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Abstract

A novel family of three-dimensional travelling-wave similarity solutions describing a steadily trans-

lating slender dry patch in an infinitely wide thin fluid film on an inclined planar substrate is obtained,

the flow being driven by gravity and/or a prescribed constant shear stress on the free surface of the

film. For both driving mechanisms, the dry patch has a parabolic shape (which may be concave up or

concave down the substrate), and the film thickness increases monotonically away from the contact

lines to its uniform far-field value. The two most practically important cases of purely gravity-driven

flow and of purely surface-shear-stress-driven flow are analysed separately.
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I. INTRODUCTION

Finite holes and semi-infinite dry patches can occur in both stationary and flowing fluid

films for many different reasons, including dry-out due to localised heating, the presence of

air bubbles within the film, inhomogeneities of the substrate, and the presence of surfactants.

In particular, there is considerable interest in the occurrence and the non-occurrence of both

holes and dry patches in fluid films in a variety of industrial contexts such as heat exchangers

and coating processes. Specifically, in heat-transfer devices the presence of dry areas of the

substrate must generally be avoided because they typically reduce the efficiency of the heat

transfer and can lead to local overheating and possibly corrosion of the substrate, while in

coating processes the presence of uncoated regions of the substrate is also generally undesirable

because they can seriously degrade the quality of the final product and may make it entirely

unusable. As a consequence of these and other practical applications, as well as their inherent

interest as fundamental problems in fluid mechanics, the problems of the formation, stability

and evolution of holes and dry patches in a fluid film are of enduring theoretical, experimental

and practical interest.

The pioneering study of the opening or closing of an axisymmetric hole in a stationary fluid

film was performed by Taylor and Michael1, who considered an unbounded fluid film on a

horizontal substrate subject to gravity and surface-tension effects. In this situation there is a

unique energetically unstable equilibrium hole configuration provided that the film is sufficiently

thin. Taylor and Michael1 conjectured that non-equilibrium holes that are smaller than the

equilibrium hole will close while those that are larger will open, and found this prediction to

be in good agreement with the results of their own physical experiments involving making

holes of various sizes in a layer of mercury. Subsequently, various aspects of the stability and

unsteady evolution of both axisymmetric and non-axisymmetric holes in a thin fluid film have

been studied by, for example, Moriarty and Schwartz2, Wilson and Terrill3, López, Miksis, and

Bankoff4, and Bankoff et al.5.

The pioneering study of a semi-infinite dry patch in a flowing fluid film driven either by
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gravity or by a prescribed surface shear stress due to an external air flow was performed by

Hartley and Murgatroyd6 and extended by Murgatroyd7. Hartley and Murgatroyd6 considered

two (different) criteria, namely a force-balance criterion based on a balance between surface-

tension and pressure forces at the stagnation point at the apex of a dry patch and a minimum

energy criterion for a stable fluid film, both of which they used to predict the critical film

thickness and flow rate for a dry patch to persist. Early experiments on the shape and structure

of a dry patch in a fluid film draining under gravity down the outside of a vertical circular

cylinder were performed by Ponter et al.8. The shape and structure of a dry patch in a fluid film

draining under gravity down an inclined plane has been extensively studied both experimentally

and theoretically by Wilson9, Podgorski, Flesselles, and Limat10,11, Rio, Daerr, and Limat12, Rio

and Limat13, and Sébilleau, Lebon, and Limat14. In particular, Podgorski et al.10,11 observed

the presence of a “capillary ridge” of fluid at the edge of the dry patch, and derived a model for

the flow within the ridge and hence the shape of the dry patch similar to that proposed much

earlier by Wilson9, and Sébilleau et al.14 found good agreement between the predictions of an

improved version of the model and experimental results for a sufficiently viscous fluid.

Taking a somewhat different approach, Wilson, Duffy, and Davis15 obtained two steady

similarity solutions for a slender dry patch in a thin fluid film draining under gravity down an

inclined plane, one for the case of weak surface tension and one for the case of strong surface

tension. In the former case the solution predicts that the dry patch has a parabolic shape and

that the transverse profile of the free surface has a monotonically increasing shape; in the latter

case the solution predicts that the dry patch has a quartic shape and that the transverse profile

of the free surface has an oscillatory shape with a capillary ridge near the contact line. An

existence theory for the mathematical problem in the case of weak surface tension was provided

by Agarwal and O’Regan16. Subsequently Holland, Wilson, and Duffy17 obtained four steady

similarity solutions for a slender dry patch in a thin fluid film in the presence of thermocapillarity

effects. All of these works concern steady dry patches, but recently the present authors have

obtained unsteady similarity solutions for an opening or closing slender dry patch with a fixed

apex in a thin fluid film driven by a prescribed constant surface shear stress (Yatim, Duffy, and
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Wilson18); somewhat unexpectedly, it turns out that there is no corresponding solution for a

dry patch in a thin film of either a Newtonian fluid or a non-Newtonian power-law fluid that

is driven by gravity (Yatim et al.19,20). Earlier, Betelú and Diez21 obtained a rather different

unsteady similarity solution that describes two semi-infinite contact lines that meet to form a

“dry line” (rather than a dry patch); the dry line vanishes at a “welding point” which moves

at constant velocity.

The contribution of the present work is to obtain and analyse a novel family of three-

dimensional travelling-wave similarity solution describing a steadily translating slender dry

patch in an infinitely wide thin fluid film on an inclined planar substrate, the flow being driven

by gravity and/or a prescribed constant shear stress on the free surface of the film. For both

driving mechanisms, the dry patch has a parabolic shape (which may be concave up or concave

down the substrate), and the film thickness increases monotonically away from the contact lines

to its uniform far-field value.

II. PROBLEM FORMULATION

A. Unsteady thin-film flow around a steadily translating dry patch

Consider an infinitely wide thin film of Newtonian fluid with constant density ρ and constant

viscosity µ on a planar substrate inclined at an angle α to the horizontal, subject to gravitational

acceleration g and a prescribed constant shear stress on its free surface, acting up or down the

slope. We shall be concerned with unsteady three-dimensional flow of such a film around a dry

patch that translates steadily up or down the substrate, as sketched in Fig. 1. The inclination

angle of the substrate, α, is taken to satisfy 0 < α < π/2 or π/2 < α < π, the cases of a

horizontal substrate (α = 0 or π) or a vertical substrate (α = π/2) being excluded at the

outset. When 0 < α < π/2 the fluid is on the upper side of the substrate (the sessile case), and

when π/2 < α < π it is on the underside of the substrate (the pendent case).

Cartesian axes Oxyz with the x axis down the line of greatest slope and the z axis normal
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Free surface
z = h(x, y, t)

Dry patch

Contact line

y = ±a(x, t)

α

τ

g

x

y

z

h∞

FIG. 1: Sketch of the geometry of the problem: a steadily translating dry patch in a thin fluid film on a planar

substrate inclined at an angle α to the horizontal.

to the substrate are adopted, with the substrate at z = 0; the fluid pressure and velocity are

denoted by p and (u, v, w), and the free surface profile of the film is denoted by z = h(x, y, t),

where t denotes time. We define the prescribed surface shear stress τ to be positive (negative)

if it acts down (up) the substrate; the case τ = 0 corresponds to purely gravity-driven flow.

We are concerned with unsteady flow around a steadily translating dry patch in a film of

uniform thickness h∞ at infinity (that is, in a film that would be of uniform thickness h∞

everywhere if the dry patch were absent). We shall restrict attention to dry patches that are

symmetric about y = 0 (so that h is even in y) with (unknown) semi-width a = a(x, t), so that

the fluid occupies |y| ≥ a, and h = 0 at the three-phase contact lines y = ±a.

