
Strathprints Institutional Repository

Fazenda, Mariana L. and Dias, Joao M L and Harvey, Linda M. and Nordon, Alison and Edrada-
Ebel, Ruangelie (2013) Towards better understanding of an industrial cell factory : investigating the
feasibility of real-time metabolic flux analysis in Pichia pastoris. Microbial Cell Factories, 12 (1). pp.
51-59. ISSN 1475-2859

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/12828429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


RESEARCH Open Access

Towards better understanding of an industrial cell
factory: investigating the feasibility of real-time
metabolic flux analysis in Pichia pastoris
Mariana L Fazenda1*, Joao ML Dias2, Linda M Harvey1, Alison Nordon3, Ruan Edrada-Ebel1, David LittleJohn3

and Brian McNeil1

Abstract

Background: Novel analytical tools, which shorten the long and costly development cycles of biopharmaceuticals
are essential. Metabolic flux analysis (MFA) shows great promise in improving our understanding of the metabolism
of cell factories in bioreactors, but currently only provides information post-process using conventional off-line
methods. MFA combined with real time multianalyte process monitoring techniques provides a valuable platform
technology allowing real time insights into metabolic responses of cell factories in bioreactors. This could have a
major impact in the bioprocessing industry, ultimately improving product consistency, productivity and shortening
development cycles.

Results: This is the first investigation using Near Infrared Spectroscopy (NIRS) in situ combined with metabolic flux
modelling which is both a significant challenge and considerable extension of these techniques. We investigated
the feasibility of our approach using the industrial workhorse Pichia pastoris in a simplified model system. A parental
P. pastoris strain (i.e. which does not synthesize recombinant protein) was used to allow definition of distinct
metabolic states focusing solely upon the prediction of intracellular fluxes in central carbon metabolism.
Extracellular fluxes were determined using off-line conventional reference methods and on-line NIR predictions
(calculated by multivariate analysis using the partial least squares algorithm, PLS). The results showed that the
PLS-NIRS models for biomass and glycerol were accurate: correlation coefficients, R2, above 0.90 and the root mean
square error of prediction, RMSEP, of 1.17 and 2.90 g/L, respectively. The analytical quality of the NIR models was
demonstrated by direct comparison with the standard error of the laboratory (SEL), which showed that
performance of the NIR models was suitable for quantifying biomass and glycerol for calculating extracellular
metabolite rates and used as independent inputs for the MFA (RMSEP lower than 1.5 × SEL). Furthermore, the
results for the MFA from both datasets passed consistency tests performed for each steady state, showing that the
precision of on-line NIRS is equivalent to that obtained by the off-line measurements.

Conclusions: The findings of this study show for the first time the potential of NIRS as an input generating for MFA
models, contributing to the optimization of cell factory metabolism in real-time.
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Background
By 2007 the sales of all biopharmaceuticals totalled £60
billion representing 16% of the overall pharmaceutical
industry and it is still growing, including the com-
mercialisation of monoclonal antibodies (mABs) [1].
Biopharmaceuticals are a novel group of drugs which
are revolutionising the treatment of serious causes of
human ill health such as cancers, leukemias and degen-
erative illnesses. They are the most potent, the most com-
plex and the most expensive drugs ever developed. The
cost for biopharmaceuticals development can account for
as much as 30% to 35% of the total cost of bringing a new
drug to the market [2], so any reduction in the length of
the development cycle of biopharmaceuticals could have a
major impact on the overall drug economics. For this to
happen, one of the most important factors is to improve
our understanding of the metabolism of the cell factories
(protein expression systems) during the key upstream step
in the drug manufacturing process, the fermentation or
cell culture step, in order to help ensure consistent drug
quality, potency and half life. Although fermentation tech-
nology has made immense advances in recent years, our
ability to understand and control in real time the metabo-
lism of cell culture systems or microbial fermentations is
still very limited [3].
Metabolic flux analysis (MFA) is considered a central

pillar in modern systems biology for investigating meta-
bolic networks [4]. The classic approach to MFA includes
metabolic balancing (stoichiometric modelling) [5] or
13C-metabolic flux analysis using 13C-labeled substrates
[6]. The application of MFA has been frequently shown to
facilitate improved insights into cellular metabolism, and
thus to enhance or increase production of desired prod-
ucts in both microbial [7-9] and cell culture systems [10]
by identifying, for example, process bottlenecks and de-
signing improved feeding strategies [4]. However, classic
MFA approaches involve conventional off-line analytical
methods (including GS-MS, LC-MS and NMR) or isotope
tracing methods, which makes it complex, costly and time
consuming. It is difficult to envisage such an approach
lending itself to rapid on-line analysis [11]. By contrast,
Goudar and co-authors [12] investigated the use of metab-
olite balancing to generate metabolic models of CHO cell
cultures in quasi-real time. This approach showed much
promise, but a large number of off-line measurements (27)
were still necessary using various analytical methods, with
results obtained post-process, highlighting the need for
combining MFA with real time metabolite information
[13]. If this were feasible, the integration of suitable real
time analytical techniques could raise the utility of MFA
to a new level offering enhanced real time metabolic un-
derstanding, which would really impact on clone selection
capability, cell line development, rapid medium and
process optimization in the development phase at lab

scale, improved scale translation and finally to real time
structured intervention in the metabolism of the cell
factory (real time metabolic control). This would be a
valuable tool in metabolomics and would represent a con-
siderable addition to the toolkit available for industrial
systems biology [14].
The obvious question which arises now is: Which real

