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We propose a model for a novel artificial low Reynolds number swimmer, based on the magnetic
interactions of a pair of ferromagnetic particles: one with hard and the other with soft magnetic properties,
connected by a linear spring. Using a computational model, we analyze the behavior of the system and
demonstrate that for realistic values of the parameters involved, the swimmer is capable of self-propelling
with average speeds of the order of hundreds of micrometers per second.
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The past few decades have seen increased interest in low
Reynolds number swimming mechanisms with research
along two complementary lines. First, the need to under-
stand how micrometer-sized organisms are able to propel
themselves in a world with no inertia has led to important
insights, for example, the discovery and analysis of the
rotating bacterial flagella [1–4]. The second line is more
utilitarian and aimed at the construction of autonomous
microrobots, capable of performing useful functions such
as active targeted drug delivery, destroying kidney stones
[5], or stirring and pumping in microfluidic devices [6].
Every low Reynolds number swimmer, natural or artificial,
however, must fulfil two requirements. The first arrives
from the fact that for micrometer-sized swimmers in aque-
ous environments the fluid flow is dominated by viscous
effects. This situation is best illustrated by the ‘‘scallop
theorem’’ [7]: the trajectory of the swimmer is entirely
determined by the sequence of geometrical configurations
it assumes and self-propulsion is only possible if the for-
ward- and backward-motion phases in a full swimming
cycle are nonreciprocal. As a result, a great deal of effort
has been invested in devising various shape sequences that
would lead to translational motion [8–11] and analyzing
the efficiency of swimming [12–15]. However, this is only
part of the problem. The second essential requirement for a
successful swimmer is an actuation mechanism generating
the necessary shape sequence and the requisite energy.
This question remains largely unresolved, with a few pro-
posed mechanisms holding promise, such as mechano-
chemical coupling in elastic membranes [16,17] or the
use of magnetic torque [18] or electric fields [6,19].
Plagiarizing from nature is of little help: the flagellar rotor,
for example, is an extremely sophisticated mechanism,
consisting of over 20 components packed in a tiny volume
[20], which is impossible to reproduce with current tech-
nology. The first artificial microswimmer with a flexible
flagellumlike tail has recently been assembled [21].
However, this is still a complicated assembly of magnetic
particles bridged by DNA molecules and attached to a red
blood cell, which makes its routine production untenable.

In this Letter we propose a model of the first ferromag-
netic swimmer, a magnetically driven device, which will

generate linear motion by using nonreciprocal displace-
ment of its components. The design is simple, consisting of
three elements only, and in contrast to previous models,
e.g., [10,11], the displacement of the components of the
swimmer is not imposed but is the result of physical
interactions between them. Thus, swimming is derived
from a realistic actuation mechanism, which, together
with the swimmer’s simple design and the relatively high
displacement velocities achieved, makes it an excellent
candidate for experimental implementation. Compared to
previous methods [21], in which the driving magnetic
forces originate from the torque exerted by the external
field, in our model the swimmer utilizes two types of
interactions, the dipolar gradient forces between the mag-
netic particles and the torque exerted by the external field.
The basis of the approach is to employ a pair of ferromag-
netic dipoles (subsequently referred as the ‘‘dipole pair’’),
one with hard and the other with soft magnetic properties.
The particles are sufficiently close as to interact with each
other, and in many applications they will be bound to an
elastic element such as a vesicle, a polymer or a protein
fiber. The elastic element serves a dual purpose. First, it
acts as a coupling to maintain an average separation be-
tween the particles, and second, it may constitute the
‘‘transported‘‘ object in applications aimed at targeted
delivery (e.g., a giant vesicle loaded with an active agent).
The dipole pair is subjected to an alternating uniform
external magnetic field, allowing a hysteresis-dependent
orientation of the average magnetic moments. The ampli-
tude of the external field is chosen to be sufficient to switch
the orientation of the soft particle, but lower than the
switching field of the hard particle (see Fig. 1). Thus the
two particles will respond differently to changing the
direction of the external field. In general, the soft particle
will always direct its moment along the field, whereas the
hard particle will keep the moment close to the initial
position of equilibrium (i.e., the local energy minimum).
As demonstrated in Fig. 1, in a simplified case when the
external field axis coincides with the line connecting the
two dipoles, and is parallel to the anisotropy directions of
the particles, the alternating magnetic field will produce
alternately changing configurations with either parallel or
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antiparallel orientation of the magnetic moments.
Consequently, due to the local gradient of the magnetic
fields produced by the moments, the particles will be
subjected to an alternating force of attraction and repul-
sion, leading to translational displacements along the line
connecting the particles. The motion of the particles is in
this case reciprocal, since the system possesses only a
single degree of freedom, so the dipole pair oscillates
around a fixed center. As demonstrated by the scallop
theorem, in order to achieve translation of the center of
mass the system has to undergo nonreciprocal cyclic dis-
placements in its configurational space [7]. One possible
realization presented here is to introduce an elliptically
rotating uniform magnetic field in the xy plane, Hx �
H0
x cos�!t� and Hy � H0

y sin�!t�, where ! and t represent
the angular frequency and time, respectively, and H0

x and
H0
y are the horizontal and vertical amplitudes of the field

(H0
y < H0

x). In this case the external field vector is rotated
in the plane of the two dipoles. The magnetization of the
soft particle follows the field direction, whereas the mag-
netization of the hard particle only ‘‘rocks’’ around an
established average orientation. As a consequence, the
particles are again repelled and attracted, but the instanta-
neous displacements of the particles are more complex
leading to a non linear trajectory of motion.