First we non-dimensionalise and scale the variables. It is natural to scale z with the thickness

h∞, and to scale u, p − pa (where pa denotes the constant atmospheric pressure) and τ with
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the velocity, pressure and shear-stress scales US = ρgh2
∞ sinα/µ, ρgh∞| cosα| and µUS/h∞

(= ρgh∞ sinα), respectively, associated with steady unidirectional gravity-driven flow of a film

of uniform thickness h∞ down an inclined plane. We take the dry patch to be slender, that is,

varying much more slowly in the longitudinal (x) direction than in the transverse (y) direction;

specifically, we consider dry patches for which the x and y scales are of orders ǫ−2h∞ and

ǫ−1h∞, and for which the v and w scales are correspondingly of orders ǫUS and ǫ2US, where

ǫ (≪ 1) is a small aspect ratio, namely the ratio of a typical transverse length scale to a

typical longitudinal length scale. The time scale associated with the flow is then h∞/ǫ2US. We

therefore non-dimensionalise and scale the variables according to

x =
h∞| tanα|

ǫ2
x∗, y =

h∞

ǫ
y∗, z = h∞z∗, t =

h∞| tanα|
ǫ2US

t∗, h = h∞h∗, a =
h∞

ǫ
a∗,

u = USu
∗, v =

ǫUS

| tanα|v
∗, w =

ǫ2US

| tanα|w
∗, p = pa + ρgh∞| cosα|p∗, τ =

µUS

h∞

τ ∗,

(1)

in which the factor | tanα| arises from the ratio of the longitudinal driving component of gravity,

g sinα, to the transverse spreading component g cosα; different values of α correspond merely

to different scales in (1), so that the value of α will not appear explicitly in the non-dimensional

governing equations and boundary conditions, and the only distinction to be made is between

sessile cases (cosα > 0) and pendent cases (cosα < 0). It is then convenient to introduce the

notation Sg = sgn(cosα) = ±1 to denote the sign of the transverse component of gravity, that

is, the sign of cosα, so that Sg = +1 in the sessile case and Sg = −1 in the pendent case.

The flow everywhere is taken to involve a balance between gravity and viscous forces. In

particular, we will neglect surface-tension effects in the normal-stress balance at the free surface;

this is justified provided that (in dimensional terms) γ|hyy| ≪ ρgh∞| cosα|, where γ denotes

the coefficient of surface tension. With the scaling (1) this condition reduces to ǫ2 ≪ B, where

B = ρgh2
∞| cosα|/γ is an appropriate Bond number; thus surface tension may be neglected

provided that the transverse length scale over which the film profile changes is sufficiently

large.

With stars on non-dimensional variables dropped for clarity, at leading order in ǫ the gov-
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erning continuity and Navier–Stokes equations give

ux + vy + wz = 0, (2)

uzz + 1 = 0, −py + vzz = 0, −pz − Sg = 0. (3)

The solution of (2) and (3) subject to the boundary conditions of no slip and no penetration

on the substrate z = 0:

u = v = w = 0, (4)

leading order balances of normal and tangential stresses on the free surface z = h:

p = 0, uz = τ, vz = 0, (5)

and the kinematic condition on z = h:

ht + ūx + v̄y = 0, (6)

where the local fluxes ū = ū(x, y, t) and v̄ = v̄(x, y, t) are defined by

ū =

∫ h

0

u dz, v̄ =

∫ h

0

v dz, (7)

is simply

p = Sg(h− z), (8)

u =
1

2
(2h− z)z + τz, (9)

v = −Sghy

2
(2h− z)z, (10)

w =
Sg

2

(

hhyy + h2
y −

hyyz

3

)

z2 − hxz
2

2
. (11)

Substituting (9) and (10) into (7) gives

ū =
h3

3
+

τh2

2
, v̄ = −Sgh

3hy

3
, (12)

and hence (6) yields the governing partial differential equation for h:

ht =
Sg

3

(

h3hy

)

y
− 1

3

(

h3
)

x
− τ

2

(

h2
)

x
. (13)

Once h is determined from (13) the solution for p, u, v and w in (8)–(11) is known.
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From (12) we have ū = 0 at y = ±a, so that the zero-mass-flux condition at the contact

lines, namely

v̄ = ±axū at y = ±a, (14)

reduces to v̄ = 0 at y = ±a, and therefore the contact-line conditions are

h = 0 at y = ±a, h3hy → 0 as y → ±a. (15)

Far from the dry patch the film is of unit thickness, that is,

h → 1 as |y| → ∞, (16)

and the solution (8)–(11) takes the form p = p∞(z), u = u∞(z), v ≡ 0 and w ≡ 0, where

p∞ = Sg (1− z) , u∞ =
1

2
(2− z) z + τz, (17)

representing steady unidirectional flow up or down the substrate. The depth-averaged velocity

U∞i associated with the flow (17) and the shear stress acting on the substrate due to this flow,

namely τ∞ = du∞/dz at z = 0, are given by

U∞ =
1

3
+

τ

2
, τ∞ = 1 + τ ; (18)

these quantities will reappear when we analyse the solutions for dry patches. It transpires that

in the case τ = −1 (i.e. τ∞ = 0) there is no solution of (13), (15) and (16) of the general

form that we shall be considering, and so for brevity we exclude this case at the outset. Thus

although the velocity U∞ may be positive, negative or zero, the stress τ∞ may be positive or

negative but not zero; it is then convenient to introduce the notation S∞ = sgn(τ∞) = ±1 to

denote the sign of τ∞.

B. A travelling-wave similarity solution

Equation (13) has a travelling-wave similarity solution, describing a steadily translating dry

patch, of the form

h = F (η), η =
y

√

S∞Sg (x− ct)
if S∞Sg(x− ct) ≥ 0,

h = 1 if S∞Sg(x− ct) < 0,











(19)
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where the function F = F (η) (≥ 0) of the similarity variable η represents the cross-sectional

profile of the fluid film, and ci (with c positive, negative or zero) is the constant velocity of

the dry patch up or down the substrate; both F and c are to be determined. Equation (19)1

represents the dry patch in the region where S∞Sg(x− ct) ≥ 0, and (19)2 represents a film of

unit thickness in the region where S∞Sg(x− ct) < 0, which is either ahead of or behind the dry

patch, reflecting the fact that either the dry patch will be below its apex, and the film above

the apex will be of uniform thickness (as sketched in Fig. 1), or vice versa.

As will be seen shortly, the factor S∞Sg in (19) is introduced to ensure consistency with the

asymptotic behaviour of the solution for h near to the dry patch and far from it. Along the

line x = ct (on which |η| → ∞) the thickness h of the film and its derivatives hy and hyy are

continuous (so that u, v, w and p are continuous there), except at the apex of the dry patch at

the singular point x = ct, y = 0, at which the free surface is normal to the substrate, occupying

0 ≤ z ≤ 1.

In a frame of reference moving with the dry patch (that is, steadily translating with velocity

ci), the flow appears steady, with the dry patch stationary. Denoting quantities in this moving

frame by upper-case letters we have

X = x− ct, Y = y, Z = z, T = t, H = h, (U, V,W ) = (u− c, v, w), (20)

and the similarity solution again takes the form (19) written in terms of H , with η now given

by η = Y/
√

S∞SgX .

With (19)1 equation (13) reduces to a nonlinear ordinary differential equation for the cross-

sectional profile F (η), namely

(

F 4
)′′

+ 6S∞η
(

F 2 + τF − c
)

F ′ = 0, (21)

where a dash denotes differentiation with respect to η.

We denote the position in η ≥ 0 where F = 0 (corresponding to the contact-line position

y = a) by η = η0, a scaled measure of the semi-width of the dry patch. Then the fluid lies in
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|η| ≥ η0, and

a =
√

S∞Sg (x− ct) η0,
y

a
=

η

η0
, (22)

showing that the edge of the dry patch always has a parabolic shape. In fact, with (19)1 the

level sets of h are the curves η = constant, that is, the film thickness is the same at all points

(x, y) on each of the parabolae y2 ∝ S∞Sg(x− ct) (≥ 0).

