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Multiple Data Types

Phaedra Agius, Yiming Ying, and Colin Campbell

Abstract

We propose Bayesian generative models for unsupervised learning with two types of data and
an assumed dependency of one type of data on the other. We consider two algorithmic approaches,
based on a correspondence model, where latent variables are shared across datasets. These mod-
els indicate the appropriate number of clusters in addition to indicating relevant features in both
types of data. We evaluate the model on artificially created data. We then apply the method to
a breast cancer dataset consisting of gene expression and microRNA array data derived from the
same patients. We assume partial dependence of gene expression on microRNA expression in
this study. The method ranks genes within subtypes which have statistically significant abnormal
expression and ranks associated abnormally expressing microRNA. We report a genetic signature
for the basal-like subtype of breast cancer found across a number of previous gene expression
array studies. Using the two algorithmic approaches we find that this signature also arises from
clustering on the microRNA expression data and appears derivative from this data.

KEYWORDS: multiple datasets, correspondence model, Bayesian learning, unsupervised learn-
ing, clusters, breast cancer, cancer subtypes, genes, microRNA
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1 Introduction

Rapid developments in genomics and proteomics have lead to the generation
of many different types of data which has in turn stimulated the develop-
ment of data fusion techniques. Thus, for supervised learning, a number of
different kernel-based methods have been proposed which enable class assign-
ment based on the use of disparate types of input data. Successful multiple
kernel classification methods have been proposed which use Bayesian methods
[16], semi-definite programming [21], semi-infinite linear programming [29] and
column generation methods [4], for example. In a bioinformatics context, ex-
amples have been presented where the classification test error is demonstrably
reduced through the use of multiple types of data, encoded in different kernels,
over the best single data type [15].

Though much less investigated, unsupervised learning could be per-
formed using multiple types of data in certain contexts. In particular, the
clustering of samples which use various different feature sets or data types for
describing each sample, would require an unsupervised approach that jointly
handles these multiple datasets. For example, one may wish to cluster a set of
pictures using both descriptors of objects in the pictures and the corresponding
picture captions: both types of data carry valid information about the pictured
objects. This issue becomes intriguing if we can establish the relationships be-
tween the multiple datasets that describe the samples. For the clustering of
pictures, the picture captions are descriptive sentences with some partial de-
pendency on the types of objects in the pictures. In this paper we propose
a Bayesian unsupervised method for the joint modelling of two types of data
with such an assumed dependency. The correspondence model we propose is
inspired by correspondence LDA (Latent Dirichlet Allocation [5, 6]), originally
developed for the joint modelling of images and their corresponding caption
words. An important aspect of the proposed model is that we can establish
the appropriate model complexity i.e. the number of clusters in the data. In
addition the model generates density estimates for the data belonging to the
two component datasets. We propose two algorithmic approaches which we
call corrMAP (maximum a posteriori) and corrVB (variational Bayes). The
corrVB approach has two advantages over corrMAP: it gives a full posterior
distribution estimate instead of point estimates, and model complexity can
be determined far more easily without the computationally expensive cross
validation approach necessary in corrMAP. Although we only present results
for the more intuitive corrMAP model, we used the corrVB approach for val-
idation and obtained very similar results.

In the experimental Section 3 we first evaluate performance on artifi-
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cially created datasets with known labelling. This enables objective assessment
of performance using a Jaccard score. We then pursue a breast cancer study in
which microRNA and gene expression array datasets have been derived from
the same patients. Biological studies suggest that there is a directed depen-
dence of gene expression, at least in part, on microRNA activity. Therefore,
taking into account this data dependence via our correspondence model, the
goal is to cluster the patients and derive meaningful cancer subtypes, and
to isolate abnormally expressing genes or microRNA within these subtypes.
We show that the resultant model is consistent with previous findings and is
biologically plausible.

2 Bayesian Models and Inference

Before describing the model we first introduce some notation. Let D be the
sample set to be clustered, indexed by d. Each sample has two component
datasets, labelled as C' and E, with an assumed dependence of E on C'. While
C' comprises H features (indexed by h) and D samples, E comprises G features
(indexed by ¢) and D samples. Thus, for our breast cancer example in Section
3.2, these datasets correspond to microRNA expression and gene expression
respectively. After training, the method represents samples as a combinatorial
mixture over a finite set of K soft clusters, with a probabilistic measure given
for the assignment of sample d to cluster k.

2.1 A correspondence model for the joint modelling of
two datasets

In this section we introduce a correspondence model that captures an under-
lying functional interaction between two component data sets. In line with
previous models, such as correspondence LDA [5], the two data sets are as-
sumed to share a common prior distribution and latent variables. The cor-
respondence model is applicable to the joint modelling of two datasets where
there is a directed dependence of one type of data on another. In Section 3.2
we illustrate the model with a dataset for breast cancer, where we assume gene
expression data (denoted E) is potentially dependent on microRNA data (de-
noted C'): we will make reference to this example in our following discussion of
the method, to illustate the approach. Thus in this example we have pairs of
samples (Cy, Ey), i.e. both these readings are taken from the same patient, de-
noted sample d. We first cluster the microRNA data Cj4 and then cluster gene
expression Fy, conditioned on the generated cluster for microRNA sample Chq.
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The correspondence function is realized by a latent variable y,, € [1, H| mod-
eling the interaction between gene expression and microRNA measurements.
This probabilistic graphical model is represented in Figure 1.

