Steven (2013) *Light Touch2 : Effective solutions to asteroid manipulation.* In: ESA/ESTEC SYSNova Space Concept Challenge, 2013-01-21 - 2013-01-22, Noordwijk.

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http:// strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator: mailto:strathprints@strath.ac.uk

Light Touch²

Massimiliano Vasile, Alison Gibbings, Massimo Vetrisano, Pau Sanchez, Daniel Garcia, Colin McInnes & David Burns, John-Mark Hopkins University of Strathclyde, UK

Steven Eckersley, Alastair Wayman Astrium Ltd, UK

Target

Target

- Initial target selection based on orbital elements, size and Orbit Condition Code (OCC).
 - ~9,500 NEOS known today, 189 with Q<1.4 AU & q>0.7 AU, and only 10 with D~4m considering p_v =0.154.
 - OCC>4 are equivalent to "lost objects". ----> Only 2 left.

University of

Strathclyde

Southampton

DESIGNATION	PHA (Y/N)	Н	q (AU)	Q (AU)	i (deg)	D (km) (p _v =0.154)	OCC
2008 JL24	Ν	29.572	0.927631	1.148906	0.550106	0.004124	3
2006 RH120	Ν	29.527	1.007964	1.058540	0.595266	0.004211	1

2008JL24

Orbital Elements at Epoch 2456200.5 (2012-Sep-30.0) TDB Reference: JPL 10 (heliocentric ecliptic J2000)						
Element	t Value	Uncertainty (1-sigma)	Units			
е	.106559869181477	7.2705e-06				
а	1.03826844970543	2.8956e-06	AU			
q	.9276306995295643	5.0396e-06	AU			
i	.5501064109470443	4.6053e-05	deg			
node	225.822449694026	0.00026854	deg			
peri	281.9655686889383	0.00038643	deg			
M	124.186109529154	0.0073006	deg			
tp	2456067.198991958747 (2012-May-19.69899196	0.0072788	JED			
in a via al	386.4229508179025	0.0016165	d			
penod	1.06	6 4.426e-06	yr			
n	.9316216835413743	3.8973e-06	deg/d			
Q	1.148906199881296	3.2042e-06	ΑŬ			

Rotation ~ 18 rev/h

2006RH120

Orbital Elements at Epoch 2456200.5 (2012-Sep-30.0) TDB Reference: JPL 45 (heliocentric ecliptic J2000)						
Element	t Value	Uncertainty (1-sigma)	Units			
е	.02447403062284801	4.2401e-05				
а	1.033252056035198	1.0251	AU			
q	1.007964213574672	! 1	AU			
i i	.5952660003048117	9.4379e-05	deg			
node	51.14334927580387	3.8304e-05	deg			
peri	10.14353817485877	0.092984	deg			
M	221.2498016727181	206.48	deg			
tp	2456348.356001016605 (2013-Feb-24.85600102)	1	JED			
maniant	383.6258326667335	570.89	d			
penda	1.05	1.563	yr			
n	.9384143854377558	1.3965	deg/d			
Q	1.058539898495724	1.0502	ΑŪ			

Rotation ~ 21.8 rev/h

Target

Southampton

Target observability from Earth

Table 5: NEO properties and next observation opportunities according to NHATS⁵

Object Designation	Orbit ID	∠H (mag)	Estimated Diameter (m)	осс	Min. delta-V [delta-V, dur.] (km/s), (d)	Min. Duration [delta-V, dur.] (km/s), (d)	Viable Trajectories	Next Optical Opportunity (yyyy-mm [Vp])	Next Arecibo Radar Opportunity (yyyy-mm [SNR])	Next Goldstone Radar Opportunity (yyyy-mm [SNR])
(2008 JL24)	10	29.6	2.1 - 9.5	3	4.628, 394	11.791, 82	904797	none	none	none
(2006 RH120)	45	29.5	2.2 - 10	1	3.989, 450	11.323, 42	1283738	2028-06 [23.9]	none	none

Target observability from S/C

Light Touch²

Ablation Process

• Energy balance:

$$\left(E_{v} + \frac{1}{2}\overline{v}^{2} + C_{p}\left(T_{s} - T_{0}\right) + C_{v}\left(T_{s} - T_{0}\right)\right)\dot{\mu} = P_{I} - Q_{RAD} - Q_{COND}$$

Ejection velocity dependent on temperature:

$$\overline{v} = \sqrt{\frac{8k_b T_s}{\pi M_a}}$$

Integrated mass flow over the spot including rotation:

$$\dot{m} = 2V_{rot} \int_{0}^{y_{max}} \int_{t_{in}}^{t_{out}} \frac{1}{E_{\nu}^{*}} \left(\left(P_{I} - Q_{rad} \right) - \left(\sqrt{\frac{c\kappa\rho}{\pi}} \left(T_{subl} - T_{0} \right) \right) \sqrt{\frac{1}{t}} \right) dt \, dy$$

