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Abstract

In this paper we study the problem of learning a low-rank (sparse) distance ma-
trix. We propose a novel metric learning model which can simultaneously con-
duct dimension reduction and learn a distance matrix. The sparse representation
involves a mixed-norm regularization which is non-convex. We then show that
it can be equivalently formulated as a convex saddle (min-max) problem. From
this saddle representation, we develop an efficient smooth optimization approach
[15] for sparse metric learning, although the learning model is based on a non-
differentiable loss function. This smooth optimization approach has an optimal
convergence rate of O(1/t2) for smooth problems where t is the iteration num-
ber. Finally, we run experiments to validate the effectiveness and efficiency of our
sparse metric learning model on various datasets.

1 Introduction

For many machine learning algorithms, the choice of a distance metric has a direct impact on their
success. Hence, choosing a good distance metric remains a challenging problem. There has been
much work attempting to exploit a distance metric in many learning settings, e.g. [8, 10, 19, 21,
22, 24]. These methods have successfully indicated that a good distance metric can significantly
improve the performance of k-nearest neighbor classification and k-means clustering, for example.

A good choice of a distance metric generally preserves the distance structure of the data: the dis-
tance between examples exhibiting similarity should be relatively smaller, in the transformed space,
than between examples exhibiting dissimilarity. For supervised classification, the label information
indicates whether the pair set is in the same class (similar) or not (dissimilar). In semi-supervised
clustering, the side information conveys the information that a pair of samples are similar or dissimi-
lar to each other. Since it is very common that the presented data is contaminated by noise, especially
for high-dimensional datasets, a good distance metric should also be minimally influenced by noise.
In this case, a low-rank distance matrix would produce a better generalization performance than
non-sparse counterparts and provide a much faster and efficient distance calculation for test sam-
ples. Hence, a good distance metric should also pursue dimension reduction during the learning
process.

In this paper we present a novel approach to learn a low-rank (sparse) distance matrix. We first pro-
pose in Section 2 a novel metric learning model for estimating the linear transformation (equivalently
distance matrix) that combines and retains the advantages of existing methods [9, 19, 21, 22]. Our
method can simultaneously conduct dimension reduction and learn a low-rank distance matrix. The
sparse representation is realized by a mixed-norm regularization used in various learning settings
[1, 17]. We then show that this non-convex mixed-norm regularization framework is equivalent to a
convex saddle (min-max) problem. Based on this equivalent representation, we develop, in Section
3, Nesterov’s smooth optimization approach [14, 15] for sparse metric learning without using extra
smoothing techniques, although the learning model is based on a non-differentiable loss function.
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This smooth optimization approach has an optimal convergence rate of O(1/t2) for smooth prob-
lems where t is the iteration number. In Section 4, we demonstrate the effectiveness and efficiency
of our sparse metric learning model with experiments on various datasets.

2 Sparse Distance Matrix Learning Model

We begin by introducing necessary notation. Let Nn = {1, 2, . . . , n} for any n ∈ N. The space of
symmetric d times d matrices will be denoted by Sd. If S ∈ Sd is positive definite, we write it as
S º 0. The cone of positive semi-definite matrices is denoted by Sd

+ and denote by Od the set of
d times d orthonormal matrices. For any X, Y ∈ Rd×q, 〈X, Y 〉 := Tr(X>Y ) where Tr(·) denotes
the trace of a matrix. The Euclidean norm is denoted by ‖ · ‖. Denote by z := {(xi, yi) : i ∈ Nn} a
training set of n labeled examples with input xi ∈ Rd, class label yi (not necessary binary) and let
xij = xi − xj .

Let P = (P`k)`,k∈Nd
= (P1, P2, . . . , Pd)> be a d× d transformation matrix. Denote by x̂i = Pxi

for any i ∈ Nn and by x̂ = {x̂i : i ∈ Nn} the transformed d × n data matrix. The linear
transformation matrix P induces a distance matrix M = P>P which defines a distance between xi

and xj given by
dM (xi, xj) = (xi − xj)>M(xi − xj).

Our sparse metric learning model is based on two principal hypotheses: 1)a good choice of distance
matrix M should preserve the distance structure, i.e. the distance between similar examples should
be relatively smaller than between dissimilar examples; 2) a good distance matrix should also be
able to effectively remove noise leading to dimension reduction.