From (15) we have

F = 0 at η = η0, F 3F ′ → 0 as η → η0; (23)

in addition, F must satisfy the far-field condition

F → 1 as η → ∞. (24)

As we shall see, the value of η0 is not determined as part of the solution, in general, so that

(19) represents a one-parameter family of possible similarity solutions.

To understand the nature of the dry-patch solutions (19) we investigate the properties of

solutions of (21), (23) and (24); in section III we derive analytical results that provide valuable

information about the motion of the dry patch, and which guide the numerical study described

in subsection IVA.

III. PROPERTIES OF THE SIMILARITY SOLUTION

A. Behaviour near η = η0

Near the contact line η = η0 it is found from (21) that the profile of the fluid film, F , satisfies

either

F ∼
[

9η0S∞c(η − η0)

2

]
1

3

for S∞c > 0 (25)

or, in the special case of a stationary dry patch, c = 0,

F ∼
[

−3η0τ(η − η0)

2

]
1

2

for − 1 < τ < 0. (26)
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In particular, equation (25) shows that if the prescribed surface shear stress τ either acts

downwards (τ ≥ 0) or acts upwards but is sufficiently weak (specifically, if −1 < τ ≤ 0) then

the dry patch moves downwards (c ≥ 0), whereas if the surface shear stress acts upwards and

is sufficiently strong (specifically, if τ < −1) then the dry patch moves upwards (c < 0).

Equations (25) and (26) show that the free surface has infinite slope at the contact line

η = η0, corresponding to a contact angle of π/2; thus the lubrication approximation fails there,

and there is no freedom to impose additional conditions such as prescribed contact angles. In

practice, surface-tension effects (which are neglected in the bulk of the flow) will be important

close to the contact line, and, in principle, some additional microscopic physics needs to be

introduced into the model in order to remove the well-known contact-line paradox (see, for

example, the recent review articles on moving contact lines by Bonn et al.22 and Snoeijer and

Andreotti23). However, as in the famous similarity solution of Smith24 for the spreading of a

large drop, in the present problem the flow is dominated by the behaviour in the bulk (namely

a balance between viscous and gravity forces) and so it is not necessary to analyse the details

of the flow near the contact line in order to determine the macroscopic behaviour.

B. Behaviour in the limit η → ∞

If F were to have a stationary point in η ≥ η0 then (21) would require all derivatives of F

to be zero there, indicating that, in fact, F has no stationary points. Thus F (and hence the

thickness of the fluid film) increases monotonically with η from F = 0 at η = η0 to F → 1 as

η → ∞, and so satisfies 0 ≤ F < 1. With this result it may be shown that the solution F of

(21) has the far-field behaviour (24) only if S∞(τ∞ − c) ≥ 0, and then we find that

F − 1 ∝ 1

η
exp

(

−3

4
S∞(τ∞ − c)η2

)

as η → ∞ (27)

if S∞(τ∞ − c) > 0, and

F ∼ 1− 2

(2 + τ)η2
as η → ∞ (28)

if c = τ∞, the latter only if −2 < τ < −1.
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C. Physical forms of the dry patch

The conditions S∞c ≥ 0 and S∞(τ∞− c) ≥ 0 required for the validity of (25)–(28) show that

the velocity of the dry patch, c, always satisfies

either 0 ≤ c ≤ τ∞ or τ∞ ≤ c ≤ 0. (29)

This result and the fact that the dry patch is situated in the region where S∞Sg(x − ct) ≥ 0

together provide useful information for determining the possible physical forms of the dry patch;

in particular, we deduce immediately that in the sessile case (cosα > 0, Sg = +1) if τ∞ > 0

then the dry patch is situated in x ≥ ct, moves down the substrate (c ≥ 0), and has semi-width

a = η0
√
x− ct, widening with increasing x, the fluid film in x < ct being of unit thickness,

whereas if τ∞ < 0 then the dry patch is situated in x ≤ ct, moves up the substrate (c ≤ 0), and

has semi-width a = η0
√
ct− x, narrowing with increasing x, the fluid film in x > ct being of

unit thickness; analogous conclusions may be drawn in the pendent case (cosα < 0, Sg = −1).

The physical forms of the dry patch in these various cases are sketched in Fig. 2, in which (a)

and (b) show sessile cases, and (c) and (d) show pendent cases; in (a) and (c), with τ∞ > 0,

the dry patch is moving down the substrate (c > 0), whereas in (b) and (d), with τ∞ < 0, it is

moving up the substrate (c < 0).

Other things being equal, at any given instant t the free-surface profile in a sessile (pendent)

case on a substrate inclined at an angle α is the mirror image in the plane x = ct of the

free-surface profile in a pendent (sessile) case on a substrate inclined at an angle π − α.

In the Appendix it is shown from the differential equation (21) that the velocity of the dry

patch, c, may be expressed in terms of integrals of F as

c =
2I3 + 3τI2

6I1
, (30)

where we have defined the constants In (n = 1, 2, 3) by

In = η0 +

∫ ∞

η0

(1− F n) dη; (31)

we then use (30) to derive additional restrictions on c (beyond (29)) that were useful in deter-

mining the structure of the solutions numerically, as described later in subsection IVA.
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(a)

O

x

y

h∞

x = ct

c
y = a

(b)

O

x

y

h∞

x = ct

c

y = a

(c)

O

x

y

h∞

x = ct

c

y = a

(d)

O

x

y

h∞

x = ct

c

y = a

FIG. 2: Sketch of the possible physical forms of the steadily translating dry patch (shown unshaded) in a thin

film (shown shaded): (a) and (b) show sessile cases, and (c) and (d) show pendent cases; in (a) and (c), with

τ∞ > 0, the dry patch is moving down the substrate, and in (b) and (d), with τ∞ < 0, it is moving up the

substrate.
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D. Depth-integrated flow

Analogous to (7) we define local fluxes Ū and V̄ in a frame of reference moving with the dry

patch by

Ū =

∫ H

0

U dZ = ū− ch, V̄ =

∫ H

0

V dZ = v̄. (32)

Then, since HT = 0 in this frame of reference, the kinematic condition on the free surface takes

the steady form

ŪX + V̄Y = 0, (33)

so that, although the fluid flow (with velocity (u, v, w)) is fully three-dimensional, the depth-

integrated velocity (Ū , V̄ ) is analogous to a two-dimensional velocity field of an incompressible

fluid, for which we may define an effective stream function Ψ by

Ū =
∂Ψ

∂Y
, V̄ = − ∂Ψ

∂X
, Ψ = 0 at η = ±η0. (34)

Integrating (34) using (12), (21) and (23) we find that

Ψ =











√

S∞SgX

{

2S∞F 3F ′

3
+ η

(

F 3

3
+

τF 2

2
− cF

)}

if S∞SgX ≥ 0,

(U∞ − c)Y if S∞SgX < 0,

(35)

with U∞ again as in (18). Curves of constant Ψ in the X-Y plane may be regarded as effective

streamlines of this depth-integrated flow, with the streamline Ψ = 0 corresponding to the axis

Y = 0 in S∞SgX ≤ 0 and to the contact line Y = ±a in S∞SgX ≥ 0. Also Ψ in (35)1 satisfies

Ψ ∼ (U∞ − c)Y in the limit η → ±∞, showing that the streamlines are smooth at X = 0

(that is, at x = ct), and that the depth-integrated flow is uniform far from the dry patch, with

streamlines parallel to the X axis.