Thrust model includes a scattering factor:

$$F_{sub} = \lambda \overline{v} \dot{m}$$

Input power dependent on system efficiency:

$$P_{I} = \tau \tau_{g} \alpha_{M} \eta_{P} \eta_{L} \eta_{S} \frac{P_{1AU} A_{SA}}{A_{spot} R_{AU}^{2}}$$

Southampton

Contamination Model

Density dependent on elevation angle distance:

$$\rho(r,\theta) = \rho^* K_P \frac{d_{SPOT}^2}{\left(2r + d_{SPOT}\right)^2} \left[\cos\left(\frac{\pi\theta}{2\theta_{MAX}}\right) \right]^{\frac{2}{k-1}}$$

• Thickness of the layer of contaminant dependent on view factor and mass flow: $dh = 2\overline{n} c$

$$\frac{dh}{dt} = \frac{2v\rho}{\rho_l}\cos\psi_{vf}$$

Beer–Lambert law for light absorption:

$$au = e^{-2\eta h}$$

 Key coefficients experimentally derived using asteroid analogous materials

Southampton

Focusing and Beam Control

Beam behaviour of a 1070nm fibre laser and an f=50m optic

Momentum Coupling

Southampton

Mass Efficiency

 $\eta_{\rm L}{=}0.55,$ Laser Cm=1.1628e-5N/W, $I_{sp}{=}1640s,$ EP Cm=2.79e-005N/W

Efficiency analysis

Thrusting time required to achieve 1 m/s for different shoot shooting distances

Deflection Result

Assuming 860W at 1AU the target Δv can be achieved in about half a year.

University of Strathclyde

Mission, Control, Navigation

Mission: Interplanetary Trajectory and LW

Opportunities in 2027 (nominal) and 2028 (backup)

Earth Departure	V _{inf} (km/s)	DSM date (Fraction ToF)	DSM Δν (km/s)	Asteroid Arrival	Arr Δv (km/s)	ToF (Days)	Total Δν (km/s)
8/11/2027	0.5403	N/A	0	9/09/2028	0.4871	306.5	3.677

- Preliminary analysis assumes escape 400x400 orbit
- Low Δv requirements during transfer and arrival
- Wide LW

3.72

3.715 3.71

3.705 3.7 3.7 3.695

3.685 3.68

otal 3.69

1 month \rightarrow less 1%

extra costs

3.675 09/10 15/10 22/10 29/10 04/11 11/11

Light Touch² – Final Review Meeting – 21-22 January 2013 – ESA/ESTEC

Date in 2027

University of Strathclyde

Southampton

Mission: Launcher & Propulsion Trade-off

- Launcher and propulsion trade-off:
 - VEGA to LEO / PSLV to LEO with Off-the shelf PRM / Integrated SC / Solid motor
 - PSLV XL to GTO with Biprop / EP
 - (Ariane 5 ECA tertiary payload) costs
- Refined trajectory

Non-Sphericity	8 Zonal, 8 Tesseral
S/C Initial Mass	1074 kg (maxi for PSLV XL)
Third Body	Moon, Earth
SRP	A: 7.4 m ² C _R = 1.5
Dep. Conditions	GTO: 200 x 36 000 km , 18°
Specific Impulse	321 sec
Thrust	450 N

Final mass > 690 kg

Manoeuvre	⊿v [m/s]
Departure	792
DSM	186
Arrival	395

GNC Strategy and Analysis

- NEO Mission
 - References Hayabusa, Marco Polo, Rosetta, NEAR, Stardust
 - Relies heavily in optical navigation
 - Dynamics 3 body problem, SRP, asteroid rotation,
 - Need for combined approach strategy definition and GNC analysis
- AdAM
 - 2006RH120 is approximately 4 m diameter, 130 Ton, 31 Visual Mag
 - Gravity pull at 50 m range is 2 μN, 1 order of magnitude below SRP 40 μN), 6 orders of magnitude lower than for Hayabusa's Itokawa (382 mN). Implications
 - Dyamics modelling/decoupling → GNC algorithms modularity
 - Strategy no stable terminator orbits \rightarrow unstable hold points
 - Safety \rightarrow spacecraft is barely pulled towards asteroid
 - Can be detected at 40 ×10³ Km Don Quijote's 160-meter-wide 2002AT4 could be detected from 2500 ×10³ Km
 - Duration of operations Hayabusa/Marco Polo Sample Return; Rosetta Orbit, Release Lander; NEAR – Orbit, Touch-Down; Stardust - Flyby. AdAM -Actively perturbing the asteroid from a hold point for 2 years (while counteracting forces and trailing the asteroid) → component life-time, robustness
 - FF / RV / Debris Removal as add. reference (ATV, Proba, MSR)