For the first hypothesis, the distance structure in the transformed space can be specified, for example,
by the following constraints:

‖P (xj − xk)‖2 ≥ ‖P (xi − xj)‖2 + 1,∀(xi, xj) ∈ S and (xj , xk) ∈ D, (1)

where S denotes the similarity pairs and D denotes the dissimilarity pairs based on the label infor-
mation. Equivalently,

‖x̂j − x̂k)‖2 ≥ ‖x̂i − x̂j‖2 + 1,∀(xi, xj) ∈ S and (xj , xk) ∈ D. (2)

For the second hypothesis, we use L1 sparse regularization to give a sparse solution. This regulariza-
tion has various applications ranging from variable selection to dimension reduction and low-ranked
matrix factorization [1, 2, 3, 12, 20]. Specifically, we can enforce the L1-norm across the vec-
tor (‖P1‖, . . . , ‖Pd‖), i.e.

∑
`∈Nd

‖P`‖ with ‖P`‖ = (
∑

k∈Nd
P 2

`k)
1
2 which will yield row-vector

(feature) sparsity of x̂. Let W = P>P = (W1, . . . , Wd) and we can easily show that

W` ≡ 0 ⇐⇒ P` ≡ 0.

Motivated by this observation, we can enforce L1-norm regularization across the vector
(‖W1‖, . . . , ‖Wd‖) instead of L1-regularization over vector (‖P1‖, . . . , ‖Pd‖). However, a low-
dimensional projected space x̂ does not mean that rows of P should be sparse. Ideally, we expect
that the principal component of x̂ can be sparse. Hence, we introduce an extra orthonormal trans-
formation U ∈ Od and let x̂i = PUxi. Denote a set of triplets T by

T = {τ = (i, j, k) : i, j, k ∈ Nn , (xi, xj) ∈ S and (xj , xk) ∈ D}. (3)

By introducing slack variables ξ, we propose the following sparse metric learning formulation:

min
U∈Od

min
W∈Sd

+

∑
τ ξτ + γ||W ||2(2,1)

s.t. 1 + x>ijU
>WUxij ≤ x>kjU

>WUxkj + ξτ ,

ξτ ≥ 0, ∀τ = (i, j, k) ∈ T , and W ∈ Sd
+.

(4)

where ||W ||(2,1) =
∑

`(
∑

k w2
`k)

1
2 denotes the (2, 1)-norm of W . A similar mixed (2, 1)-norm

regularization was used in [1, 17] for multi-task learning and multi-class classification to learn the
sparse representation shared across different tasks or classes.
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2.1 Equivalent Saddle Representation

We now turn our attention to an equivalent saddle (min-max) representation for sparse metric learn-
ing (4) which is essential for developing optimization algorithms in the next section. To this end, we
need the following lemma which develops and extends a similar version in multi-task learning [1, 2]
to the case of learning a positive semi-definite distance matrix.
Lemma 1. Problem (4) is equivalent to the following convex optimization problem

min
Mº0

∑

τ=(i,j,k)∈T
(1 + x>ijMxij − x>kjMxkj)+ + γ(Tr(M))2 (5)

Proof. Let M = UWU> in equation (4) and then W = U>MU . Hence, (4) is reduced to the
following

min
M∈Sd

+

min
U∈Od

∑
τ

ξτ + γ||U>MU ||2(2,1) (6)

s.t. x>ijMxij ≤ x>kjMxkj + ξτ ,

ξτ ≥ 0 ∀τ = (i, j, k) ∈ T , and M ∈ Sd
+.

