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We develop a novel generalization bound for learning the kernel prob-
lem. First, we show that the generalization analysis of the kernel learn-
ing problem reduces to investigation of the suprema of the Rademacher
chaos process of order 2 over candidate kernels, which we refer to as
Rademacher chaos complexity. Next, we show how to estimate the em-
pirical Rademacher chaos complexity by well-established metric entropy
integrals and pseudo-dimension of the set of candidate kernels. Our new
methodology mainly depends on the principal theory of U-processes and
entropy integrals. Finally, we establish satisfactory excess generalization
bounds and misclassification error rates for learning gaussian kernels
and general radial basis kernels.

1 Introduction

Kernel methods such as support vector machines (SVM) have been ex-
tensively applied to supervised learning tasks such as classification and
regression (see, e.g., Schölkopf & Smola, 2002; Shawe-Taylor & Cristianini,
2004; Cucker & Zhou, 2007; Steinwart & Christmann, 2008). The perfor-
mance of a kernel machine largely depends on the data representation via
the choice of kernel function. Hence, one central issue in kernel methods is
kernel selection.

Kernel learning can range from the width parameter selection of gaus-
sian kernels to obtaining an optimal linear combination from a set of finite
candidate kernels. The latter is often referred to as multiple kernel learn-
ing (MKL) in machine learning and nonparametric Group Lasso (Bach,
2008) in statistics. Lanckriet, Cristianini, Bartlett, Ghaoui, and Jordan (2004)
pioneered work on MKL and proposed to automatically learn a linear com-
bination of candidate kernels for the case of SVMs using a semidefinite
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programming (SDP) approach. Similar problems studied recently include
hyperkernels (Ong, Smola, & Williamson, 2005), Bayesian probabilistic ker-
nel learning models (Girolami & Rogers, 2005), kernel discriminant analy-
sis (Ye, Ji, & Chen, 2008) and information-theoretic data integration (Ying,
Huang, & Campbell, 2009). Such MKL formulations have been success-
fully demonstrated in combining multiple heterogeneous data sources to
enhance biological inference (Lanckriet et al., 2004; Damoulas & Girolami,
2008; Ying et al., 2009).

MKL models usually learn an optimal combination from a finite set of
candidate kernels. A general regularization framework including kernel
hyperparameter learning and MKL was formulated in Micchelli and Pontil
(2005) and Wu, Ying, and Zhou (2006) with a potentially infinite number of
candidate kernels, which is generally referred to as the learning the kernel
problem. Specifically, let Nn = {1, 2, . . . , n} for any n ∈ N, and we are inter-
ested in the classification problem on the input space X ⊆ R

d and output
space Y = {±1}. The relation between input X and output Y is specified by
a set of training samples z = {zi = (xi , yi ) : xi ∈ X, yi ∈ Y, i ∈ Nn} that are
identically and independently distributed (i.i.d.) according to an unknown
distribution ρ on Z = X × Y. Let K be a prescribed (possible infinite) set
of candidate (base) kernels and denote the candidate reproducing kernel
Hilbert space (RKHS) with kernel K by HK with norm ‖ · ‖K . In addition,
we always assume that the quantity κ := supK∈K,x∈X

√
K (x, x) is finite. Then

the general kernel learning scheme (Micchelli & Pontil, 2005; Wu et al., 2006)
can be cast as a two-layer minimization problem:

f φ
z = arg min

K∈K
min
f ∈HK

{
1
n

∑
i∈Nn

φ
(
yi f (xi )

)+ λ‖ f ‖2
K

}
. (1.1)

Here, φ : R → [0,∞) is a loss function for classification, and λ is a positive
regularization parameter. We use the superscript φ of f φ

z to emphasize that
the solution f φ

z is produced by scheme 1.1 with loss function φ. When the
loss function φ is the hinge loss and K is the linear combination of the set
of finite base kernels {K� : � ∈ Nm}, that is, K := {∑�∈Nm

λ�K� :
∑

�∈Nm
λ� =

1, λ� ≥ 0, ∀� ∈ Nm}, then the kernel learning framework 1.1 is reduced to
the standard margin-based MKL formulation (Lanckriet et al., 2004). If K =
{e−σ‖x−t‖2

: σ > 0}, it is reduced to the formulation for learning the gaussian
kernel hyperparameter (Chapelle, Vapnik, Bousquet, & Mukherjee, 2002).

Statistical generalization analysis of learning the kernel problem 1.1 was
pursued by Bousquet and Herrmann (2003), Lanckriet et al. (2004), Ying and
Zhou (2007), Micchelli, Pontil, Wu, and Zhou (2005), and Srebro and Ben-
David (2006). In this letter, we leverage Rademacher complexity bounds
for empirical risk minimization (ERM) and for SVM with a single kernel
(Bartlett & Mendelson, 2002; Bartlett, Jordan, & McAuliffe, 2006; Koltchin-
skii & Panchenko, 2002) and develop a novel generalization bound for
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kernel learning problem 1.1. In particular, we show that generalization
analysis of the kernel learning algorithms reduces to investigation of the
suprema of the Rademacher chaos process of order 2 over candidate kernels,
which we refer to as Rademacher chaos complexity. Next, we show how to
estimate the empirical Rademacher chaos complexity by well-established
metric entropy integrals and pseudo-dimension of the set of candidate ker-
nels. Our new methodology mainly depends on the principal theory of
U-processes (De La Peña & Giné, 1999). A preliminary version of this letter
appeared in COLT conference proceedings (Ying & Campbell, 2009).

This letter is organized as follows. In section 2 we illustrate our main
theorems. The main proofs for theorems are given in sections 3 and 4.
Explicit error rates with examples for learning gaussian kernels and radial
basis kernels are given in section 5. In section 6, we discuss related work and
compare our results with those in the literature. The last section concludes
the letter.

2 Main Results

In this section we illustrate our main contributions.

2.1 Main Theorems. The true error or generalization error is defined as

Eφ( f ) =
∫ ∫

X×Y
φ(yf (x))dρ(x, y),

and the target function f φ
ρ is defined by f φ

ρ = arg min f Eφ( f ). Let the em-
pirical error Ez be defined, for any f , by

Eφ
z ( f ) = 1

n

∑
j∈Nn

φ(yj f (xj )).

For brevity, throughout this letter, we restrict our interest to a large class of
loss functions for classification (Wu et al., 2006; see also a general definition
of classification loss functions in Bartlett et al., 2006).

Definition 1. A function φ: R → [0,∞) is called a normalized classifying loss if
it is convex, φ′(0) < 0, inft∈Rφ(t) = 0, and φ(0) = 1.

Our target is to bound the true error by the empirical error. To this end,
let the union of the unit ball of candidate RKHSs be denoted by

BK := { f : f ∈ HK and ‖ f ‖K ≤ 1, K ∈ K}.
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By the definition of f φ
z , we get, for some RKHS HK , that 1

n

∑n
i=1 φ

(yi f φ
z (xi )) + λ‖ f φ

z ‖2
K ≤ 1

n

∑n
i=1 φ(0) + λ‖0‖2

K = 1. Hence, ‖ f φ
z ‖K ≤ √

1/λ.