\

[

Q)

e e O s O e O =
N\

AN

u
. O] =

Figure 1: A graphical representation of the generative correspondence model.
Cha and E,q are experimental observations and {«, pt, 0, fi, 6} are model pa-
rameters.

/

The model is described as follows:

For a given data index d for both F (G x D matrix) and C (H x D
matrix)

1. Prior distributions: 6; ~ Dirg(«)
2. Choose Cy:

(a) Choose cluster for Cpg:  zgn ~ Multi(6,)

(b) Sample Chg ~ N(Chalfinzy,, Onzy, ) Where N(Cralft, 52) denotes a
normal distribution with mean /i and variance 2. Note that fi.,,
and &y, ) refer to the mean and standard deviation for samples in

cluster zgy,.

3. Choose Ej:

(a) Sample gene correspondence: y4, ~ Uniform(1,..., H)

(b) Sample Eyq ~ N (Eya|i, 0,2, Yag) = N (Egalfigzy, » 032dh, Yag = h)
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Using the notation © = {a, i, o, i, &}, the joint distribution for a given
index d is then specified by

p(Ca, Eq, 24,94, 0410) = p(0ala) [T, [p(zan0a)N (Cralfinzy, » Oz )]
X Hg p<ydg|H)N(Egd’:ng(1ha ngdha Ydg = h)

and the overall joint distribution is given by

p(C,E, z,y,0|0) = Hp(CdaEdaZdayd79d|@) (1)
d

Extensions to classical Gaussian mixture models (GMM) (e.g. [32])
are possible to handle multiple data sets in a similar fashion to the mixture
model presented here. However, for a GMM each datapoint Ej is only related
to a latent variable z;: this restricts the datapoint to an association with
one cluster only. In contrast, as with Latent Process Decomposition [26] and
several other soft cluster models, in our model each data point Cj is associated
with multiple latent variables {zg, : h € [1,..., H]}. This means there is no
implicit mutual exclusion of clusters assumption and Cy; can be associated with
multiple clusters. As a correspondence model this also means the data Ey can
stochastically share Cy clusters through the correspondence latent variable yq4,.

2.2 CorrMAP: maximum a posterior approach

Having introduced the model, we now focus on approximation inference and
parameter estimation for the correspondence model. Let the overall set
of latent variables be denoted by H = {6, z,y} and model parameters by
© = {a,pu,0,1,0}. Then the target of model inference is to compute the
posterior distribution p(H|E,C,0) := p(E,C,H|©)/p(E,C|O) and to learn
the model parameters ©. Unfortunately, this would involve computationally
intensive estimation of the integral in the evidence p(E, C|©) and thus we will
use variational inference instead [18] (we will discuss MCMC methods in the
Conclusion).

The goal of variational inference is essentially to minimize the KL-

divergence between the variational distribution ¢(6, z,y) and posterior distri-
bution p(E,C, 6, z,y|0):

argégzlenQKL(q(G,z,y)Hp(E, C,0,2,y|0)) (2)

Since this expression is not convex, we employ the mean field approach
[18]. The derivations are standard (see Jordan et al [18]) and referred to as
variational EM-steps.
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We will briefly describe the general methodology. For simplicity, we
assume that the latent variables H can be split into sub-variables H; [18].
Then we choose the hypothesis family Q of variational distributions q(H) to
be a fully factorized family, that is, q(H) = [[,¢(H;). Consequently, for
the variational E-step, we conclude that the variational distribution of latent
variables is given by [18, 5]:

a(H;) o exp (. [p(E, 1]0)] ) (3)

where ¢\ represents the distribution ] i2i4(H;) and E . denotes the expec-
tation with respect to distribution ¢\*. For the M-Step, we take the derivative
of the KL-divergence with respective to model parameter © and obtain the
updates for ©.

We now apply the above methodology to the correspondence model and
obtain the following update equations. Let H = {z,6,y} be the set of latent
variables and assume that the family of variational distributions Q takes the
form:

q(0, 2, y) = [H (0alva) ] [Hq zan| Ran) } [HQ(ydg’ng)]7

where ¢(04|74) is a Dirichlet distribution, ¢(z4|Ran) and q(y4e|Qag) are
multinomial distributions. v, R, () are often called variational parameters and
describe sufficient statistics of the variational distributions ¢. Equation (3)
tells us that the optimal ¢ can be found via the updates:

q(6]7) = Hq 0alva) o E.y[logp(E, C, 0, z,y|0)], (4)

Q(Z|R> = H Q(Zdh|Rdh) X E9,y [Ing(Ev C? 97 Z, y|®)] ) (5)
d,h

Q<y|Q) = H Q(yd9|Qd9) X E@,z [Ing(Ea Ca 97 Z, y|®)} . (6)
d.g

In summary, the estimation of the log of the joint distribution yields
variational FM-type updates for variational and model parameters, as follows:

e Variational FE-step:

Yar = O + Z Rank
h

Published by The Berkeley Electronic Press, 2009 5



Satistical Applicationsin Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 27

Rane o< N (Chalfink, onr) exp (‘I’(’de) - \I’(Z Vaj)
J

+ Y Qugn 1og N (Egal g, U;k))
g

Qdgh X €Xp (Z Rani og N (Egalign, Uék))
i

where W is the digamma function.