GNC Strategy

- Early Encounter (Launch + 296 Days)
 - RVM (main engine, ∆v 391 m/s) @60 000 Km distance
 - Scan, Acquire LOS, relative accuracy from ~5000 Km to 10 Km
- Far Approach (11 Days)
 - Reduce relative distance from 5000 Km to 10 Km
 - Improve relative accuracy from 10 Km to 1 Km, 1 mm/s
 - (accuracy improves through Dog leg LOS observation + Radiometric)
- Close Approach (11 Days)
 - Acquire Ranging Sensor, early validation of GNC functions, tackle SRP
 - Aproach from 10 Km to 1 Km through dog-leg in 6 days through 6 WP
 - Accuracy in range direction improves to 20 m , 0.1 mm/s
 - Final approach segment from 1 Km to 300 m in 6 hours, where ranging sensor is acquired.
 - Accuracy in range direction improves to <1 m , < 0.1 mm/s
 - SRP causes 5 Km drift in 4 days \rightarrow close approach is autonomous (through station keeping hold points)
- Transition to Operation (26 days)
 - GNC callibration, Test Station Keeping, Fine Asteroid Ephemeris Characterization
 - Station keeping with increasingly narrow boxes, from 300 to 50 m to NEO
- Operations Testing and Callibration (2 months)
 - Supervised used of laser for periods of minutes, then hours, weeks and month
- Operations Nominal 90 days ablation + 10 days orbital determination campaigns

Approach

Far Approach

- LOS + Radiometric based Navigation (NAC)
- Lower the Range, Improve Accuracy
- 1st Segment Gravity-Gradient, 2nd SRP

Close Approach

- Autonomous GNC
- Dog-leg manoeuvres
- Improvement on range through LOS, Δv / LOS rate , brightness/size
- Predictive Guidance through WP
- HP at 1 Km, approach to 300 meters
- Acquisiton of ranging sensor

University of Strathclyde

Southampton

Transition to Operations

- Full Metrology Acquired
- Asteroid is 300 000 pixels in NAC, 10 in WAC
- Autonomous Station-Keeping

Calibrate

- WAC, NAC, STR for LOS, starry background
- Range/Range Rate (size of asteroid, rangefinder, shadow)

Characterize Asteroid

- Size, Rotatinal State
- Features

Build Thrust

- Validate Procedures,
- Assess GNC Algorithms Performances

Orbit Determination

- Radiometric measurements
- Relative metrology •
- <0.4 AU from Earth

Followed by series of **Ablation Tests**

NEO

50 m

SUN direction

100 m

200 m

300 m

Control Box 3

 $2 \times 1 \times 1 m$

(3 days)

Control Box 2

 $4 \times 2 \times 2 m$

(3 days)

Control Box 1 100 × 4 × 4 m

(20 days)

GNC Architecture and Hardware

NAC

- Main Approach Sensor
- Rotational State
- Fitted with FEIC
- WAC
 - Proximity (LOS)
 - Callibration
- Laser Rangefinder
 - Low-Power, Low-weight (wrt to LIDAR, Radar)
 - Proximity range to surface

Camera	Pixel [µrad]	FOV	Range [Km] (worst case)	Mass
Galileo Avionica VBNC	200	70	10	0.6 kg
Marco Polo R NAC	15	1.7	30 000	6 kg

the binner O	LRF	To qualify
	Accuracy	10 cm
h.	Power	<2 W
	Mass	0.5 K
	Rate	1*MHz
	Range	500 m
	Bandwidth	920 nm

Rotation Estimate FFT Approach

- Complex Spectrum of Position of points on the body (Fourier transform)
- Camera and LRF to detect points' relative position
- Rotations around two axis
- 2 distinct frequencies (4 frequencies in the spectrum)

 $\mathbf{p}' = \mathbf{a}\cos(\theta_1) + \mathbf{b}\sin(\theta_1) + \mathbf{c}\cos(\theta_2) + \mathbf{d}\sin(\theta_2) + \mathbf{c}\cos(\theta_2) + \mathbf{c}\sin(\theta_2) + \mathbf{c}\sin(\theta_2) + \mathbf{c}\cos(\theta_2) + \mathbf{c}\cos(\theta_$

 $\mathbf{e}\cos(\theta_1+\theta_2)+\mathbf{f}\sin(\theta_1+\theta_2)+\mathbf{g}\cos(\theta_1-\theta_2)+\mathbf{h}\sin(\theta_1-\theta_2)+\mathbf{i}$

- Intersection of the two axis identifies the CG
- No needs to know inertia and mass of the asteroid

Example

- 21 rotations/hour around z-axis (5.833E-3Hz)
- 1 rotation/hour around y-axis (2.778E-4Hz)
- One image every 10 seconds
- 4 points tracked per image
- Observation period 2 hours
- Exact determination of frequency
- Rotational axis
- z_est = [0.009 0.054 0.998];
- y_est = [0.317 0.948 0.000];

UNIVERSITY OF

Southampto

Proximity Navigation and Control

• Relative perturbed spacecraft motion described in the Hill reference frame:

$$\ddot{\mathbf{x}} = -\mathbf{a}_{r_a} - 2\mathbf{v} \times \dot{\mathbf{x}} - \dot{\mathbf{v}} \times \mathbf{x} - \mathbf{v} \times (\mathbf{v} \times \mathbf{x}) - \frac{\mu_{sun}}{r_{sc}^3} (\mathbf{x} + \mathbf{x}_{r_a}) - \frac{\mu_a}{\delta r^3} \mathbf{x} + \nabla U + \frac{\mathbf{F}_{sc}(\mathbf{x}, \mathbf{x}_{r_a})}{m_{sc}}$$