time, preferably in situ, techniques could be integrated
into metabolite balancing to achieve this capability? Vibra-
tional spectroscopy, driven by the Food and Drug Admin-
istration (FDA) initiative Process Analytical Technology
(PAT) framework [15], has already shown considerable
promise in the measurement of a range of analytes within
both microbial and animal cell cultures both at-line (rapid
off-line) or on-line, usually in situ [3,16]. Despite the evi-
dent attractions of vibrational spectroscopy, to date these
techniques have not been used in metabolic modelling as
they have been reported to have errors which are too high
to be used in metabolic flux networks [12]. However,
NIRS has a number of significant features which make it
admirably suited to employment in such systems includ-
ing, its non-destructive nature, rapidity of analysis (from a
few seconds up to two minutes for a large scan number),
the lower absorbances in the NIR region, which means it
can be used without sample pre-treatment in matrices
which are both highly absorbing and light scattering such
as the typical fermentation fluid, the ease of sample pres-
entation via steam sterilisable in situ probes and the
potential to predict chemical and physical parameters
from a single spectrum [16-18].
In the present study, we investigate the feasibility of

establishing a robust platform technology for MFA by
using a single probe, an in situ NIRS probe as a monitoring
technique to predict near real-time intracellular metabolic
fluxes in chemostat cultures of a Pichia pastoris strain. We
chose Pichia pastoris, a methylotrophic yeast, as it is cur-
rently one of the most effective and versatile expression
systems used in the biopharmaceutical industry for recom-
binant product production [19,20]. Chemostat cultures
were used to allow a clearer definition of distinct metabolic
states. We focused just on central carbon metabolism of a
parental strain (i.e. that does not synthesize recombinant
protein) to test the validity of our approach in a simplified
model system. The findings of this study represent a sig-
nificant step forward towards real-time metabolic control
of cell factories and establishes a viable platform for using
on-line vibrational spectroscopic measurements as inputs
to MFA models in bioprocessing, replacing the use of off-
line measurements (wet chemistry methods).

Results and discussion
Central carbon metabolism in a chemostat culture for
three glycerol-limited steady state P. pastoris cultures
was analysed using the methods described in (Methods).
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The use of a parental strain of P. pastoris (not producing
recombinant protein) simplified the system to allow the
establishment of a framework for determination of intra-
cellular metabolic fluxes by using NIR as an input-
generating tool for MFA. This experimental system
allowed the unambiguous examination of the link be-
tween changes in cell growth rate (determined by dilu-
tion rate) and the culture response, which would have
been difficult in batch or fed-batch cultures. If the
current study successfully proves that it is feasible to use
such an approach combining real time NIRS measure-
ments with metabolic flux modelling (MFA) in a simpli-
fied model organism, it will then be possible to take this
research to the next level by examining the industrial
relevance of this approach in fed-batch cultures of a pro-
tein secreting Pichia strain.
Dilution rates were varied between 0.05 to 0.15 h-1 in

order to obtain three different states: low, medium and
high dilution rates, designated as A, B and C (Table 1).
The resulting metabolic states of the cells were subse-
quently assessed quantitatively via metabolic flux

analysis with the extracellular metabolites rates calcu-
lated with both off-line measurements (reference) and
on-line NIR predictions (section NIR modelling).

Fermentation data
The dry cell weight, glycerol, dissolved oxygen and dilu-
tion rate for the chemostat culture are shown in Figure 1.
The cell physiology of each steady state was characterized
by analysing the last four data points in each of the
sections marked as A, B and C: low, medium and high
specific growth rates, respectively. The preceding batch
phase lasted approximately 24-27 h at which point the
chemostat culture run was initiated by setting the dilution
rate at 0.05 h-1. An increase of carbon evolution rate
(CER) and oxygen uptake rate (OUR) with dilution rate
(from state A to C) were observed (Table 1), however
biomass yields increased only from state A to B, with
negligible differences between medium and high dilution
rate (state B and C).

NIR modelling
Model development
The raw spectra of the chemostat culture of P. pastoris
(Figure 2a) show changes in the spectral baseline as well
as in the signal intensity, becoming closer to detector
saturation with process time. Any other spectral changes
directly linked to the analytes of interest in these raw
spectra that are relevant for the calibration model are
difficult to visualise and so it is crucial to use appropri-
ate pre-processing techniques. Savitzky-Golay second
derivative and mean centering were applied in the model
development cycle to help remove unimportant baseline

Table 1 Glycerol-limited steady states (States A: low
(0.05 h-1), B: medium (0.10 h-1) and C high (0.15 h-1) dilution
rate) achieved in Pichia pastoris chemostat cultures

A B C

Dilution rate, D (h-1) 0.05 0.10 0.15

CO2 evolution, CER (mmol/L/h) 21.34±0.42 24.82±0.36 30.24±0.44

O2 uptake, OUR (mmol/L/h) 62.80±0.33 68.90±0.36 75.73±0.10

Respiration quotient, RQ 0.33±0.02 0.36±0.01 0.40±0.06

Yield, YX/S (gDCW/gGly) 0.63 0.67 0.67

Figure 1 Growth profile of Pichia pastoris chemostat culture: dilution rate (D), dissolved oxygen (pO2) percentage, dry cell weight
(DCW) and glycerol concentrations over the course of the experiment. States A, B and C: low (0.05 h-1), medium (0.10 h-1) and high (0.15 h-1)
dilution rate, respectively.
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signals from the samples and extract relevant “hidden”
information. In the second derivative data, absorbance
maxima are converted to minima that are enveloped by
positive side lobes [17]. In addition, spectral data band-
width is sharply reduced allowing for resolution of
overlapping peaks, and the baseline differences between
spectra are largely eliminated. After removing the domin-
ant water peaks (1400 and 1900 nm) and the spectral
region above 2000 nm (not usable when using silica fibre
optic probes due to the noise of the fibres having an
adverse effect on the spectra [18]), spectral changes with
process time were identified in the second (1050 – 1650
nm) and first overtone (1450 – 2050 nm) regions. For
biomass, -CH absorption bands were identified in the
1250 –1350 nm region, while for glycerol a broader region
was chosen (1500-1800 nm), which includes the –OH
stretch band and other -CH second overtone bands [21].
As can be seen in Figure 2b it is possible to see the pro-
gress of the fermentation process from the derivatized
spectra, for example in the region of 1500-1800 nm, where
glycerol is absorbing, the most negative peak corresponds
to the batch phase of the process, with process time and
as the glycerol concentration decreases the peak becomes