Now, for any fixed M in equation (6), by the eigen-decomposition of M there exits Ũ ∈ Od such
that M = Ũ>λ(M)Ũ . Here, the diagonal matrix λ(M) = diag(λ1, λ2, . . . , λd) where λi is the i-th
eigenvalue of M . Let V = ŨU ∈ Od, and then we have

min
U∈Od

||U>MU ||(2,1) = min
U∈Od

||(ŨU)>λ(M)ŨU ||(2,1) = min
V ∈Od

||V >λ(M)V ||(2,1). (7)

Observe that

||V >λ(M)V ||(2,1) =
∑

i(
∑

j(
∑

k VkiλkVkj)2)
1
2

=
∑

i

(∑
k,k′(

∑
j VkiVk′i)λkVkjλk′Vk′j

) 1
2

=
∑

i

(∑
k λ2

kV 2
ki

) 1
2

(8)

where, in the last equality, we use the fact that V ∈ Od, i.e.
∑

j VkjVk′j = δkk′ . Applying Cauchy-

Schwartz’s inequality implies that
∑

k λkV 2
ki ≤

(∑
k λ2

kV 2
ki

) 1
2 (

∑
k V 2

ki)
1
2 =

(∑
k λ2

kV 2
ki

) 1
2 . Putting

this back into (8) yields ||V >λ(M)V ||(2,1) ≥
∑

i

∑
k λkV 2

ki =
∑

k λk = Tr(M), where we use
the fact V ∈ Od again. However, if we select V to be identity matrix Id, ||V >λ(M)V ||(2,1) =
Tr(M). Hence, minV ∈Od ||V >λ(M)V ||(2,1) = Tr(M). Putting this and equation (7) together,
from equation (6) the result follows.

From the above lemma, we are ready to present an equivalent saddle (min-max) representation of
problem (4). First, let Q1 = {uτ : τ ∈ T , 0 ≤ uτ ≤ 1} and Q2 = {M ∈ Sd

+ : Tr(M) ≤ (T/γ)
1
2 }

where T is the cardinality of triplet set T i.e. T = #{τ ∈ T }.
Theorem 1. Problem (5) is equivalent to the following saddle representation

min
u∈Q1

max
M∈Q2

{
〈

∑

τ=(i,j,k)∈T
uτ (xjkx>jk − xijx

>
ij),M〉 − γ(Tr(M))2

}
−

∑

t∈T
uτ (9)

Proof. Suppose that M∗ is an optimal solution of problem (5). By its definition, there holds
γ(Tr(M∗))2 ≤ ∑

τ∈T (1+x>kjMxik−x>kjMxkj)+ + γ(Tr(M))2 for any M º 0. Letting M = 0
yields that Tr(M∗) ≤ (T/γ)

1
2 . Hence, problem (5) is identical to

min
M∈Q2

∑

τ=(i,j,k)∈T
(1 + x>ijMxij − x>kjMxkj)+ + γ(Tr(M))2. (10)

Observe that s+ = max{0, s} = maxα{sα : 0 ≤ α ≤ 1}. Consequently, the above equation can
be written as

min
M∈Q2

max
0≤u≤1

∑

τ∈T
uτ (1 + x>kjMxik − x>ijMxij) + γ(Tr(M))2.
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By the min-max theorem (e.g. [5]), the above problem is equivalent to

min
u∈Q1

max
M∈Q2

{∑

τ∈T
uτ (−x>ijMxij + x>jkMxjk)− γ(Tr(M))2

}
−

∑

τ∈T
ut.

Combining this with the fact that x>jkMxjk − x>ijMxij = 〈xjkx>jk − xijx
>
ij ,M〉 completes the

proof of the theorem.

2.2 Related Work

There is a considerable amount of work on metric learning. In [9], an information-theoretic approach
to metric learning (ITML) is developed which equivalently transforms the metric learning problem
to that of learning an optimal Gaussian distribution with respect to an relative entropy. The method
of Relevant Component analysis (RCA)[7] attempts to find a distance metric which can minimize
the covariance matrix imposed by the equivalence constraints. In [24], a distance metric for k-means
clustering is then learned to shrink the averaged distance within the similar set while enlarging the
average distance within the dissimilar set simultaneously. All the above methods generally do not
yield sparse solution and only work within their special settings. There are many other metric
learning approaches in either unsupervised or supervised learning setting, see [25] for a detailed
review. We particularly mention the following work which is more related to our sparse metric
learning model (4).