Since hy has the same sign as y, from (12) we have sgn(V̄ ) = sgn(v̄) = −Sgsgn(y), showing

that the direction of the depth-integrated flow is inwards towards y = 0 in the sessile case

Sg = +1 but is outwards away from y = 0 in the pendent case Sg = −1. Therefore the depth-

integrated flow in the moving frame of reference is upward in parts (a) and (c) of Fig. 2, but is

downward in parts (b) and (d).
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E. Cross-sectional area and volume flux

The film is of infinite transverse extent, and its cross-sectional area (at constant x) is infinite,

as is the volume flux of fluid down the substrate. However, the difference between the cross-

sectional area of the part of the film of unit thickness in the region where S∞Sg(x − ct) < 0

and that of the part of the film in the region where S∞Sg(x− ct) ≥ 0 containing the dry patch,

denoted △A, is finite and is given by

△A = lim
y∞→∞

2

(

y∞ −
∫ y∞

a

h dy

)

, (36)

leading to

△A = 2
√

S∞Sg(x− ct) qarea, where qarea = I1 (37)

for S∞Sg(x− ct) ≥ 0, where the constants In are as defined in (31). Similarly, the difference in

volume flux in the two parts of the film, denoted △Q, is finite and is given by

△Q = lim
y∞→∞

2

(

U∞y∞ −
∫ y∞

a

ū dy

)

, (38)

leading to

△Q = 2
√

S∞Sg(x− ct) qflux, where qflux =
I3
3
+

τI2
2

(39)

for S∞Sg(x− ct) ≥ 0. Then (30), (37) and (39) show that qflux, qarea, △Q and △A are related

simply by

qflux = cqarea, △Q = c△A. (40)

IV. DESCRIPTION OF THE SIMILARITY SOLUTIONS

A. Solutions for F (η) and c

A closed-form solution of (21) for the cross-sectional profile F (η) is not available, and so it

was solved numerically, by means of a shooting method, shooting from a chosen value of the

contact-line position η = η0, with chosen values of the surface shear stress τ and the velocity of
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the dry patch, c. The solution F was monitored to see if it satisfied an approximated version

of (24), namely

F = 1 at η = η∞, (41)

where η∞ (≫ η0) is a chosen large value of η, to within a prescribed tolerance; if not then

the value of c was changed and the calculation repeated until a solution satisfying (41) for the

chosen values of η0, τ and η∞ was found. In fact, the numerical computation cannot be started

exactly at η = η0 (because of the singular slope there, given by (25)), and so instead it was

started from a position η = η0 + δ, where δ (> 0) is small; thus we solved (21) subject to the

approximated boundary conditions

F (η0 + δ) =

(

9η0S∞cδ

2

)
1

3

, F ′(η0 + δ) =

(

η0S∞c

6δ2

)
1

3

, (42)

obtained from (25). This procedure was then repeated with smaller values of δ (as small as

δ = 10−10) and larger values of η∞ (as large as η∞ = 103) until the solution converged to within

a prescribed tolerance.

The main results of the present work concern the dependence of the velocity of the dry

patch, c, on the position of the contact line, η0, and the surface shear stress τ . Figure 3 shows

plots of c as a function of η0 obtained by the above procedure, for various values of τ . Each of

the solution curves shown in the figure extends over all values of η0 (≥ 0), but for each τ (that

is, on any particular curve) there is only a finite interval of c values; in particular, c takes a

finite nonzero value in the limit of a narrow dry patch, η0 → 0, and approaches the constant

value c = U∞ in the limit of a wide dry patch, η0 → ∞, consistent with the later discussions

in subsections IVC and IVD. The curves in Figure 3 are, in general, non-monotonic, so that

although for a given semi-width η0 the velocity c is determined uniquely, for a given velocity

c there may be more than one associated semi-width η0, that is, there may be more than one

dry patch with a given velocity. Moreover, curves for different τ do not intersect each other,

showing that the corresponding solutions are distinct; in particular, two dry patches of the same

semi-width η0 with different values of τ will have different velocities c, and two dry patches

moving at the same velocity for different values of τ must have different semi-widths.
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FIG. 3: Plots of c as a function of η0 for various values of τ .

The apparent simplicity of Fig. 3 is deceptive. Figure 4 shows an enlargement of Fig. 3 (with

additional solution curves) near the η0 axis; all the curves in Fig. 4 are for τ < 0, corresponding

to an upward surface shear stress. Notable features in Fig. 4, not shown in Fig. 3, are that

some (but not all) solution curves in c ≥ 0 terminate on the η0 axis (so that for these values

of τ there is a maximum possible semi-width η0), that there is a region below the η0 axis and

above a bounding curve c = 1+ τ < 0 (shown dashed) in which there is no solution (so that, in

particular, there is no dry patch with velocity satisfying −1/3 ≤ c < 0), and that some curves

in c < −1/3 (for which τ < −4/3) lie entirely to the right of this bounding curve (so that for

these values of τ there is a minimum possible semi-width η0). The bounding curve c = 1 + τ

(on which c → −1/3 as η0 → ∞) corresponds to one of the two extreme values allowed by the

inequality (29)2, showing that any solution curve in Fig. 4 that intersects this bounding curve

always lies above the point of intersection.

Fig. 5 shows an enlargement of Fig. 4 (that is, a further enlargement of Fig. 3, again with

additional solution curves), clarifying the structure of the solution curves for c ≥ 0 near a

critical point in the behaviour, on the η0 axis. It is found that there are solutions with c ≥ 0
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FIG. 4: Enlargement of Fig. 3, showing c as a function of η0 for τ = −2/3, −11/16, −17/24, −35/48, −3/4,

−37/48, −19/24 (upper group) and τ = −11/8, −67/48, −17/12, −3/2, −19/12, τc4 ≃ −1.6504, −5/3, −7/4,

−11/6, −23/12, −2 (lower group). The “bounding curve” c = 1 + τ is shown with a dashed line, and the

asymptote of this curve at large η0, namely c = −1/3, is shown with a dotted line.

only for τ ≥ τc1, where the critical value τc1 is given by τc1 ≃ −0.7947. The solution curve that

passes through η = 0, c = 0 corresponds to a second critical value τ = τc2, where τ ≃ −0.7941;

solutions for τc1 ≤ τ < τc2 have not only a maximum possible width but also a (nonzero)

minimum possible width. Moreover, the dry patch can be stationary (that is, c = 0) only if

τ satisfies τc1 ≤ τ < −2/3, and then for only one particular value of η0 if either τ = τc1 or

τc2 ≤ τ < −2/3, or for two particular values of η0 if τc1 < τ ≤ τc2; if τ satisfies τ ≥ −2/3 or

τ < τc1 then the dry patch cannot be stationary. Correspondingly, for a prescribed value of η0

the dry patch can be stationary for only one particular value of τ . In the special case τ = τc1

there is a single (stationary) solution c = 0, for which η0 ≃ 0.1386.

Fig. 6 shows another enlargement of Fig. 4 (that is, another further enlargement of Fig. 3,

again with additional solution curves), clarifying the structure of the solution curves for c < 0;

again the bounding curve c = 1+ τ is shown dashed. There are three additional critical values
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τ = −0.7920

τ = −0.7930

τ = −0.7940
τ = τc1τ = τc2
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0.001
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FIG. 5: Enlargement of Fig. 4, showing c as a function of η0 for τ = −0.7920, −0.7930, −0.7940, τc2 ≃ −0.7941,

−0.7942, −0.7944, −0.7946 and τc1 ≃ −0.7947.

c

η0

c = 1 + τ

τ = −1.6420

τ = −1.6460

τ = −1.6540

τ = −1.6580

τ = τc3

τ = τc4
τ = τc5

0.02 0.04 0.06 0.08 0.10 0.12

−0.655

−0.650

−0.645

−0.640

FIG. 6: Enlargement of Fig. 4, showing c as a function of η0 for various values of τ , including τ = τc3 ≃ −1.6547,

τ = τc4 ≃ −1.6504 and τ = τc5 ≃ −1.6502. The bounding curve c = 1 + τ is shown with a dashed line.
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FIG. 7: Contour plot of c in the τ -η0 plane; the contour values increase from c = −5/2 (leftmost) to c = 7/2

(rightmost) in steps of 1/2. There is no solution in the shaded region, given by 1+ τ < c < 0, the left boundary

of which, c = 1 + τ , is not a contour of c.

of τ , namely τ = τc3 ≃ −1.6547, corresponding to the solution curve that passes through the

minimum on the bounding curve, τ = τc4 ≃ −1.6504, corresponding to the (discontinuous) solu-

tion curve that intersects the bounding curve at η0 = 0, and τ = τc5 ≃ −1.6502, corresponding

to the (discontinuous) solution curve that passes through the local maximum on the bounding

curve. For τ ≤ τc3 there is a solution c for any value of η0, whereas for τc3 < τ < −4/3 there is

a solution c for sufficiently large η0, as well as for an additional finite interval of η0 values for

τc3 < τ ≤ τc5; for τc4 < τ < τc5 there is no solution for a sufficiently narrow dry patch.

