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Mean Exit Times and the Multilevel Monte Carlo Method∗

Desmond J. Higham†, Xuerong Mao†, Mikolaj Roj†, Qingshuo Song‡, and George Yin§

Abstract. Numerical methods for stochastic differential equations are relatively inefficient when used to ap-
proximate mean exit times. In particular, although the basic Euler–Maruyama method has weak
order equal to one for approximating the expected value of the solution, the order reduces to one half
when it is used in a straightforward manner to approximate the mean value of a (stopped) exit time.
Consequently, the widely used standard approach of combining an Euler–Maruyama discretization
with a Monte Carlo simulation leads to a computationally expensive procedure. In this work, we
show that the multilevel approach developed by Giles [Oper. Res., 56 (2008), pp. 607–617] can be
adapted to the mean exit time context. In order to justify the algorithm, we analyze the strong
error of the discretization method in terms of its ability to approximate the exit time. We then
show that the resulting multilevel algorithm improves the expected computational complexity by an
order of magnitude, in terms of the required accuracy. Numerical results are provided to illustrate
the analysis.
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time, Monte Carlo, multilevel Monte Carlo, stochastic differential equation, stochastic simulation,
strong and weak convergence
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1. Background and notation. We begin with the system of stochastic differential equa-
tions (SDEs),

(1.1) dX(s) = b(X(s))ds + σ(X(s))dW (s),

with deterministic initial condition X(0) = x, over a finite time interval [0, T ]. We assume
that X takes values in R

d, b : Rd → R
d, and σ : Rd → R

d×d1 . Here W = {W (t) : t ≥ 0} is
a standard d1-dimensional Brownian motion, and we let (Ω,F ,P,Ft) be a complete, filtered
probability space satisfying the usual conditions. For a specified open set O ⊂ R

d, the stopped
exit time is the first time at which X(s) leaves the open set O, or T if this is smaller. Our
quantity of interest is the expected value of this random variable.
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Such exit times are important in many applications, including air traffic management (us-
ing the Markov chain approach) [23], manufacturing flexibility [37], quantum electrodynamics
[4], the adoption of technological innovation [20], electronic systems [22, 30], optimal decision
making [27, 33], and finance, insurance, and economics [8, 25, 36, 38].

The approach of approximating a mean exit time by directly simulating paths of the SDE
and applying a Monte Carlo technique has been adopted by many authors [2, 5, 26, 28], and,
relative to the alternative of solving an associated deterministic partial differential equation,
it has the advantages of (a) being straightforward to implement and (b) coping naturally
with high dimension and complicated boundaries. However, in this context the inherently
high cost of controlling the Monte Carlo sampling error is exacerbated by the large biases in
the numerical method—exit time samples are less accurate than the corresponding samples
of the solution process itself. In section 4.1 we show that it takes an O

(
ε−4
)
amount of

computational effort to compute an O(ε) confidence interval for the mean exit time with the
standard Monte Carlo approach.

Our aim in this work is to show that the multilevel idea that Giles [13] introduced for the
problem of approximating mean values of the form E[f(X(T ))] may be adapted to the mean
exit time context, reducing the computational cost to O

(
ε−3| log(ε)|1/2). A proper analysis of

the multilevel approach requires an understanding of both the weak and strong convergence
rates of the underlying discretization method, and for this reason we present what appears to
be the first strong convergence result for the mean exit time problem (Theorem 3.1).

The work is organized as follows. Section 2 outlines the existing approximation results
that are relevant to our analysis. In section 3, we state and prove a new strong convergence
result. Section 4 derives the expected computational cost of standard Monte Carlo, defines a
multilevel algorithm, and shows that it offers improved complexity. In section 5 we provide
illustrative computational results, and concluding remarks appear in section 6.

We finish this section by introducing some further notation. For the purposes of analysis,
we let Xt,z(s) denote the general solution of the SDE (1.1) at time s with initial condition
X(t) = z. So the specific solution of interest, X(s), is shorthand for X0,x(s).