- U second order gravity field potential
- **F**_{sc} force acting on the spacecraft
 - Laser recoil
 - Solar radiation pressure
 - Plume impingement
- **a**_{r_a} relative acceleration of the reference frame

$$\ddot{\mathbf{r}}_a = -\frac{\mu_{sun}}{r_a^3} \mathbf{r}_a - \frac{\mu_{Sc}}{\delta r^3} \mathbf{x}_a + \mathbf{a}_{lase}$$

- tugging effect
- **a**_{laser} acceleration from laser ablation
- Control box to maximize the effectiveness of laser $f' = \mathbf{v}_{in}^{est} + \Delta \mathbf{v}_{corr} + \mathbf{a}_{est}t = 0$

 $\mathbf{d}_{f} = \mathbf{d}_{in}^{est} + (\mathbf{v}_{in}^{est} + \Delta \mathbf{v}_{corr})t + \mathbf{a}_{est} \frac{t^{2}}{2}$

• $\Delta \mathbf{v}_{corr}$ corrective impulse bit

Need to estimate

- Spacecraft relative position and velocity
- Perturbative acceleration acting
- On board orbit determination by processing measurements from
 - Camera
 - Lidar Range Finder

Southampton

Proximity Navigation and Control

Example Trailing Configuration

How to measure the efficiency of a deflection strategy?

Two quantities can be measured: Integral of the acceleration imparted onto the asteroid

$$\delta v_{I} = \int_{\text{start ablation}}^{\text{stop ablation}} \frac{F_{\text{sub}}(t)}{m_{\text{NEO}}(t)} dt$$

 Variation of position and velocity with respect to the nominal orbit of the asteroid

Quantity of interest in an actual deflection mission

- strongly affected by the thrust direction
- the starting point of the deflection action and the orbital characteristics of the asteroid.

University of

Strathclyde

Estimating Δv imparted onto the asteroid

- 2. Measurement from OD
- Measurement of the deflected position of the asteroid at the end of the thrusting arc, with respect to its nominal position (through orbit determination campaign).
- Compute the delta velocity equivalent to a continuous thrust arc through the use of relative motion equations

$$\delta v_{measured} = \mathbf{\Phi}^{-1} \delta r(t_{measure}) \quad [1]$$

transition matrix of the relative motion equations

- relative position of the asteroid with respect to its nominal one at the time of measure
- Dependent on range measurements
- Dependent on time interval between ODS
- Dependent on thrust direction

[1] Vasile M. and Colombo C., "Optimal Impact Strategies for Asteroid Deflection", Journal of Guidance, Control and Dynamics, Vol. 31, No. 4, July–Aug. 2008, pp. 858–872, doi: 10.2514/1.33432.

Southamp

UNIVERSITY OF

Estimating Δv imparted onto the asteroid

- Monte Carlo analysis considering errors in the determination of position and velocity at each orbit determination campaign:
 - (Error 1) 500 m in position and 0.5 mm/s in velocity
 - (Error 2) 1.5 km in position and 1 mm/s in velocity
 - (Error 3) 10 km in position and 10 mm/s in velocity
 - (Error 4) 5 km in position and 2 mm/s in velocity

Southampton

UNIVERSITY OF

Estimating Δv imparted onto the asteroid

- Proposed methods:
 - Δv given by the integral of the acceleration from the laser ablation

- High fidelity model for perturbations (recoil, asteroid's gravity, and solar radiation pressure)
- Force from the plume exerted on the same direction of the asteroid acceleration
- Camera+LRF+ impact sensor to estimate plume ejecta force

Southam

ADAM LightTouch²

AdAM

Primary Payload

- Diode-pumped fibre laser system
 - Overall efficiency of 55 %, operating temperature 10 C
 - Focal length of 50 m [spacecraft-to-asteroid distance]
 - 860 W, with a spot size radius between 0.8-1 mm
 - Surface power density 428-274 MW/m²
 - Mass derived from space qualified reflective telescopes [HiRise reflective telescope] and perceived laser development for the 2025+ timeframe [DARPA, nLIGHT]
 - Optics 10 kg, laser 9.9 kg
 - Optical scheme is based on a simple combined beam expansion and focusing telescope
- Impact Sensor
 - Upon impact, used to measure the momentum created by the ejecta
 - Consist of a thin aluminium diaphragm with piezoelectric transducers
 - Heritage from Rosetta (GIADA) and PROBA-1 (DEBIE instrument)
 - 2.5 kg, 4 W

Opportunistic Payload Selection

- Ablation results in the volumetric removal and ejection of deeply situated and currently inaccessible subsurface material.
 [Gibbings, Vasile et al, 2012]
- Raman/Laser-Induced Breakdown Spectrometer
 - Best complements the laser ablation process
 - Single science objective
 - Measure the spectral emission and intensity of the ejecta plume
 - Measure the elemental composition, quality and concentration
 - Heritage from the ExoMars Rover, flight model [2 kg, 30 W] and pioneering technological development in laser sources, optical elements and spectrometers
- Supported by the operations of the WAC and NAC
 - Shape model, topographical profile, rotational state
 - Derivation of bulk density and mass