This implies, for any samples z, that

f φ
z ∈ Bλ := 1√

λ
BK :=

{
f√
λ

: f ∈ BK

}
. (2.1)

Hence, ‖ f φ
z ‖∞ < κ

√
1/λ. Finally, for a Lipschitz continuous function ψ :

R → [0,∞), we need the constant defined by

Mψ

λ = sup
{
|ψ(t)|: ∀|t| ≤ κ

√
1/λ

}
, (2.2)

and denote its local Lipschitz constant by

Cψ

λ = sup

{
|ψ(x) − ψ(x′)|

|x − x′| : ∀|x|, |x′| ≤ κ

√
1
λ

}
. (2.3)

If ψ = φ is convex, then φ’s left derivative φ′
− and the right one φ′

+ are well
defined, and Cφ

λ is identical to Cφ
λ = sup{max(|φ′

−(t)|, |φ′
+(t)|): ∀|t| ≤ κ

√
1/λ}.

Our generalization analysis depends on the suprema of the homoge-
neous Rademacher chaos of order 2 over a class of functions defined as
follows (see section 3.2 in De La Peña and Giné, 1999, for a general defini-
tion of Rademacher chaos of order m for any m ∈ N).

Definition 2. Let F be a class of functions on X × X, and {εi : i ∈ Nn} are
independent Rademacher random variables. Also, x = {xi : i ∈ Nn} are independent
random variables distributed according to a distribution μ on X. The homogeneous
Rademacher chaos process of order 2, with respect to the Rademacher variable ε, is a
random variable system defined by {Û f (ε) = 1

n

∑
i, j∈Nn,i< j εiε j f (xi , xj ): f ∈ F }.

We refer to the expectation of its suprema,

Ûn(F ) = Eε

[
sup
f ∈F

|Û f (ε)|
]

as the empirical Rademacher chaos complexity over F .

It is worth mentioning that the Rademacher process { 1√
n

∑
i∈Nn

εi f (xi ) :
f ∈ F } for Rademacher averages can be regarded as a homogeneous
Rademacher chaos process of order 1. A good application of U-processes
to the generalization analysis of ranking and scoring problem was recently
developed by Clémencon, Lugosi, and Vayatis (2008).
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Our first main result shows that the excess generalization error of MKL
algorithms can be bounded by the empirical Rademacher chaos complexity
over the set of candidate kernels:

Theorem 1. Let φ be a normalized classifying loss. Then for any δ ∈ (0, 1), with
probability at least 1 − δ, there holds

Eφ
(

f φ
z

) − Eφ
z

(
f φ
z

)
≤ 2Cφ

λ

(
2Ûn(K)

λn

) 1
2

+ 2κCφ
λ

(
1

nλ

) 1
2

+ 3Mφ
λ

(
ln( 2

δ
)

n

) 1
2

. (2.4)

Theorem 1 is proved in section 3.
Now we apply the well-established theory of U-processes to estimate

Rademacher chaos complexity by entropy integrals. To this end, let G be
a set of functions on X × X and x = {xi ∈ X : i ∈ Nn}, and define the l2

empirical metric of two functions f, g ∈ G by

dx( f, g) =
(

1
n2

∑
i, j∈Nn,i< j

| f (xi , xj ) − g(xi , xj )|2
) 1

2

.

The empirical covering number N (G, dx, η) is the smallest number of balls
with radius η required to cover G. The empirical Rademacher chaos com-
plexity Ûn(K) can be bounded by the metric entropy integral as follows:

Theorem 2. For any x = {xi : i ∈ Nn}, there holds

Ûn(K) ≤ κ2 + 24e
∫ κ2

0
log [1 + N (K, dx, δ)] dδ.

Theorem 2 is proved in section 4. Theorem 2 suggests that if logN (K,

dx, ε) = O(ε−p) with some 0 ≤ p < 1, then the Rademacher chaos complex-
ity Ûn(K) is uniformly bounded. To estimate the covering number, a simple
case would bound it by the number of candidate kernels. For example, if

Kfinite = {K� : � ∈ Nm}, (2.5)

then N (K, dx, ε) ≤ m and hence,

Ûn(Kfinite) ≤ κ2 + 24eκ2 log(m + 1) ≤ 25eκ2 log(m + 1),∀m ≥ 2. (2.6)

If the candidate kernel set has an infinite number of kernels, the cover-
ing number can be estimated further by capacity numbers such as the
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pseudo-dimension. For this purpose, we recall the definition of kernel
pseudo-dimension of a class of kernel functions on the product space X × X
(see Anthony & Bartlett, 1999).

Definition 3. Let K be a set of reproducing kernel functions mapping from X × X
to R. We say that Sm = {(xi , ti ) ∈ X × X : i ∈ Nm} is pseudo-shattering by K if
there are real numbers {ri ∈ R : i ∈ Nm} such that for any b ∈ {−1, 1}m, there is
a function K ∈ K with property sgn(K (xi , ti ) − ri ) = bi for any i ∈ Nm. Then we
define a pseudo-dimension dK of K to be the maximum cardinality of Sm that is
pseudo-shattered by K.

We are now ready to estimate the Rademacher chaos complexity using
pseudo-dimensions:

Theorem 3. If the pseudo-dimension dK of the set of basis kernels is finite, then
we have that

N (K, dx, ε) ≤ 2
(

4eκ4

ε2

)dK

. (2.7)

Moreover, for any x = {xi : i ∈ Nn}, there holds

Ûn(K) ≤ (192e + 1)κ2dK. (2.8)

Theorem 3 is proved in section 4. For gaussian-type kernels, we can ex-
plicitly estimate the pseudo-dimension, and hence bound the empirical
Rademacher chaos complexities. To see this, consider the set of scalar can-
didate kernels given by

Kgau = {
e−σ‖x−t‖2

: σ ∈ (0,∞)
}
. (2.9)

The second class of candidate kernels is more general, as considered in
Micchelli et al. (2005): the whole class of radial basis kernels. Let M(R+) be
the class of probabilities on R

+. We consider the candidate kernel defined
by

Krbf =
{∫ ∞

0
e−σ‖x−t‖2

dp(σ ) : p ∈ M(R+)

}
. (2.10)

Overall, for the above specific sets of basis kernels, we can have the
following result:

Corollary 1. For the Rademacher chaos complexity of K, we respectively have the
following estimation:
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1. If K has a finite number of kernels given by equation 2.5 then

Ûn(K f inite ) ≤ 25eκ2 log(m + 1).

2. If K is the set of gaussian-type kernels given by equations 2.9 and 2.10, then

Ûn(Krb f ) ≤ Ûn(Kgau) ≤ (1 + 192e)κ2.

Corollary 1 is proved in section 4. When theorem 1 is combined with
corollary 1, the generalization bound can be summarized as follows: with
probability at least 1 − δ there holds,

Eφ
(

f φ
z

)− Eφ
z

(
f φ
z

) ≤ 4
(

Cφ
λ

(
(384e + 2)κ2dK

nλ

) 1
2

+ Mφ
λ

(
ln 2

δ

n

) 1
2
)

. (2.11)

Moveover, if K = Kfinite is given by equation 2.5, then the above bound is
reduced to

Eφ
(

f φ
z

)− Eφ
z

(
f φ
z

) ≤ 4
(

Cφ
λ

(
50eκ2 log(m + 1)

nλ

) 1
2

+ Mφ
λ

(
ln 2

δ

n

) 1
2
)

,

(2.12)

where m is the number of candidate kernels in K.
We conclude this section with an important remark on the bounds for

learning a convex hull of candidate kernels. All the above estimations and
bounds for the Rademacher chaos complexity hold true for the convex hull
of K defined by

conv
(
K
)

:=
⎧⎨
⎩
∑
j∈Np

λ�K�: K� ∈ K, λ� ≥ 0,
∑
�∈Np

λ� = 1, p ∈ N

⎫⎬
⎭ ,

since it is easy to check, by the definition of the Rademacher chaos com-
plexity, that

Ûn
(
conv

(
K
))≤ Ûn(K).