In the variational M-step we update the model parameters ©. To this
end, we just take the derivatives of the KL-divergence. The updates are
listed as follows:

e Variational M-step:

~ > g RankCha o g Rank(Cha — fink)?
Hrk = ——= 5 Ohd = (7)
Zd Rank Zd Ran
= > an Qagh Rank Ega 2 > an Qagh Rank (Ega — pgr)? )
o >an QagnLanr oh > an Qagh Rank

For the updates for «, we use a Newton-Raphson method (see the Ap-
pendix of [6]). The gradient is given by: (%:i =D(VU(>, o) — U(ay)) +

> a(U(va) =¥ (3, Yar)), the Hessian is H;; = D(W' (Y, ag) — 655V ().
Hence, we have an iterative update procedure:

—1 (9£(oz01d)
oo

Onew = Qold — (H<Oéold)) .

We pursue the above iterative procedure until convergence of the KL-
divergence (details are given in Appendix A: for discussion of numerical sta-
bility issues for the variational E-step update see Rogers et al [26] section 5.3).
Since the latent variable 6y, is the k-th cluster probability for sample d and
its expectation with respect to the posterior distribution ¢(6y) is 4, we could
assign data F; and Cy to cluster k using k* = arg maxy 4, for example. In
Section 3, with a knowledge of the means and variances (u,o?) and (fi,5?)
for each cluster, we can use statistical scores to perform gene-ranking and
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thus find abnormally expressing genes or microRNA that are grouped in the
same cluster. Following our earlier practice [26], we can choose the appropri-
ate number of clusters using cross-validation on the predictive likelihood (see
Appendix A for details).

We end this subsection with some comments. The above method can
also handle cases where some values Fy; or Cjq are missing by omitting corre-
sponding contributions in the M-step updates and corresponding parameters
Qagr and Rygp,. In the original correspondence model of Blei et al [5] clustering
was performed over samples. Here we are more interested in clustering over
samples and trying to find a linkage between features (e.g. microRNA and
genes). Unfortunately, whereas a direct linkage is calculable in the original
correspondence model, p(E,4|Chq) is not meaningfully calculable here. Thus
the model proposed here gives a picture of altered features within each clus-
ter but does not individually link these: such a direct linkage would require
methods outside the algorithm such as correlation analysis.

2.3 CorrVB: a variational Bayes approach

In the above maximum a posteriori approach, a computationally expensive
cross validation study is required to infer the appropriate number of clusters.
This involves setting aside a certain percentage of the data and then estimating
the parameters on the remaining data. A model accuracy score is then found
from the estimated likelihood on left-out data (refer to Figure 3 which shows
the log likelihood estimated for the breast cancer data). Also, this variational
inference approach only gives point estimates for {u, o, i, 0}. An alternative
approach is a variational Bayesian method which allows us to estimate the
full posterior distribution in place of point estimates. Another advantage of
a variational Bayesian approach over a maximum a posteriori solution is that
there is an inbuilt mechanism for model comparison, which can be performed
easily without use of cross validation data.

We now turn our attention to the description of variational Bayesian
inference for our correspondence model. To this end, we further regard
= ={u,0, 1,0} as latent variables. Specifically, we further assume their prior
distributions as follows. Let

p(p|mo, vo) = HN<,U/gk’m0aU0>7 p(klmo, vo) = HN(lthmo, Vo),

g,k hk

and

p(Blao bo) = [ [T (Byrlao, bo), p(Blao,bo) = [ [ T(Brrlac, bo)

g,k h,k
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where the Gamma distribution is defined by I'(z|ag, by) = x“o_le_%/F(ag)bgo.

For fixed «, the variational Bayesian (ensemble learning) method (see
e.g. [2]) aims to find an approximate posterior distribution g € Q to the true
posterior distribution p(0, z,y, Z|E, ), i.e.

min KL(q(0. 2,9, ) [p(0, 2,9, E|C, E, ))).
Note, for any wvariational distribution q(0, z,y, =), that

log p(E|a) :log/Zp(C’,E,9,z,y,E|a)d9dzdydE
Z

— B, | log HEEL2020 | 4 KL(g(0, 2.y, Z) |p(6, 2,9,ZIC. B, ).
(9)

Since p(E) is a constant, our optimization target is equivalently reduced to
maximizing the free-energy lower bound defined by

p(C,E, 0,2y, Ela)
Q<07 Z? y? E)

m(?xflg(q|a) = m(?xEq [log (10)
If we have no restriction on variational distributions ¢, then the maximizer
of the free energy bound is trivially the true posterior which is already as-
sumed intractable. Hence, we should introduce the hypothesis family Q where
the variational posterior distributions ¢(0, Z, ©) exist. For simplicity, we as-
sume that the overall latent variables H = {0, z,y, u,0, 1,0} can be parti-
tioned into disjoint subsets {H;}. As before, we choose the hypothesis family
Q of wariational distributions q(H) to be a fully factorized family, that is,
q(H) =11, ¢(H;). Consequently, in analogy to the E-step in MAP inference
the variational distribution of latent variables is given by [18, 2]:

q(H’L) X exXp (Eq\i [Ing(Ca E797Zay75|a):|> (11)

where ¢\ represents the distribution [] i q(H;). Specifically, the variational
posterior distribution can be represented by their corresponding wvariational
parameters as follows.

160,292 = [1,00d7)| | s aarl Rar) || T, 00001 Qas)|
X Hh,k q (k| Mo, 5hk)Q(Ehk\5hk,ghk)]
X 1,4 Q(Mgk|mgk:,ng)Q(ﬁgHagk,bhk)] :

http://www.bepress.com/sagmb/vol 8/issl/art27 8
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Since the Gamma distribution is the conjugate prior of the Normal
distribution, the variational posterior distribution on the latent variables p
and 3 are respectively the Normal distribution and the Gamma distribution,
likewise for r and 3. The detailed updates are listed on Appendix B.