Design Drivers

- Cost
 - Low cost launch/transfer
 - Vega to LEO + LISA PRM not possible due to mass
 - PSLV to GTO offers sufficient mass and low cost
 - Low cost ground station
 - High performance communications subsystem
- Escaping from GTO
 - Relatively high Δv
 - Limit transfer time and passes through radiation belts
 - Bipropellant propulsion system
 - Relatively high fuel mass
 - Relatively high structure mass

Mass Budget

SysNova Mass Budget	Current Mass (kg)	Design Maturity Margin (%)	Maximum Mass (kg)
Data Handling	17.1	10.9%	18.9
Power	68.8	16.4%	80.1
Communications	37.7	8.8%	41.0
GNC & AOCS	39.5	7.9%	42.5
Structure and	100.0	20.0%	120.0
Thermal	13.0	20.0%	15.6
Propulsion	59.9	12.3%	67.3
Payload	35.5	19.4%	42.4
SPACECRAFT DRY TOTAL	371.4	15.2%	427.9
Harness	30.0	20.0%	35.9
DRY TOTAL (incl. Harness)			463.8
System Mass Margin		20.0%	92.8
DRY TOTAL (incl. 20% System Margin)			556.6
Propellant			405.2
SPACECRAFT WET MASS			961.8
Launch Vehicle Capability - PSLV GTO			974.0
Launch Vehicle Margin - PSLV GTO			12.2
Mass Margin % - PSLV GTO			1.3%

Southampton

Power Budget

SysNova Power Budget	Current Power (W)	Design Maturity Margin (%)	Maximum Power (W)
Payload	895.0	19.7%	1071.0
GNC & AOCS	159.3	8.1%	172.2
Data Handling	46.9	11.0%	52.1
Power	0.0	0.0%	0.0
Communications	57.0	5.0%	59.9
Thermal	40.0	20.0%	48.0
Propulsion	0.0	0.0%	0.0
Total	1198.2	17.1%	1403.1
PCDU		10.0%	140.3
Harness		2.0%	28.1
Total Including PCDU and Harness			1571.5
System Power Margin		20.0%	314.3
Total Including 20% System Margin			1885.8

Downlink and Ground Segment

- Nominal science operations is the driving case with an 8 hour downlink once every 7 days
- Baseline system includes:
 - 1.3m X-band HGA
 - 160W Tx Output Power
 - 12m Rx antenna at Harwell
- Supports the required data rate of 23.5kbps at end of nominal operations
 - Link margin of 9.2dB
- Can also support the required data rate of 8kbps until the end of the 3 year mission lifetime
 - Link margin of 8.5dB

Radial Configuration

Southampton

Southampton

University of `

Improved Solution

- 1. Low-mass low-power laser range finder instead of the LIDAR
- 2. Reduced power input to the laser down to 480W
- 3. Optimised spacecraft mass:
 - a. Improved thermal system mass
 - b. Improved structural mass
 - c. Optimised propellant mass
 - d. Improved power system mass
- 4. Same margin approach as for the second iteration

Improved Solution

SysNova Mass Budget	Current Mass (kg)	Design Maturity Margin (%)	Maximum Mass (kg)
Data Handling Subsystem	17.1	10.9%	18.9
Power Subsystem	46.0	14.6%	52.8
Harness	25.8	20.0%	30.9
Communications Subsystem	37.7	8.8%	41.0
GNC & AOCS Subsystem	44.5	12.6%	50.0
Structure and Mechanisms	83.0	20.0%	99.6
Thermal Subsystem	12.4	20.0%	14.8
Propulsion Subsystem	59.9	12.3%	67.3
Payload	20.0	19.0%	23.8
SPACECRAFT DRY TOTAL			399.2
System Mass Margin		20%	79.8
DRY TOTAL (incl. System Margin)			479.0
Propellant			351.9
SPACECRAFT WET MASS			831.0
Launch Adapter			0.0
WET MASS + LA			831.0
Launch Vehicle Capability - PSLV			1074.0
XL GTO			10/4.0
Launch Vehicle Margin - PSLV XL GTO			243.0
Mass Margin % - PSLV XL GTO			22.6%

Roadmap

Technology Readiness Level

PLATFORM	TRL	Heritage	Expected Modifications			
Payload						
Laser	3/4	Ground-based	Design and Space Qualification			
Laser Optics	3/4	Ground-based	Design and Space Qualification			
Impact Sensor	5	Rosetta (GIADA payload)	Modification and Space Qualification			
Raman Spectrometer	5	ExoMars	Modification and Space Qualification			
Power Subsystem						
Solar Array Assembly	5	IMM Cells - E3000 development	Further Cell Development/Qualification			
Whipple Shield	5	ISS and ATV derivative	Significant modification			
GNC & AOCS Subsystem						
Narrow Angle Camera	4	MarcoPolo-R	Continued development			
Laser Rangefinder	9	ARP, ATV, HTV	Not tested for non- collaborative target			