less negative due to glycerol consumption by the cul-
ture. In order to assess the selected wavelength regions
with respect to the different analytes monitored, aque-
ous solutions of both biomass and glycerol were
scanned [22]. Figure 2c and d show the relevant regions
for biomass and glycerol in aqueous solutions, respect-
ively. The wavelength regions used in the actual PLS
models were broader to include process variations in
the spectral information over a wider wavelength win-
dow resulting in better results.
Once the spectra were pre-processed, it was necessary

to identify the time periods of interest for each analyte.
Due to the very low (limiting) concentration of glycerol
(<1 g/L) and only slight changes in the concentration of
biomass during the continuous phase, models developed
based solely in this phase failed validation and therefore,
the correspondent predictions could not be used for the
metabolic flux analysis (data not shown). Because PLS-
NIRS models are based on the amount of variance
captured during the calibration procedure: the more
changes in the process it includes, the more robust the
models will be. These changes can be: inherent varia-
tions of analyte levels, accumulation profiles, spectral

Figure 2 (a) Raw and (b) Pre-processed (2nd derivative) NIR spectra of Pichia pastoris chemostat cultures c) 2nd derivative spectra of 0
and 30 gL-1 of aqueous solutions of Biomass from 1250-1340 nm and (d) 2nd derivative spectra of 0 and 50 gL-1 of aqueous solutions
of glycerol from 1680-1715 nm. States A, B and C: low (0.05 h-1), medium (0.10 h-1) and high (0.15 h-1) dilution rate, respectively.
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matrix differences and interfering absorptions [17]. If
the concentration range being modelled is very limited,
the PLS algorithm is not able to provide good predic-
tions, and PLS models fail validation, as seen when only
the chemostat phase was included. Therefore spectra
from both the batch and chemostat dynamic phase (the
period between steady states) were included to capture
as much as possible the inherent variations in analyte
levels, accumulation profiles, spectral matrix differences,
and interfering absorptions. During the first phase of
the process (batch) the glycerol concentration rapidly
changed (from 40 g/L to 0 g/L) as it is rapidly being con-
sumed for formation of biomass. This will ensure that

the quantification of analytes from the NIRS models are
representative and include enough variation in sample
properties so these models could be potentially used in
future fermentation runs [17]. The enhanced range of
analyte concentrations and spectral variation led to more
robust PLS models capable of predicting accurately the
analyte concentrations in this study (Table 2).

Model validation
From the calibration statistics (Table 2), both glycerol
and biomass PLS models performed reasonably well,
with R2-values above 0.90 or above for both calibration
and external validation, indicating a good fit between the
measured and predicted data. The RMSEP/RMSECV
ratios were very close to one, indicating no significant
differences between the performance of the calibration
and validation models and so robustness in the face of
process and analyte variation. This result is a good indi-
cator of how in practical terms the models would behave
when exposed to process-to-process variability seen in
fermentation processes. Figure 3 shows the concentration
correlation plots after internal and external validation of
the biomass and glycerol calibration model. The models
predictive ability in the fermentation broth is high as all
the samples are distributed along the y = x line.
According to the SEL values shown in Table 3, the

RMSEP values for both biomass and glycerol models are
lower than 1.5 × SEL, which indicates that the perform-
ance of the NIR models is suitable for quantifying biomass
and glycerol as the basis for calculating extracellular me-
tabolite rates to be used in the MFA model [23,24]. NIR
has never been used for such real-time metabolic model-
ling, mainly because it has been in the past associated with
high errors relative to the concentrations of key analytes
[25]. Goudar et al. (2006) [12] considered the errors

Table 2 Near Infrared calibration models and validation for glycerol and biomass in Pichia pastoris chemostat cultures

Model Range
(g/L) λ (nm) LV

Calibration Cross-validation External validation RMSEP
RMSECVRMSEC (g/L) R2 RMSECV (g/L) R2 RMSEP (g/L) R2

Glycerol 0-40 1500-1800 3 1.70 0.98 3.38 0.95 2.90 0.95 0.86

Biomass 0-30 1250-1350 5 0.48 0.97 0.93 0.91 1.17 0.94 1.26

λ: wavelength; LV: number of latent variables; RMSE: root-mean square error; R2: correlation coefficient.

Figure 3 (a) Raw and (b) Pre-processed (2nd derivative) NIR
spectra of Pichia pastoris chemostat cultures. States A, B and C:
low (0.05 h-1), medium (0.10 h-1) and high (0.15 h-1) dilution
rate, respectively. Blank circles represent samples from the calibration
(training) set and filled circles represent samples from the validation
(test) set.