2.2 Error Rates in Classification. In this section we derive misclassifica-
tion error rates for multikernel regularized classifier sgn( f φ

z ) where sgn( f )
denotes the sign of f . The quality of a classifier C: X → Y is measured by
the misclassification error, which is defined by

R(C) :=
∫ ∫

X×Y
P(y 
= C(x)|x)dρ(x, y). (2.13)
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The target is to understand how sgn( f φ
z ) approximates the Bayes rule fc

(Devroye, Györfi, & Lugosi, 1997) defined by fc = arg infR(C). More specif-
ically, we aim to estimate the excess misclassification error,

R
(
sgn

(
f φ
z

))− R( fc).

As shown in Zhang (2004) and Bartlett et al. (2006), the excess misclassi-
fication error can usually be bounded by the excess generalization error:
Eφ( f φ

z )) − E( f φ
ρ ). To transfer generalization bounds in section 2.1 to the

misclassification error bounds, we introduce the error decomposition of
problem 1.1.

Let the empirical error Ez be defined, for any f , by Eφ
z ( f ) = 1

n

∑
j∈Nn

φ(yj f (xj )). We also introduce the regularization error defined by

D(λ) = inf
K∈K

inf
f ∈HK

{
Eφ( f ) − Eφ

(
f φ
ρ

)+ λ‖ f ‖2
K

}

and call the minimizer f φ
λ of the regularization error the regularization

function. In addition, we define the sample error Sz,λ by

Sz,λ = {
Eφ
(

f φ
z

)− Eφ
z

(
f φ
z

)}+ {
Eφ

z

(
f φ
λ

)− Eφ
(

f φ
λ

)}
.

From the standard error decomposition (Zhang, 2004; Bartlett et al., 2006;
Steinwart & Scovel, 2007; Ying & Zhou, 2007), we have that

Eφ
(

f φ
z

)− Eφ
(

f φ
ρ

) ≤ D(λ) + Sz,λ. (2.14)

Throughout this letter, for simplicity we always assume the existence of the
empirical solution f φ

z and the regularization function f φ
λ (see the discussion

in appendix B of Ying & Zhou, 2007).
We are now ready to state misclassification error rates. Henceforth, the

expression an = O(bn) means that there exists an absolute constant c such
that an ≤ cbn for all n ∈ N. We usually assume conditions on the distribution
ρ or some regularity condition on the target function f φ

ρ under which the
regularization error D(λ) decays polynomially. For instance, we can employ
the following condition (Chen, Wu, Ying, & Zhou, 2004):

Definition 4. We say that ρ is separable by {HK : K ∈ K} if there is some fsp ∈
HK̄ with some K̄ ∈ K such that yfsp(x) > 0 almost surely. It has separation
exponent θ ∈ (0,∞] if we can choose fsp and positive constants �, cθ such that
‖ fsp‖K̄ = 1 and

ρX{x ∈ X : | fsp(x)| < �t} ≤ cθ tθ , ∀t > 0. (2.15)
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Observe that condition 2.15 with θ = ∞ is equivalent to

ρX{x ∈ X : | fsp(x)| < γ t} = 0, ∀ 0 < t < 1.

That is, | fsp(x)| ≥ γ almost everywhere. Thus, separable distributions with
separation exponent θ = ∞ correspond to strictly separable distributions.
Other assumptions on the distribution ρ such as the geometric noise con-
dition introduced by Steinwart and Scovel (2005) are possible to achieve
polynomial decays of the regularization error.

Example 1. Let φ(t) = (1 − t)+ be the hinge loss and consider formulation
1.1 with K given by either Kgau or Krbf . Suppose that the separation condi-
tion holds true with exponent θ > 0. Then, by choosing λ = n− 2+θ

(2+3θ ) , for any
δ ∈ (0, 1), with probability at least 1 − δ, there holds

R
(
sgn

(
f φ

z

))− R( fc) ≤ O
([

ln
(

1
δ

)] 1
2
(

1
n

) θ
3θ+2

)
.

The proof of this example is postponed to section 5. Other examples
such as least square loss regression can be found in section 5. In this case,
we need to consider the function approximation (De Vito, Caponnetto, &
Rosasco, 2006; Smale & Zhou, 2004; Ye & Zhou, 2008) on a domain or low-
dimensional manifold of R

d .
In analogy to the data-dependent risk bounds of Rademacher averages

(Bartlett et al., 2006), we can get margin bounds for learning the kernel
problems using Rademacher chaos complexities:

Corollary 2. Let φ(t) = (1 − t)+ be the hinge loss and γ > 0, 0 < δ < 1, and
define the margin cost function by

ψ(t) =

⎧⎪⎪⎨
⎪⎪⎩

1, t ≤ 0

1 − t
γ

, 0 < t ≤ γ

0, t > γ

. (2.16)

Then, with probability at least 1 − δ, there holds

R
(
sgn

(
f φ

z

)) ≤ Eψ
z ( f φ

z ) + 2
(

2Ûn(K)
nλγ 2

) 1
2

+ 2κ

(
1

nλγ 2

) 1
2

+ 3
(

ln( 2
δ
)

n

) 1
2

.
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Corollary 2 is proved in section 5. When K has only a single kernel K ,
we have

Ûn(K ) ≤ Eε

∣∣∣∣∣1
n

∑
i, j∈Nn

εiε j K (xi , xj )

∣∣∣∣∣+
∣∣∣∣∣1
n

∑
i∈Nn

K (xi , xi )

∣∣∣∣∣
= Eε

1
n

∑
i, j∈Nn

εiε j K (xi , xj ) + 1
n

∑
i∈Nn

K (xi , xi ),

where the last equality follows from the positive semidefiniteness of kernel
K . Hence, the Rademacher chaos complexity can be estimated by

Ûn(K ) ≤ 2
n

∑
i∈Nn

K (xi , xi ) := 2
n

trace(K),

where K = (K (xi , xj ))i, j∈Nn . Consequently, corollary 2 implies that

R
(
sgn

(
f φ
z

)) ≤ Eψ
z

(
f φ
z

)+ 4
γ

√
trace(K)

n
√

λ
+ 2κ

(
1

nλγ 2

) 1
2

+ 3

(
ln( 2

δ
)

n

) 1
2

.

This coincides with the bound in Bartlett and Mendelson (2002) for the
single kernel case with solutions f φ

z in the function space { f = ∑
i∈Nn

αi K (xi , ·) : ‖ f ‖K ≤ 1√
λ
}.

We now present an example of margin bounds that can be directly
obtained by combining corollary 1 with corollary 2. To this end, for any
γ > 0, let

Rγ
z ( f ) = |{i : yi f (xi ) < γ }|

n
.