• Large Margin Nearest Neighbor (LMNN) [22, 23]: LMNN aims to explore a large margin nearest
neighbor classifier by exploiting nearest neighbor samples as side information in the training set.
Specifically, let Nk(x) denotes the k-nearest neighbor of sample x and define the similar set S =
{(xi, xj) : xi ∈ N (xj), yi = yj} and D = {(xj , xk) : xk ∈ N (xj), yk 6= yj}. Then, recall that the
triplet set T is given by equation (3), the framework LMNN can be rewritten as the following:

min
Mº0

∑

τ=(i,j,k)∈T
(1 + x>ijMxij − x>kjMxkj)+ + γTr(CM) (11)

where the covariance matrix C over the similar set S is defined by C =
∑

(xi,xj)∈S(xi − xj)(xi −
xj)>. From the above reformulation, we see that LMNN also involves a sparse regularization term
Tr(CM). However, the sparsity of CM does not imply the sparsity of M , see the discussion in the
experimental section. Large Margin Component Analysis (LMCA) [21] is designed for conducting
classification and dimensionality reduction simultaneously. However, LMCA controls the sparsity
by directly specifying the dimensionality of the transformation matrix and it is an extended version
of LMNN. In practice, this low dimensionality is tuned by ad hoc methods such as cross-validation.

• Sparse Metric Learning via Linear Programming (SMLlp) [19]: the spirit of this approach is
closer to our method where the following sparse framework was proposed:

min
Mº0

∑

t=(i,j,k)∈T
(1 + x>ijMxij − x>kjMxkj)+ + γ

∑

`,k∈Nd

|M`k| (12)

However, the above 1-norm term
∑

`,k∈Nd
|M`k| can only enforce the element sparsity of M . The

learned sparse model would not generate an appropriate low-ranked principal matrix M for metric
learning. In order to solve the above optimization problem, [10] further proposed to restrict M to the
space of diagonal dominance matrices: a small subspace of the positive semi-definite cone. Such a
restriction would only result in a sub-optimal solution, although the final optimization is an efficient
linear programming problem.

3 Smooth Optimization Algorithms

Nesterov [15, 14] developed an efficient smooth optimization method for solving convex program-
ming problems of the form

min
x∈Q

f(x)

where Q is a bounded closed convex set in a finite-dimensional real vector space E. This smooth
optimization usually requires f to be differentiable with Lipschitz continuous gradient and it has an
optimal convergence rate of O(1/t2) for smooth problems where t is the iteration number.
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Unfortunately, we can not directly apply the smooth optimization method to problem (5) since the
hinge loss there is not continuously differentiable. One alternative way is to smooth out the hinge
loss using smoothing techniques [15]. Below we show the smooth optimization method can be
approached through the saddle representation (9).

3.1 Nesterov’s Smooth Optimization Approach

We briefly review the smooth optimization approach [15] in the setting of a general min-max prob-
lem. To this end, we introduce some useful notation. Let Q1 (resp. Q2) be non-empty convex
compact sets in finite-dimensional real vector spaces E1 (resp. E2) endowed with norm ‖ · ‖1
(resp. ‖ · ‖2). Let E∗

2 be the dual space of E2 with standard norm defined, for any s ∈ E∗
2 ,

by ‖s‖∗2 = max{〈s, x〉2 : ‖x‖2 = 1}, where the scalar product 〈·, ·〉2 denotes the value of s at
x. Let A : E1 → E∗

2 be a linear operator. Its adjoint operator A∗ : E2 → E∗
1 is defined, for

any x ∈ E2 and u ∈ E1, by 〈Au, x〉2 = 〈A∗x, u〉1. The norm of such a operator is defined by
‖A‖1,2 = maxx,u {〈Au, x〉2 : ‖x‖2 = 1, ‖u‖1 = 1} .

Now, consider the minimization problem

min
u∈Q1

{
φ(u) = φ̂(u) + max{〈Au, x〉2 − γd2(x) : x ∈ Q2}

}
. (13)

Here, φ̂(u) is assumed to be continuously differentiable and convex with Lipschitz continuous gra-
dient and d2(·) is a continuous proxy-function and strongly convex on Q2 with some convexity
parameter σ2 > 0. Let x0 = arg minx∈Q2 d2(x). Without loss of generality, assume d2(x0) = 0.
The strong convexity of d2(·) with parameter σ2 means that d2(x) ≥ 1

2σ2‖x − x0‖22. Since d2(·)
is strongly convex, the solution of the maximization problem φγ(u) := max{〈Au, x〉2 − γd2(x) :
x ∈ Q2} is unique and differentiable, see e.g. Theorem 4.1 of [6]. Let

xγ(u) = arg max{〈Au, x〉2 − γd2(x) : x ∈ Q2}. (14)

Indeed, it was established in Theorem 1 of [15] that the gradient of φγ is given by

∇φγ(u) = A∗xγ(u) (15)

and it has a Lipschitz constant L = ‖A‖21,2
γσ2

, i.e.