The Euler–Maruyama approximation Y t,z
n ≈ Xt,z(sn) has Y0 = z and

(1.2) Y t,z
n+1 = Y t,z

n + hb(Y t,z
n ) + σ(Y t,z

n ) (W (sn+1)−W (sn)) ,

where sn = t + nh, and h is the stepsize [24]. A straightforward, continuous-time extension
Y t,z(s) ≈ Xt,z(s) may then be defined as

(1.3) Y t,z(s) = Y t,z
n for s ∈ [sn, sn+1).

For consistency, we use Y (s) as shorthand for our approximation to the given problem; that
is, Y (s) = Y 0,x(s), and we use Yn to denote Y 0,x

n .
Next, we introduce notation for the stopped exit time. Having specified the open set O

with boundary ∂O and a fixed future time T , we denote the stopped exit time for the SDE
by

τ t,z :=
(
inf{s > t : Xt,z(s) /∈ O}) ∧ T,

with τ as shorthand for τ0,x. Here a ∧ b denotes min(a, b).
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Similarly, for the continuously extended Euler–Maruyama approximation we let

νt,z :=
(
inf{s > t : Y t,z(s) /∈ O}) ∧ T,

with ν as shorthand for ν0,x. We note that this exit time arises when the natural approximation
algorithm is used: record the first discrete time point at which the Euler–Maruyama path exits
the set O, or T if this is smaller. We also use 1 to denote the indicator function.

The continuous-time extension (1.3) takes the form of a step process, so ν corresponds to
the first grid point where the numerical solution exits the region of interest, or T if this is
smaller. A natural alternative is to use a piecewise linear continuous-time Euler–Maruyama
extension, and the analysis that we give here would apply equally well to this case, with the
same resulting complexity.

2. Current results. Our analysis makes use of existing results concerning the finite-time
strong convergence of the Euler–Maruyama method when used to simulate paths of the SDE,
and also the weak error arising when this method is used to approximate the stopped exit
time.

We impose the following conditions on the drift and diffusion coefficients of the SDE.
Assumption 1.
1. C2 continuity: b and σ have two continuous bounded derivatives on O.
2. Strong ellipticity: for some c > 0,

∑
ij(σ(x)σ

∗(x))ijξiξj > c|ξ|2 for all x ∈ O, ξ ∈ R
d.

3. Regularity of the boundary: for d > 1, O ⊂ R
d is a bounded open set with its boundary

∂O being C2 smooth.
In the above, C2 continuity is imposed on b and σ to ensure existence and uniqueness

of strong solutions of the SDE and to provide extra smoothness needed for (2.3). Strong
ellipticity and regularity of ∂O are needed in Lemma 2.1. We emphasize that the stopped
exit time problem restricts the solution to a compact domain. It follows that we may redefine
b and σ outside this domain, if necessary, in order to ensure that they are globally Lipschitz.
This allows us to derive results that apply to a wide range of nonlinear SDE models, including
those arising in finance and chemical kinetics that pose analytical difficulties through nondif-
ferentiability of the drift at the origin [1, 34] or superlinear growth of the diffusion at infinity
[7, 10, 35].

We then have the classical finite-time strong error result for the discrete Euler–Maruyama
approximation,

(2.1)

(
E

[
sup

0≤nh≤T
|X(nh) − Y (nh)|q

]) 1
q

= O(h
1
2 ), 1 ≤ q < ∞;

see, for example, [24, 29]. The continuously extended Euler–Maruyama approximation has a
slight degradation in order,

(2.2)

(
E

[
sup

0≤s≤T
|X(s)− Y (s)|q

]) 1
q

= O(|h log(h)| 12 ), 1 ≤ q < ∞.

This inequality was proved in [32] for the case where piecewise linear interpolation is used,
and a result for the step process then follows via the triangle inequality.
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The work of Gobet and Menozzi [19, Theorem 17] (see also [17] and [18]) gives an optimal
rate for the weak convergence of the Euler–Maruyama stopped exit time:

(2.3) E[τ ]− E[ν] = O(h
1
2 ).

Finally, we give a result that follows directly from the smoothness of the mean exit time
as a function of the initial condition.