Example 2. Let φ(t) = (1 − t)+ be the hinge loss. Then, for any margin
γ > 0, we have the following estimation for gaussian-type kernel set and
the set of finite kernels:

1. If K = Kgau or K = Krb f then, with probability 1 − δ, there holds

R
(
sgn( f φ

z

))≤Rγ
z

(
f φ
z

)+ 2
(

(384e + 2)κ2

nλγ 2

) 1
2

+ 2κ

(
1

nλγ 2

) 1
2

+ 3
(

ln 2
δ

n

) 1
2

.
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2. If K is the convex hull of m candidate kernels, then, with probability
1 − δ,

R
(
sgn

(
f φ
z

))≤Rγ
z

(
f φ
z

)+ 2
(

50eκ2 log(m + 1)
nλγ 2

) 1
2

+ 2κ

(
1

nλγ 2

) 1
2

+ 3
(

ln 2
δ

n

) 1
2

.

3 Generalization Bounds by Rademacher Chaos

In this section we prove theorem 1, which states that the generaliza-
tion bound of MKL algorithm 1.1 can be bounded by well-established
Rademacher chaos of order 2. To this end, recall the definition of the ordinary
Rademacher averages (see, e.g., Bartlett & Mendelson, 2002; Bartlett, Bous-
quet, & Mendelson, 2005; Koltchinskii, 2001; Koltchinskii & Panchenko,
2002).

Definition 5. Let μ be a probability measure on � and F be a class of uniformly
bounded and measurable functions on �. For any n ∈ N, define the random variable
by

R̂n(F ) := 1√
n

sup
f ∈F

∣∣∣∣∣
∑
i∈Nn

εi f (zi )

∣∣∣∣∣,
where {zi : i ∈ Nn} are independent random variables distributed according to
μ and {εi : i = 1, . . . , n} are independent Rademacher random variables, that
is, P(εi = +1) = P(εi = −1) = 1/2. Also, we often call Rn(F ) := E[R̂n(F )] =
EμEε[Rn(F )] the Rademacher averages (complexity) over the class F.1

Hence, R̂n(F ) is the suprema of the Rademacher process { 1√
n

∑
i∈Nn

εi f (zi ): f ∈ F } indexed by F , which can also be regarded as the homo-
geneous Rademacher chaos process of order 1. Some useful properties of
Rademacher averages can be found in Bartlett and Mendelson (2002). Now
we assemble the necessary materials to obtain the main technical result:

Theorem 4. Let ψ be a Lipschitz continuous cost function satisfying inftψ(t) = 0
and ψ(0) = 1. LetBλ be defined by equation 2.1 and Mψ

λ , Cψ
λ be respectively defined

1The empirical Rademacher average is usually defined by R̂n(F ) := 1
n sup f ∈F

|
∑

i∈Nn
εi f (zi )|. For technical simplicity, we use its scaling version here.
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by equations 2.2 and 2.3. Then, with probability at least 1 − δ, there holds

sup
f ∈Bλ

[
Eψ ( f ) − Eψ

z ( f )
]

≤ 2Cψ
λ

(
2Ûn(K)

λn

) 1
2

+ 2κCψ
λ

(
1

nλ

) 1
2

+ 3Mψ
λ

(
ln( 2

δ
)

n

) 1
2

.

Similarly, with probability at least 1 − δ, we have

sup
f ∈Bλ

[
Eψ

z ( f ) − Eψ ( f )
]

≤ 2Cψ
λ

(
2Ûn(K)

λn

) 1
2

+ 2κCψ
λ

(
1

nλ

) 1
2

+ 3Mψ
λ

(
ln( 2

δ
)

n

) 1
2

.

Proof. By McDiarmid’s bounded difference inequality (see, e.g., Devroye
et al., 1997), with probability 1 − δ

2 we have that

sup
f ∈Bλ

[
Eψ ( f ) − Eψ

z ( f )
] ≤ E sup

f ∈Bλ

[
Eψ ( f ) − Eψ

z ( f )
]+ Mψ

λ

(
ln 2

δ

2n

) 1
2

.

(3.1)

The first term on the right-hand side of the above inequality can be estimated
by the standard symmetrization arguments. Indeed, with probability at
least 1 − δ

2 , there holds

E

[
sup
f ∈Bλ

(
Eψ ( f ) − Eψ

z ( f )
)] ≤ 2EEε

⎡
⎣sup

f ∈Bλ

1
n

∑
i∈Nn

εiψ(yi f (xi ))

⎤
⎦

≤ 2Eε

⎡
⎣sup

f ∈Bλ

1
n

∑
i∈Nn

εiψ(yi f (xi ))

⎤
⎦+ 2Mψ

λ

(
ln 2

δ

2n

) 1
2

, (3.2)

where the last inequality used again is McDiarmid’s bounded difference
inequality. Note that ‖ f ‖∞ ≤ κ

√
1/λ for any f ∈ Bλ. Then, from the defini-

tion of Cψ

λ given by equation 2.3, function ψ has a Lipschitz constant Cψ

λ .
Applying the contraction property of Rademacher averages (theorem 7 of
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Meir & Zhang, 2003) implies that, with probability 1 − δ
2 ,

Eε

[
sup
f ∈Bλ

∑
i∈Nn

εiψ(yi f (xi ))

]
≤ Eε sup

f ∈Bλ

∑
i∈Nn

εiψ(yi f (xi ))

≤ Cψ

λ Eε sup
f ∈Bλ

∑
i∈Nn

εi f (xi )

≤ Cψ

λ Eε

[
sup
f ∈Bλ

∑
i∈Nn

εi f (xi )

]
.

Also,

Eε sup
f ∈Bλ

∑
i∈Nn

εi f (xi ) = Eε

√
1
λ

sup
K∈K

sup
‖ f ‖K ≤1

〈∑
i∈Nn

εi Kxi , f

〉
K

)

≤
√

1
λ

Eε sup
K∈K

∣∣∣∣∣
∑

i, j∈Nn

εiε j K (xi , xj )

∣∣∣∣∣
1
2

≤
√

2n
λ

√
Ûn(K) +

√
1
λ

sup
K∈K

√
trace(K).

Putting all the above inequalities back into equation 3.2 yields

E

[
sup
f ∈Bλ

Eψ ( f ) − Eψ
z ( f )

]

≤ 2Cψ

λ

√
2Ûn(K)

λn
+ 2Cψ

λ κ

(
1
λn

) 1
2

+ 2Mψ

λ

(
ln 2

δ

2n

) 1
2

,

where we used the fact that trace(K) ≤ κ2n. Putting this back into inequality
3.1 yields the desired result.

By similar arguments as above, we can prove the second statement. This
completes the proof of the theorem.

We are ready to prove theorem 1:

Proof of theorem 1. Recall that fz ∈ Bλ, and note that φ is a normalized
classifying loss. Then, applying theorem 4 with ψ = φ implies inequality 2.4.

4 Estimating the Rademacher Chaos Complexity

In this section we discuss how to estimate the Rademacher chaos com-
plexity. First, parallel to the properties of Rademacher averages, it is useful
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to outline some properties of the Rademacher chaos complexity, some of
which may be interesting in their own right:

Proposition 1. Let F1, . . . , Fk, and H be classes of real functions on X × X.
Then the following holds true:

a. If F ⊆ H, then Ûn(F ) ≤ Ûn(H).
b. Ûn(conv(F)) = Ûn(F ).
c. For any c ∈ R, Ûn(c F ) = |c|Ûn(F ).
d. Ûn(

∑
i∈Nk

Fi ) ≤ ∑
i∈Nk

Ûn(Fi ).
e. For any 1 < q < p < ∞, the Khinchin-type inequality holds true:

(Eε|Û f (ε)|q )
1
q ≤ (Eε|Û f (ε)|p)

1
p

≤
( p − 1

q − 1

)
(Eε|Û f (ε)|q )

1
q .