Roadmap

Technology	TRL	Activity	Target Date
Laser system	TRL4	Lab demonstration of improved diode stack efficiency	2014
	TRL4	Coherent combining for high power high efficiency laser	2016
	TRL5/6	Lab space qualification of fibre-diode coupled laser (vacuum, thermal, radiation tests)	2018
	TRL6	In space testing of adaptive optics	2018
	TRL7/8	In-space testing of fibre-diode coupled system	2020
Ablation process	TRL4	Lab experiments and model completion for both ablation and contamination	2013
	TRL5/6	In Earth orbit demonstrator with dummy asteroid.	2020
	TRL7/8	Asteroid material extraction and analysis mission	2025
	TRL8/9	AdAM	2027
In-space OD	TRL3	Concept demonstrated in simulation environment	2012
	TRL7/8	Multi asteroid discovery and tracking mission	2024
	TRL8/9	AdAM	2027
In-space rotation	TRL3	Concept demonstrated in simulation environment	2012
estimation	TRL6/7	In Earth orbit demonstration with dummy asteroid or space debris	2020
	TRL7/8	Multi asteroid discovery and tracking mission	2024
	TRL8/9	AdAM	2027
In-space deflection	TRL3	Concept demonstrated in simulation environment	2012
estimation	TRL6/7	In Earth orbit demonstration with dummy asteroid or space debris	2020
	TRL7/8	Asteroid material extraction and analysis mission	2024
	TRL8/9	AdAM	2027

Follow **Stardust**, the asteroid and space debris research and training network: www.stardust2013.eu https://twitter.com/stardust2013eu

Questions?

Backup Slides

Southampton

Back Up- Rotation Estimate FFT Approach

Hirai et Al. 1998: БЛ

$$\mathbf{p} = \mathbf{R}(\mathbf{k}_1, \theta_1)\mathbf{R}(\mathbf{k}_2, \theta_2)\mathbf{p} + \mathbf{p}_0$$

$$\mathbf{p} = \mathbf{a}\cos(\theta_1) + \mathbf{b}\sin(\theta_1) + \mathbf{c}\cos(\theta_2) + \mathbf{d}\sin(\theta_2) + \mathbf{e}\cos(\theta_1 + \theta_2) + \mathbf{f}\sin(\theta_1 + \theta_2)$$

$$+ \mathbf{g}\cos(\theta_1 - \theta_2) + \mathbf{h}\sin(\theta_1 - \theta_2) + \mathbf{i}$$

$$\mathbf{a} = -C_{1}C_{2}\mathbf{k}_{1} + C_{3}\mathbf{k}_{2} \qquad e = \{(1+C_{1})\hat{\mathbf{p}} + (C_{1}C_{3} - C_{2})\mathbf{k}_{1} - (C_{2}+C_{3})\mathbf{k}_{2}\}/2 \qquad C_{1} = \mathbf{k}_{1}^{T}\mathbf{k}_{2}$$

$$\mathbf{b} = C_{3}(\mathbf{k}_{1} \times \mathbf{k}_{2}) \qquad f = \{-C_{4}\mathbf{k}_{1} - C_{3}(\mathbf{k}_{1} \times \mathbf{k}_{2}) + (\mathbf{k}_{1} \times \hat{\mathbf{p}}) + (\mathbf{k}_{2} \times \hat{\mathbf{p}})\}/2 \qquad C_{2} = \mathbf{k}_{1}^{T}\hat{\mathbf{p}}$$

$$\mathbf{c} = -(C_{1}C_{3} - C_{2})\mathbf{k}_{2} \qquad g = \{(1+C_{1})\hat{\mathbf{p}} + (C_{1}C_{3} - C_{2})\mathbf{k}_{1} + (C_{2} - C_{3})\mathbf{k}_{2}\}/2 \qquad C_{3} = \mathbf{k}_{2}^{T}\hat{\mathbf{p}}$$

$$\mathbf{d} = C_{4}\mathbf{k}_{1} \qquad h = \{C_{4}\mathbf{k}_{1} - C_{3}(\mathbf{k}_{1} \times \mathbf{k}_{2}) + (\mathbf{k}_{1} \times \hat{\mathbf{p}}) - (\mathbf{k}_{2} \times \hat{\mathbf{p}})\}/2 \qquad C_{4} = \mathbf{k}_{1}^{T}(\mathbf{k}_{2} \times \hat{\mathbf{p}})$$

a, b, ..., i can be obtained from the Fourier transform of the time sequence data of p'