Lemma 2.1. Under Assumption 1 there exists a constant K such that for any z ∈ O we
have

E[τ0,z] ≤ K (dz ∧ T ) ,

where dz = inf{|z − y| : y ∈ ∂O}.
Proof. Due to the strong ellipticity in Assumption 1, the function

u(z) := E[inf{s > 0 : X0,z(s) /∈ O}]
is known to be u ∈ C2(O) ∩C(Ō), satisfying the Dirichlet problem

(2.4) Lu+ 1 = 0 on O, u = 0 on ∂O,

where L is a strongly elliptic operator given by

Lu =
1

2
tr{σσ∗D2u}+ b ·Du,

with tr(A) denoting the trace of A [9]. Since the boundary is C2 smooth, u ∈ C2(Ō), thanks
to [11, Theorem 6.14]. It follows that u is Lipschitz on O, and we let K denote an appropriate
Lipschitz constant. For any given z ∈ O and y ∈ ∂O we then have u(z) = |u(z) − u(y) | ≤
K|z − y|, and hence

u(z) ≤ Kdz.

By construction, E[τ0,z] ≤ u(z) and E[τ0,z] ≤ T , and the result follows.

3. Main theorem. In order to justify a multilevel Monte Carlo approach we first establish
a rate of strong convergence for the exit time approximation.

Theorem 3.1. Under Assumption 1 we have

E [| τ − ν |p] = O(|h log(h)| 12 ) ∀p ≥ 1.

Proof. The proof deals separately with two cases. We first consider the event that the
Euler–Maruyama approximation exits before the exact process.

Case I. ν < τ . We have

E
[
(τ − ν)1{ν<τ}

]
= E

[
E
[
(τ − ν)1{ν<τ} | Fν

]]
= E

[
E

[
τν,X(ν) | Fν

]]
.(3.1)

On the right-hand side, we have the expected stopped exit time for the exact process,
starting from the stopped exit time of the numerical approximation. In order to bound this
quantity, we use the following two properties:



6 D. J. HIGHAM, X. MAO, M. ROJ, Q. SONG, AND G. YIN

• Lemma 2.1 tells us that the stopped exit time τν,X(ν) will be small in mean if the
process starts close to a boundary,

• strong convergence (2.2) tells us that the exact solution is close to the numerical
approximation, which has already reached the boundary or been stopped.

More precisely, applying Lemma 2.1 and (2.2) to (3.1), we find

(3.2) E
[
(τ − ν) 1{ν<τ}

] ≤ KE

[
sup

0≤s≤T
|X(s)− Y (s)|

]
= O(|h log(h)| 12 ).

Next we consider the event that the exact process exits before the Euler–Maruyama ap-
proximation.

Case II. τ < ν. We have

E
[
(ν − τ)1{τ<ν}

]
= E

[
E
[
(ν − τ)1{τ<ν} | Fτ

]]
= E

[
E

[
ντ,Y (τ) | Fτ

]]
.

Because Lemma 2.1 applies to the exact SDE process, rather than the Euler–Maruyama
approximation, the next step is to add and subtract the exact process that runs forward in
time from t = τ with initial condition Y (τ) and apply the triangle inequality to give

E
[
(ν − τ) 1{τ<ν}

]
= E

[
E

[
ντ,Y (τ) − τ τ,Y (τ) + τ τ,Y (τ) | Fτ

]]
≤
∣∣∣E [E [ντ,Y (τ) | Fτ

]]
− E

[
E

[
τ τ,Y (τ) | Fτ

]]∣∣∣
+ E

[
E

[
τ τ,Y (τ) | Fτ

]]
.

The first term on the right-hand side concerns the weak error in the mean exit time
algorithm, which is known from (2.3) to be O(h

1
2 ). The second term on the right-hand side

can be bounded using the same arguments that lead from (3.1) to (3.2), showing that it is

O(|h log(h)| 12 ). Hence, we find that

(3.3) E
[
(ν − τ) 1{τ<ν}

]
= O(|h log(h)| 12 ).

Combining (3.2) and (3.3) provides the result for p = 1. For a more general p ≥ 1, the
required result follows from

E [| τ − ν |p] ≤ T p−1
E [ | τ − ν | ] .