The above inference method assumes that the number of clusters is
fixed. We now turn our attention to inferring the number of clusters in the
variational Bayesian framework (see e.g. [2]). Given a maximum possible
number of clusters M, the target is to determine the optimal number of clusters
K € [2, M]. The variational Bayes approach provides an appealing way to infer
correct model complexity. Let p(K) be the prior distribution on the number
of clusters. Recall that the joint distribution p(C, E, 0, z,y, Z|a) given by
equation (1) is dependent on X, the number of clusters, so we could denote
it as p(C, E,0,z,y,Z|K, ). Thus, regarding K is a latent variable, we can
consider the joint distribution

M
p(C,E,0,2,y,E,Kla) = [[ p(C. E, 0, 2,4, EIK, a)p(K).
K=1

In analogy to the above inference procedure, we assume that the vari-
ational posterior distribution ¢(0, z,y,=,K) is of the form ¢(0,z,y,=Z,K) =
q(0, z,y,Z)q(K) where the updates for ¢(6, z,y,Z) (conditioned on a specific
KC) are already provided by the previous updates. The posterior distribution
for IC turns out to be

q(KC) ~ exp(Fi).

Here, the free energy Fi is defined by equations (10). Usually, the prior
distribution for /C is chosen to be a uniform distribution, i.e. p(K) = 1/M.
In this case, the optimal number of clusters £* is determined by maximum of
the free energy bound:

K* = arg m}gx]:;c.

We can also update the parameter o together with the latent variables
H. Specifically, we maximize the lower (free energy) bound of the log likelihood
log p(F|«) with respect to both the latent variables H and a:

p(O7 E7 67 27 y7 E’O{>
q(0,z,y,=)

max Fi(g|a) := max E, [log (12)
q7a q7a

Just like the MAP approach, the updates for the latent variables H fall under
the E-step. Keeping a fixed variational posterior distribution ¢ in the M-step,
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we can use a Newton-Raphson method to update a by
anew = arg max F(q|a).
[e%

where, in a similar fashion to the MAP method, the updates for o can be

~197(ga0ld)

solved by the Newton-Raphson method ayey = ol — (H (Oéold)) e

3 Experiments

In this section we will numerically validate the proposed correspondence model
using corrMAP to present our results and corrVB to confirm them. First we
demonstrate that the correspondence model performs as expected on artifi-
cially generated data, where the cluster structure and sample labels are known.
In addition, in Section 3.1, we consider an expression array dataset for S. Cere-
vistae which illustrates a biological context in which correspondence models
would be relevant. We compare against three other clustering methods. We
then consider the breast cancer example referred to earlier where gene expres-
sion array data is assumed dependent on microRNA data. The results for
corrVB validate the results for corrMAP and the results are consistent with
previous breast cancer studies.

3.1 Comparison with other clustering methods

To validate performance we first generated artificial datasets. Data for C' was
randomly generated to give three distinct clusters (consisting of 10 samples per
cluster with 10 features per sample). Then the data in E was generated per
sample in C', so that it had blocks of features positively correlated to features
in C. The number of features in E (corresponding to the index GG) was varied
between N = 2, ..., 10 times the size of dataset C'. Thus each vector in C' had
from 2 to 10 replicate features in £ with each such feature perturbed by a small
Gaussian random deviate. Since the sample labels of our artificially generated
data were known, we were able to use the Jacard score to compare our cluster-
ings with the correct labels and thereby validate our results. The Jaccard score
J is used to compare clusterings, or to compare a clustering with the correct
labels. If we let nq; denote the number of point pairs correctly placed together
in the clustering, ng; the number of incorrectly identified pairs and nig the
number of missed pairs, then J = nqy/(n11 + ne1 + nig), where 0 < J < 1,
with J = 1 indicating a perfect clustering. In Figure 2 (left) we present a bar
plot of the Jaccard scores obtained. Apart from the proposed correspondence

http://www.bepress.com/sagmb/vol 8/issl/art27 10
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model, we also amalgamated C' and E and performed spectral clustering and
k-means clustering on the amalgamated dataset. To create this amalgamated
dataset, both datasets were normalised to zero mean, unit variance and com-
bined into a single column vector per sample. All of the models perform better
for a small N, with the correspondence model (corrMAP) consistently outper-
forming the rest. As N increases, the difference in Jaccard scores diminishes
considerably as it is hard for any of the models to pick up the correct cluster-
ing. We also tried a novel joint mixture model (JMM ) which assumes the two
datasets to be independent and extracts a joint clustering without the corre-
spondence assumption (details outlined in Appendix C). We include JMM for
comparison for two reasons. First, although it is more similar to the corre-
spondence model than the other two methods that use the amalgamated data,
it does not perform as well, and this highlights the importance of modeling
the correspondence between the datasets when appropriate. Second, like the
correspondence model, JMM outputs a normalised 74 values (normalised over
k) which represents the confidence in the assignment of sample d to cluster k.
In Figure 2 (right) we show bar plots for these confidence measures for both
corrMAP and JMM. The confidence values for the correspondence model are
consistently higher than JMM.

Il corrMAP I corrMAP
Ejmm 0.9 Ejmm

Il spectral
[Jkmeans

Jaccard scores
Normalized Gamma values
(=}

«

o o] o B o

2 4 e 8 10 2 4 6 8 10
Number of rows in E dependent on C Number of rows in E dependent on C

Figure 2: Average Jaccard scores on the 3 cluster artifical dataset (left) and as-
sociated confidence measures (right) using the corrMAP algorithm and JMM,
a joint mixture model outlined in Appendix C.