Table 3 Method qualification results for reference
method and for NIR

Analyte Method Range
Reference method

SEL SDmean

Glycerol Enzymatic assay 0 – 40 2.37 2.20

Biomass Gravimetry 0 – 30 0.79 0.56

SEL: standard error of laboratory; SDmean: mean standard deviation of
replicate measurements.
All results are shown in g/L. The method and the concentration range of each
analyte used in the PLS models are also shown.
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reported in two papers on NIR and MIR to be unaccept-
ably high (above 20%) [25,26], and for that reason they
suggested inappropriate the use of such spectroscopic
techniques as a replacement to the current largely off-line
methods used. The present authors have intensively
studied the application of NIRS to fermentation and cell
culture systems to predict a number of different analytes
simultaneously (from biomass to different substrates and
types of products, including proteins) [18,27,28] and the
reported errors in these studies were significantly lower
than those reported above. In the present investigation we
show that the validation errors (RMSEP) for biomass and
glycerol are less than 10% of the concentration range of
the analytes, and in terms of sensitivity, NIRS was com-
parable to the reference methods used (Table 3). Further-
more, both biomass and glycerol NIR models yielded R2,
RMSECV and RMSEP values close to other published
studies using on-line NIR probes [29,30]. This is within
the concentration range Goudar et al. (2006) suggest as
acceptable for analyte quantification [12]. Thus, the major
objection in principle to the use of NIRS to predict extra-
cellular fluxes accurately enough to use these values as
inputs to MFA models is shown not to be valid. As dem-
onstrated here, careful calibration procedures, taking
into account appropriate choices wavelength selection
protocols, can be effectively used to generate effective NIR
analyte models with acceptable errors simultaneously for
more than one analyte in near real-time. It is also import-
ant to note that NIR models were built based on spectral
samples taken every 30 min (the sample interval can be
decreased if necessary), with no-sample preparation and
no additional cost, as opposed to the time-consuming and
costly reference methods used.
There are other sensor systems used in bioprocessing,

but their applicability is still very limited with respect to
on-line and in-situ measurements either due to specific
aseptic conditions requirements, low or single number
of measured analytes, drift and other rather low phy-
siological relevance [31]. Raman and Mid-Infrared spec-
troscopy are strong candidates for multivariate analysis
in fermentation systems, but their in-situ technology is
still under development [32,33]. Fluorescence based
methods, dielectric spectroscopy, flow cytometry are
optical methods commonly used to determine biomass,
one of the most challenging as well as important mea-
surements in the bioreactor cultivation of live cells. But
again they are influenced either by the culture condi-
tions (eg. stirring, aeration, broth conductivity, pH and
viscosity), or the in-situ probes are still in development,
or are dependent upon the cell type and size, and not
always are able to measure multiple fermentation
parameters [31,34].
NIR probes offer a high-quality signal from a bioprocess,

they are physically robust instruments compared to the

aforementioned sensors, suited for industrial manufactur-
ing processes, being able to monitor multiple analytes
simultaneously, avoiding the need to use multiple on-line
sensors, which is often a limiting step in a fermenter set-
up. NIRS technology is applicable to most fermentation
expression systems, to batch and fed-batch systems, being
able to monitor not only biomass and glycerol (as in this
study) but also other metabolites such as glutamate, glu-
tamine, ammonium, alcohols, proteins, organic acids, etc.
[35] with the aid of multivariate data analysis as well as
capturing physical process changes (viscosity, temperature
changes, contaminations, system failures), an advantage
for process control, in particularly in the production of
biopharmaceutical [16,35].
Thus, the NIRS constitutes one of the most favourable

on-line in situ technology to form the basis for near real-
time measurements of multiple inputs to metabolic flux
modelling of cell factories in bioprocessing. The findings
presented here constitute the first step part of a structured
multidisciplinary research programme, to be applied for
modelling cell factories (such as protein expression
systems) using microbial and cell line approaches as well
as dynamic (fed-batch) fermentation processes. Transfer-
ring this technology from the simplified system used here
to an industrial process will involve addressing significant
new challenges. These include: first, high cell density and
associated very short process time constants; second,
increased metabolic complexity. Regarding the first point,
it has been demonstrated that NIR can deal with measure-
ments in high cell density systems [1-3], including Pichia,
especially where the medium is soluble (as here). In situ
spectroscopy is also very fast (seconds per spectral acqui-
sition). As to increased metabolic complexity, there are
existing published metabolic models of Pichia that can be
built upon [4,5]. Due to published mis-conceptions on
error in IRs measurements (discussed above), it was first
of all necessary to establish the feasibility of applying NIR
as an input measurement system for MFA in a simplified
system. In this study we have done so.

Metabolic flux analysis
Network properties
A simplified biochemical reaction network was adopted
here for P. pastoris (adapted from [36]), and is illustrated
in Figure 4. Only the central carbon metabolism was
considered, including reactions that are important for
producing biomass and energy (glycolysis, tricarboxylic
acid cycle - TCA, pentose phosphate – PPP, and fermen-
tative pathways). It includes a total of 44 reactions and 45
compounds, and the balanced growth condition can be
applied to 36 internal metabolites, resulting in a 36 × 44
stoichiometric matrix with 8 degrees of freedom (m-n);
the matrix and the list of reactions is given in the
Additional file 1. The overall pathway was simplified by
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grouping some reactions into single ones without any loss
of accuracy of representation [36]. The aim is to use a
model with which is possible to investigate applying NIRS
as a novel tools able to improve process monitoring and
control in real time. The intracellular fluxes were calcu-
lated from the extracellular rates using the two independ-
ent datasets: the off-line and on-line (NIRS) measurements
(section Extracellular flux rates); and the stoichiometric
model described above. The stoichiometric model was
constrained by the extracellular metabolites, i.e. uptake/
production rates for O2, CO2, glycerol and biomass and
the production rates for ethanol, citrate and pyruvate,
which based on HPLC analysis were not detected and
therefore considered null (results not shown). The follow-
ing major assumptions were used in the model: (i) the bio-
mass synthesis reaction (r44) was considered constant
under the different process conditions and it was based on
the macromolecular composition of P. pastoris from [37];
(ii) the glyoxylate cycle was considered inactive [38].