To investigate the plausibility of such a system we have
developed a computational model, which calculates the
trajectories of the two particles under conditions of envi-
ronment and geometry that provide a realistic representa-
tion of possible microscopic swimmers. The model
assumes that both magnetic beads are ‘‘point dipoles’’
and thus will generate a dipole magnetic field, the gradient
of which will result in a force of attraction or repulsion
between the beads:

 FMj � r�mj � Bk�; Bk �
�o

4�

�
3�mk � rk�rk

r5
k

�
mk

r3
k

�
;

where Bk is the flux density generated by the bead k, mk �
MkVk, and Mk, Vk, and rk are the magnetization, volume,
and position vector of the beads j and k, respectively
(indices denote the particle number, j � 1 or j � 2 and
k � 3� j; see Fig. 1). To determine the orientation of the
dipole moments in the external field H the model uses a
standard magnetostatic approach [22], in which the inter-
action energy is minimized to find the local minima with
stable positions of both moments. For simplicity, the mag-
netostatic energy density for each particle is represented by
two terms, E � �M �H� Ksin2�. The first term is the
Zeeman energy representing the interaction of the mag-
netic moments with the applied field H, and the second, the
uniaxial magnetic anisotropy term, describes the combined
effects of shape and/or crystalline anisotropy. In the latter,
� is the angle between the magnetic moment of the particle
and the orientation of its easy axis with respect to the
vector M, and K is the effective anisotropy field constant.
For the hard particle K is chosen so that the effective
anisotropy field is higher than the value of the applied field
(2K=M >H), whereas the soft particle has a zero value of
K. It is assumed that the time scale of magnetic switching/
relaxation (< 1 ns) is significantly shorter than the time
period of the applied field oscillation ( � 1� 10 ms). It
should be noted that the choice of different anisotropy
constants for the beads is important not only for obtaining
different switching characteristics, but also for generating
asymmetric torques. Under the action of magnetic torque,
T � �0m�H, the particle with higher anisotropy can
rotate to align its easy axis with the direction of the applied
field. If the particles are rigidly connected with each other,
the torque applied to the hard particle will lead to rotation
of the whole dipole pair, which will provide another degree
of freedom in the configurational space. The soft particle
does not contribute to the torque. Its anisotropy is negli-
gible, so the rotation of its magnetic moment does not
affect the orientation of the pair.

As well as the magnetic interaction, both beads are
subjected to elastic forces and hydrodynamic friction.
The elastic force FE results from the extension or com-
pression of the elastic element connecting the two parti-
cles, FE � ks	�r2 � r1� � r0
. Here ks is an effective
spring constant, and r0 is the vector representing a relaxed
spring. The bending modulus of the spring is assumed to be
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FIG. 1 (color online). Diagrammatic representation of the sys-
tem consisting of a hard and a soft magnetic particle connected
by an elastic element. The magnetic forces experienced by the
particles are shown for two orientations of the external magnetic
field H.
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infinitely large. The viscous resistance on each particle is
calculated using the Stokes approximation, in which the
drag force FD is proportional to the particle velocity v,
radius R, and the viscosity of the fluid �, FD � �6��Rv.

The motion of the system has been calculated for real-
istic parameters of the liquid (water, � � 10�3 Pa s) and
the dipole-pair system (magnetic particles of 3.2 and
1:6 �m diameter connected by a 20 �m long elastic ele-
ment with ks � 3� 10�3 N m�1). Figure 2 shows the
trajectories of the particles and their center of mass. As
well as the motion of the individual particles, there is a
linear displacement, or ‘‘swimming,’’ of their center of
mass, with an average speed shown in inset (i). Inset (ii)
shows the trajectory in the configurational space of the
systems with coordinates l (the distance between the cen-
ters of the two magnetic particles) and � (the angle of the
bond between them with respect to the horizontal axis)
forming a closed loop. After a full cycle the original
configuration of the system is recovered, but the shape
sequence executed is nonreciprocal; thus, the conditions
for swimming are fulfilled allowing a net translation of the
center of mass.