As a second example, we used microarray expression data for S. cere-
visiae from a series of experiments run by Middendorf et al [24]. These authors
identified a strong regulating factor, USVI, which was believed to influence
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up to 305 other genes in the dataset. In this second example, the C' data now
consists of only one gene, USV1, while £ comprises the 305 regulated genes.
Though an extreme example, since C' only has one value per sample, this is
a context where the application of a correspondence model makes sense since
the significance of C' is maintained by this model, but would be lost if we
amalgamated the datasets, for example.

The samples were derived from three groups of experiments: heat shock,
nitrogen depletion and a set of stationary phase experiments used as a time-
zero reference. A PCA plot (not illustrated) suggested these were reasonably
well defined groupings. We ran the correspondence and joint mixture models
and they correctly classified all three groups (J = 1, based on the highest
predictive log-likelihood solution after 30 random initialisations). We also used
k-means clustering and spectral clustering on the amalgamated dataset. Both
k-means clustering and spectral clustering can give different results depending
on the start point, hence we investigated performance over 100 restarts. k-
means clustering gave J = 1 with 62 restarts from the 100 with an overall
average Jaccard score of 0.81. Spectral clustering correctly classified (J = 1)
81 from 100 restarts with an average Jaccard score of 0.90. These results
are not that surprising since C' is considerably smaller than F in size so the
significance of C' is lost when the two datasets are amalgamated together.

3.2 Evaluation on a real-life dataset: breast cancer

For the two examples given above we have argued that there are instances
where joint modelling of the data is more appropriate than clustering on an
amalgamated dataset. We now extend the discussion to a real-life example in
cancer biology to illustrate the extra biological insights provided by the corre-
spondence model. We will show that the results which emerge are consistent
with previous findings. In addition, we have not commented so far on model
complexity: how many clusters are present in the data. We will show that
the estimated log-likelihood on hold-out data provides a principled approach
to finding the correct model complexity for corrMAP.

We applied our models to a dataset consisting of two types of data
derived from the same patients. The first data set, C, consisted of microRNA
expression data from 78 primary human breast tumors using a bead-based
array to identify 133 microRNA found in normal and breast tumors [7]. The
second set of data, F, comprised gene expression data for the same 78 patients.
In both cases, the data was normalized to zero mean and unit variance.

The first goal was to determine the optimal number of clusters. To do
so, we first performed a cross validation study on the predictive log likelihood

http://www.bepress.com/sagmb/vol 8/issl/art27 12
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using corrMAP (see Appendix A). We held out 8 datapoints as test data
and the remaining 70 datapoints were used to construct the model: perfor-
mance was averaged over 10 random partitionings of the data into training
and test data. The log-likelihood on the hold-out data was calculated using
the model obtained from training data. Figure 3 (left) shows the correspond-
ing log-likelihood curve for the correspondence model. A 5 cluster model
appears optimal: if more than 5 clusters are used overfitting occurs and the
log-likelihood falls. To confirm this result we then used the variational Bayes
method of section 2.3. In this approach, we do not need hold-out data to es-
timate a log-likelihood. Instead, a free energy expression is used. In Figure 3
(right) we give the corresponding curve for the free energy which likewise gives
a peak at 5 clusters indicating that there are at least 5 principal subtypes of
breast cancer.

corrMAP 4 corrvVB
-7900 -8 10
-8000
-8.02
-8100
-8200 R —8.04
k=}
8 =)
=} =2
£ -8300 8
El L0 -8.06
= -8a00 ]
g s
— _gs00 1 —-8.08
-8600
-8.1
-8700

8800 2 3 9 10 -8.12

2 3 7 8

¥ 5 s 7 s 2 5 6
Number of clusters Number of clusters

Figure 3: Estimated log likelihood on heldout data versus number of clusters
for corrMAP (left) and free energy versus number of clusters for corr VB (right).
The peaks in both curves indicate the most probable number of clusters (cancer
subtypes) in the data. CorrVB does not use cross-validation data.

As remarked in section 2.2 we can assign sample d to cluster k£ using
k* = arg maxy v4;. Based on available survival data, we can therefore derive
Kaplan Meier plots for the 5 indicated subtypes. These are given in Figure 4
where we see that subtype 3 is most aggressive, subtypes 4 and 5 less aggres-
sive, and subtypes 1 and 2 are largely indolent.

We can also derive density estimates, quantifying the distribution of
gene expression data values within subtypes. Using corrMA P, for example,and
using mean jig, and standard deviation oy, for gene g within cluster k, we
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present the density distributions for some genes in Figure 5. FOXA1 and
FOXC1 have very distinctive distributions for the subtype labelled Cl5: while
FOXAT1 underexpresses, FOXC1 overexpresses within this subtype. ERBB2
and GRB7 overexpress in subtype CI3: there is a well documented FRBB2+
subtype of breast cancer [30].

TR

Probability of survival

50 . 100 150
Time in months

Figure 4: Kaplan Meier plot for the corrrespondence model (corrMAP) show-
ing patient survival rate changing over time.