Strong convergence of Theorem 3.1 shows that ν → τ in L1 with a rate of approximately
1
2
as h → 0. However, one may worry about a scenario where the two exit times are close but

the exact solution and numerical approximation exit at different areas of phase space. This
is illustrated for the scalar case in Figure 1, with O := (α, β). In what follows, we show that
this event is unlikely.

Corollary 3.2. Under Assumption 1 we have

E[ |X(τ)− Y (ν)|2 ] = O(|h log(h)| 12 ).
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Figure 1. Bad approximation scenario for exit time.

Proof. We have

E[ |X(τ) − Y (ν)|2 ] = E[ |X(τ)− Y (ν)|2 1{τ≤ν} ] + E[ |X(τ) − Y (ν)|2 1{τ>ν} ]

≤ 2 E[ |X(τ)− Y (τ)|2 ] + 2 E[ |Y (τ)− Y (ν)|2 1{τ≤ν} ]

+ 2 E[ |X(ν)− Y (ν)|2 ] + 2 E[ |X(τ)−X(ν)|2 1{τ>ν} ].

From (2.2), the first and third terms on the right-hand side here are O(|h log(h)|). Intuitively,
the second term is the case where the exact solution is stopped, and we want to show that
we cannot move with the numerical approximation too far in a small interval of time. The
fourth term is a mirror case of the second term, but this time the numerical approximation is
stopped, and we want to show that we cannot move with the exact solution too far in a small
interval of time. First, let us focus on bounding the fourth term,

E[ |X(τ)−X(ν)|2 1{τ>ν} ] = E

[
1{τ>ν}

(∣∣∣∣
∫ τ

ν
b(X(t))dt +

∫ τ

ν
σ(X(t))dW (t)

∣∣∣∣
2
) ]
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≤ E

[ ∣∣∣∣
∫ τ

ν∧τ
b(X(t))dt +

∫ τ

ν∧τ
σ(X(t))dW (t)

∣∣∣∣
2
]

≤ 2 E

[
(τ − ν ∧ τ)

∫ τ

ν∧τ
|b(X(t))|2dt+

∫ τ

ν∧τ
|σ(X(t))|2dt

]
≤ 2C1 E

[
(τ − ν ∧ τ)2 + (ν − ν ∧ τ)

]
≤ 2C2 E [ |τ − ν| ] = O(|h log(h)| 12 ),

where in the last line we used Theorem 3.1. In a similar manner it can be shown that

E[ |Y (τ)− Y (ν)|2 1{τ≤ν} ] = O(|h log(h)| 12 ),
which finishes the proof.

4. Monte Carlo.

4.1. Standard Monte Carlo. A traditional Monte Carlo approach to the estimation of the
mean stopped exit time uses the Euler–Maruyama method to compute independent samples
ν [i] from the distribution of the corresponding random variable ν. Let ν [i] denote the computed
stopped exit time for the ith simulated path. If we use N such paths, then the mean value
E[τ ] is approximated by the sample average

μ =
1

N

N∑
i=1

ν [i].

The overall error divides naturally into two parts,

(4.1) E[τ ]− μ = E[τ − ν + ν]− μ = (E[τ − ν]) + (E[ν]− μ) .

The first term in parentheses is the bias, that is, the weak error of the numerical method in
terms of its ability to approximate the mean stopped exit time of the SDE. We know from
(2.3) that this term is O(h

1
2 ). The second term in (4.1) concerns the statistical sampling error.

This is known to scale like O(1/
√
N) from the perspective of confidence interval width (see,

for example, [16]).
It is natural to measure the computational cost in terms of either
• the total number of evaluations of the coefficients b(·) or σ(·) when we use the iteration

(1.2), or
• the number of pseudorandom number calls to obtain the Brownian increments in (1.2).

In both cases, the computational cost of each path is proportional to the ratio of the time-span
of the numerical approximation, ν [i], and the stepsize, h. The overall expected computational
cost of the standard Monte Carlo method is therefore proportional to NE[ν]/h, which, from
(2.3), may be written

(4.2)
N
(
E[τ ] +O(h

1
2 )
)

h
.