In summary, Figs 3–6 show that there can be a solution c (and hence the similarity solution

(19) exists) if either τ ≥ τc1 (in which case c ≥ 0) or τ < −4/3 (in which case c < 0), but there

is no solution for −4/3 ≤ τ < τc1; for τ ≥ −2/3 and for τ ≤ τc3 there is a solution for any value

of η0, but for other values of τ there is a solution only for restricted values of η0.

Figure 7 shows a contour plot of c in the τ -η0 parameter plane, obtained by interpolation of

the data shown in Figs 3–6. In Fig. 7 the region 1 + τ < c < 0 in which there is no solution is
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FIG. 8: Cross-sectional profiles F (η) for τ = 5, 0, −2/3, −5/3 and −5, with η0 = 1, for which c ≃ 2.9611,

0.4113, 0.0494, −0.5560 and −2.2820, respectively.

shown shaded; note that the left boundary of this region, c = 1 + τ , is not a contour of c.

Figure 8 shows examples of cross-sectional profiles F (η) for τ = 5, 0, −2/3, −5/3 and −5 in

the case η0 = 1, for which it was found that c ≃ 2.9611, 0.4113, 0.0494, −0.5560 and −2.2820,

respectively. In all the cases that we have examined numerically, F increases monotonically

with η, from F = 0 at η = η0 to F → 1 as η → ∞, consistent with the result in subsection IIIB.

The curves for τ = 10 and τ = −10 in Fig. 3 are nearly mirror images of each other in the η0

axis (meaning that the speed of the dry patch up the substrate in the case τ = −10 is almost the

same as the speed of the dry patch down the substrate in the case τ = 10), reflecting the fact

that for sufficiently large |τ | the gravity-driven ingredient in the flow is negligible in comparison

with the shear-driven ingredient (associated with τ), so that the behaviour in the limit τ → ∞

is the same as that in the limit τ → −∞ except that the flow direction is reversed. For the

same reason the cross-sectional profiles F (η) for τ = 5 and τ = −5 in Fig. 8 are somewhat

similar to each other. The behaviour of the solutions in the purely surface-shear-stress-driven

limit |τ | → ∞ will be discussed in more detail in §VI.

Figure 9 shows plots of (a) qarea and (b) qflux (in terms of which the area difference △A and
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FIG. 9: Plots of (a) qarea and (b) qflux as functions of η0 for various values of τ . The asymptotic forms in the

limit η0 → ∞ given later in (55), namely qarea ∼ η0 and qflux ∼ (1/3 + τ/2)η0, are shown with dashed lines.

the flux difference △Q are given by (37) and (39), respectively) as functions of η0 for various

values of τ . In general, both qarea and qflux are non-monotonic functions of η0. (The dashed

lines in Fig. 9 denote asymptotic results in the limit η0 → ∞, described later in section IVD.)
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B. Velocity and streamlines

We now categorise the types of flow pattern that can occur in the transverse plane; the

discussion here is analogous to that of Wilson and Duffy25 and Sullivan, Wilson, and Duffy26

for the rather different physical context of flow of a rivulet of fluid on an inclined substrate

subject to a constant longitudinal surface shear stress.

If the prescribed surface shear stress acts down the substrate (τ ≥ 0), in cooperation with

the effect of gravity, then, as expected, the flow is downwards everywhere in the film (that

is, u ≥ 0). If the prescribed surface shear stress acts up the substrate (τ < 0), in opposition

to the effect of gravity, then the competition between these opposing effects leads to several

possibilities: if the upward surface shear stress is sufficiently weak (specifically, if −1/2 < τ < 0)

then the flow is downwards except in a finite region adjacent to the free surface near the contact

line in which it is upwards (that is, u < 0), if the upward surface shear stress is sufficiently

strong (specifically, if τ ≤ −1/2) then the region of upflow extends to infinity, and if the

upward surface shear stress is even stronger (specifically, if τ ≤ −1) then the flow is upwards

everywhere. In all cases, sufficiently near to the contact line the flow is downwards if τ ≥ 0

and upwards if τ < 0. An analogous statement may be made concerning the local flux ū given

in (12): the (downward) contribution due to gravity varies like h3 whereas the (upward or

downward) contribution due to the surface shear stress varies like h2, with the net effect that if

τ ≥ 0 then the local flux is downwards everywhere (ū > 0), and if τ ≤ −2/3 then it is upwards

everywhere (ū < 0), whereas in the intermediate case −2/3 < τ < 0 it is upwards near the

contact line but is downwards far from the contact line.

Figure 10 shows examples of each of the above forms of the flow in the transverse plane;

in these plots, regions of upflow (downflow) are shown shaded (unshaded). Contours of the

velocity u are included in the plots. When 0 < τ < −1 the contour on which u = 0 (other

than the substrate), given by z = 2(h + τ), separates the shaded from the unshaded regions;

this contour crosses the free surface where h = −2τ and crosses the η axis at the position

where h = −τ . Thus when h < −τ (and, in particular, near the contact line) the flow is
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FIG. 10: Free surface profiles and contour plots of the x velocity u for (a) τ = 2, (b) τ = −0.45, (c) τ = −2/3

and (d) τ = −2, with η0 = 1/2 in each case. Regions of downflow (u ≥ 0) and of upflow (u < 0) are shown

unshaded and shaded, respectively. The curves on which ∂u/∂z = 0, namely z = h+ τ , are shown with dashed

lines.

always upwards, while if h > −τ (which requires τ > −1) then the flow is downwards near the

substrate, and if h > −2τ (which requires τ > −1/2) then the flow is downwards all the way

across the film. Curves on which u has a local maximum as a function of z (so that ∂u/∂z = 0),

namely z = h+ τ , are shown with dashed lines in Fig. 10. If τ ≥ 0 then the maximum velocity

umax is given by umax = (1/2) + τ , occurring on the free surface far from the dry patch, and

the minimum velocity umin is simply umin = 0, occurring on the substrate. If −1 < τ < 0 then

umax = (1 + τ)2/2, occurring far from the dry patch, at height z = 1 + τ within the fluid, and

umin = −τ 2/2, occurring on the free surface where h = −τ . If τ ≤ −1 then umax = 0, occurring

on the substrate, and umin = (1/2) + τ , occurring on the free surface far from the dry patch.
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Figure 11 shows examples of streamlines of the depth-integrated flow in a frame of reference

moving with the dry patch, obtained from (35) in the case η0 = 1/2 and τ = 2 (for which

c ≃ 1.6012), plotted for (a) a sessile case and (b) a pendent case. The two examples shown in

Fig. 11 (corresponding to flows of the types shown in parts (a) and (c) of Fig. 2, respectively)

are mirror images of each other in the plane X = 0, except that the direction of the depth-

integrated flow in this moving reference frame is from bottom to top in both (a) and (b) (whereas

in a fixed frame of reference the depth-integrated flow is downwards everywhere in both of these

examples.)

C. Asymptotic solution in the limit of a narrow dry patch, η0 → 0

It is enlightening to investigate the solutions in the asymptotic limits of a narrow dry patch,

η0 → 0, and a wide dry patch, η0 → ∞, and, in particular, to compare them with numerical

solutions; this we do in the present subsection and the next, respectively.