 $\mathbf{i} = C_1 C_3 \mathbf{k}_1 + \mathbf{p}_0$

- $f_1 > \mathbf{a} = 2 / N \operatorname{Re}[P(f_1)]$ $i = 1 / N \cdot P(0)$ $f_2 - > \mathbf{c} = 2 / N \operatorname{Re}[P(f_1)]$ $f_1 - > \mathbf{b} = -2 / N \operatorname{Im}[P(f_1)]$ $f_2 - > \mathbf{d} = -2 / N \operatorname{Im}[P(f_1)]$ $f_1 + f_2 - > \mathbf{e} = 2/N \operatorname{Re}[P(f_1 + f_2)]$ $|f_1 - f_2| - > \mathbf{g} = 2/N \operatorname{Re}[P(|f_1 - f_2|)]$ $f_1 + f_2 - > \mathbf{f} = -2/N \operatorname{Im}[P(f_1 + f_2)]$ $|f_1 - f_2| - > \mathbf{h} = -2/N \operatorname{Im}[P(|f_1 - f_2|)]$
- Spin axes $\mathbf{k}_1 \, \mathbf{k}_2$ and centre of gravity \mathbf{p}_0 $\mathbf{k}_1 = \frac{\mathbf{e} \times \mathbf{f}}{|\mathbf{e}|^2}$ $\mathbf{k}_{2} = \frac{(\mathbf{e} + \mathbf{g} + \mathbf{c}) \times (\mathbf{f} - \mathbf{h} + \mathbf{d})}{|\mathbf{e} + \mathbf{g} + \mathbf{c}|^{2}}$ $\mathbf{p}_0 = \frac{(\mathbf{k}_1 \times \mathbf{k}_2)^T \times (\mathbf{a} \times \mathbf{k}_1)}{|\mathbf{a}|^2} \mathbf{k}_2 + \mathbf{a} + \mathbf{i}$

Back Up- Proximity navigation and control

- Angular velocity
- $\mathbf{x}_{r_a} \times (\ddot{\mathbf{v}} \times \mathbf{x}_{r_a}) + 2\dot{\mathbf{x}}_{r_a} \times (\dot{\mathbf{v}} \times \mathbf{x}_{r_a}) = \mathbf{x}_{r_a} \times \mathbf{a}_{laser-local}$
- Potential from ellipsoid body $U_{20+22} = \frac{\mu_A}{\delta r^3} \left(C_{20} (1 - \frac{3}{2} \cos^2 \gamma) + 3C_{22} \cos^2 \gamma \cos 2\lambda \right) \qquad C_{20} = -\frac{1}{10} (2c_l^2 - a_l^2 - b_l^2) \qquad \hat{Z}$
- Perturbative forces $F_{Solar} = C_R S_{srp} \left(\frac{r_{AU}}{r_{sc}}\right)^2 A_M \frac{\mathbf{x}_a}{r_{sc}}; \quad F_{recoil} = \eta_{sys} S_{srp} \left(\frac{r_{AU}}{r_{sc}}\right)^2 A_M \frac{\mathbf{x}}{\delta r}; \quad F_{plume} = \rho_{plume}(\delta r) \overline{v}_{plume}^2(\delta r) A_{eq} \frac{\mathbf{x}}{\delta r}. \quad \hat{i}$
- Number of actuations

 $^{\uparrow}k$

Back Δv imparted onto the asteroid

$$\begin{cases} \delta r(t_{measure}) = A_{measure nominal} \delta \alpha(t_{d-measure}) \\ \delta \alpha(t_{d-measure}) = G_d \delta v(t_d) \end{cases}$$

Proximal motion between nominal and deviated

Gauss' equations (also orbit perturbation can be included)

Absolute error on the measurement of the velocity imparted onto the asteroid (mean and standard deviation in m/s).

	OD after 30 days	OD after 60 days	OD after 90 days
Error 1	0.025899 ±0.001112	0.06877 ±0.00071162	0.12086 ±0.00053259
Error 2	0.028674 ±0.0026812	0.069602 ±0.0014648	0.12194 ±0.0011782
Error 3	0.077114 ±0.015354	0.087915 ±0.010835	0.13626 ±0.012386
Error 4	0.035589 ±0.006973	0.074227 ±0.0032254	0.12588 ±0.0024126

GNC-Estimating Δv imparted onto the asteroid

- Augmented state vector
- $[x, y, z, v_x, v_y, v_z, a_{laser}, a_{plume}]$
- Acceleration considered as bias (no time variation)

$$\dot{a}_{laser} = 0 + v_{laser}$$
$$\dot{a}_{plume} = 0 + v_{plume}$$

Why not Electric Propulsion from GTO?

- Moderate Mission ΔV from GTO of ~1.4km/s
 - Propellant savings from EP are not compelling
- Only have 3 years in total for SySNOVA:
 - EP for escape incurs a time and significant Δv penalty
 - Mass penalty for high thrust & power for rapid escape
- Every orbit in GTO passes through radiation belts
 - Need to escape quickly or accept high radiation dose
 - Mass (for faster escape) or Cost (radiation) penalty
- All up EP (for transfer & AOCS) is heavy & expensive
 - Separate EP (for transfer) & chemical RCS is inefficient and still expensive
- A combined CPS is significantly cheaper and simpler than EPS options

Why not LEO?

- PSLV to LEO also considered
 - Total available mass of 789-3760kg dependent on altitude and inclination of orbit
- The LISA PRM could be used in 2 ways:
- 1. To provide all of the Δv to escape
 - Would need significant modification to accommodate fuel mass
- To provide as much Δv as possible with no modification with spacecraft providing remainder
 - Spacecraft mass is potentially over the design limit of PRM, again requiring modifications

Why not LEO?