Figure 3 demonstrates the different phases over one
cycle together with the corresponding orientation of the
magnetic moments and the magnetic dipolar gradient
forces. The trajectory of motion and thus the characteristics
of swimming of the dipole pair depend on the parameters
of both the particles and the external environment. Linear
motion requires first that the particles must have different
size, and second, that the time variation of the external field
must not lead to full rotation of the hard bead. The latter
requirement can be achieved by choosing an appropriate
value for H0

y . It is interesting to note the significance of the
torque in this system. On the one hand, it is essential for
overall displacement of the dipole pair. Without the torque,
even if the external field is rotated, there is no displacement
of the center of mass. In this case the particles oscillate in
phase with the field, but the center of mass is either sta-
tionary, if the particles are of the same size, or oscillating
without translation. Generating a large torque, on the other
hand, leads to a circular rotation (instead of ‘‘rocking’’) of
the hard particle, thus also preventing linear motion.

Figure 4 demonstrates the dependence of the linear
translational speed of the dipole pair on the magnetization
M and the spring coefficient ks (both represented as di-
mensionless ratios against the viscous drag). The speed is
weakly dependent on ks, but varies considerably with the
magnetization. The swimmer’s speed also depends on
other external parameters such as the driving frequency f
and the viscosity of the environment � (data not shown),
which provides flexibility in controlling the swimming
behavior. Compared with the average velocities produced
by micron-sized organisms such as E. coli ( � 30 �m s�1

[20,23]), the speed of the dipole pair can be up to an order
of magnitude higher (see Fig. 4, right-hand axis). The

FIG. 2 (color online). Trajectories of the hard bead [(a), red],
the soft bead [(b), blue], and their center of mass [(c), black],
after application of an elliptically rotating external field. As well
as rapid oscillatory motion, the dipole pair follows a directional
linear displacement (‘‘swimming’’) along the arrow towards the
lower-right corner [24]. Inset (i) shows the mean speed of the
center of mass as a function of time. Inset (ii) shows the
trajectory of the swimmer in its configurational space where �
is the angle between the elastic element and the horizontal axis
and l is its instantaneous length. The parameters of the simula-
tion are H0

y � 1 kOe, H0
x � 5 kOe, f � 230 Hz, 2K1=M1 �

10 kG, 2K2=M2 � 0 kG, M1 � M2 � 1:4� 106 A m�1, 2R1 �
3:2 �m, 2R2 � 1:6 �m, r0�relaxed spring length� � 20 �m,
ks � 3:0� 10�3 N m�1, � � 10�3 Pa s, Re � 10�3.

FIG. 3 (color online). Particle trajectories (solid lines) at dif-
ferent phases of the field cycle. The diagram shows the orienta-
tions of the magnetization for each particle (top single arrows),
the magnetic gradient forces (double-line arrows), and the ori-
entation of the dipole pair at the same points of the cycle. The
anisotropy easy axis of the hard particle coincides with the line
connecting the particles.
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dimensionless speed, v=�fr0�, is a direct measure of the
swimming efficiency and compares the average distance
travelled per cycle to the size of the swimmer, r0. For
experimentally realistic values of the parameters, a single
cycle may lead to a displacement comparable to the parti-
cle size, R1.

The model demonstrates the viability of a microscopic
swimmer driven by magnetic dipole interactions, even
though a number of simplifications have been made. The
elastic element is exaggerated in length to hydrodynami-
cally decouple the two magnetic particles. Its bending is
not included and its detailed geometry disregarded. Shorter
elastic couplings, for example, would exhibit swimming
albeit with modified dynamics due to the hydrodynamic
coupling and a contribution of the spring motion to the
viscous drag. The particular geometry of the swimmer,
along with the exact elastic behavior of the spring (includ-
ing stretching and bending), could be treated numerically.
Such refinements, however, although important for a prac-
tical swimmer, would add little to the proof of concept
reported in this Letter.

By balancing the parameters of the system it is possible
to optimize the swimming characteristics. A simplification
has been made in setting K � 0 for the soft particle. In real
materials K will always be nonzero, so the soft particle will
also rotate in the field. This may counteract the torque
produced by the hard particle, but the anisotropy of the

hard particle can always be chosen larger than that of the
soft particle, to ensure that the torque produced by the hard
particle is larger. The torque can also be increased by
making the volume of the hard particle larger.

Based on the above theoretical principles we have con-
structed a macroscopic prototype of the swimmer [24]. The
video available in [24] demonstrates the swimming of the
device in the glycerol-air interface (estimated Re � 10�5)
under different conditions of the external field amplitude
and frequency. The detailed study of the experimental
prototype will be presented elsewhere.
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FIG. 4. Dimensionless speed of translational displacement of
the swimmer, v=�fr0�, as a function of the spring constant ks
(circles) and magnetization M1 � M2 � M (triangles), both
scaled against the viscous drag. The values of the other parame-
ters are as in Fig. 2. The right-hand axis shows the absolute
speeds attained by the swimmer.
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