Proof. Properties a, c, and d are directly from definition 2 of the Rademacher
chaos complexity. To prove property b, we note, for any m ∈ N, fk ∈ F , and
{λk : k ∈ Nm} satisfying

∑
k λk = 1 and λk ≥ 0, that

∣∣∣∣∣
∑

i, j,i< j

εiε j

∑
k∈Nm

λk fk(xi , xj )

∣∣∣∣∣≤
∑
k∈Nm

λk

∣∣∣∣∣
∑
i< j

εiε j fk(xi , xj )

∣∣∣∣∣
≤ sup

f ∈F

∣∣∣∣∣
∑
i< j

εiε j f (xi , xj )

∣∣∣∣∣.
Since λk, fk ∈ F are arbitrary, Ûn(conv(F)) ≤ Ûn(F ). The reverse inequality
is obvious, which completes the proof of the desired property b. The last
property is from theorem 3.2.2 of De La Peña and Giné (1999).

Now we are in a position to prove theorem 2 using standard chaining
arguments. The estimation of the Rademacher chaos complexity by entropy
integrals is a simple version of maximal inequalities based on metric entropy
(De La Peña & Giné, 1999, chapter 5); we give a proof for completeness. To
this end, letG be a set of functions on X × X and x = {xi ∈ X : i ∈ Nn}; define
the l2 empirical metric of two functions f, g ∈ G by

dx( f, g) =
⎛
⎝ 1

n2

∑
i, j∈Nn,i< j

| f (xi , xj ) − g(xi , xj )|2
⎞
⎠

1
2

.

The empirical covering number N (G, dx, η) is the smallest number of balls
with radius η required to cover G.



2872 Y. Ying and C. Campbell

We begin with a useful lemma that deals with a finite class of homoge-
neous Rademacher chaos of order 2:

Lemma 1. Let { f�: � ∈ NN} be a finite class of functions on X × X and {εi : i ∈
Nn} are independent Rademacher random variables. Consider the homogeneous
Rademacher chaos process of order 2 {Û f� (ε) = 1

n

∑
i, j∈Nn,i< j εiε j f�(xi , xj ) : � ∈

NN}. Then we have that

E

[
max
�∈NN

|Û f� (ε)|
]

≤ 2e log(1 + N) max
�∈NN

(
1
n2

∑
i< j

| f�(xi , xj )|2
) 1

2

,

where E[·] denotes the expectation with respect to the Rademacher variable ε.

Proof. By Jensen’s inequality,

e
λE

[
max�∈NN |Û f� (ε)|

]
− 1 ≤ E

[
eλ max�∈NN |Û f� (ε)| − 1

]
= E

[
max
�∈NN

(
eλ|Û f� (ε)| − 1

)]
(4.1)

≤
∑
�∈NN

E
[(

eλ|Û f� (ε)| − 1
)]

.

For any � ∈ NN, the term E[eλ|Û f� (ε)| − 1] can be estimated by the Khinchin-
type inequality (see property e in proposition 1) as follows:

E

[
eλ|Û f� (ε)| − 1

]
=
∑
k≥1

1
k!

λk
E
[|Û f� (ε)|k]

≤
∑
k≥1

1
k!

λkkk[
E|Û f� (ε)|2] k

2

≤
∑
k≥1

(eλ
[
E|Û f� (ε)|2] 1

2 )k . (4.2)

Here, in the second-to-last inequality of equation 4.2, we used the fact
that E[|Û f� (ε)|] ≤ E[|Û f� (ε)|2]

1
2 and, for k ≥ 2, the Khinchin-type inequal-

ity for homogeneous Rademacher chaos process of order 2: E[|Û f� (ε)|k] ≤
kk[E|Û f� (ε)|2]

k
2 . In the last inequality of equation 4.2, we used Stirling’s

inequality: e−kkk ≤ k!.
Now set λ = (2e max�∈NN [E|Û f� (ε)|2]

1
2 )−1. The above inequality can then

be bounded by

E

[
eλ|Û f� (ε)| − 1

]
≤
∑
k≥1

2−k = 1, ∀� ∈ NN.
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Putting this back into equation 4.1 yields

e
λE

[
max�∈NN |Û f� (ε)|

]
− 1 ≤ N.

Equivalently,

E

[
max
�∈NN

|Û f� (ε)|
]

≤ 2e log(1 + N) max
�∈NN

[
E|Û f� (ε)|2] 1

2 . (4.3)

Observe that

E|Û f� (ε)|2 = 1
n2

∑
i< j,i ′< j ′

E[εiε jεi ′ε j ′ f�(xi , xj ) f�(xi ′ , xj ′ )]

=
∑
i< j

f�(xi , xj )2/n2.

Plugging this back into inequality 4.3 completes the proof of the lemma.

Equipped with the above lemma, we can prove theorem 2 by the standard
chaining arguments. To this end, let D be the diameter of K with respect to
dx. Then

D = sup
K1,K2∈K

dx(K1, K2) ≤ 2 sup
K∈K

⎛
⎝ 1

n2

∑
i< j

|K (xi , xj )|2
⎞
⎠

1
2

≤ 2κ2.

Proof of theorem 2. For each k = 0, 1, 2, . . . , let K(k) be a minimal cover
of K of radius D2−k and the cardinality of K(k) denoted by |K(k)| =
N (K, dx, D2−k). Without loss of generality, choose some K0 ∈ K, and let
K(0) = {K0}. For any Rademacher variable ε, let

K ∗ = arg sup
K∈K

|ÛK (ε)|

and choose a K ∗
k ∈ K(k) whose distance to K ∗ is minimal. Obviously

dx(K ∗
k−1, K ∗

k ) ≤ dx(K ∗
k−1, K ∗) + dx(K ∗, K ∗

k )

≤ D2−(k−1) + D2−k = 3D2−k . (4.4)

Moreover, limk→∞ dx(K ∗, K ∗
k ) → 0. Hence,

sup
K∈K

|ÛK (ε)| = |ÛK ∗ (ε)| = |ÛK0 (ε) +
∑
k∈N

(ÛK ∗
k
(ε) − ÛK ∗

k−1
(ε))|,
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and therefore

E

[
sup
K∈K

|ÛK (ε)|
]

≤ E
[|ÛK0 (ε)|]+

∑
k∈N

E

⎡
⎣ max

(K ,K ′ )∈K(k)×K(k−1)

dx (K ,K ′ )≤3D2−k

|ÛK (ε) − ÛK ′ (ε)|
⎤
⎦

≤
⎛
⎝ 1

n2

∑
i< j

|K0(xi , xj )|2
⎞
⎠

1
2

+
∑
k∈N

E

⎡
⎣ max

(K ,K ′ )∈K(k)×K(k−1)

dx (K ,K ′ )≤3D2−k

|ÛK−K ′ (ε)|
⎤
⎦ .