The limit η0 → 0 corresponds physically to the case where the dry patch is narrow, so that

to leading order there is a semi-infinite “dry line” on η = 0 along which h = 0.27 In this limit

we write

η = η0 + η̂, F = F̂ (η̂), c = c0; (43)

then at leading order equation (21) reduces to

(

F̂ 4
)′′

+ 6S∞η̂
(

F̂ 2 + τF̂ − c0
)

F̂ ′ = 0, (44)

and the boundary conditions (23) and (24) give

F̂ = 0 at η̂ = 0, F̂ 3F̂ ′ → 0 as η̂ → 0, F̂ → 1 as η̂ → ∞. (45)

At leading order in the limit η̂ → 0 equations (44) and (45) have the asymptotic solution

F̂ ∼
(

9S∞c0η̂
2

10

)
1

3

(46)

for S∞c0 > 0, but have no solution for S∞c0 < 0. Equation (44) was solved for F̂ numeri-

cally by means of a shooting method similar to that described in subsection IVA, subject to
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FIG. 11: Streamlines of the depth-integrated flow in a frame of reference moving with the dry patch, in the

case η0 = 1/2 and τ = 2 (for which c ≃ 1.6012), plotted for (a) a sessile case and (b) a pendent case. In both

(a) and (b) the direction of flow in this moving reference frame is from bottom to top.
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FIG. 12: Numerical solutions for F of (21) in the cases (a) η0 = 0.2 and (b) η0 = 10−2, with τ = 0 (shown with

solid lines), together with the leading-order asymptotic solution F̂ in the limit η0 → 0 obtained by solving (44)

subject to (45)3 and (47) (shown with dashed lines). In part (b) the dashed line is virtually indistinguishable

from the solid line.

approximated boundary conditions obtained from (46), namely

F̂ (δ) =

(

9S∞c0δ
2

10

)
1

3

, F̂ ′(δ) =
2

3

(

9S∞c0
10δ

)
1

3

, (47)

where 0 < δ ≪ 1. Figure 12 shows a comparison between the numerical solution for F of

equation (21) and the leading-order asymptotic solution F̂ in the cases η0 = 0.2 and η0 = 10−2,

with τ = 0 in each case (for which it was found that c ≃ 0.5893 and 0.61692, respectively, and

c0 ≃ 0.61689); the agreement in Fig. 12(b) is so good that the curves are virtually indistin-

guishable.

With this asymptotic solution the quantities qarea and qflux (= cqarea) satisfy

qarea →
∫ ∞

0

(

1− F̂
)

dη̂, qflux → c0qarea (48)

at leading order in the limit η0 → 0; these limiting values are indicated by dots in Fig. 9.

D. Asymptotic solution in the limit of a wide dry patch, η0 → ∞

The limit η0 → ∞ corresponds physically to the case where the dry patch is wide. In this

limit we write

η = η0 +
η̃

η0
, F = F̃ (η̃), c = c∞; (49)
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then at leading order equation (21) reduces to

(

F̃ 4
)′′

+ 6S∞

(

F̃ 2 + τF̃ − c∞

)

F̃ ′ = 0, (50)

and the boundary conditions (23) and (24) give

F̃ = 0 at η̃ = 0, F̃ 3F̃ ′ → 0 as η̃ → 0, F̃ → 1 as η̃ → ∞. (51)

This is readily solved to give the implicit solution

S∞η̃ =
(2 + 3τ)2

4 + 3τ
log

2 + 3τ + 2F̃

2 + 3τ
− 4

4 + 3τ
log(1− F̃ )− 2F̃ , c∞ = U∞ (52)

if |τ∞| > 1/3,

η̃ = −2 log(1− F̃ )− 2F̃ , c∞ = 0 (53)

if τ∞ = 1/3, and

η̃ = 4 log(1− F̃ ) +
2F̃ (2− F̃ )

1− F̃
, c∞ = −1

3
(54)

if τ∞ = −1/3, with U∞ as in (18). There is no solution in the limit η0 → ∞ if |τ∞| < 1/3,

consistent with the results shown in Figs 3–7. Since c → c∞ = U∞ in the limit η0 → ∞, the

curves in Figs 3 and 4 for |τ∞| ≥ 1/3 have the asymptotic forms c ∼ c∞ = (1/3) + (τ/2) and

the contours of c in Fig. 7 approach the vertical asymptotes τ = 2(c− 1/3).

Figure 13 shows a comparison between the numerical solution for F of equation (21) and the

leading-order asymptotic solution F̃ in (52) in the cases η0 = 1 and η0 = 5, with τ = 0 in each

case (for which it was found that c ≃ 0.4113 and 0.3395, respectively, and for which c∞ = 1/3);

the agreement in Fig. 13(b) is so good that the curves are virtually indistinguishable.

With this asymptotic solution we find that qarea and qflux (= cqarea) satisfy

qarea ∼ η0, qflux ∼ U∞η0 (55)

at leading order in the limit η0 → ∞; these asymptotic forms are shown with dashed lines in

Fig. 9.
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FIG. 13: Numerical solutions for F of (21) in the cases (a) η0 = 1 and (b) η0 = 5, with τ = 0 (shown with

solid lines), together with the leading-order asymptotic solution (52) in the limit η0 → ∞ (shown with dashed

lines). In part (b) the dashed line is virtually indistinguishable from the solid line.

V. PURELY GRAVITY-DRIVEN FLOW

Probably of most interest is the case of purely gravity-driven flow, with no surface shear

stress (that is, τ = 0, so that τ∞ = 1 and hence S∞ = +1). In this case, as expected, the flow

is downwards everywhere (that is, u ≥ 0), and the dry patch always moves downwards (that

is, c > 0), and has the forms sketched in parts (a) and (c) of Fig. 2 in the sessile and pendent

cases, respectively.

Figure 14 is the main result, showing a plot of the velocity of the dry patch, c, as a function

of η0 for this case; the inset in the figure shows details of the behaviour for small η0. Figure 14

shows that c is a single-valued function of η0, but behaves non-monotonically; specifically, as

is clear from the inset, c decreases from its value c = c0 ≃ 0.6169 when η = 0 to a (local)

minimum value c = cmin ≃ 0.6167 when η0 ≃ 0.0050, then increases to a (global) maximum

value c = cmax ≃ 0.6225 when η0 ≃ 0.0630, and thereafter decreases monotonically towards

the asymptotic value c∞ = 1/3 as η0 → ∞. Thus the velocity of the dry patch satisfies

1/3 < c ≤ cmax for any value of η0, a more restricted range than the general condition 0 < c < 1

obtained from (29). Moreover, for a given value of c there is one corresponding value of η0 if

either c = cmax or 1 < c < cmin, two if either c0 < c < cmax or c = cmin, three if cmin < c ≤ c0,

and none if either c > cmax or c ≤ 1; thus there can be zero, one, two or three dry patches that
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FIG. 14: Plot of c as a function of η0 for purely gravity-driven flow (τ = 0), together with the asymptotic

value c = c∞ = 1/3 in the limit η0 → ∞ (shown with a dashed line). The inset shows an enlargement of the

behaviour near η0 = 0; the point c = c0 ≃ 0.6169 at η0 = 0 is shown as a dot, as are the (local) minimum

c = cmin ≃ 0.6167 at η0 ≃ 0.0050 and the (global) maximum c = cmax ≃ 0.6225 at η0 ≃ 0.0630.

move at a given velocity c.

Figure 15 shows examples of cross-sectional profiles F (η) for the cases η0 = 0.1, 1, 3, 5 and

10 (for which it was found that c ≃ 0.6191, 0.4113, 0.3488, 0.3395 and 0.3350, respectively),

and Fig. 16 shows three-dimensional plots of the free-surface profiles h in a sessile case with

η0 = 1 at times t = 0, 5 and 10.