Extracellular flux rates
The concentration of both glycerol and biomass calcu-
lated from both the off-line measurements and on-line
NIR predictions were used for the calculation of the spe-
cific extracellular rates shown in Figure 5. The errors
presented are the propagated errors [39] which include
both metabolite measurement errors and also biomass
errors. As D increases, an increase of 3, 1.5 and 3-fold,
respectively, of the glycerol consumption and both CO2

and biomass specific production rates were observed
(from both off-line and on-line calculations). However,
the changes relative to the oxygen consumption rate
were not significantly different between each state. Using
a t-test statistical analysis between off-line and on-line

Figure 4 Metabolic flux distribution in Pichia pastoris and
respective intracellular flux NIR predictions in glycerol-limited
chemostat at low (state A=0.05 h-1), medium (state B=0.10 h-1)
and high (state C=0.15 h-1) dilution rates. The fluxes for each
reaction in the network corresponding to a D of 0.05, 0.10 and
0.15 h-1 are given from top to bottom, respectively (mmol/gDCW/h).
Metabolites names are displayed in bold: GLC = glucose; G6P =
glucose-6-phosphate; F6P = fructose-6-phosphate; FBP = fructose-1,6-
biphosphate; GAP = glyceraldehyde-3-phosphate; DHAP =
dihydroxyacetone phosphate; DHA = dihydroxyacetone; HCHO =
formaldehyde; CO2 = carbon dioxide; GOL = glycerol; RU5P = ribulose-
5-phosphate, XU5P = xylulose-5-phosphate; R5P = ribose-5-phosphate;
S7P = sedoheptulose-7-phosphate; E4P = erytrose-4-phosphate; PG3 =
3-phosphoglycerate; PEP = phosphoenolpyruvate; PYR = pyruvate;
ACD = acetaldehyde; ETH = ethanol; AcCoA = acetyl CoA; ACE =
acetate; OA = oxaloacetate; ICIT = citrate; aKG = alpha-ketoglutarate;
Suc = succinate; Mal = malate; (cyt) = cytosol; (mit) = mitochondria.

Figure 5 Calculated Extracellular Rates (mmol/gDCW/h) for
Oxygen, Carbon Dioxide, Glycerol and Biomass at low (state
A=0.05 h-1), medium (state B=0.10 h-1) and high (state C=0.15 h-1)
Dilution Rates in Pichia pastoris chemostat culture using both
off-line and on-line (NIR) measurements.
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results for each dilution rate and each of the extracellu-
lar rates determined, it was clear that there were no
significant differences between the on-line and off-line
extracellular rates (p<0.001). The extracellular rates were
then used to compute intracellular metabolic fluxes for
state A to C using Equation 5. The predictions from
NIR extracellular rates were very close to the rates de-
rived from the off-line assays, as expected from the input
rates. For that reason, only the intracellular fluxes pre-
dicted by the on-line NIR measurements for the P.
pastoris chemostat cultures at different dilution rates are
shown in Figure 4 (the intracellular fluxes predicted by
off-line measurements can be found in Additional file 1).
Negative values signify that the reaction is operating in
reverse direction. Key metabolic fluxes and pathways are
discussed below.

Consistency test
The values obtained for the consistency index h for each
steady state (NIR and experimental data) were lower
than the corresponding χ2 (chi-square) values for a 95%
confidence interval (3.84) and the one redundant equa-
tion (i.e. consistency test degrees of freedom), as seen in
Table 4. This shows that the off-line and on-line data are
both consistent with the pseudo-steady assumption and
also the assumed biochemistry, and that there are no
systematic or gross measurement errors. The results
from statistical analysis on the extracellular rates and the
consistency test show that NIR spectrometry can be
used as an on-line tool in fermentation systems to deter-
mine real-time intracellular metabolite fluxes.

Effect of dilution rate on central carbon metabolism of P.
pastoris cells
Figure 4 shows the predicted on-line NIR intracellular
carbon fluxes observed in the chemostat culture of
P. pastoris under different dilution rates. In some in-
stances, the term ‘relative flux’ will be used to describe
fluxes normalized to the specific glycerol uptake rate (i.
e. rx/r40, where rx is the reaction number of the flux re-
action used, and r40 the flux reaction for glycerol con-
sumption) and to allow a direct comparison among the
different states investigated (state A to C), this type of
terminology is widely used in the context of MFA
[40,41].

Flux distribution in glycolysis/gluconeogenesis and PPP
Glyceraldehyde-3-phosphate (GAP) links the glycolysis/
gluconeogenesis pathways with the methanol and gly-
cerol uptake pathways in the P. pastoris metabolic net-
work. At all dilution rates the majority of glycerol is
funnelled into the glycolytic pathway (r6), and much less
towards gluconeogenesis (r4) (Figure 4). However, with
the increased dilution rate the relative fluxes of glycerol
to glycolysis decrease (r6/r40: from 86% to 40%, from
state A to C, respectively), while an increase is seen from
gluconeogenesis towards the PPP (r4/r40: from 22%
to −15%, from state A to C, respectively – note that this
reaction is reversible). The increase of the relative flux
through the PPP (r21/r40) coincided with an increase in
biomass yield (from 0.63 gDCWg-1Glycerol at low dilution
rate to 0.67 gDCWg-1Glycerol at 0.15 h-1). Furthermore, the
carbon flux through the PPP (r21) that re-entered
glycolysis at the level of fructose-6-phosphate (F6P) and
glyceraldeheyde-3-phosphate (GAP) (r26) was at least
50% less at higher dilution rates (states B and C) than at
lower dilution rate (state A). This indicates that the PPP
is being used for NADPH generation to support the
production of biomass. It is known that the oxidative
part of the PPP (r21) is considered to be the major
NADPH regenerating reaction in yeast and is driven by
the demand for biomass synthesis, and in fact here it
showed the highest flux of all the PPP reactions (Figure 4).
Heyland (2010) [42] suggested a similar findings to ours:
“as NADPH is used as an electron donor during biomass
synthesis and the glucose-6-P and 6-P-gluconate dehydro-
genases of the PPP pathway are the major NADPH regen-
erating reactions in yeast (r21), the flux increase through
the PPP pathway might be a direct effect of the higher bio-
mass yield, as suggested previously by Blank et al. (2005)
[43]”. The higher biomass yield observed here at higher di-
lution rate (state C) is likely to be a result of the flux in-
crease through the PPP.