If we let ε denote the target level of accuracy, in terms of confidence interval width, then
balancing the bias and sampling error in (4.1) gives the scaling ε = h

1
2 = 1/

√
N , whence the

complexity measure (4.2) for the method becomes O(ε−4).
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4.2. Multilevel Monte Carlo. Giles in [13] considered the problem of computing some
function of the final-time SDE solution, E[f(X(T ))], where f is globally Lipschitz, a problem
that arises naturally in financial option pricing. He showed the remarkable fact that it is
possible to reduce the complexity of the standard Euler–Maruyama/Monte Carlo method
from O

(
ε−3
)
to O

(
ε−2(log ε)2

)
; see also [21] for related ideas. Further work has extended

these results to more general classes of function f and other discretization methods [12, 14],
to quasi-Monte Carlo [15], and also to related problems involving stochastic partial differential
equations [3, 6]. Our aim here is to develop the multilevel methodology in the exit time context.

Following [13], we consider a range of different stepsizes of the form hl = M−lT for
l = 0, 1, 2, . . . , L. Here M is a fixed integer. The smallest stepsize, hL = M−LT , is chosen so

that the bias in the discretization method matches the target accuracy of O(ε); matching h
1
2
L

with ε then gives

(4.3) L =
log ε−2

logM
.

Intuitively, the multilevel approach exploits the fact that it is not necessary to compute many
paths at this high, and expensive, level of resolution. It is sufficient to compute a relatively
small number of “high frequency” paths and then pad out the computation with increasingly
more information from the increasingly cheaper lower-resolution stepsizes.

To be more precise, we let the random variable νl denote the stopped exit time arising
when the Euler–Maruyama approximation is used with stepsize hl. We continue by writing
the following trivial identity:

(4.4) E[νL] = E[ν0] +

L∑
l=1

E[νl − νl−1].

On the left is the exact mean of the high-resolution approximation, which has the required
bias. On the right is a telescoping series involving the different levels of resolution. We propose
estimating the expected values on the right-hand side of (4.4) as follows. The first term, E[ν0],
is estimated by a quantity Z0 that uses the sample mean of N0 independent paths; so

Z0 =
1

N0

N0∑
i=1

ν
[i]
0 .

Each remaining term of the form E[νl − νl−1] is estimated by a quantity Zl based on Nl

independent pairs of paths; thus

(4.5) Zl =
1

Nl

Nl∑
i=1

(
ν
[i]
l − ν

[i]
l−1

)
.

Here, the two samples ν
[i]
l and ν

[i]
l−1 come from the same Brownian path at the two different

levels of resolution. Figure 2 illustrates the case where M = 4 for a scalar SDE, so the two
paths are based on stepsizes that differ in size by a factor of 4. Each Brownian increment
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Figure 2. Illustration of the estimator Zl, in the case M = 4 for a scalar SDE. The same path is sampled
at two different levels of resolution.

for the lower-resolution computation is given by the sum of the four increments used for the
higher-resolution path. Independent paths are used for each i in (4.5) and for each different
level l = 1, 2, . . . , L.

It remains for us to control the statistical sampling error by choosing {Nl}Ll=0 in order to
give an overall variance of O(ε2) for the estimator.

Using Theorem 3.1, we have

Var[νl − τ ] ≤ E[(νl − τ)2] = O(|hl log(hl)|
1
2 )

and

(4.6) Var[νl − νl−1] ≤ (
√

Var[νl − τ ] +
√

Var[νl−1 − τ ])2 = O(|hl log(hl)|
1
2 ).