‖A∗xγ(u1)−A∗xγ(u2)‖∗1 ≤
‖A‖21,2

γσ2
‖u1 − u2‖1. (16)

Hence, the proxy-function d2 can be regarded as a generalized Moreau-Yosida regularization term
to smooth out the objective function.

As mentioned above, φ̂ and φγ in problem (13) is differentiable with Lipschitz continuous gradients.
Hence, we can apply the optimal smooth optimization scheme [15, Section 3] to the minimization
problem (13). The optimal scheme needs another proxy-function d(u) associated with Q1. Assume
that d(u0) = minu∈Q1 d(u) = 0 and it has convexity parameter σ i.e.

d(u) ≥ 1
2
σ‖u− u0‖1.

For this special problem (13), the primal solution u∗ ∈ Q1 and dual solution x∗ ∈ Q2 can be
simultaneously obtained, see Theorem 3 of [15]. Below, we will apply this general scheme to solve
the min-max representation (9) of the sparse metric learning problem (4), and hence solves the
original problem (5).

3.2 Smooth Optimization for Sparse Metric Learning

We now turn our attention to developing a smooth optimization approach for problem (5). Our main
idea is to write the saddle representation (9) in Theorem 1 as the special formulation (13).

To this end, firstly let E1 = RT with standard Euclidean norm ‖ · ‖1 = ‖ · ‖ and E2 = Sd with trace
norm (nuclear norm) defined, for any S ∈ Sd, by ‖S‖2 =

∑
i∈Nd

σi(S). Here, {σi(S) : i ∈ Nd}
are the singular values of S ∈ Sd which also equals the absolute value of its eigenvalues. Secondly,
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Smooth Optimization Algorithm for Sparse Metric Learning (SMLsm)
1. Let ε > 0, t = 0 and initialize u(0) ∈ Q1, M (−1) = 0 and let L = 1

2γ

∑
τ∈T

(
σmax(Xτ ))2

2. Compute Mγ(u(t)) and ∇φ(u(t)) = (−1 + 〈Xτ ,Mγ(u(t))〉 : τ ∈ T )
and let M (t) = t

t+2M (t−1) + 2
t+2Mγ(ut)

3. Compute z(t) = arg minz∈Q1

{
L
2 ‖u(t) − z‖2 +∇φ(u(t))>(z − u(t))

}

4. Compute v(t) = arg minv∈Q1

{
L
2 ‖u(0) − v‖2 +

∑t
i=0(

i+1
2 )

(
φ(u(i)) +∇φ(u(i))>(v − u(i))

)}

5. Set u(t+1) = 2
t+3v(t) + t+1

t+3z(t)

6. Set t ← t + 1. Go to step 2 until the stopping criterion less than ε

Table 1: Pseudo-code of first order Nesterov’s method

the closed convex sets are respectively given by Q1 = {uτ : τ ∈ T , 0 ≤ uτ ≤ 1} and Q2 = {M ∈
Sd

+ : Tr(M) ≤ (T/γ)
1
2 }. Then, define the proxy-function d2(M) = (Tr(M))2. Observe that, for

any M ∈ Sd
+, its singular values are the same as its eigenvalues which implies that

d2(M) = (Tr(M))2 = ‖M‖22.
Consequently, the proxy-function d2(·) is strongly convex on Q2 with convexity parameter σ2 = 2.
Finally, for any τ = (i, j, k) ∈ T , let Xτ = xjkx>jk − xijx

>
ij . In addition, we replace the variable x

by M and φ̂(u) = −∑
τ∈T uτ in (13) and the linear operator A : RT → (Sd)∗ is defined, for any

u ∈ RT , by
Au =

∑

τ∈T
uτXτ . (17)

With the above preparations, the saddle representation (9) exactly matches the special structure (13)
and the norm of the linear operator A can be estimated as follows.