When η0 = 0 we find from (48) that qarea ≃ 0.7449 and qflux = c0qarea ≃ 0.4595. In the limit

η0 → ∞ equations (52) and (55) with U∞ = 1/3 give, in terms of the rescaled variables defined

in (49),

η̃ = log
1 + F̃

1− F̃
− 2F̃ , c∞ =

1

3
, qarea ∼ 3qflux ∼ η0; (56)

the asymptotic value c = c∞ = 1/3 is included in Fig. 14 as a dashed line.

Figure 17 shows plots of qarea and qflux as functions of η0 in this case, together with the above
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FIG. 15: Cross-sectional profiles F (η) for purely gravity-driven flow (τ = 0) for the cases η0 = 0.1, 1, 3, 5 and

10, for which c ≃ 0.6191, 0.4113, 0.3488, 0.3395 and 0.3350, respectively.

values at η0 = 0 (shown as dots) and the asymptotic forms (56) in the limit η0 → ∞ (shown

with dashed lines); both qarea and qflux decrease from their values at η0 = 0 to minimum values,

and then increase monotonically to ∞ according to (56) as η0 → ∞.

VI. PURELY SURFACE-SHEAR-STRESS-DRIVEN FLOW

Purely surface-shear-stress-driven flow (that is, when the longitudinal component of gravity,

g sinα, is negligible) is also of particular interest. This case corresponds to the limit |τ | → ∞

of the general case discussed earlier (in which τ was nondimensionalised with the shear-stress

scale ρg sinαh∞), but it is more natural and informative to treat it separately.

Since the longitudinal component of gravity, g sinα, is negligible, without loss of generality

we now take τ to act down the substrate, so that τ > 0. Also the substrate may now be

horizontal, and so we no longer exclude the inclination angles α = 0 and α = π; however,

we again exclude the case of a vertical substrate, α = π/2. We non-dimensionalise and scale

variables as in (1), except that the factor | tanα|, wherever it appears, is now replaced by

τ/ρgh∞| cosα| (arising from the ratio of the longitudinal driving effect of τ to the transverse
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FIG. 16: Three-dimensional plots of the free-surface profiles h for purely gravity-driven flow (τ = 0) in a sessile

case with η0 = 1 (for which c ≃ 0.4113) at times t = 0, 5 and 10.
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FIG. 17: Plot of qarea (upper curve) and qflux (= cqarea) (lower curve) as functions of η0 for purely gravity-

driven flow (τ = 0), together with the values qarea ≃ 0.7449 and qflux ≃ 0.4595 at η0 = 0 (shown as dots) and

the asymptotic forms qarea ∼ η0 and qflux ∼ η0/3 in the limit η0 → ∞ (shown with dashed lines).

spreading effect due to gravity), and now the appropriate velocity scale is the one associated with

steady surface-shear-stress-driven flow of a film of uniform thickness h∞, namely US = τh∞/µ.

In non-dimensional terms we now have τ = τ∞ = 1 and S∞ = +1.

At leading order in ǫ the governing continuity and Navier–Stokes equations again give (2)

and (3), except that (3)1 is replaced by simply uzz = 0. The solution of these equations subject

to (4)–(7) is as in (8) and (10) for p and v, but (9) and (11) simplify to

u = z, w =
Sg

2

(

hhyy + h2
y −

hyyz

3

)

z2, (57)

showing, in particular, that the flow is downwards everywhere (that is, u ≥ 0), in the direction

of the surface shear stress τ , as expected. The local flux ū is simply ū = h2/2, and v̄ is again

given by v̄ = −Sgh
3hy/3, and hence (13) is replaced by

ht =
Sg

3

(

h3hy

)

y
− 1

2

(

h2
)

x
. (58)

Equation (58) has a travelling-wave similarity solution of the form (19) with S∞ = +1, again

representing a steadily translating dry patch. The resulting ordinary differential equation for
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F (η), replacing (21), is28

(

F 4
)′′

+ 6η (F − c)F ′ = 0, (59)

to be solved subject to the contact-line conditions (23) and the far-field condition (24).

Near the contact line η = η0 the behaviour of F is given by (25) with S∞ = +1 and c > 0;

the fact that c > 0 shows that, as expected, the dry patch always moves downwards (that

is, in the direction of τ), and therefore has the forms sketched in parts (a) and (c) of Fig. 2

in the sessile and pendent cases, respectively. Also F has the far-field behaviour (27) with

τ∞ = 1, S∞ = +1 and c < 1 in the limit η → ∞, showing, in particular, that c must satisfy the

condition 0 < c < 1. Note that since there is now no solution with c ≤ 0, there are no results

analogous to (26) and (28) in this case.

The effective stream function Ψ in a frame of reference moving with the dry patch, defined

in (34), takes the form

Ψ =



















√

SgX

{

2F 3F ′

3
+ η

(

F 2

2
− cF

)}

if SgX ≥ 0,

(

1

2
− c

)

Y if SgX < 0,

(60)

replacing (35). In addition, △A and △Q are again given by (37) and (40), with qarea = I1 and

qflux = cqarea = I2/2.

A. Solutions for F (η) and c

Equation (59) was solved numerically subject to (42) for the cross-sectional profile F = F (η)

and the velocity of the dry patch, c, by means of the same procedure as in Section IVA.

Figure 18 is the main result, showing a plot of c as a function of η0; again the inset in

the figure shows details of the behaviour for small η0. As Fig. 18 shows, the behaviour of c

in this case is qualitatively similar to that in the case of purely gravity-driven flow, shown in

Fig. 14. It is found that c decreases from its value c = c0 ≃ 0.7712 when η0 = 0, to a (local)

minimum value c = cmin ≃ 0.7711 when η0 ≃ 0.0050, then increases to a (global) maximum

value c = cmax ≃ 0.7751 when η0 ≃ 0.0550, and thereafter decreases monotonically towards the
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FIG. 18: Plot of c as a function of η0 for purely surface-shear-stress-driven flow, together with the asymptotic

value c = c∞ = 1/2 in the limit η0 → ∞ (shown with a dashed line). The inset shows an enlargement of the

behaviour near η0 = 0; the point c = c0 ≃ 0.7712 at η0 = 0 is shown as a dot, as are the (local) minimum

c = cmin ≃ 0.7711 at η0 ≃ 0.0050 and the (global) maximum c = cmax ≃ 0.7751 at η0 ≃ 0.0550.

asymptotic value c∞ = 1/2 as η0 → ∞. Thus c satisfies 1/2 < c ≤ cmax for any value of η0,

again a more restricted range than the general condition 0 < c < 1 obtained above; also there

can again be zero, one, two or three dry patches that move at a given velocity c.

Figure 19 shows examples of cross-sectional profiles F (η) for the cases η0 = 0.1, 1, 3, 5 and

10 (for which it was found that c ≃ 0.7706, 0.5745, 0.5151, 0.5061 and 0.5016, respectively).

As the figure shows, the solutions for F (η) in this case are qualitatively similar to those in the

case of purely gravity-driven flow, shown in Fig. 15. Yatim29 gives three-dimensional plots of

the free-surface profiles h at different times; these plots are qualitatively similar to those in the

case of purely gravity-driven flow, shown in Fig. 16, and so are omitted for brevity.
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FIG. 19: Cross-sectional profiles F (η) for purely surface-shear-stress-driven flow for the cases η0 = 0.1, 1, 3, 5

and 10, for which c ≃ 0.6191, 0.4113, 0.3488, 0.3395 and 0.3350, respectively.