- Escaping from LEO with a solid motor was also considered
- Several issues were identified
- No European solid motor exists
 - American solid motor would need to be used
- No European heritage for the use of solid motors
- Significant additional mass would be required
 - Structure between solid motor and spacecraft
 - Spin table
- Further unknown complexities that add mass

PSLV XL Mass Budget

SysNova Mass Budget	Current Mass (kg)	Design Maturity Margin (%)	Maximum Mass (kg)
Data Handling	17.1	10.9%	18.9
Power	68.8	16.4%	80.1
Communications	37.7	8.8%	41.0
GNC & AOCS	39.5	7.9%	42.5
Structure and	100.0	20.0%	120.0
Thermal	13.0	20.0%	15.6
Propulsion	59.9	12.3%	67.3
Payload	35.5	19.4%	42.4
SPACECRAFT DRY TOTAL	371.4	15.2%	427.9
Harness	30.0	20.0%	35.9
DRY TOTAL (incl. Harness)			463.8
System Mass Margin		20.0%	92.8
DRY TOTAL (incl. 20% System Margin)			556.6
Propellant			442.2
SPACECRAFT WET MASS			998.8
Launch Vehicle Capability - PSLV GTO			1074.0
Launch Vehicle Margin - PSLV GTO			75.2
Mass Margin % - PSLV GTO			7.0%

Laser Range Finder

ESA ILT – undergoing programmes miniaturization of LIDAR technology – Jena Optroniks and ABSL

Roadmap

 Λ in ILT

developmen

Ground test on (LRF-only)

non-collaborative target (asteroid mockup)

Debris Removal Mission

Roadmap

- LRF
 - BB Model tested
 - Range (at 5000 Km)
 - Accuracy <10 cm
 - Scanning and processing are the heavy/power-hungry
 - Sensor head 1.7 Kg
 - Power (30 W) moving mirror
- Jena ILT Tested in GNC testbed in real time with FF Algorithms (PLATFORM)

Figure 9. HARVD development and validation environments

Figure 11. Sensors mounted on the mock-up

Roadmap for GNC technology maturation

- Optical Navigation
 - Proba-3 (main system and RV experiments), Rosetta experience
- LRF
 - ILT, Prototype, test with PLATFORM
 - 2013 4 developments in Europe (GSTP Debris Removal, Science Marco Polo (hayabusa-like 3 beams), ABSL, NEPTEC? still developing for Lunar Lander, DLR supporting qualification of Jena's RVS
- GNC algorithms for RV / Asteroid state identification / FEIC
 - Virtual simulations (PANGU), tests with PLATFORM
- Test of full system in orbital debris removal

Autonomy

- Autonomous GNC reduced to a minimum NO AutoNAV!
 - NO autonomous detection, NO autonomous GNC up to 10 Km, Hold Points, Modular Design
- Imperative for Station Keeping (non-stabe station keeping point)
- Same algorithms and techniques widely used for Pointing (Attitude Control)
- GNC for Close Approach (<10 Km)
 - 6 days
 - Hold Points waiting for "Go" from ground
 - Quick response is needed for safety (SRP moves SC 5 Km in 3 days)
 - Final segment is supervised from ground
 - Heritage of procedures from PROBA; ATV

Southam

Collision Avoidance

- Not a typical NEO mission
 - Gravity pull from asteroid < 2 μN
 - SRP ~40 µN
 - Collision Avoidance Design SC is 10 m offset to asteroid's orbital plane
 - (offset has negligible effect of <1 pN due to differential gravity)
- Larger Concerns:
 - Evaporation
 - No illumination angle (SC is pushed to the dark side of the asteroid)
- This happens only in case of failure (FDIR field)

Passive Safety – Worst case – loss of control (position, attitude, tumbling)

Trailing Configuration

No Collision – Safe with 25% to 100% SRP, 2 day propagation

Southampton

Radial Configuration Configuration

Worst case – error in position Δposition = 1m. Δvelocity = 1 mm/s, 25% SRP

CEAM / FDIR

- Detection of failure / Contingency
 - Fault/Failure in component detected by component (hardware) sensor actuator Southamp failure flag
 - Incoherent measurements/data detected in cross-checking (pre-processing) in the GNC chain
 - Contingency raw algorithms for CAEM
 - LRF raw measurement exceeds limit
 - SC spans more than 10000 pixels in WAC
 - Contingency GNC solution shows phase angle >30 deg (radial) or > 120 (trailing)
- Classification → Contingency plan / FDIR
 - No failures, immediate recovery to operational conditions
 - Supervised recovery (boost in Sun direction 3 days safe, 14 days safe), send to further away SK
 - Safe mode with 3 months of opportunity
 - Safe mode to equilibrium point
 - Worst-Case Attitude Control with RCS, Sun-Pointing, Boost of towards* Sun

Strathclyde

University of

Safe Hold Points

- No terminator Orbits asteroid gravity << SRP
- No stable orbits due to SRP
- However, ~615 Km distance, gravity gradient balances SRP
- In case of failure ~0.4 m/s boost brings SC in 30 days to point where breaking leaves the SC in an equilibrium orbit with little drift.