So Var[Zl] = O(|hl log(hl)| 12/Nl), and, because the computations are independent over different
levels, our overall estimator Z := Z0 +

∑L
i=1 Zl has variance

Var[Z] = Var[Z0] +
L∑
l=1

O

(
|hl log(hl)| 12

Nl

)
.
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Taking

N0 = O(ε−2),(4.7)

Nl = O(ε−2ML/4h
3/4
l | log(hl)|1/2) for l = 1, . . . , L,(4.8)

it follows that

Var[Z] = O(ε2) +
L∑
l=0

O

(
|hl log(hl)| 12

Nl

)

= O(ε2) +
L∑
l=0

O

(
|hl log(hl)|1/2

ε−2ML/4h
3/4
l | log(hl)|1/2

)

= O(ε2) +O

(
ε2M−L/4

L∑
l=0

h
−1/4
l

)

= O(ε2) +O

(
ε2M−L/4

L∑
l=0

M l/4

)

= O(ε2),

as required.
Having specified the algorithm, we may now work out the expected computational cost.

Each pair of paths at level l has a cost proportional to v
[i]
l /hl. Hence, the expected computa-

tional cost of the multilevel Monte Carlo method is

L∑
l=0

Nl

hl
E[νl] =

L∑
l=0

ε−2ML/4h
3/4
l | log(hl)|1/2
hl

(
E[τ ] +O(h

1/2
l )

)

= O

(
ε−2ML/4| log(hL)|1/2

L∑
l=0

h
−1/4
l

)

= O
(
ε−2ML/2| log(ε)|1/2

)
.

From (4.3) we see that ML/2 = O(ε−1), and so the expected computational cost may be
written

O
(
ε−3| log(ε)|1/2

)
.

This should be compared with the value O(ε−4) that was derived in section 4.1 for standard
Monte Carlo.

5. Computational results. We now present computational results, focusing on the scalar
case. Our aims are to test the sharpness of the analysis and to check whether the asymptoti-
cally valid improvement in complexity can be observed in a real simulation. Here O takes the
form of an open interval, denoted (α, β).
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Figure 3. Strong error in stopped exit time.

5.1. Strong error in exit time. We begin by checking the sharpness of the strong conver-
gence rate from Theorem 3.1 on a geometric Brownian motion model,

(5.1) dX(s) = bX(s)ds + σX(s)dW (s),

with constant drift coefficient b = 0.05, constant volatility σ = 0.2, and initial value X(0) = 2.
We set the boundaries to α = 1.7 and β = 2.3, and the finite cutoff time to T = 1. We
computed the reference solution E[τ ] = 0.4962 using a numerical solver for the boundary value
ordinary differential equation. We approximated the strong exit time error errh := E

[|τ − ν|2]
using the sample mean fromN = 5000 path simulations, and stepsizes h = 2−8, 2−9, 2−10, 2−11.
The error behavior on a log-log scale is shown in Figure 3. A least squares fit for logC and q
in log errh = logC+ q log h produced q = 0.5167 with a least squares residual of 0.0289. Error
bars representing 95% confidence intervals are small enough to be covered by stars in the
figure. Thus, our results suggest that the strong order of convergence equal to approximately
one-half in Theorem 3.1 is sharp for p = 2.

5.2. Variance behavior. A key step in our analysis of the multilevel Monte Carlo algo-
rithm was the derivation of the variance estimate (4.6). In Figure 4 we plot the quantity
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Figure 4. Variance of νl − νl−1 over different levels.

log(Var[νl − νl−1])/ log(M) over a sequence of levels, where the most refined level corresponds
to a user-specified accuracy of ε = 0.001. If (4.6) is sharp, then this plot will have a slope
of approximately −1/2. A least squares fit for the slope gives q = −0.4984 with a residual
of 0.1040. We also include a line with a slope − 1

2
for reference. Here we used the linear

SDE (5.1) with boundaries changed to α = 0.9, β = 1.1 and initial value X(0) = 1, whence
E[τ ] = 0.2480.

5.3. Multilevel Monte Carlo. Finally, we compare the computational cost versus accu-
racy for standard and multilevel mean exit time computation. We measure the computational
cost of the multilevel method as

CostMLMC :=

(
N0 +

L∑
l=1

NlM
l

)
E[τ ].

For the complexity analysis in section 4.2, we specified an order of magnitude for the number
of paths per level, (4.8), and showed that this (a) produces the correct variance and (b) has
attractive complexity.
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In our implementation, we used the values

(5.2) Nl =

⌈
2ε−2

√
Var[νl − νl−1]M−l

(
L∑
l=0

√
Var[νl − νl−1]M l

)⌉
, 0 ≤ l ≤ L.