Flux distribution in TCA In all steady states (from A
to C) the cells exhibited a respiratory metabolism, as
the fluxes from respiro-fermentative metabolism (from
r10 to r13) were zero (Figure 4), typical of aerobic
culture conditions. This supports the view that
P. pastoris cells operate to produce biomass with very
little or no by-product formation when they are not
oxygen limited and are growing on glycerol [40,44].
On the other hand, it was observed that the flux en-
tering the TCA cycle from the pyruvate node (r30)
was approximately the same at all dilution rates. This
had consequences in terms of the TCA cycle: from
alpha-ketoglutarate (r18) onwards the TCA cycle activ-
ity significantly decreased at the highest dilution rates
(state B and C).

Table 4 Consistency test validation results

State DF hexp hNIR χ2 Pass/fail

A 1 2.50 2.29 3.84 Pass

B 1 3.34 1.54 3.84 Pass

C 1 2.68 0.00 3.84 Pass
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Flux distribution and biomass synthesis Alpha-
ketoglutarate (aKG) represents a key metabolite linking
the entry and exit of carbon sources from the TCA cycle
to pathways involved in amino acid metabolism for bio-
mass synthesis [8,42]. At higher dilution rates the energy
requirements are fulfilled without the complete TCA
activity and most of the carbon flux in the TCA is chan-
nelled towards synthesis of the biomass precursors from
aKG. This is supported by the decrease in the fluxes in
the reactions r18-r20, as the remaining TCA metabolites
(succinate and malate) are not involved in the synthesis
of biomass. It is possible that the TCA cycle is operating
at its maximum capacity when the specific growth rate
is high as it has been proposed in other studies [41,45],
and therefore the fluxes of the TCA metabolites are lim-
ited at higher dilution rates, as the emphasis moves to-
wards rapid protein synthesis to generate new cell mass
driven by the high feed rates (states B and C). Under
such conditions of stress, cells look to the PPP and glu-
coneogenesis pathways as an alternative source of energy
and building blocks for cell growth. The increase seen
here in PPP fluxes would logically be associated with the
increase of other cell building blocks, such as DNA and
RNA that are mainly produced through these pathways.
Similarly, in chemostat cultures of S. cerevisiae it has
been reported that a decrease in the cell protein content
at higher dilution rate may be related to a significant de-
crease in the TCA cycle fluxes [46]. This suggests that P.
pastoris cells grown at high dilution rates might need
nutrient supplementation to maintain high rates of pro-
tein synthesis, while at lower dilution rates the cultures
would be more self-sufficient. This effect would be more
pronounced if a heterologous protein were being expressed
at high levels, as seen in [37,41]. In the present study as
specific growth rate is pushed higher increased need
for biosynthetic intermediates leads to the situation noted
here, where the TCA intermediates are increasingly
diverted to intracellular metabolites (aKG) linked to bio-
mass synthesis.

Conclusions
The applicability of NIRS with advanced process model-
ling to define real-time metabolic fluxes in the industri-
ally relevant cell factory P. pastoris is reported herein. A
single in-situ NIR probe was used to predict biomass
and glycerol consumption rates in near real time. Focus-
ing only on central carbon metabolism of these cultures
enabled us to assess the viability of this novel approach
in light of previously published objections which indi-
cated that this approach was not appropriate.
The results of the MFA showed that the NIR predic-

tions were equivalent to the off-line reference methods,
thus showing the potential of NIRS to be used in real-
time MFA. The implementation of NIRS-MFA has

potential utility in mainstream biotechnology industries,
in particular, it expands our ability to monitor and con-
trol the metabolism of a key cell factory in real time
using a low cost, robust multivariate monitoring tech-
nology as opposed to the current costly, complex and
time consuming methods. Advances in metabolic flux
modelling are essential to complement other rapidly
expanding applications in biotechnological techniques,
such as transcriptomics and proteomics, in the develop-
ment of novel biopharmaceuticals. Further work using
more complex systems e.g. protein producing strains
where the metabolic network will be expanded to in-
clude protein synthesis pathways, is on-going. This sub-
stantially extends the challenges encountered in this
study and permits a systematic evaluation of this poten-
tial platform technology’s industrial relevance and utility.

Methods
Strain and media
A Pichia pastoris strain CBS7434 MutS was supplied by
Ingenza Ltd (UK). The yeast strain was kept as frozen
stock cultures in Yeast Nitrogen Base (YNB) medium
(34 gL-1 YNB) at −80°C. Inocula were prepared from 1
ml of the frozen culture sample which had grown on a
2-L shake flask in 600 ml of standard BMGY medium,
containing 1% Yeast Extract, 2% Mycological Peptone,
1% Glycerol, 1.34% YNB, 100 mM Potassium phosphate
(pH 6.0) and 4×10-5% Biotin; This was grown at 30°C,
250 rpm, for 20–24 hours until an OD600 of approxi-
mately 2.5 was reached. Finally the contents of the flask
were transferred to the bioreactor to create an inoculum
concentration of 10% (v/v). The chemostat culture
contained per liter: 40 g of glycerol; 26.7 mL H3PO4

(85%); 14.9 g MgSO4⋅7H2O; 0.93 g CaSO4; 18.2 g K2SO4;
4.13 g KOH; 4.35 mL of PTM1 salt solution; and 0.1 mL
antifoam.