Lemma 2. Let the linear operator A be defined as above, then

‖A‖1,2 ≤
(∑

τ∈T

(
σmax(Xτ ))2

) 1
2
. (18)

where, for any M ∈ Sd, σmax(M) denotes the maximum singular value of M .

Proof. Recall the property of singular values (see [13, Page 334] or [4, Page 14]), for any X, Y ∈
Sd, that Tr(XY ) ≤ ∑

i∈Nd
σi(XY ) ≤ ∑

i∈Nd
σi(X)σi(Y ) if σi(X) and σi(Y ) are respectively

singular values of X and Y in non-decreasing order. Hence, for any u ∈ Q1 and M ∈ E2 = Sd

there holds

Tr
((∑

τ∈T uτXτ

)
M

)
≤ σmax

(∑
τ∈T uτXτ

)
‖M‖2 ≤ ‖M‖2

∑
τ∈T uτ σmax(Xτ )

≤ ‖M‖2‖u‖
(∑

τ∈T (σmax(Xτ ))2
) 1

2
,

where, in the second to last inequality, we used the property of singular values (e.g. Page 196 in [13])
that σmax(A + B) ≤ σmax(A) + σmax(B) for any A,B ∈ Sn. Combining the above inequality
with the definition that ‖A‖1,2 = max

{
Tr

(
(
∑

τ∈T uτXτ )M
)

: ‖u‖ = 1, ‖M‖2 = 1
}

completes
the proof of the lemma.

In some cases, the SVD computation used in equation (18) is time-consuming when the set of large
margin constraints T is large. We can further bound the singular values by the Frobenius norm of
Xτ i.e. σmax(Xτ ) ≤ 〈Xτ , Xτ 〉 1

2 , ∀τ ∈ T .

We now can adapt the smooth optimization [15, Section 3 and Theorem 3] to solve our saddle
formulation (9). To this end, let the proxy-function d in Q1 be the standard Euclidean norm i.e. for
some u0 ∈ Q1 ⊆ RT ,

d(u) = ‖u− u0‖2.
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The smooth optimization pseudo-code for problem (9) (equivalently problem (5)) is outlined in
Table 1. One can stop the algorithm by monitoring the relative change of the objective function or
change in the dual gap.

The efficiency of Nesterov’s smooth optimization largely depends on Steps 2, 3, and 4 in Table 1.
Steps 3 and 4 can be solved straightforward where z(t) = min(max(0, u(t) −∇φ(u(t))/L), 1) and
v(t) = min(max(0, u(0) −∑t

i=0(i + 1)∇φ(u(i))/2L), 1). The solution Mγ(u) in Step 2 involves
the following problem

Mγ(u) = arg max{〈
∑

τ∈T
uτXτ ,M〉 − γ(Tr(M))2 : M ∈ Q2}. (19)

The next lemma shows it can be efficiently solved by quadratic programming (QP).
Lemma 3. Problem (19) is equivalent to the following

s∗ = arg max
{∑

i∈Nd

λisi − γ
(∑

i∈Nd

si

)2

:
∑

i∈Nd

si ≤ (T/γ)
1
2 , and , si ≥ 0 ∀i ∈ Nd

}
(20)

where λ = (λ1, . . . , λd) are the eigenvalues of
∑

t∈T utXt. Moreover, if we denotes the eigen-
decomposition

∑
t∈T utXt by

∑
t∈T utXt = Udiag(λ)U> with some U ∈ Od then the optimal

solution of problem (19) is given by Mγ(u) = Udiag(s∗)U>.

Proof. We know from Von Neumann’s inequality (see [13] or [4, Page 10]), for all X, Y ∈ Sd,
that Tr(XY ) ≤ ∑

i∈Nd
λi(X)λi(Y ) where λi(X) and λi(Y ) are the eigenvalues of X and Y in

non-decreasing order, respectively. The equality is attained whenever X = Udiag(λ(X))U>, Y =
Udiag(λ(Y ))U> for some U ∈ Od. The desired result follows by applying the above inequality
with X =

∑
τ∈T uτXτ and Y = M.