More precisely, we used order-of-magnitude estimates of the variances Var[νl−νl−1] that were
obtained numerically in a preprocessing step of negligible cost. To justify the choice (5.2), we
note that

Var[Z] =
L∑
l=0

(
Var[νl − νl−1]

Nl

)

=

L∑
l=0

Var[νl − νl−1]

2ε−2
√

Var[νl − νl−1]M−l

(∑L
l=0

√
Var[νl − νl−1]M l

)

=
1

2
ε2,

so we achieve a small enough variance.
We also note that the order of magnitude for Nl in (4.8) that we used for the complexity

analysis satisfies

ε−2ML/4h
3/4
l | log(hl)|1/2 ≤ ε−2ML/4h

3/4
l | log(hl)|1/4| log(hL)|1/4

≤ ε−2h
3/4
l | log(hl)|1/4

L∑
l=0

M l/4| log(hl)|1/4.

Since Var[νl−νl−1] = O(h
1/2
l | log(hl)|1/2) it follows that our practical choice gives a comparable

order of paths per level.
The computational cost of the standard method is measured as

CoststdMC :=
N

h
E[τ ],

where N is the total number of sample paths and h is the fixed stepsize such that h = O(ε2).
Here N was chosen adaptively to produce the required O(ε2) variance. We used three choices
of the accuracy parameter, ε = 10−1.5, 10−2, 10−2.5. For the SDE and parameters used in
Figure 4, the lower-left picture in Figure 5 shows the accuracy obtained by the multilevel
algorithm as a function of ε. This confirms that the algorithm produces an error that scales
like ε.

In the top-left picture of Figure 5 we plot ε against ε3Cost for the two methods. The results
are consistent with the predictions from our analysis: for the multilevel method this scaled
complexity increases slowly like | log ε|1/2, whereas for the standard Monte Carlo method it
increases like ε.

On the right-hand side of Figure 5, we repeat this information in a slightly different format.
The upper-right-hand picture plots the overall cost against the attained error, and the lower-
right-hand picture plots the overall cost against the accuracy parameter. We see that for the
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Figure 5. Cost versus accuracy for the standard Monte Carlo method and the multilevel Monte Carlo
algorithm on geometric Brownian motion.

most stringent accuracy requirement the multilevel version is about an order of magnitude
cheaper.

As we mentioned in section 2, one of the benefits of a mean exit time analysis is that our
attention is restricted to a compact domain, so rigorous results can be derived for nonlinear
SDEs with coefficients that do not satisfy a global Lipschitz condition. We consider now a
mean reverting square root process commonly used to model interest rates [29],

dX(s) = b(μ−X(s))ds + σ
√

X(s)dW (s),

noting that the diffusion coefficient is not Lipschitz at the origin. Keeping all the parameters
the same as for the geometric Brownian motion test in Figure 5, additionally we fix μ = 1,
which causes the stopped mean exit time to increase to 0.2495. The complexity results, shown
in Figure 6, are consistent with those for the geometric Brownian motion case.

6. Discussion. Our overall aim here was to design and rigorously analyze a multilevel
version of a simple and widely used algorithm: Euler/Monte Carlo simulation for a mean exit
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Figure 6. Cost versus accuracy for the standard Monte Carlo method and the multilevel Monte Carlo
algorithm on the mean reverting square root process.

time. We showed that it is possible to dramatically reduce the computational complexity.
A key step in the analysis was to establish a rate of strong convergence for the numerical
discretization.

Of course there are several other general approaches to mean exit time computation, each
having their own advantages and disadvantages [31], and in future work it would be of great
interest to compare this multilevel algorithm with other classes of methods on a range of
practical problems. Within the context of basic timestepping methods, it would also be of
interest to investigate the possibility of incorporating higher order discretization or adaptive
stepsize control into the multilevel setting, as well as considering the use of quasi-Monte Carlo
methods and fine-tuning the algorithm to high performance computing architectures.
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