Applying lemma 1, we have, for k ≥ 1, that

E

⎡
⎣ max

(K ,K ′ )∈K(k)×K(k−1)

dx (K ,K ′ )≤3e D2−k

|ÛK−K ′ (ε)|
⎤
⎦

≤ 6e D2−k log(1 + N
(
K, dx, D2−k)N (K, dx, D2−(k−1)))

≤ e D2−k log(1 + N (K, dx, D2−k))

Consequently,

Ûn(K) = E

[
sup
K∈K

|ÛK (ε)|
]

≤ κ2 +
∑
k≥1

12e D2−k log(1 + N (K, dx, D2−k))

≤ κ2 + 24e
∫ D/2

0
log (1 + N (K, dx, δ)) dδ.

Combining this with the estimation D ≤ 2κ2 completes the proof of
theorem 2.

It is worth mentioning that the above arguments hold true for the
suprema of homogeneous Rademacher chaos processes of order m and
a general function space F (not only the space of kernels). Here, the
Rademacher chaos processes of order 1 are reduced to the standard
Rademacher averages. The only difference in the proof is the Khinchin-type
inequality. For instance, for the homogeneous Rademacher chaos processe
{X f : f ∈ F } of order m, the general Khinchin-type inequality is given by

(Eε|X f (ε)|q )
1
q ≤ (Eε|X f (ε)|p)

1
p

≤
( p − 1

q − 1

) m
2
(Eε|X f (ε)|q )

1
q .
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By this inequality, we can show that in analogy to the proof of theorem 2,
the superma of a homogeneous Rademacher chaos process of order m is
bounded by the following entropy integral:

∫ D/2

0
[logN (K, dx, δ)]

m
2 dδ.

One can refer to Arcones and Giné (1993) and De La Peña and Giné (1999)
for more general entropy integrals to bound the suprema of Rademacher
chaos processes of order m for any m ∈ N.

Now we turn our attention to the proof of theorem 3 in section 2, which
states that the empirical covering number is further estimated by the shatter-
ing dimension (Alon, Ben-David, Cesa-Bianchi, & Haussler, 1997; Anthony
& Bartlett, 1999) of the set of candidate kernels.

Proof of theorem 3. For the first assertion, observe that the pseudo-
dimension is equivalent to the VC dimension of the following space
(Anthony & Bartlett, 1999, theorem 11.4),

{
((x, x′), t) ∈ X × X × R : g((x, x′), t) = sgn(t − K (x, x′)), K ∈ K

}
.

Combining this fact with (Bartlett, 2006, theorem 3.1), we have

N (K, dx, ε) ≤ 2
(

4eκ4

ε2

)dK

, (4.5)

which completes the proof of the first assertion.2

For the second assertion, we obtain from Theorem 2 and inequality 4.5
that

Ûn(K) ≤ κ2 + 24e
∫ κ2

0
log (1 + N (K, dx, ε)) dε

≤ κ2 + 24e
∫ κ2

0
ln

[
e
(

4eκ4

ε2

)dK
]

dε

≤ κ2 + 24eκ2 + 24e ln(4e)κ2dK + 24e
∫ κ2

0
ln
(

κ4

ε2

)dK

dε.

2A similar covering number bound was also established in Van der Vaart and Well-
ner (1996, theorem 2.6.7): there exists a universal constant C such that N (K, dx, ε) ≤
CdK(16e)dK ( κ2

ε
)2(dK−1). However, we failed to work out what is the universal constant C .
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Observe that

∫ κ2

0
ln
(

κ4

ε2

)dK

dε = 2κ2dK

∫ 1

0
ln

1
ε

dε = 4κ2dK.

Putting these estimates together implies that

Ûn(K) ≤ (24e + 1)κ2 + κ2(120e + 24e ln 4)dK ≤ (192e + 1)κ2dK,

which completes the proof of the theorem.

For the set of scalar gaussian kernels given by equation 2.9, we have the
following estimation:

Lemma 2. Let the set of basis kernels Kgau be given by equation 2.9. Then we
have dKgau = 1.

Proof. It is obvious that there exists at least one pair of points (x, t) ∈ X × X
such that it is pseudo-shattering by K. Now assume that two pairs of points
(x1, t1) and (x2, t2) are shattering by K. By definition 3 of pseudo-dimension,
there exist r1, r2 ∈ R and σ, σ ′ ∈ [0,∞) such that

e−σ‖x1−t1‖2
> r1, e−σ‖x2−t2‖2

< r2,

and

e−σ ′‖x1−t1‖2
< r1, e−σ ′‖x2−t2‖2

> r2.

Hence,

e−σ‖x1−t1‖2
> e−σ ′‖x1−t1‖2

, and e−σ‖x2−t2‖2
< e−σ ′‖x2−t2‖2

.

Equivalently σ < σ ′ and σ > σ ′, which is obviously a contradiction. Con-
sequently, the pseudo-dimension of Kgau is identical to 1.

We are ready to prove corollary 1 with an estimation of the Rademacher
chaos complexities of Kgau and Krbf:

Proof of corollary 1. The first statement follows directly from theorem 2
and the observation that N (Kfinite, dx, ε) ≤ m, where m is the number of
kernels in the set Kfinite.

Note that κ = 1 for gaussian kernels. Then the estimation of Ûn(Kgau) fol-
lows immediately by combining inequality 2.8 in theorem 3 with lemma 2.
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For the RBF kernels set Krbf, note, for any {xi : i ∈ Nn}, that

Ûn(Krbf) ≤ Eε sup
p∈M(R+)

∣∣∣ ∫ ∞

0

∑
i< j

εiε j e−σ‖xi −xj ‖2
dp(σ )

∣∣∣/n

≤ Eε sup
σ∈R+

∣∣∣∑
i< j

εiε j e−σ‖xi −xj ‖2
∣∣∣/n ≤ Ûn(Kgau).

This completes the proof of the corollary.

The estimation of pseudo-dimensions for gaussian kernels with covari-
ance matrices can be referred to Srebro and Ben-David (2006) and Anthony
and Bartlett (1999).

5 Deriving Error Rates in Classificaiton

We are now ready to derive explicit error rates for classification using the
above generalization bounds. In subsequent examples, we emphasize that
the set of base kernels is given by either gaussian kernels defined by equa-
tion 2.9 or the RBF kernels defined by equation 2.10.

We begin with the proofs of examples 1 and 2 in section 2.1. To this
end, we notice that by the definition of f φ

λ , we have Eφ( f φ
λ ) + λ‖ f φ

λ ‖2
K ≤

E(0) + λ‖0‖2
K = Eφ(0) = 1, which implies that ‖ f φ

λ ‖K ≤ √
1/λ.

Proof of example 1. First note, for the hinge loss, that Cφ
λ = 1 and Mφ

λ ≤
1 + κ√

λ
, and observe that Sz,λ ≤ sup f ∈Bλ

[Eφ( f ) − Eφ
z ( f )] + sup f ∈Bλ

[Eφ
z ( f ) −

Eφ( f )]. Then, combining theorem 4, corollary 1, and the error decomposition
2.14 together, with probability at least 1 − δ there holds that

Eφ
(

f φ
z

)− Eφ( fc) ≤ O

⎛
⎝( 1

nλ

) 1
2

+
(

ln 4
δ

nλ

) 1
2

⎞
⎠+ D(λ). (5.1)

In addition, we know from theorem 10 of Chen et al. (2004) that if the
distribution enjoys the weakly separation condition with exponent θ , then
the regularization error decays as D(λ) = O(λ

θ
θ+2 ). Let λ = n− θ+2

3θ+2 . Combin-
ing inequality 5.1 with the comparison inequality (e.g., Bartlett et al., 2006;
Zhang, 2004),

R
(
sgn

(
f φ
z

)) ≤ Eφ
(

f φ
z

)− Eφ( fc)

yields the desired result.
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Proof of corollary 2. The margin-based cost function ψ obviously satisfies
the conditions in theorem 4 with Cψ

λ = 1
γ

and Mψ

λ = 1. Since χy
=sgn( f (x)) ≤
ψ(yf (x)), there holds that R(sgn( f φ

z )) ≤ Eψ ( f φ
z ), which, combined with in-

equality 2.4 in theorem 1, yields the desired assertion.