Abnormally expressed genes can be identified using a Fisher score
|Hgik = fgok] [/ Top + Ooyi); for example. However, this score tends to overlook

genes with large spreads such as FOXC1T in Cl5 of Figure 5. Thus, we used a
rank-based Mann-Whitney score instead to find genes abnormally expressing
within one subtype relative to the other subtypes. In Table 1 we list the 20
top-ranked genes by significance for the 5 subtypes resolved by the correspon-
dence model (corrMAP). The genes listed under CL5 appear to be biologically
significant. The X box-binding protein, XBPI, is believed to be regulated
by FOXA1 [11]. The biological importance of FOXAT is also apparent from
some recent results reported in the literature: a substantial number of estrogen
response elements (EREs) have associated binding sites for FOXAZ1 [11, 20].
Similarly GATAS has associated co-expression with XPBP1 and ESRI1 [19].
We also note that these genes have been previously identified and discussed
by other authors [12, 13].
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FOXA1 FOXC1

Figure 5: Density distribution plots for four genes using corrMAP. Gene ex-
pression values are given at the base of each plot. A sample d is assigned to
the cluster k£ depending on the largest value of the confidence measure, 4.
The Gaussian distributions are derived from (g4, 04%) in equations (8).

Next we need to determine if the genes listed in Table 1 are consistent
with previous findings. In previous work we investigated a number of microar-
ray datasets for breast cancer, and the results in Table 1 are consistent with
these past findings. In Carrivick et al [10] we investigated four microarray
datasets using a Bayesian variational method [26]. This analysis indicated
4 or 5 principal subtypes of breast cancer. It clearly showed a recognised
ERBB2+, ESR1- subtype of breast cancer, typified by elevated expression of
ERBB2 and GRB7 [30], associated with the aggressive CI3 cluster presented
here. A second subtype (Cl5) has a clear connection with the basaloid subtype
of breast cancer [30]. In our study [10] we used a variational Bayes method
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[1, 3] to investigate 7 datasets for primary breast carcinoma ([30, 33, 35] and a
composite dataset of 614 samples [14, 25, 34, 36] which all used the Affymetrix
U133A chip (see [9] for full details). This gave the genetic signature of the
basaloid subtype in Table 2 which has a good match to the signature under
Cl5 in Table 1.

Cl1 Cl2 Cl5 Cl4 Cl3
UBE2C | COL11A1 | GATA3 CTGF GSDML
CDC20 TIMPS3 FOXC1 RARRES1 ORMDLS3
POSTN AEBP1 STARDI10 ci1s ERBB2

CYBRD1 | COL10A1 | MLPH PRKACB | STARDS

OGN PLAU TOBI1 FBLN2 FGFRY
ADHIB MFAPS5 AGR2 TNC ESR1
ADHIA COL12A1 FBP1 ACTA2 PERLD1
CYP/X1 MMP11 GPR160 CR598/88 CTXN1

COL10A1 FN1 Cl10orfl16 COL6A1 DQ582071
TIMP3 SULF1 BCAS1 SPONT1 GRB7
TK1 COLS8A1 DEGS2 ASS1 RAPIGAP
SHSBGRL | POSTN XBP1 FLNA Cci1S
SUSD3 NBL1 CRYAB PKIB U79293
MIA DCN EEF1A2 SBEM PRSSS
CPA3 OGN SLC39A6 abParts C170rf37
PPP1R3C GJB2 KRT19 FLJ42258 MFAP2
SFRP1 THBS2 GALNT6 | CRISPLD2 TFF1
ATP1B1 ACTA2 FOXA1 BAMBI CA12
SLCJ0A1 TBC1D9 | GABRP SYT18 TBC1DY9
CILP LOXL2 NPNT IGHA?2 CAPS

Table 1: Top ranked genes by the Mann Whitney score for each subtype in
Figure 4 using corrMAP. Some genes are presented in boldface because they
are commented in the text or feature in Table 2.

A very similar story emerges if we use the variational Bayes approach
outlined in section 2.3. We likewise find a cluster with genes FOXC1, AGR2,
FOXAl1, GATAS, TFF1, MLPH, XBP1, GABRP ranked in the top 20. Thus
the genes highlighted by our method appear to be consistent with previous
studies, consistent between the two correspondence algorithms and also bio-
logically significant. The advantage of our proposed correspondence models is
that we now have additional information about the role of microRNA within
given subtypes. Interestingly, the genetic signature reported in Table 2 derives
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purely from clustering on gene expression data whereas the corresponding sig-
nature in column 3 of Table 1 derives from the clustering structure dictated
by microRNA expression. This indicates an intimate relation between gene
and microRNA expression, at least for this subtype.

Sorlie et al [30] | West et al [35] Van t” Veer et al [33] | Composite
TFF3 CRIP1 VGLL1 FOXA1
XBP1 XBP1 AGR2 AGR2
FOXA1 FOXA1 TFF3 XBP1
GATA3 CEBPD ESR1 MLPH
B3GNT5 HSPAS CA12 FLJ20174
GALNT10 GATA3 DSC2 CA12
FBP1 RARA NAT1 GATA3
DSC2 CRYAB EST AK127020
FOXC1 GATA3 CDH3 CA12
FOXC1 FBP1 FOXC1 CA12
FLTI1 KRT18 SCUBE?2 GATA3
FOXC1 MSN AR AR
GATA3 TCEAL1 Corf7 TFF3
SLC11A3 SCNN1A SLCTA2 ABAT
SLC11A3 NSEP1 GABRP FBP1
MGC27171 CDH3 EST DSC2
NAT1 BF XPB1 GATA3
MRPS14 TFF3 BCMP11 CA12
LOC51313 Hu. clone 23948 | VAVS TFF1
MGC10710 FSCN1 EST GABRP

Table 2: A list of the top-ranked 20 genes distinguishing the basaloid subtype
of breast cancer from an earlier study [10], derived from seven separate studies
for breast cancer. The composite dataset of 614 samples is taken from [14,
25, 34, 36], which all used the Affymetrix U133A chip (data was amalgamated
after normalising to zero mean, unit standard deviation for each component
dataset). Repeat gene names in a column derive from multiple probes for the
same gene. Genes presented in boldface appear in more than one column.