Chemostat cultivation
The reactor used was a 15-l (total volume) stainless steel
bioreactor (BIOSTAT C.-DCU, B. Braun Biotech Inter-
national, Switzerland). The cultivation was carried out at
a temperature of 30.0±0.1°C and a pH of 5.5±0.1
(maintained by automatic addition of 24% NH4OH). The
dissolved oxygen concentration (DO) was maintained
above 30% of saturation by a cascade controlling system
(maintained by an agitation rate of 300–1200 rpm and
aeration rate 1–3 vvm). Exit gases (O2 and CO2) were
measured as % using a digital gas analyzer TANDEM Pro
(Applikon Biotechnology Ltd, Gloucestershire, UK). Real
time values of pH, DO, agitation speed, temperature, air-
flow rate, O2 and CO2 were recorded automatically by the
bioreactor software MFCS DA (Sartorius, UK). After 24 h,
the feed and waste pumps were started to initiate chemo-
stat cultivation. Following three to four residence times,

Fazenda et al. Microbial Cell Factories 2013, 12:51 Page 9 of 14
http://www.microbialcellfactories.com/content/12/1/51



time invariance of the following variables was assumed to
indicate a steady state: optical density, glycerol concentra-
tion, oxygen uptake and carbon evolution rate, OUR and
CER respectively. Three steady states were achieved with
the following dilution rates: A=0.05 h-1, B=0.10 h-1 and
C=0.15 h-1. Knowing that the maximum specific growth
rate, μmax, of P. pastoris on excess glycerol is 0.17 h-1 [44],
states A, B and C were considered: low, medium and high
dilution rate, respectively.

Sampling and Off-line measurements
Samples were taken approximately every 4 hours over
the cultivation process and analysed as described below.
Biomass was estimated by gravimetric difference as dry
cell weight (DCW): 5-ml of culture fluid was filtered
onto a pre-dried, pre-weighed 0.2 μm filter (Whatman,
Maidstone, UK). Cells were washed with 2×5 ml of ster-
ile water and the filter dried to a constant weight in an
oven (105°C for 24 h). Glycerol determination was car-
ried out using a Boehringer Mannheim Glycerol enzym-
atic kit (148–270, Lewes, UK) at 340 nm.

NIR
Spectra were acquired with a dual beam NIR process
spectrometer (Foss- NIRSystems Inc., Silver Spring,
MD, model XDS) using a transflectance probe sub-
merged in the bioreactor with a gap of 0.5 mm
resulting in an effective path length of 1 mm was suffi-
cient to acquire reasonable spectra. Spectral measure-
ments were referenced against a NIST traceable
reference material (serial number R99P0079). Due to
the nature of the reference and the design of the probe
the referencing procedure was carried out with a re-
flectance probe (Foss NIRsystems, Maryland, USA). A
correction factor was then applied to compensate for
the differences in the acquired spectra from the reflect-
ance probe, used in the instrument calibration proced-
ure, and the transflectance probe that was utilised for
spectroscopic measurements. The probe was mounted
in one of the side sampling ports of the bioreactor. As
these ports also housed the pH and dissolved oxygen
probes, any sample measurements made should have
been representative of the whole reactor contents and
would not have had a significant impact on the mixing
efficiency of the reactor. Spectral measurements (X
data) were an average of 32 scans, taken every 30 mi-
nutes over the NIR range of 800–2200 nm.

Data analysis and calibration development
Spectral collection was performed using VISION (version
3.0, Foss NIRSystems) and calculations were carried out
using Matlab version 7.12 (2011a) (MathWorks, Natick,
MA) and the PLS Toolbox version 6.5.1 (Eigenvector Re-
search, Manson, WA). Multivariate calibration models

were developed with the PLS algorithm. All the spectra
were mean-centered, and second-order Savitzky-Golay
(SG) derivatives were applied (filter width of 33 data
points and a second-order polynomial fit) before develop-
ment of the calibration models. The performance of deve-
loped models was assessed by global analysis of the root
mean square errors of cross-validation (RMSECV) and
prediction (RMSEP), latent variable (lv) number, and the
respective correlation coefficient, R2, between the pre-
dicted and measured values for both calibration and vali-
dation sets [47]. Biomass and Glycerol concentration
data (Y data) determined from the off-line measure-
ments were interpolated using the interp1 command
(linear interpolation) in Matlab and matched to the NIR
spectral data. A random number table was used to div-
ide the data into calibration (85 samples) and validation
sets (30 samples), so that the model could be externally
validated in the absence of more samples. To aid in
gaining an analytical basis for the model development,
NIR spectra of aqueous solutions of glycerol (0–50 g/l)
and aqueous suspensions of biomass (0–30 g/l), all ad-
justed to the bioprocess pH, were also prepared and
scanned (Figure 2c and d).

Reference method qualification
Reference method qualification was accessed using the
statistic standard error of laboratory (SEL). SEL is
defined as the standard error of variance between repli-
cates analyzed by the reference method and was calcu-
lated using Equation 1 [23]. 16 samples were analysed in
duplicate for each analytical method (see section Sam-
pling and Off-line measurements). Accuracy can be de-
termined by agreement between the RMSEP and SEL.
As a rule [23,24], considering that the R2 and the
RMSEP indicate the precision achieved in the NIR cali-
bration, R2 values higher than 0.90 indicate excellent
precision, as well as RMSEP values lower than 1.5 ×
SEL. R2 values between 0.70 and 0.90 mean good preci-
sion, as do the RMSECV values between 2–3 × SEL.
While, models with R2 values lower than 0.70 are only
suitable for qualitative purposes, allowing distinction
between low, medium and high values for the measured
parameter being analysed.