Proof of example 2. The results can be directly obtained by combining
corollary 1 with corollary 2.

Now we turn our attention to general q -norm soft margin SVM losses
φ(t) = (1 − t)q

+ for q ∈ (1,∞) for classification. In this case, we know from
Chen et al. (2004) that the target function f φ

ρ becomes

f φ
ρ (x) = fq (x) = (1 + fρ(x))

1
q−1 − (1 − fρ(x))

1
q−1

(1 + fρ(x))
1

q−1 + (1 − fρ(x))
1

q−1

,

where fρ(x) := P(Y = 1|x) − P(Y = −1|x).

Example 3. Let φ(t) = (1 − t)q
+ for some q ∈ (1,∞), and suppose that the

separation condition holds true with exponent θ > 0. Then, choosing λ =
n− qθ

4+2(2q+1)θ with probability at least 1 − δ, there holds

R(sgn( f φ
z )) − R( fc) ≤ O

([
ln

1
δ

] 1
4

n− qθ

4+2(2q+1)θ

)
.

Proof. First observe that Cφ
λ ≤ (1 + 1√

λ
)q−1 and Mφ

λ ≤ (1 + κ√
λ

)q . Hence,
from theorem 4, corollary 1 and the error decomposition 2.14, we know,
for any λ ∈ (0, 1), that

Eφ
(

f φ
z

)− Eφ( fq ) ≤ O

⎛
⎝( 1

nλq

) 1
2

+
(

ln 4
δ

nλq

) 1
2

⎞
⎠+ D(λ).

Also, we know from Chen et al. (2004, theorem 10) that if the distribution
enjoys the weakly separation condition with exponent θ , then the regular-

ization error decays as D(λ) = O(λ
θ

θ+2 ). Letting λ = n− q (θ+2)
2+(2q+1)θ yields that

Eφ
(

f φ
z

)− Eφ( fq ) ≤ O
([

ln
1
δ

] 1
2
n− qθ

2+(2q+1)θ

)
.

Recall the comparison inequality (theorem 14 of Chen et al., 2004) for q -
norm SVM:

R
(
sgn

(
f φ
z

))− R( fc) ≤
√

2(Eφ( f φ
z ) − Eφ( fq )).
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Consequently, with probability at least 1 − δ, there holds

R
(
sgn

(
f φ
z

))− R( fc) ≤ O

⎛
⎝
[

ln
1
δ

] 1
4

n− qθ

4+2(2q+1)θ

⎞
⎠ ,

which completes the proof of the example.

Our last example is the least square loss for classification, which is exten-
sively studied in the single kernel case (Caponnetto & De Vito, 2007; De Vito
et al., 2006; Smale & Zhou, 2004; Zhang, 2004). In this case, in order to get
meaningful rates of the regularization error D(λ), we can assume that the
target function enjoys some Sobolev smoothness. Recall in the regression
case, the target function f φ

ρ = fρ(x) for any x ∈ X, usually referred to as the
regression function, and the nature of least square loss implies that

E
(

f φ
z

)− E( fρ) =
∫

X
| f φ

z (x) − fρ(x)|2dρX(x).

Example 4. Let X be a domain in R
d with Lipschitz boundary. Assume the

regression function fρ ∈ Hs(X) with some s > 0. Then the following holds
true:

1. If d/2 < s ≤ d/2 + 2, then for any 0 < ε < 2s − d , by taking λ =
n− 2s−ε

2(4s−d−2ε) , with probability at least 1 − δ, there holds

R
(
sgn

(
f φ
z

))− R( fc) ≤
(∫

X

∣∣ f φ
z (x) − fρ(x)

∣∣2dρX(x)
) 1

2

≤O

⎛
⎝[ ln

1
δ

] 1
4

n− 2s−d−ε
4(4s−d−2ε)

⎞
⎠ .

2. If X is bounded, ρX is the Lebesgue measure, and 0 < s ≤ 2, then by
choosing λ = n− 2s+d

2(4s+d) , with probability at least 1 − δ, there holds

R
(
sgn

(
f φ
z

))− R( fc) ≤
(∫

X

∣∣ f φ
z − fρ

∣∣2dρX(x)
) 1

2

≤O

⎛
⎝[ ln

1
δ

] 1
4

n− s
2(4s+d)

⎞
⎠ .

Proof. For the least square loss, we observe that Cφ
λ = 2(1 + 1√

λ
) and Mφ

λ ≤
(1 + κ√

λ
)2. Then we know from theorem 4, corollary 1, and the error
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decomposition 2.14 that

E
(

f φ
z

)− E( fρ) =
∫

X

∣∣ f φ
z (x) − fρ(x)

∣∣2dρX(x)

≤O
((

1
nλ2

) 1
2

+
(

ln 2
δ

nλ2

) 1
2

+ 1√
n

)
+ D(λ). (5.2)

Then, for the first assertion we know from proposition 22 of Ying and
Zhou (2007) that

D(λ) ≤ O
(
λ

2s−ε−d
2s−ε

)
.

Putting the above two equations together and letting λ = n− 2s−ε
2(4s−2ε−d) implies

that

∫
X

| f φ
z (x) − fρ(x)|2dρX(x) ≤ O

([
ln

1
δ

] 1
2

n− 2s−d−ε
2(4s−d−2ε)

)
.

Hence, the desired result follows from the comparison inequality (Chen
et al., 2004; Bartlett et al., 2006; Zhang, 2004) for the least square loss:

R
(
sign

(
f φ
z

))− R( fc) ≤
√

2(Eφ( f φ
z ) − Eφ( fρ)). (5.3)

The proof of the second assertion is similar as above. Recall that propo-
sition 22 of Ying and Zhou (2007) implies that the regularization error is
estimated as follows:

D(λ) ≤ O
(
λ

2s
2s+d

)
.

Combining this with inequality 5.2 and the comparison inequality 5.3, with
choice λ = n− 2s+d

2(4s+d) , we get the desired second assertion.

We end this section with a comparison with error rates in Ying and Zhou
(2007) on the least square loss for classification. In example 1, it was proven
that if d/2 < s ≤ d/2 + 2, then for any 0 < ε < 2s − d , we have that

E

[∫
X

| f φ
z (x) − fρ(x)|2dρX(x)

] 1
2

≤
(

E

[∫
X

∣∣ f φ
z (x) − fρ(x)

∣∣2dρX(x)
]) 1

2

≤O
(

n− 2s−d−ε
8(4s−d−2ε)

)
.
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Ignoring the difference of the forms to express error rates using expectations
and probabilistic inequalities, example 4 yields that O(n− 2s−d−ε

4(4s−d−2ε) ). Likewise,
for the case 0 < s ≤ 2 and ρX is the Lebesgue measure, we got improved
rates O(n− s

2(4s+d) ) in comparison with O((ln n)
1
4 n− s

4(4s+d) ) obtained previously.
Hence, our new error rates substantially improve those in Ying and Zhou
(2007).