We also used the Mann-Whitney score to rank microRNA features.
In Table 3 we give the mean values, jing, for the 10 top-ranked microRNA
expressions using the corrMAP model clusters. As with this Table, a plot
of all microRNA expression values, averaged per cluster, indicates substan-
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tial differences between the microRNA expression profiles between subtypes.
The most aggressive subtype (ClI3 in Figure 4) appears to be linked with ex-
tensive abnormally high expression of microRNA, followed by Cl4 and CI5
which have small subsets of microRNAs with abnormally high expression. A
significant number of these microRNA have been previously associated with
breast cancer. Thus miR-214 can induce cell death resistance through target-
ing the PTEN/Akt pathway [17], miR-21 is oncogenic [28] and let-7 is listed
as tumour-suppressive [22]. miR-126 and miR-335 have been associated with
suppression of breast cancer metastasis[31, 37]. Sempere et al [27] reported
altered expression of miR-145 and miR-21 in various epithelial cell subpopu-
lations of breast cancer. Aberrant hypermethylation leading to inactivation of
miR-152 has been reported for breast cancer [23]. Finally, a number of these
microRNAs, such as miR-15a, miR-16, miR-21, miR-125b and miR-145, have
reported altered expression for other mammalian mammary carcinomas[8].

Cl1 Cl12 Cl13 Cl4 Cl15

miR-505 0.38 | miR-137 0.26 | miR-152 1.13 | miR-30b 0.66 | miR-199a 0.62
miR-181c 0.37 | miR-133a  0.19 | miR-342 0.99 | miR-15b 0.63 | miR-99a 0.57
miR-142-5p 0.36 | miR-9 0.19 | miR-29a 0.98 | miR-15a 0.60 | miR-199b 0.55
miR-185 0.31 | miR-9 0.18 | miR-331 0.96 | miR-30c 0.57 | miR-199a 0.55
miR-203 0.31 | miR-18a 0.08 | miR-214 0.95 | miR-195 0.55 | miR-214 0.47
miR-200a 0.30 | miR-128b  0.07 | miR-199b 0.94 | miR-16 0.49 | miR-100 0.47
miR-183 0.29 | miR-138 0.06 | miR-126 0.90 | miR-21 0.49 | miR-130a 0.45
miR-509 0.29 | miR-211 0.03 | miR-145 0.89 | miR-20a 0.45 | miR-382 0.43
miR-107 0.29 | miR-335 0.03 | miR-24 0.89 | miR-30a-3p 0.45 | miR-125b  0.42
miR-93 0.29 | miR-429 0.02 | miR-27a 0.88 | miR-210 0.44 | let-7b 0.40

Table 3: Top ranked microRNA by Mann Whitney score using corrMAP. The
numbers indicate the (normalized) mean microRNA expression for the samples
in that cluster. Entries in boldface are discussed in the text.

4 Conclusion

In this paper we have introduced a correspondence model for unsupervised
learning with two data types that are presumed to be related or dependent.
Using a predictive likelihood estimate or a free energy term we can find the
appropriate number of clusters in the data. The proposed methods can handle
missing values. In Sections 3.1 we showed that clustering on amalgamated data
gave inferior performance, and that modeling the two datasets independently
gave worse results than the correspondence model. In addition, corrMAP
proved superior on artifical datasets when compared to a joint mixture model.
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In Section 3.2 we gave an extended discussion of an application to breast cancer
biology: the results for the correspondence model appeared consistent with
previous findings and biologically plausible. Furthermore, by incorporating
microRNA expression data in addition to gene expression data, the model
may give possible new insights into dysregulation of microRNA expression
associated with individual breast cancer subtypes.

The methods proposed here can be extended in various ways. Firstly,
we have presented our models using two data sets of the same type: continuous
valued data (e.g. gene expression data) which can be approximately modelled
using a Gaussian distribution. However, the model can easily be adjusted
to accommodate discrete data, using a multinomial or Poisson distribution
to model one or both types of data. We could, of course, also use a variety
of MCMC methods. Although MCMC proved to be too computationally in-
tensive for determining the model complexity with the large expression array
datasets here, it could certainly be usefully deployed for smaller datasets.

Appendices

A Lower Bound and Predictive Likelihood for
corrMAP

In this appendix we outline the computation of the KL-divergence and predic-
tive likelihood for the first correspondence model, corrMAP.

Lower bound (negative KL-divergence):

The lower bound for the log likelihood (denoted L) equals the negative
KL-divergence:

p<C7 E’ Z? y? 0|@)
q(z,y,0)

L= /Zq(z,yﬂ) log df = —KL(q(0, 2, y)llp(0, 2, y| E, C, 0)).