SEL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
j¼1

Xr

i¼1

yiy−yi
� �2

N r−1ð Þ

vuuuut ð1Þ

where yij is the ith replicate of the jth sample, �y1 is the
mean value of all replicates of the jth sample, r is the num-
ber of replicates and N is the total number of samples.
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Estimation of specific extracellular rates
The specific growth rate was determined from the mass
balances in the fermenter, resulting in

μ ¼ F
V

þ 1
X
dX
dt

ð2Þ

where μ is the specific growth rate (h-1), F the flow
rate (L/h), V the fermenter volume (L), X the bio-
mass concentration (mol/L), and t is time (hours).
Accordingly, specific uptake or production rates for
glycerol, O2 (OUR) and CO2 (CER) were calculated
based on:

q ¼ F Cin−Coutð Þ
VX

ð3Þ

where q is the specific uptake or production rate (mmol/
(gDCWh)), while Cin and Cout are the reactor inlet and out-
let concentrations (mol/L) of the nutrients or metabolites.
The extracellular rates were determined from Equations 2
and 3 using six separate data points from the end of each
dilution state (A, B and C) and averaged to obtain a single
value for each state. The biomass concentration was deter-
mined either by the off-line method described in 4.5 or by
the on-line NIR predictions.

Metabolic flux analysis
Assuming a pseudo-steady state approximation (PSS),
the material balance equation for the intracellular me-
tabolites [48] can be written as

dc tð Þ
dt

¼ 0 ¼ A � r⇒0 ¼ A � r ¼ Anrn þ Abrb ð4Þ

The intracellular fluxes were calculated based on the
material balance model expressed in matrix notation
where A is the matrix of stoichiometric coefficients

consisting of m rows corresponding to the intracellular
metabolites and n columns corresponding to the number
of metabolic reactions (Additional file 1). The vector r
contains the net reaction fluxes (mmol/(gDCWh)) and
vector c denotes the concentrations of the intracellular
rates. A and r were split into the unknown (An and rn)
and known (Ab and rb) matrices and vectors of stoichio-
metric coefficients and rates, respectively. The known
and unknown rates correspond to the extracellular and
intracellular metabolic fluxes, respectively. The intracel-
lular metabolite fluxes can be determined from Equation 5
using simple matrix inversion if A is square (m = n). If A
is not a square matrix, the system becomes redundant and
it is valuable to include the surplus information to check
the consistency of the data and the assumed biochemistry.
In this case m > n and the fluxes can be determined via
the method of weighted least squares [49]:

rn ¼ − AT
nΨAn

� �−1
AT
nΨ

−1rb ð5Þ

where ψ is the variance-covariance matrix of the extra-
cellular fluxes calculated directly from the measure-
ments. Once the intracellular rates were estimated, the
consistency of the metabolic fluxes to the measure-
ments was estimated by calculating the consistency
index, h given by:

h ¼ e0 � pinv Jð Þ � e ð6Þ

With J, the variance-covariance matrix of the vector of
residuals (Equation 9), pinv(J) the pseudo-inverse matrix
of J and e the vector representing the deviation from
zero of the intracellular metabolites concentrations

Figure 6 Schematic diagram of the experimental set-up used. Two datasets were generated a) off-line and b) on-line data and used as
inputs for Metabolic Flux Analysis for the prediction of intracellular metabolites fluxes of central carbon metabolism of a chemostat culture of
Pichia pastoris.
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calculated as follows

e ¼ −R � rb0 ð7Þ

R is the redundancy matrix expressed by:

R ¼ Ab−An � pinv Anð Þ � Ab ð8Þ

And the variance-covariance matrix of the vector of
residuals (J):

J ¼ RT � Yb � R ð9Þ

The consistency index method is based upon statis-
tical hypothesis testing to determine whether redundan-
cies are satisfied within the experimental error [50,51].
The first step in applying a consistency test is to deter-
mine the number of redundant equations present in the
stoichiometry matrix, A. This is done by comparison of
the number of degrees of freedom of the matrix A
(DF=8) and the number of known measurements used
in the MFA model (nine). Comparison of h with the χ2

test function determines whether the residuals of
Equation 5 deviate beyond their expected distribution
around 0 for a specified significance (confidence level).
If a given r fails the consistency check (i.e., h > χ2), then
there is a (confidence level)% chance that either r
contains gross measurement errors or the assumed bio-
chemistry is incorrect. For this, one additional redun-
dant measurement was used as the degrees of freedom
for statistical hypothesis testing. The confidence interval
of the known and the unknown fluxes was analysed by
calculating the estimates of the respective variance-
covariance matrices (Ψb and Ψn) given in Equation 10.
The standard deviation vectors of the fluxes were then
obtained by the squared root of the respective variance
covariance matrix diagonals [52].

Ψ ′
b ¼ 1−Ψ � RT R � Ψ � RTð Þ−1 � R � Ψ

Ψ ′
n ¼ A−1

n � Ab � Ψ � AT
n � A−1

n

� �T
ð10Þ

All the computational tasks required to perform meta-
bolic flux analysis were implemented in Matlab (version
7.12, 2011a) (MathWorks, Natick, MA).

Experimental plan
To obtain the estimates for the intracellular metabolic
fluxes from the MFA model, extracellular rates were calcu-
lated using Equations 2 and 3 from two datasets (off-line
and on-line measurements) and the results compared. A
diagram of the approach used is shown in Figure 6.

Additional file

Additional file 1: Metabolic network for P. pastoris. List of reactions,
metabolites and stoichiometric matrix and predictions of intracellular
fluxes.
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