6 Related Work and Discussion

Statistical bounds with Rademacher complexities were first pursued by
Lanckriet et al. (2004) and Bousquet and Herrmann (2003) for learning
the kernel from a linear combination of finite candidate kernels. The
Rademacher complexities are estimated by the eigenvalues of the candi-
date kernel matrix over the inputs.

Ying and Zhou (2007) pioneered the generalization analysis of learning
gaussians with varying variances. In particular, it was proved the union
space BK is a uniform Glivenko-Cantelli (uGC) class (see the definition
in Alon et al., 1997) if and only if, for any γ > 0, the Vγ -dimension of
KX = {K (·, x): x ∈ X, K ∈ K} is finite. There, the empirical covering num-
ber of KX for gaussians was also estimated. Based on these main results,
the Rademacher bounds were established in Ying and Zhou (2007) and
Micchelli et al. (2005):3

E
(

f φ
z

)− Ez
(

f φ
z

)≤ 4Cφ
λ

(
2Rn(KX)√

nλ

) 1
2

+ 4κCφ
λ

(
1√
nλ

) 1
2

+Mφ
λ

(
ln( 2

δ
)

n

) 1
2

+ 2√
n

.

Here, the Rademacher complexity Rn(KX) is defined by E sup f ∈KX

1√
n

|∑i∈Nn
εi f (xi )|, which is often bounded by O(dKln n) by using metric en-

tropy integrals (see theorem 20 in Ying & Zhou, 2007). Hence, the resultant
rates whose dependence on the sample number is of order n− 1

4 are quite
loose in comparison with our new bound of order n− 1

2 summarized in equa-
tion 2.11. Specifically, for the hinge loss, as stated in example 1, we can get
a better rate O(n− θ

2+3θ ) in comparison with the rate O((log n)
1
2 n− θ

2(2+3θ ) ) given
in Ying and Zhou (2007).

Srebro and Ben-David (2006) employed matrix analysis techniques to
directly estimate the empirical covering number of BK with the pseudo-
dimension of the candidate kernels. Margin bounds were established for

3This bound is originally given in the form of expectation. However, it is easy to
convert it to the current probabilistic form by the bounded difference inequality from
which the extra term Mφ

λ (ln( 1
δ

)/n)
1
2 appears.
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SVM. Specifically, recall Rγ
z ( f ) = |{i :yi f (xi )<γ }|

n . Note f φ
z ∈ 1√

λ
BK where BK is

the same as the notation FK used in Srebro and Ben-David (2006). A simple
modification of theorem 2 in Srebro and Ben-David (2006) to the function
class 1√

λ
BK, for any margin cost function ψ defined by equation 2.16, there

holds

R
(
sgn

(
f φ
z

))≤Rγ
z

(
f φ
z

)+
(

8(2 + dK) ln
128en3κ2

γ 2λdK

+ 256
κ2

γ 2λ
ln

128nκ2

γ 2λ
+ ln

1
δ

) 1
2

/
√

n.

Since Rγ
z ( f φ

z ) ≥ Eψ
z ( f φ

z ), corollary 2 implies

R
(
sgn

(
f φ
z

))≤Rγ
z

(
f φ
z

)+ 2
(

(384e + 2)κ2dK
nλγ 2

) 1
2

+ 2κ

(
1

nλγ 2

) 1
2

+ 3

(
ln 2

δ

n

) 1
2

.

Comparing the above two margin bounds, there is no logarithmic mar-
gin term, ln 1

γ 2 , in our bound. The empirical covering approach of Srebro
and Ben-David (2006) is roughly of the form (dK ln n

γ 2 + 1
γ 2 ln n

γ 2 )
1
2 /

√
n. The

Rademacher approach is of the form
√

dK
nγ 2 due to the contraction inequality

of Rademacher averages for the margin cost function. Hence, our bound is
comparable to their bounds. Moreover, there is no logarithmic term, ln n, in
our bound.

We can use the covering number in Srebro and Ben-David (2006) to
derive generalization bounds. To see this, using standard symmetrization
techniques and McDiarmid’s inequality, we have, with probablity 1 − δ,
that

E( f φ
z ) − Ez( f φ

z ) ≤ 2
Rn(φ ◦ Bλ)√

n
+ Mφ

λ

(
ln( 2

δ
)

n

) 1
2

≤ 2Cφ
λ

Rn(BK)√
nλ

+ Mφ
λ

(
ln( 2

δ
)

n

) 1
2

,

where φ ◦ Bλ = {φ(yf (x)) : f ∈ Bλ}. To estimate the Rademacher complex-
ity, recall the scaling version of theorem 1 in Srebro and Ben-David (2006):

Nn(FK, ε) ≤ 2
(

4en3κ2

εdK

)dK (16nκ2

ε2λ

) 64κ2

ε2 ln( εen
8κ

)

.
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Then we use the following Dudley’s entropy bound (Mendelson, 2002,
2003). For any N ∈ N, there exists an absolute constant C such that for
every N ∈ N,

Rn(BK) ≤ C
N∑

k=1

εk−1 log
1
2 N (FK, dX, εk) + 2εNn

1
2 .

Since N (FK, dX, εk) ≤ Nn(FK, εk), selecting εk = 2−k and N = log n
2 implies

that Rn(BK) ≤ CdK(ln n)
3
2 . Hence,

E
(

f φ
z

)− Ez
(

f φ
z

) ≤ C
d

1
2
K(ln n)

3
2√

nλ
+ Mφ

λ

(
ln 2

δ

n

) 1
2

+ 2√
n

.

In contrast, our generalization bound given by equation 2.11 is slightly
better since it mainly depends on

√
dK
nλ

. Moreover, Rademacher approaches
are usually more flexible. For instance, it is unknown how to directly es-
timate the pseudo-dimension of RBF kernels Krbf, and hence it could be a
problem to directly apply the approach of Srebro and Ben-David (2006). The
Rademacher approaches can handle this general case using the Rademacher
chaos complexity of Kgau instead of directly using that of Krbf as stated in
corollary 1 in section 2.

7 Conclusion

In this letter, we provided a novel statistical generalization bound for a
kernel learning system that extends and improves previous work (Lanckriet
et al., 2004; Wu et al., 2006; Ying & Zhou, 2007; Micchelli et al., 2005; Srebro
& Ben-David, 2006). The main tools are based on the theory of U-processes
such as the so-called homogeneous Rademacher chaos of order 2 and metric
entropy integrals involving empirical covering numbers. Several questions
remain to be studied:

� It would be interesting to get fast error rates with respect to the sample
number as those in Bartlett et al. (2006), Steinwart and Scovel (2005),
and Wu et al. (2006). For this purpose, the extension of localized
Rademacher averages (Bartlett et al., 2005) to the scenario of multiple
kernel learning would be useful.

� It would be interesting to investigate generalization bounds based on
decoupling gaussian chaos of order 2 (see its definition in De La Peña
& Giné, 1999).

� As mentioned in section 6, how to get additive margin bounds using
Rademacher approaches remains unknown.

� Another direction for investigation is to apply Rademacher chaos
complexities to practical kernel learning problems.
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