Z?y
Estimation of the log joint distribution gives:

L= D|logT(¥, ar) = Ly logTlaw)| = 52, [ 108 T(5, 7) = ¥y log T (var)|
+ D ak [(Oék — Y + 2 Ranke) (¥ (var) = (30, %lj))]
+ 2 ank [Rdhk ( log N (¢hal fink, G7y,) — log Rdhk>]
+ Zd%h Qagh [(Zk Rani log N (egal g, ng)) — log ngh] :
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Predictive likelihood:

First, marginalizing the joint probability given by equation (1) with
respect to z gives

p(C, E,y|0) = Hd/ Zp(CmEd,Zdayd,ed’@)ded
0q

z

— Hd/g H [Zedk/\/(chdmhk, 53p) H (%N(Egd’/'[’gk, ng)>ydg,h} "
a p B :

However, further marginalizing with respect to y will lead to very in-
tensive computation since the dimension of expression gene ¢ is usually large.
Hence, we are forced to consider approximation of the test likelihood. To

. 1 2 Ydg,h .
this end, we replace the untractable term [], (EN(Egdmgk, agk)> by its

average
1
H (EN(Egdmgka ng)>

g
Consequently, we have the following approximation to the likelihood

pC.208) ~ [T | TT[ 3 0ud Cualinn. ) [T (G Buslis, o30)) |

The integral with respect to 6 can be further approximated by a sam-
pling method described in Blei and Jordan [5].

B Updates for CorrVB

Here we list the update equations for the variational Bayesian inference for
the correspondence model.

e For 0, we have that ¢(f|y) o exp <Eq(z7y,5) [logp(C’, E,H,z,y,E]a)D
which yields

Yak = ok + Y Ran (13)
h

e For z, we have that

q(Z|R) = H Q(Zdh’Rdh) X exp (Eq(e,y,E) [IOgZ)(C? E? 97 ZY, E|Oé):| ) .
d,h
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Consequently

Rangk o exp [ Vak) ZWJ U(ank) + 10g bur)

1 1 1
—3 ((C’dh — mhk)2 + U_Mc) apkbpi + B zg: Qagntb(agr)

1
+1og bgr. — agrbyr ((Edg — mgi)? + —ﬂ

Vgk
with the normalization ), Ranx = 1 for any d, h.

e For the latent variable y, from the equation

001Q) = [T 0l Qur) o< 0 (Ba0.-2 [log p(C. .0, 2,9, EJa)])

we get
1
Qagh ¢ exp [log Pgn + 5 > Rank (¥(agr) +log by
k

UL ((Eqg — mgk)z))]

ng
with the normalization ), Qg, s = 1 for any d, g.

e For the latent variables i and B , we have

Q(mmﬁ) = HN(ﬁhHﬁ”bhkﬁhk)
h.k

X exp (Eq(e,z,y,u,ﬁﬁ) [lng (Cv Ea 0, ZY, E|OZ)]> )

and

C](EW» Z) = H F(ﬁhkmhk,ghk)
h.k
X exXp (Eq(ﬁ,z,y,u,ﬁ,ﬁ) [lng (C> E7 67 Y, ElOé)])
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Consequently,
_ CanRank) anibne — ~ U
d
= ot oS Raw bt = =3 Rane | (Can — n)? + =~
a = Q — — — —_ —m I
hk 0t 3 g dhks  Opg b 2 : dhk dh hk o
(15)
e For 1 and 3 we have that
q(plm,v) = HN(Mgk|mgk, Vgk)
g,k
X exp (Eq(97z7y757ﬁ75) [lng (Ca E7 07 ZY, E|Oé)]>
and
q(Bla,b) = Hr(ﬁgklagk7 bk)
g,k
X €exp (Eq(0’2;7y“u"ﬁ’§) [logp (C7 E7 67 <, y7 ElO()])
Consequently,
Moo + <Zd,h ngJszh,k) ankbr
Mgk = ) (16)
Vgk
Vgl = Vo + Agrbgr Z Qag,nRan (17)
d,h
and 1
Qg = Qg + 5 Z Qag.n Ran k., (18)
d,h
b—1=l+lZQ Ranse | (Egg —m )2+i (19)
gk b() 9 dh dg,hLtdh k dg gk Ugh
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In MAP type II, we also update the Dirichlet parameter by the following
equation

a4 = argmax [D logl’ <Z ak> - Dzlog{r(ak)}

k

+Z(Oék —1) (Wm) - ¢(Z ’Ydj))]

C A Joint Mixture Model

For the joint mixture model (JMM) mentioned in Section 3.1, the functional
relationship between the different data sets is modelled via a jointly cluster-
ing Dirichlet distribution. Samples in the different data sets are generated
separately. This model is described as follows:

For a fixed data index d for both E (G x D matrix) and C (H x D
matrix)

1. Prior distributions: 6, ~ Dirg(«)
2. Generate Cy:

(a) Choose cluster for Cpg:  Zgp ~ Multi(6y)

(b) Sample Chg ~ N (Chalfinzy,, Onz,,) where N(Chalf, 52) denotes a
normal distribution with mean i and variance 2.

3. Generate FEj:

(a) Choose cluster for Eyq: 245 ~ Multi(6y)
(b) Sample Ega ~ N(Egdma 0,2) = N(Egd|ﬂ’gzdg’ <~7§de)

Using the notation © = {a, , o, fi, &}, the joint distribution for a given
data index d is given by:

P(Ca, Eq, Za, 24, ya, 041©) = p(0ala) 1, [p(Zan|02)N (Chal finzy, - 3., )]
x [1, p(2agl0)N (Egal gz, » 7v,,)
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The overall joint distribution is then given by:

p(Cv E7 2a Z,Y, 9|@) = Hp(cda Ed7 2da Zds Yd, 9d|@) (20)
d
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