It was shown in [15] that the iteration complexity is of O(1/
√

ε) for finding a ε-optimal solu-
tion. This is usually much better than the standard gradient descent with iteration complexity typi-
cally O(1/ε). As listed in Table 1, the complexity for each iteration mainly depends on the eigen-
decomposition on

∑
t∈Nt

utXt and the quadratic programming to solve problem (19) which has
complexity O(d3). Hence, the overall iteration complexity of the smooth optimization approach for
sparse metric learning is of the order O(d3/

√
ε) for finding an ε-optimal solution.

4 Experiments

In this section we compared our proposed method with three other methods including (1) the LMNN
method [22], (2) the Sparse Metric Learning via Linear Programming (SMLlp) [19], (3) the Eu-
clidean distance based k-Nearest Neighbor (KNN) method (called Euc for brevity). We also imple-
mented the iterative sub-gradient descent algorithm [23] to solve the proposed framework (5) (called
SMLgd) in order to evaluate the efficiency of the proposed smooth optimization algorithm SMLsm.
We try to exploit all these methods to learn a good distance metric and a KNN classifier is used to
examine the performance of these different learned metrics.

The comparison is done on four benchmark data sets: Wine, Iris, Balance Scale, and Ionosphere,
which were obtained from the UCI machine learning repository [16]. We randomly partitioned
the data sets into a training and test sets by using a ratio 0.85. We then trained each approach
on the training set, and performed evaluation on the test sets. We repeat the above process 10
times and then report the averaged result as the final performance. All the approaches except the
Euclidean distance based on KNN need to define a triplet set T before training. Following [19], we
randomly generated 1500 triplets for SMLsm, SMLgd, SMLlp, and LMNN. The number of nearest
neighbors was adapted via cross validation for all the methods in the range of {1, 3, 5, 7}. The
trade-off parameter for SMLsm, SMLgd, SMLlp, and LMNN was also tuned via cross validation
from {10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102}.

The first part of our evaluations focuses on testing the learning accuracy. The result can be seen in
the upper row of Figure 1. Clearly, the proposed SMLsm demonstrates best performance. SMLgd
showed different results with SMLsm due to the different optimization methods, which we will

7



discuss shortly in Figure 1 (i)-(l). We also report the dimension reduction in the middle row of
Figure 1, i.e., (e)-(h). It is observed that our model outputs the most sparse metric. This validates the
advantages of our approach. That is, our method directly learns both an accurate and sparse distance
metric simultaneously. In contrast, other methods only touch this topic marginally: SMLlp is not
optimal, as they exploited the one-norm regularization term and also relaxed the learning problem;
LMNN aims to learn a metric with a large-margin regularization term, which is not directly related
to sparsity of the distance matrix. Finally, in order to examine the efficiency of the proposed smooth
optimization algorithm, we plot the convergence graphs of SMLsm versus those of SMLgd in the
last row of Figure 1, i.e., (i)-(l). As observed, SMLsm converged much faster than SMLgd in all the
data sets. SMLgd sometimes oscillated and may incur a long tail due to the non-smooth nature of
the hinge loss. For some data sets, it converged especially slow, which can be observed in Figure (k)
and (l).
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Figure 1: Performance comparison among different methods. The upper row presents the average
error rates, the middle row plots the average dimensionality used in different methods, while the
lower row gives the convergence graph for the sub-gradient algorithm and the proposed smooth
optimization algorithm.

5 Conclusion

In this paper we proposed a novel regularization framework for sparse metric learning. This model
was realized by a mixed-norm regularization term over a distance matrix which is non-convex. Us-
ing its special structure, it was shown to be equivalent to a convex min-max representation involving
a trace norm regularization. We further developed an efficient Nesterov’s first-order optimization
approach [14, 15] for our metric learning model, which has an optimal convergence of rateO(1/t2)
where t is the iteration number. Experimental results on various datasets show that our sparse metric
learning framework outperforms other state-of-the-art methods with higher accuracy and signifi-
cantly smaller dimensionality. In the future, we are planning to apply our model to large-scale
datasets with higher dimensional features.
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