B. Asymptotic solution in the limit of a narrow dry patch, η0 → 0

In the limit of a narrow dry patch, η0 → 0, we again write η, F and c in the form (43); then

at leading order equation (59) reduces to

(

F̂ 4
)′′

+ 6η̂
(

F̂ − c0
)

F̂ ′ = 0, (61)

to be solved subject to (45). At leading order in the limit η̂ → 0, the solution of (61) and

(45) for F̂ again has the asymptotic form (46) at leading order, and so (61) was solved for

F̂ numerically by means of the method described in subsection IVC, subject to (45)3 and the

approximated boundary conditions (47) obtained from (46). From this numerical solution it was

found that c0 ≃ 0.7712, confirming the value obtained from the solution of (59) subject to (23)

and (24). Furthermore qarea again satisfies (48) in the limit η0 → 0, leading to qarea ≃ 0.8565

and qflux = c0qarea ≃ 0.6605 when η0 = 0. Yatim29 gives plots comparing numerical solutions

for F (η) and the leading-order asymptotic solution F̂ (η̂); these plots are again qualitatively

similar to those in the case of purely gravity-driven flow, shown in Fig. 12, and so are again

omitted for brevity.
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C. Asymptotic solution in the limit of a wide dry patch, η0 → ∞

In the limit of a wide dry patch, η0 → ∞, we again write η, F and c in the form (49); then

at leading order equation (59) reduces to

(

F̃ 4
)′′

+ 6
(

F̃ − c∞

)

F̃ ′ = 0, (62)

which is readily solved subject to the boundary conditions (51) to give the implicit solution

3

4
η̃ = −F̃ − F̃ 2

2
− log

(

1− F̃
)

, c∞ =
1

2
. (63)

Yatim29 gives plots comparing numerical solutions for F (η) and the leading-order asymptotic

solution F̃ (η̃) in (63); these plots are again qualitatively similar to those in the case of purely

gravity-driven flow, shown in Fig. 13, and so are again omitted for brevity.

D. Cross-sectional area and volume flux

Yatim29 gives plots of qarea and qflux as functions of η0 in this case, together with the values

qarea ≃ 0.8565 and qflux =≃ 0.6605 at η0 = 0 and the asymptotic forms (55) with U∞ = 1/2

in the limit η0 → ∞; these plots are again qualitatively similar to those in the case of purely

gravity-driven flow, shown in Fig. 17, and so are again omitted for brevity.

VII. CONCLUSIONS

We have obtained a novel family of three-dimensional travelling-wave similarity solutions

of the form (19) describing a steadily translating slender dry patch in an infinitely wide thin

fluid film on an inclined planar substrate, the flow being driven by gravity and/or a prescribed

constant shear stress on its free surface. For both driving mechanisms, the dry patch has

a parabolic shape, which may be concave up or concave down the substrate, as indicated in

Fig. 2, and the film thickness increases monotonically away from the contact lines to its uniform

far-field value. The two most practically important cases of purely gravity-driven flow and of

purely surface-shear-stress-driven flow were analysed in detail.

37



The family of solutions (19) is parameterised by η0, a scaled measure of the width of the dry

patch, which is not determined as part of the solution; determining the value of η0 (perhaps

via stability considerations, or via a criterion based on the behaviour of the dry patch near its

apex) remains an open question.

If the surface shear stress τ either acts downwards (τ ≥ 0) or acts upwards but is sufficiently

weak (τc1 ≤ τ < 0, where τc1 ≃ −0.7947) then the dry patch moves down the substrate (c ≥ 0),

whereas if the surface shear stress acts upwards and is sufficiently strong (τ < −4/3) then the

dry patch moves up the substrate (c < 0). It is possible for the dry patch to be stationary

(c = 0) only if the surface shear stress acts upwards sufficiently strongly that it counters the

effect of gravity but not so strongly that it forces the dry patch to move upwards; specifically,

the dry patch can be stationary only if τ satisfies τc1 ≤ τ < −2/3, and then for only particular

values of η0. In particular, the dry patch cannot be stationary in purely gravity-driven flow

(τ = 0) nor in purely surface-shear-driven flow (|τ | → ∞). Also for any prescribed value of η0

the dry patch can be stationary for only one particular value of τ (which depends on η0).

Rather unexpectedly, it was found that there is no solution of the type sought if the surface

shear stress acts upwards and satisfies −4/3 ≤ τ < τc1 ≃ −0.7947; correspondingly there is no

solution in the region of the η0-c parameter plane in Fig. 4 between the η0 axis and the dashed

curve. The physical explanation for this remains an open question.

The present solutions are valid for any value of the uniform film thickness far from the dry

patch, h∞ (> 0), showing that for these solutions there is, in general, no critical thickness or

critical flux below which the dry patch is stationary but above which it is “swept away” by the

flow. Notwithstanding this, the present solutions have physical features in common with dry

patches studied experimentally (see, for example, Podgorski et al.10,11), but precise comparison

is difficult because of the simplifying assumptions (particularly the neglect of surface tension)

made here.30

Throughout the present analysis we have taken the substrate z = 0 to be stationary. How-

ever, exactly the same kind of solution for a steadily translating dry patch on a substrate

moving parallel to itself at constant velocity U0i upwards or downwards (that is, with U0 < 0
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or U0 > 0) may be obtained simply by means of a shift in the value of c by U0, that is, with

c replaced by c − U0 in the above discussion. In particular, a solution (19) representing an

unsteady flow with a dry patch translating steadily with velocity ci on a stationary substrate

also provides a solution for a steady flow (with a stationary dry patch) on a substrate moving

with velocity −ci provided simply that x− ct is replaced by x in η.

Lastly, it is worth commenting on the question of travelling-wave similarity solutions of

(13) of the form (19) for the rather different physical context of flow of a steadily translating

symmetric slender rivulet occupying |y| ≤ a(x, t) on an inclined planar substrate, driven by

gravity, a constant shear stress on its free surface and/or steady motion of the substrate.

At first sight, such rivulet solutions seem feasible; however, the only solution of (21) satisfying

F (0) = F0 and F ′(0) = 0 (where F0 is a prescribed positive constant, representing the thickness

of the rivulet at its middle) is F (η) ≡ F0, which cannot satisfy the contact-line conditions (23),

showing that there are, in fact, no such rivulet solutions.
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APPENDIX: DERIVATION OF EQUATION (30) AND OF INEQUALITIES SAT-

ISFIED BY THE VELOCITY OF THE DRY PATCH, c

In this Appendix we obtain a first integral of (21), from which we derive (30), as well as

certain inequalities relating τ , U∞ and c that were useful in determining the structure of the

solutions described in subsection IVA.

Writing the differential equation (21) in the form

(

F 4
)′′

+ 6S∞η
[

(1− F )2 − (τ + 2)(1− F ) + τ + 1− c
]

F ′ = 0, (A.1)

integrating with respect to η from η0 to infinity, and using (23) and (27) we obtain

1

3
I3 +

τ

2
I2 − cI1 = 0, (A.2)

where the constants In (n = 1, 2, 3) are as defined in (31). Thus the velocity of the dry patch,

c, may be expressed in terms of integrals of F as

c =
2I3 + 3τI2

6I1
, (A.3)

which is equation (30).

Since 0 ≤ F < 1, from the definition (31) we have 0 < I1 < I2 < I3, and so we deduce from

(A.3) that if τ ≥ 0 then c will always be positive, and that c can be negative only if τ < 0;

both of these statements are consistent with (29).

Equation (A.2) may be recast in the form

η0(U∞ − c) +

∫ ∞

η0

(1− F )

(

F 2

3
+ U∞F + U∞ − c

)

dη = 0 (A.4)

(with U∞ as in (18)), from which we deduce that if U∞ ≥ 0 then c will satisfy c > U∞ ≥ 0, and

that c may satisfy c ≤ U∞ only if U∞ < 0.

We also have

2I1 − I2 = η0 +

∫ ∞

η0

(1− F )2 dη > 0, 3I2 − 2I3 = η0 +

∫ ∞

η0

(1− F )2(2F + 1) dη > 0, (A.5)
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showing that I2 < 2I1 and I3 < 3I2/2; therefore from (A.2) we deduce that if τ < −2 then

c < 1 + τ/2 < 0.

All the numerical results reported in sections IV–VI were found to be consistent with the

above restrictions and with the inequalities in (29).
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